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Dual basis sets are employed as an economical way to approximate self-consistent field (SCF) calculations,
such as Kohn-Sham density functional theory (DFT), in large basis sets. First, an SCF calculation is performed
in a small subset of the full set of basis functions. The density matrix in this small basis is used to construct
the effective Hamiltonian operator in the large basis, from which a correction for basis set extension is obtained
for the energy. This correction is equivalent to a single Roothaan step (diagonalization) in the large basis. We
present second order nonlinear equations that permit this step to be obtained without explicit diagonalization.
Numerical tests on part of the Gaussian-2 dataset, using the B3LYP density functional, show that large-basis
results can be accurately approximated with this procedure, subject to some limitations on the smallness of
the small basis. Computational savings are approximately an order of magnitude relative to a self-consistent
DFT calculation in the large basis.

Introduction

In ab initio self-consistent field (SCF) calculations, the
molecular orbitals are expanded in an atom-centered basis set
of Gaussian atomic orbitals.1 Larger basis sets more closely
approach the complete basis set limit and therefore yield higher
accuracy. However, this is at the expense of steep increases in
computational cost, since the number of significant elements
in the effective Hamiltonian grows quadratically with the
number of basis functions used per atom. Computational cost
also increases between linearly and quartically with the number
of atoms. Therefore, for calculations that are not on very small
molecules, it is generally necessary to choose a basis set that is
relatively small, so that the total computational cost is kept
manageable. For example, most calculations on very large
molecules reported using linear scaling methods2-4 use only
small basis sets, of double-ú plus polarization size or smaller.

Different theoretical models have different requirements for
basis set size in order for results to approach those in a complete
basis set. Traditional wave function approaches to describe
electron correlation are particularly notorious for slow conver-
gence,5 and extrapolations or semiempirical corrections for basis
set incompleteness are essential to obtain reasonably well-
converged thermochemical calculations. We shall not consider
these methods further here. By contrast, density functional theory
(DFT) and Hartree-Fock (HF) SCF calculations are considered
to converge much faster with basis set. However, even these
SCF methods require quite large basis sets to approach the basis
set limit, which is where popular functionals such as Becke’s
B3LYP are parametrized.6,7 For organic molecules, a basis of
roughly 6-311++G(3df,3pd) size is satisfactory to approach the
basis set limit with B3LYP, but this is about two to three times
as large as a standard basis of 6-31G+(d) size. Indeed,

Adamson, Gill and Pople8 showed that their EDF1 density
functional, which is specially parametrized for the 6-31+G(d)
basis, outperforms B3LYP in that small basis. However the
errors are still about twice as large as B3LYP can achieve in
the complete basis set limit.

It is therefore important to develop approaches that can yield
the higher accuracy associated with DFT calculations in very
large basis sets, at reduced computational cost. This paper
develops a dual basis formalism for this purpose. The essential
idea is to use a small basis set to perform a relatively economical
reference calculation, and then correct this result perturbatively
in a large basis set to mimic a full calculation in the large basis
at much reduced cost. There have been several previous efforts
in this direction, beginning with Hartree-Fock (HF) calculations
for Rydberg states by King and co-workers,9,10 and followed
by wave function based approaches to correlation in which the
HF reference in a small basis is followed by a correlation
correction in a large basis.11,12 A related idea is the use of an
adaptive atom-centered minimal basis to span the occupied
space,13 which is obtained as an atom-blocked transformation
from a conventional extended basis. The SCF energy obtained
in the basis of these polarized atomic orbitals (PAO’s) is
necessarily higher than a full SCF calculation in the extended
basis, as variational freedom is restricted in defining the PAO’s.
This energy can be corrected by perturbation theory in the same
way as the dual basis approaches mentioned above, which
substantially improves the quality of both absolute and relative
energies.14

