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Nonrelativistic clamped nuclei interaction energies for a pair of helium atoms have been computed using the
Gaussian geminal implementation of the coupled cluster theory with single and double excitations (CCSD).
Effects of triple and quadruple excitations were subsequently included employing the conventional orbital
approach and very large augmented, correlation-consistent bases extended by sets of bond functions. Up to
the coupled cluster doubles (CCD) level, the Gaussian geminal expansions provide nearly an order of magnitude
better accuracy than orbital expansions even if the latter results are extrapolated. The recommended values
of the helium dimer interaction energy are 292.54( 0.04 K,-11.009( 0.008 K, and-4.619( 0.007 K at
the interatomic distances equal to 4.0, 5.6, and 7.0 bohr, respectively. The major contributions to the error
estimates come from the orbital parts of the calculations beyond the CCSD level.

1. Introduction

Helium is an extraordinary system from the point of view of
both experimental and theoretical physics. It exhibits superflu-
idity, one of the most striking macroscopic manifestations of
the quantum character of matter. Helium also forms a new and
exciting medium for high-resolution spectroscopy, the helium
nanodroplets.1,2 Since the interactions between helium atoms
are very weak, the properties of gaseous helium are closer to
those of the ideal gas than properties of any other substance.
Helium is therefore used as a benchmark system for thermo-
physical studies of the relations between the pressure of a gas,
its temperature, molar polarizability, dielectric constant, and
virial coefficients.3,4 If the molar polarizability and the virial
coefficients of helium were known with sufficient accuracy, such
relations could be used to establish a new pressure standard
based on capacitance measurement of the dielectric constant.5,6

A very accurate interatomic potential, preferably to within a
few millikelvin in the well region (1 hartree) 315 774.65 K),
would be required for this purpose.5,6 A high-quality He2
potential is also needed to describe the very unusual bound state
of this system. The depth of the potential is only about 11 K,
barely accommodating one vibrational level. The wave function
of this state is spread over distances of the order of 50 Å.7-10

Subkelvin variations in the values of the potential have a
substantial impact on the binding energy, average He-He
separation,10,11 and the scattering length. The aim of our work
is to provide a He2 potential with relative uncertainties below
0.1%, which amounts to a few millikelvin in the region of the
well.

High-quality ab initio pair potentials for helium started
appearing in the middle of the 1990s.12 At that time, the accuracy

of such potentials in fact surpassed that of empirical potentials
fitted to experimental data.13 Since 1995, more than 10 papers
have been published describing large-scale calculations for He2.
These papers predicted the potential depth at the equilibrium
internuclear distanceR ) 5.6 bohr ranging from-10.95 to
-11.10 K, with often incompatible uncertainties.10-12,14-24 The
lowest published rigorous upper bound to this quantity, obtained
by subtracting the exact monomer energies from the variational
energy of a 2400-term explicitly correlated Gaussian function,22

amounts to-10.981 K. Results with narrow error bars include
the latest from a series of papers by Gdanitz,20 -10.980( 0.004
K, the value from a previous paper from our group24 equal to
-11.008( 0.008 K, and the very recent result of unpublished
Monte Carlo calculations by Anderson (cited in ref 25)
amounting to-10.998 K and subject to a statistical uncertainty
of 1σ ) 0.005 K.

The 1996 SAPT potential10,16for He2 has been used in several
applications, in particular in thermal physics. As discussed by
Hurly and Moldover,26 quantum mechanical calculations of the
second virial coefficient and of the transport properties of helium
can provide more accurate results than measurements. The ab
initio properties computed from the SAPT potential have been
used as reference data for an acoustic viscometer,27 to study
helium flow properties,28,29in capacitance measurements of the
dielectric constant,30 and to develop an interpolating and a
primary low-temperature acoustic gas thermometer.31 Evers et
al.32 have used the theoretical values of viscosities computed
by Hurly and Moldover26 from the SAPT potential to test the
performance of their new viscometer for the case of helium gas.
They found agreement to within( 0.03% which enabled them
to calibrate viscosity and density measurements of other gases.32