The second order perturbative corrections used in the dual
basis set and PAO SCF calculations are quite simple. Since the
reference SCF calculation is not performed in the large basis
set, the Brillouin theorem is not satisfied in the large basis.
Therefore Brillouin-condition violating matrix elements of the
molecular orbital (MO) basis Fock matrix between occupied
and virtual orbitals are used as the perturbation. The orbital basis
comes from separate canonicalizations of the occupied and
virtual spaces. While clearly successful in previous applications,
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this approach has a limitation that we seek to overcome in this
work. In this paper, we reformulate the expressions for the
correction in order to avoid diagonalizations. Our correction
expression can be expressed in the atomic orbital basis set (or
other localized representations). The projection operators in the
AO basis are exponentially localized for insulators,15 and
therefore this formalism may be suitable for a linear scaling
implementation in the future. This formalism is laid out in the
second section. It leads to an energy correction that is identical
to the energy lowering for a single Roothaan step. These
equations when linearized give the second-order dual basis
expressions used previously.

The third section contains detailed applications of the dual
basis approach to the chemical problem for which basis set
incompleteness effects are most severe, which is the calculation
of atomization energies. The objective is to assess the quality
of results that can be obtained with various sizes of small basis
for a given large basis. The issue is that underlying the dual
basis approach to DFT (or HF) calculations is the assumption
that the Coulomb, exchange and correlation potentials due to
the occupied orbitals can be adequately represented in the small
basis. If so, then the dual basis correction will be relatively small,
and a perturbative approach such as the dual basis method can
be successful. On the other hand, if the small basis is too small,
then important qualitative effects may be missing, and the dual
basis results must become more erratic. For example, omission
of diffuse functions in the treatment of anions or omission of
polarization functions from the small basis may be overly drastic
approximations. Of course, it is also important to examine the
computational savings that can be obtained, which we do for a
couple of examples. Our conclusions are given in the final
section.

Theory

We take the target energy lowering due to the dual basis as
being the energy change associated with a single Roothaan step
(i.e., diagonalization). We shall assume that the Kohn-Sham
Fock matrix,F, has been evaluated in the large basis using the
Kohn-Sham density matrix,P, which was obtained by a self-
consistent calculation in the small basis. For simplicity, we
assume that the small basis is a subset of the large basis. This
assumption is convenient because it means that the small basis
density operator can be exactly represented in the large basis.
It is not essential, however, since the small basis density operator
could, for example, be projected into the large basis. We shall
not consider that possibility here. All matrices henceforth are
in the large basis.

Operating in the molecular orbital basis for now, we can write
the condition for a Roothaan step as the following eigenvalue
problem, expressed in terms of the occupied space associated
with P, and the corresponding virtual space:

The necessary and sufficient objective is to block-diagonalize
the Kohn-Sham Fock matrix between occupied and virtual
blocks by finding the unitary transformationU. Explicitly
writing out the equations for the OO and VO blocks gives us
the following equations:

The energy lowering associated with the Roothaan step is

We therefore premultiply eq 2 byUOO
-1 and rearrange inside

the matrix trace to obtain

Defining a new matrix of variables as

we then have the following expression for the energy lowering

We now seek equations that determine the new variables,X. A
suitable set may be found by first post-multiplying eq 3 by
UOO

-1

We then take eq 2 and premultiply byXVO and postmultiply by
UOO

-1 to obtain

We can then subtract eq 9 from eq 8 to eliminate the right-
hand sides, leaving a set of equations that determine the
unknowns,XVO, in terms of the Fock matrix elements partitioned
between the starting occupied and virtual spaces:

Iterative solution of eq 10 followed by evaluation of the energy
lowering from eq 7 is a complete prescription for a dual basis
calculation. Although this work is only concerned with the dual
basis energy, it is feasible and desirable to also formulate the
dual basis analytical gradient with respect to nuclear coordinates
(or other perturbations). This is quite feasible, although, because
the dual basis energy is not variational, it involves the solution
of linear response equations16 in the small basis. We intend to
report on this problem separately, in due course.