In the present paper, we report results of very accurate
electronic structure calculations for the helium dimer employing
the Gaussian geminal implementation33,34of the coupled cluster
singles and doubles (CCSD) model.35,36 The results forR )
5.6 bohr have already been utilized in ref 24 as benchmarks in
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investigations of the basis set extrapolation techniques. In
addition to the CCSD energies, we have also computed the basis-
set-saturated many-body perturbation theory (MBPT) energies
at the second-order (MP2) and third-order (MP3) level. The
interaction energies reported here have been obtained using the
supermolecular approach,37 that is, by subtracting the atomic
energies from the total electronic energy of the dimer, both
energies obtained using the same level of theory and the same
basis set. This means that the basis set superposition error
(BSSE) has been eliminated using the counterpoise (CP)
procedure of Boys and Bernardi.38

The interaction energy contributions beyond the CCSD level
have been obtained by us using the conventional, orbital-based
CCSD(T)39,40 (coupled cluster singles and doubles with non-
iterative account of triple excitations) and the full configuration
interaction (FCI) methods, following the approach of ref 24.
Very large correlation-consistent bases (up to doubly augmented
septuple-zeta in the CCSD(T) case) supplemented with large
sets of bond functions have been applied. All the contributions
at this level have also been CP corrected. To obtain the complete
basis set limits for the triple- and quadruple-excitation contribu-
tions to the interaction energy and to estimate the error bars for
these quantities, we employed extrapolation techniques tested
in ref 24 for the equilibrium internuclear distance.

2. General Methodology

The interaction energy of the helium dimer,Eint, was
computed using the following partitioning

whereECCSD is the interaction energy at the CCSD level of
theory,ET is the triple-excitation contribution to the interaction
energy accounted for by the CCSD(T) method,

andδEFCI, defined as

collects the remaining triple-excitation effects and the whole
quadruple-excitation contribution obtained using the FCI ap-
proach. It is known that the former effects dominateδEFCI.41

Unless otherwise noted, all energy symbols, such as in eqs 1-3,
will always refer to the interaction energies, rather than total
dimer energies. The CCSD interaction energy,ECCSD, or some
approximations thereto considered further on, will always
include the Hartree-Fock (HF) part, obtained in the self-
consistent field (SCF) procedure and denoted byESCF. The same
will be assumed aboutECCSD(T) and EFCI. To denote the
correlation-only part of the interaction energy predicted by
methodX, we shall use the symbolEX

cr, for example,ECCSD
cr )

ECCSD - ESCF.
The rationale for the partitioning eq 1 are the different

physical characteristics and computational requirements of the
three contributions. The bulk of the (notoriously slowly
convergent) correlation effects is contained inECCSD, which is
ideally suited for computations employing the Gaussian-type
geminals (GTGs). This basis proved to yield accuracy unreach-
able with orbital methods, not only in the CCSD context33 but
also at the level of the second- and third-order MBPT within
the Møller-Plesset partitioning scheme (MP2 and MP3)15 and
in direct variational calculations.42 The two remaining contribu-
tions, ET and δEFCI, have been calculated using orbital basis

set expansions and extrapolation techniques. These two contri-
butions are studied separately since the dominantET term can
be evaluated using much larger basis sets than those practical
in FCI calculations.

The total CCSD correlation energy of a closed-shellN-
electron system can be expressed as

where the pair contributions are defined by

andφR, R ) 1, 2, ...,N/2, are occupied Hartree-Fock orbitals.
The one- and two-electron spinless cluster functionsτR andτRâ

s

are defined by the set of integro-differential equations of first-
quantized CCSD theory33 and the condition of strong orthogo-
nality to the space spanned by the occupied orbitals.43 Thes )
1 (“singlet”) ands ) 3 (“triplet”) two-electron cluster functions
(or pair functions) have definite exchange symmetry, that is,
these functions are symmetric and antisymmetric, respectively,
with respect to the exchange of electronic coordinates,
τRâ

s (r2, r1) ) (2 - s)τRâ
s (r1, r2).