Although we have presented eq 10 starting from a molecular
orbital description, the matrix of unknowns,X, does not have
to be expressed in an MO basis. For example, these equations
can be equivalently expressed in the atomic orbital basis, by
first representingFVO,FVV,FOO,FOV in the AO basis by projec-
tion. In this representation, the various matrices become sparse
for large systems,15 which offers potential computational
advantages. We can writeFVO

AO ) (1 - SP)FPS, FOO
AO )

SPFPS, FVV
AO ) (1 - SP)F(1 - PS), etc, whereF andS are the

AO basis Fock and overlap matrices andP is the initial (small
basis) density matrix. With these definitions, the equations for
X in the atomic orbital basis become

More generally, we can use the tensor properties of these
operator matrices17-19 to conclude that the equations are
invariant to any change of basis spanning the occupied and
virtual spaces. In terms of covariant and contravariant functions
spanning the occupied (indicesi,j,...) and virtual spaces (indices

[FOO FOV

FVO FVV ][UOO UOV

UVO UVV ] ) [UOO UOV

UVO UVV ][EOO 0OV

0VO EVV ] (1)

FOOUOO + FOVUVO ) UOOEOO (2)

FVOUOO + FVVUVO ) UVOEOO (3)

δE ) Tr(EOO - FOO) (4)

Tr(EOO) ) Tr(UOO
-1FOOUOO + UOO

-1FOVUVO)

) Tr(FOO + FOVUVOUOO
-1) (5)

XVO ) UVOUOO
-1 (6)

δE ) Tr(FOVXVO) (7)

FVO + FVVXVO ) UVOEOOUOO
-1 (8)

XVOFOO + XVOFOVXVO ) UVOEOOUOO
-1 (9)

FVO + FVVXVO - XVOFOO - XVOFOVXVO ) 0VO (10)

FVO
AO + FVV

AOXS - SXFOO
AO - SXFOV

AOXS ) 0 (11)
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a,b,...) associated withP, we then have the following expression
which exhibits all invariances to changes of basis:

(more details on this notation are available in the literature19).
It is also interesting to compare eq 10 with other expressions

that have been used for dual basis corrections. Equation 10 is,
as already emphasized, equivalent to the energy lowering
associated with a single diagonalization, if it is evaluated using
the given Fock matrix. Since the dual basis correction is
presumed to be relatively small, one approximation that is likely
to be effective is to neglect the quadratic terms in eq 10. The
resulting linear equation is equivalent to dual basis corrections

that have been used before (for single excitations9,11,14). Evaluat-
ing the energy with the solution to eq 13 gives the energy
lowering that would be obtained via second-order perturbation
theory. In wave function language, that is the energy lowering
associated with single excitations from the reference determi-
nant. These single excitations give nonvanishing energy-
lowerings because the Brillouin theorem is not satisfied using
the small basis density matrix with the large-basis Fock matrix.

Solution of eq 13 gives the same energy lowering as an
approximate Newton step, based on the gradient,20 g, of the
energy with respect to orbital rotations coupling occupied levels,
i, with virtual levels,a, with elements (g)ai ) ∂E/∂θai ) 2Fai.
Furthermore, the diagonal orbital second derivatives can be
approximated21 as differences between canonical virtual and
occupied Fock matrix elements,∂2E/∂θai

2 = 2(εa - εi), so that
the step vectord will have elementsdai ) -∂E/∂θai/∂2E/∂θai

2

) -Fai/(εa - εi). From the gradientg and the chosen step vector
d, the energy lowering in the canonical basis is finally estimated
in the quadratic model as

When the quadratic correction in eq 10 is small, this will be
close to what we obtain iteratively. Either approach (either Eqs.
(10) or the linearized version, eq 13) can be solved without
diagonalization, which may be useful for future large-scale
applications of dual basis corrections.