The pair functions were expanded in terms of explicitly
correlated Gaussian geminalsgi(r1, r2), that is,

where the operatorÂs ) 1 + (2 - s)P̂12 (P̂12 being the
permutation operator) ensures the appropriate exchange sym-
metry andΠ̂Râ enforces the correct spatial symmetry ofτRâ

s ,
the same as the symmetry of the corresponding orbital product.
For the specific case of the helium dimer,Π̂Râ ) 1 ( ı̂, where
ı̂ is the inversion in the molecular midpoint. Thus, the operators
Π̂11 andΠ̂22 symmetrize and the operatorΠ̂12 antisymmetrizes
gi(r1, r2) with respect to the inversion. The nonlinear parameters
γ1i, A i, γ2i, Bi, and δi are to be determined by a nonlinear
optimization procedure. To guarantee theΣ+ symmetry of the
pair functions, the vectorsA i andBi are constrained to lie on
the axis defined by the nuclei. The one-electron cluster functions
τR(r ) are expanded in terms of the floating Gaussian orbital basis

where the operatorΠ̂R plays a similar role asΠ̂Râ, that is, for
the He dimer,Π̂1 symmetrizes andΠ̂2 antisymmetrizes with
respect to inversion.

In general, the functions 6 and 8 would have to contain
prefactors of powers of Cartesian coordinates ensuring their
proper symmetry and basis set completeness.44,45In the present
case, when all one-electron cluster functions are ofσ symmetry
and all pair functions ofΣ+ symmetry, these prefactors can be
dropped without affecting the completeness of the basis set, as
long as the Gaussian centersA i, Bi, andCi are distributed along
some finite segment of the internuclear axis and the exponents
are allowed to assume all positive values.44,45In our calculations

ECCSD
tot,cr ) ∑

R)1

N/2

εRR
1 + ∑

R<â

N/2

(εRâ
1 + εRâ

3 ) (4)

εRâ
s ) s

(1 + δRâ)
〈φRφâ|r12

-1|τRâ
s + τRτâ + (2 - s)τâτR〉 (5)

τRâ
s (r1, r2) ) ÂsΠ̂Râ∑

i)1

K

ci
Râsgi(r1, r2) (6)

gi(r1, r2) )

exp(-γ1i|r1 - A i|2 - γ2i|r2 - Bi|2 - δi|r1 - r2|2) (7)

τR(r ) ) Π̂R ∑
i)1

L

ci
R exp(-γi|r - Ci|2) (8)

Eint ) ECCSD+ ET + δEFCI (1)

ET ) ECCSD(T)- ECCSD (2)

δEFCI ) EFCI - ECCSD(T) (3)
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the centers were allowed to move along the axis within 10 bohr
from the center of the molecule and the exponentsδi could
assume the value of zero, in addition to the positive values
required by the completeness criteria. The linear coefficients
ci

R andci
Râs of eqs 8 and 6 were found by solving iteratively the

first-quantized CCSD equations.33 Accurate (or even reasonable)
results can be obtained only with a suitable choice of the
nonlinear parametersγ1i, A i, γ2i, Bi, δi, γi, andCi. In the present
work we followed ref 33 and optimized these parameters by
minimizing the total MP2 energy of the dimer, except forγi

andCi which were obtained by minimizing the single-excitation
contribution to the fourth-order MBPT energy of the dimer. The
details of the nonlinear optimization procedure are presented
in section 3.

To avoid BSSE, the geminal and orbital basis sets optimized
for the dimer were also used in the coupled cluster and MBPT
calculations for the monomer (see section 3.2 for a detailed
discussion of this issue). The only monomer pair functionτ11

1

was represented using the same geminalsgi as those used in eq
6 for the dimer pair functions, according to the formula

where the coefficientsci andc̃i are independent. Similarly, the
one-electron cluster functionτ1 of the monomer was expanded
in the 2L-term basis containing all the orbitals used in eq 8 and
all the functions obtained from these orbitals by applying the
inversion operationı̂. Note that expansions similar to eq 9, with
gi and ı̂gi treated as independent basis functions, could have
been used also in the case of the dimer. However, the symmetry
of the dimer Hamiltonian implies that, in this case,ci ) (c̃i

and thus the symmetry-adapted functionsΠ̂Râgi were employed
instead.