Results and Discussion

In this section, we examine several aspects of the computa-
tional performance of the dual basis approach described here.
All calculations reported below are based on the formulation
described above, which is the energy lowering predicted for a
Roothaan step in the large basis, after an SCF calculation has
been completed in the small basis. These calculations use a
preliminary implementation of an algorithm to solve the second-
order nonlinear equations forX in eq 10. A conjugate gradient
search is used to solve the equations in the Cholesky ortho-
gonalized basis. The equations are first converged without the
nonlinear term. This procedure was implemented into a devel-
opment version of the Q-Chem program.22 The SCF conver-
gence criterion for all calculations reported below was 10-8 for
the RMS difference between successive density matrices. The
convergence criterion in the equations forX was 10-8.

CPU Time. As an indication of the computational cost
advantage of using the dual basis approach, we report some

CPU timings in Table 1 for calculations in which the small basis
is 6-311G* and the large basis is 6-311++G(3df, 3pd). These
calculations are on two quite small molecules so that the
computational cost is dominated by the formation of the Fock
matrix. In the dual basis approach, this is only done once in
the large basis, which leads to a theoretical speedup that is the
number of SCF cycles (i.e., typically between 10 and 20). The
results in Table 1 show speedups in practice of around a factor
of 10, reflecting contributions of the small basis SCF and the
matrix operations needed to solve the equations forX. These
speedups clearly show the value of the dual basis approach from
the standpoint of efficiency. We now turn to an assessment of
accuracy.

Accuracy of Dual Basis Set Calculations for Atomization
Energies.Among the most challenging properties to calculate
accurately by electronic structure methods are atomization
energies. This is because there is no possibility of cancellation
of error, unlike reactions in which the number of paired electrons
is conserved such as isogyric and isodesmic reactions. System-
atic testing of electronic structure methods for atomization
energies has been greatly aided by the development of the
Gaussian-223,24and Gaussian-325,26databases of reliable experi-
mental data for small molecules. In the calculations reported in
this section, we compute atomization energies for 56 small
molecules to assess the performance of the dual basis approach.
The large basis set is taken as 6-311++G(3df,3pd), which is
expected to yield DFT results close to the basis set limit. Several
smaller subsets of this large basis are tested as the small basis
set. All calculations used the B3LYP density functional,6,7 which
remains among the most accurate available for DFT calculations
of atomization energies.

The atomization energy results are summarized in Table 2,
and the full set of calculations are available as Tables in
Supporting Information. Table 2 summarizes the mean absolute
derivation (MAD), the root square (RMS) deviation and
maximum deviation (MaxD) of atomization energies (AE)
versus the database values for calculations using a single basis
set. Zero-point energies were included at the B3LYP/6-31G*
level. Table 2 additionally includes a comparison of the
performance of single basis calculations versus dual basis
calculations for atomization energies. Table 3 then summarizes
MAD, RMS, and MaxD for absolute molecular energies (E)
using both single and dual basis sets, against the full SCF values
in the large 6-311++G(3df,3pd) basis.

First, let us compare the performance of SCF calculations of
atomization energies using four different basis sets with the
B3LYP functional, as summarized in the single basis columns

TABLE 1: Computer Timings for Dual Basis Calculations
Using the 6-311G* Basis as the Primary Basis and
6-311++G(3df,3pd) as the Secondary Basis, against Full
Self-Consistent Calculations in the Large Secondary Basisa

CPU time
(min.)

SCF
cycles

basis set
size

molecule full dual full dual full 6-311G*

CH3COCl b 18.1 2.2 15 15 218 89
CH3COCH3

c 25.6 2.4 12 12 264 90

a These timings were recorded on a 375 MHz IBM RS/6000 Power-3
system, using a single processor, and the convergence parameters and
tolerances described in the text.b The absolute energies at the B3LYP/
6-31G(d,p) optimized geometry are-613.515502 au for the small basis,
-613.540635 au for the dual basis calculation, and-613.541243 au
for the large basis.c The absolute energies at the B3LYP/6-31G(d,p)
optimized geometry are-193.204914 au for the small basis,
-193.231674 au for the dual basis calculation, and-193.232607 au
for the large basis.