The number of three- and four-electron integrals in GTG
calculations is significantly reduced if the so-called weak
orthogonality (WO) approach43 is employed. In this approach,
the strong orthogonality conditions are imposed on the cluster
functions approximately by means of a penalty function rather
than by the explicit projection of raw geminals. Further
reductions of the computational cost are achieved by the use of
the approximate projection technique44 which allows one to omit
costly projectors in several terms of the CCSD equations.33

Combination of this technique with the WO approach, referred
to as the superweak orthogonality plus projection (SWOP)
method, becomes exact in the limit of the complete geminal
basis set. All geminal MP2 and coupled cluster calculations
reported in this work have been performed using the WO and
SWOP methodology, respectively. The MP3 energies were
obtained using the WO first-order pair functions approximately
projected before being inserted into the third-order formula.

With simplifications resulting from SWOP, the computational
burden of the complete explicitly correlated CCSD method
scales approximately asM4K2 + M2K3, assuming thatM ) L,
whereM is the number of basis functions in the expansion of
the occupied Hartree-Fock orbitals andK andL are defined in
eqs 6 and 8, respectively. Calculation of four-electron integrals
is still required, most of them in expressions containing one-
electron cluster functions. Unlike in the conventional orbital
case, the geminal implementation of the coupled cluster doubles
(CCD) theory46 is computationally much less expensive than
the full CCSD treatment. The scaling of computational cost of
CCD in the SWOP approach isM2K3 + M4K. Although typically
K ≈ M2 and therefore theM4K2 term dropped when going from

CCSD to CCD has the overall scaling similar to theM2K3 term,
the prefactor of the former term is much larger than that of the
latter.

It has been found33,47 that the contribution of the nonfactor-
izable diagrams, which generate∼M2K3 four-electron integrals
in the CCD equations, is very small and rather easy to converge
with small geminal basis sets. The neglect of these diagrams
leads to the so-called factorizable CCD (FCCD) method, defined
in ref 47, which scales asM4K + M2K2 in the SWOP approach
and requires only two- and three-electron integrals. In the context
of orbital coupled cluster theory, the FCCD method has been
considered by Adams et al.48,49 and by Chiles and Dykstra.50

Since the FCCD contribution to the interaction energy converges
considerably slower withK, in absolute terms, than the (small)
contributions from the remaining, computationally more de-
manding levels of the CCSD theory, the FCCD interaction
energy was computed with substantially larger geminal basis
sets. This strategy leads to the following partitioning of the
CCSD and CCD interaction energies

where ECCD (EFCCD) is the interaction energy in the CCD
(FCCD) approximation, whereasES andENF terms, defined by
the equations above, are contributions of single excitations and
nonfactorizable CCD diagrams, respectively.

3. Optimization of the Nonlinear Parameters

3.1. SCF Basis Sets.The first-quantized CCSD equations
are strictly valid only in the limit of the exact solution of the
Hartree-Fock problem. To reduce uncertainties due to the use
of approximate solutions, fairly good quality SCF bases should
be used. On the other hand, since the cost of CCSD calculations
in geminal bases scales as the fourth power of the SCF basis
set sizeM, one would like to use as compact SCF basis sets as
possible. With the time requirements of the current geminal
codes, large traditional basis sets containing hundreds of
Gaussian orbitals are impractical. In fact, it would be pointless
to use such basis sets, which are mainly aimed at describing
electron correlation effects, when one needs only to describe
the ground-state HF orbitals. Thus, the geminal CCSD calcula-
tions usually employ compact yet accurate expansions in
spherical Gaussian functions, such as those appearing in eq 8,
with carefully optimized exponents and centers. The starting
point for the SCF optimization was obtained by adding to atom-
centered functions optimized for the SCF energy of the helium
atom a number (20-80% depending onR andM) of functions
scattered between the nuclei, with the more diffuse Gaussian
orbitals placed closer to the center of the molecule. The whole
space of the 2M nonlinear parameters was then optimized by
the Powell method of conjugate directions,51 with the linear
parameters evaluated in each step by the usual SCF procedure.
The total dimer SCF energies obtained for different values of
M, as well as CP-corrected SCF interaction energies are listed
in Table 1. We have also calculated strict upper boundsESCF

ub

to the Hartree-Fock interaction energies by subtracting twice
the accurate helium atom HF energy of-2.861 679 995 612 21
hartree53 from the dimer energies. To further assess the quality
of the optimized basis sets, we prepared a reference set in the
following way. In the largest basis used in our orbital calcula-
tions (see the description of basis sets in section 5), a7Z+b135,
we replaced all 15s functions on each atom (contracted to 8s)
by a new uncontracted set of 32s functions with exponents

τ11
1 (r1, r2) ) Â1∑

i)1

K

(cigi(r1, r2) + c̃i ı̂gi(r1, r2)) (9)

ECCSD) ECCD + ES (10)

ECCD) EFCCD + ENF (11)
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optimized for the Hartree-Fock energy of the helium atom.
This basis, containing 561 functions, reproduces the monomer
HF energy given above with an error of only 0.014 mK. The
interaction energies obtained in this basis are listed in the last
row of each series in Table 1. Since the monomer energy is so
accurate, the upper bounds are almost equal to the regular CP-
corrected values for all three distances. This equality does not
mean, of course, that the values ofESCFare converged to∼0.01
mK. Neither can we assume that the SCF interaction energies
in the reference, 561-orbital basis are closer to the exact values
than those computed in our largest,M ) 32, floatings-symmetry
bases. However, since the differences are only 0.85, 0.01, and
0.00 mK for R ) 4.0, 5.6, and 7.0 bohr, respectively, for all
practical purposes the two sets of bases give identical results.
Since the discussed bases have been obtained by very different
procedures, this agreement seems to suggest that the exact HF
interaction energies are reproduced by the best results in Table
1 to within about 0.0001%. On the other hand, the convergence
patterns for the floatings-symmetry bases displayed in Table 1
point to a lower accuracy. The change ofESCF betweenM )
24 andM ) 32 is 0.38, 1.64, and 0.42 mK forR ) 4.0, 5.6,
and 7.0 bohr, respectively. On the basis of these values, the
accuracy of theM ) 32 results has to be significantly
downgraded. Combining both estimates, we assigned, rather
conservatively, the errors of theESCF values as 1, 0.1, and 0.1
mK, respectively (relative errors of 0.0002%, 0.001%, and
0.03%). Thus, the Hartree-Fock component of the interaction
energy has been computed with an error negligible compared
to the errors of other components discussed later.

From the monotonically decreasing behavior of the series in
M (for all R), one may expect that at the limit of infinite basis
the SCF interaction energies will be a little below the lowest
computed values. To account for this anticipated lowering atR
) 5.6 and 7.0 bohr, we have decreased the lowest computed
result by about 0.1 mK as suggested by the convergence rate,
that is, we have chosen the limit values as 9.2199 and 0.2879
K, respectively. Then the best computed results are within the
estimated error bars. We have also fitted the SCF interaction

energies forR ) 4.0 and 5.6 bohr to the functionE(M) ) E∞
+ Re-γM. For R ) 5.6 bohr the limit value from the fit is
9.220 15 K, slightly above the upper error bar and in fact 0.05
mK above our best upper bound. We believe this is due to an
incomplete optimization of theM ) 24 function since the
corresponding interaction energy lies distinctly above the fit.
For R ) 4.0 bohr the limit value from the fit was 428.7821 K,
above the lowest computed value. Since the SCF interaction
energy is not a variational quantity, getting below the limit value
is possible, in particular if our optimizations put too much
emphasis on the dimer component of the basis set at the expense
of the monomer-centered part. With this insight, we took
428.782( 0.001 K as the best estimate ofESCF for R ) 4.0
bohr.

A clear conclusion from the results presented above is that
indeed one can use floating Gaussian expansions much more
compact (about 10 time shorter) than the standard bases to
represent the occupied HF orbitals at a given level of accuracy.