F•i
a + F•b

a X•i
b - X•j

aF•i
j - X•j

aF•b
j X•i

b ) 0 (12)

FVO + FVVXVO - XVOFOO ) 0VO (13)

∆E )
1

2
gd )

1

2
∑
ai

(2Fai)( -Fai

εa - εi
) ) ∑

ai

-Fai
2

εa - εi

(14)
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of Table 2. It is clear that the largest basis, 6-311++G(3df,3pd)
is qualitatively superior to the other three by all measures. For
example, the RMS deviation vs experiment in the largest basis
is 3.1 kcal/mol, whereas it increases to 7.4, 9.2, and 32.3 kcal/
mol in the successively smaller 6-311G**, 6-311G*, and 6-311G
basis sets. This is consistent with the fact that density functionals
are developed at the complete basis limit and require large basis
sets to perform to their full capability for atomization energies.
Although the three smaller basis sets are clearly inadequate for
direct calculation of atomization energies, they may still be
useful as the small basis reference for a dual basis calculation.
This is the question that we address next.

From Table 2, the three dual basis set calculations can be
assessed by comparing the MAD, RMS, and MaxD values
against those for the explicit SCF calculations in the large basis.
It is evident that dual basis calculations starting from either
6-311G** or 6-311G* reproduce the large basis SCF calcula-
tions remarkably well, whereas the 6-311G dual basis results
are noticeably poorer. For example, the RMS deviation vs
experiment is 3.1 kcal/mol in the large basis and is 3.0, 3.0,
and 5.2 kcal/mol in the 6-311G**, 6-311G*, and 6-311G dual
basis calculations. We conclude that 6-311G* is the smallest
basis capable of giving dual basis results that are virtually as
good as those from an SCF calculation in the larger basis. It is
a very economical approximation that scarcely degrades the
quality of the results.

The origin of the poor results for atomization energies
obtained with the small basis sets as well as the good results
obtained using those same basis sets in a dual basis calculation
can be seen from the absolute energy deviations against the large
6-311++G(3df,3pd) basis, as summarized in Table 3. Quantum
chemistry calculations in small basis sets yield large RMS errors
in absolute energies; those for the 6-311G**, 6-311G*, and
6-311G basis sets are 9.3, 11.4, and 35.6 kcal/mol versus the
large basis. Virtually all of this deviation is then reflected
directly in errors in the atomization energies. By contrast, the
dual basis approximations in the same three basis sets reduce
the RMS absolute energy deviation to 0.2, 0.3, and 4.8 kcal/

mol. In either 6-311G* or 6-311G** dual basis calculations,
this RMS deviation is almost certainly smaller than the intrinsic
accuracy of the B3LYP functional, and accounts for the success
of these dual basis calculations.

Conclusions

In this short paper, we have explored the use of a dual basis
correction for high accuracy Kohn-Sham density functional
theory (DFT) calculations, using the popular B3LYP functional.
First, a self-consistent DFT calculation is performed in a small
basis, such as 6-311G*. Second, an energy correction is
calculated in a much larger basis set, such as 6-311++G-
(3df,3pd), based on a single Roothaan step (or diagonalization)
using the Fock matrix in the large basis built from the density
matrix in the small basis. We have three principal conclusions:

(1) The energy lowering associated with the single Roothaan
step in the large basis gives relative energies that are remarkably
close to those obtained via fully self-consistent DFT calculations
in the large basis. For atomization energies, this yields reductions
in the mean absolute error, root-mean-square error, and maxi-
mum absolute error that are roughly a factor of 3 for the basis
set combination mentioned above.

(2) A reduction of about a factor of 10 in computational cost
is achieved even for the small molecules tested here. This
basically reflects the fact that only a single Fock matrix must
be constructed in the large basis in the dual basis approach,
instead of roughly 10 or more in a self-consistent calculation.

(3) We have presented simple equations for the Roothaan
step that replace explicit diagonalization with the solution of a
second order nonlinear equation. If the second order terms are
neglected this expression is equivalent to the energy lowering
due to an energy-weighted steepest descent step, or the “single
excitation” contributions in second order perturbation theory.
We shall shortly report on these equations in more detail
elsewhere.
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