3.2. Two- and One-Electron Cluster Functions. The
parameters of the GTG functions of eq 7 were optimized with
respect to the total MP2 correlation energy of the He dimer by
minimizing the second-order functional being a sum of the
Hylleraas-type pair functionals (see eq 13 of ref 15). Although
the first-order pair functions, obtained from such minimizations,
are obviously not identical with the converged CCSD cluster
functions, if the geminal basis is large enough, the linear
parameters can compensate for the not fully optimal nonlinear
parameters, as shown by the results of ref 33. The minimizations
of the functional (separately at each value ofR) were performed
in cycles running through allK Gaussian geminals. To optimize
each geminal in a given cycle, just one iteration of the standard
Powell method51 was executed. Since the parameters of all the
geminals are mutually coupled through the minimized func-
tional, it is advantageous not to fully converge the Powell
procedure in each step but rather to return to each geminal more
times (perform more cycles). Before performing the cycles, the
initial values of the nonlinear parameters were obtained with
the following “shoot-and-sort” procedure. First, for a geminal
of the form of eq 7, 80 sets of parameters were randomly
generated. The set giving the lowest value of the MP2 functional
was then optimized with one Powell iteration. The process
continued, increasing the size of the basis set by one in
consecutive steps, until this size reachedK. In a given step, all
the geminals from previous steps were held fixed. This strategy
proved extremely successful in Rayleigh-Ritz variational
calculations.42 In almost all of the optimization cycles, the
shorter SCF expansions from Table 1 were used (M ) 16). In
the final cycle,M ) 24 was applied. To test the convergence
of the results at all the levels of theory considered in this work,
we generated expansions of different lengths, fromK ) 300
(K ) 75 for R ) 5.6 bohr) toK ) 800. Each optimization was
done independently, that is, the optimizations of larger expan-
sions did not use any information from the shorter functions.

In Gaussian geminal computations of the MP2 energy
performed in the past, different geminal basis sets (different
nonlinear parameters) were usually employed for differentR,
â, ands, that is, for different pair functions. Since at the MP2
level each pair yields a separate contribution, this choice is
optimal. In the present work we decided to represent each pair
function using a universal geminal basis, as indicated by eq 6.
This choice is dictated by three factors.First, as shown in ref
15, in calculations of the interaction energies rather than of the
total energies only, the universality of the geminal basis is
necessary if the interaction energy is to be made free from BSSE

TABLE 1: Total Dimer SCF Energies E (in hartrees),
Interaction Energies ESCF, and Strict Upper Bounds to the
Interaction Energy ESCF

ub (Both in kelvin) Computed Using
Basis Sets Optimized in the Present Work

Ma E ESCF ESCF
ub

R ) 4.0 bohr
10 -5.721 960 737 870 436.595 66 441.848 74
16 -5.722 001 211 419 428.801 65 429.068 22
24 -5.722 002 054 475 428.782 31 428.802 00
32 -5.722 002 091 804 428.781 93 428.790 21
(a7Z+b135)+32b -5.722 002 115 291 428.782 78 428.782 80

R ) 5.6 bohr
10 -5.723 316 545 900 9.306 28 13.718 93
16 -5.723 330 598 175 9.233 79 9.281 58
24 -5.723 330 786 077 9.221 64 9.222 24
32 -5.723 330 792 855 9.220 00 9.220 10
(a7Z+b135)+32b -5.723 330 793 142 9.219 99 9.220 01

R ) 7.0 bohr
10 -5.723 345 086 007 0.294 27 4.706 69
16 -5.723 359 003 124 0.291 71 0.312 02
24 -5.723 359 077 527 0.288 39 0.288 52
32 -5.723 359 078 954 0.287 97 0.288 07
(a7Z+b135)+32b -5.723 359 079 180 0.287 97 0.288 00

a M denotes the number of symmetry-unique basis functions (the
dimension of the Fock matrix is 2M). b The aug-cc-pV7Z Dunning et
al. type basis set published by Gdanitz11 with s functions replaced by
the 32s set on each atom optimized by us plus the 6s6p6d3f3g3h set of
bond functions developed by Partridge and Bauschlicher.52
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by the use of the CP scheme. Although this problem ceases to
be important as the basis approaches the completeness limit,
calculations in smaller bases, farther from this limit, are also
necessary to assess the convergence of the results. Such BSSE-
free calculations would not be possible if each pair function
were expanded in its own, individually optimized geminal
basis.15 Second, from the analysis of ref 15 it is clear that, in
the case of the He dimer, the geminals optimal foreachof the
singlet pair functions have to describe essentially the same
physical effects, correlation within the monomers and the
dispersion interaction, whereas the triplet pairτ12

3 only ac-
counts for the latter effect. It follows that the individual
optimizations of singlet pairs would in fact yield three geminal
bases very similar to one another, and an optimization of a basis
for the triplet pair would replicate dispersion-specific geminals
already present in the singlet pair bases. Because of this
redundancy between different pair functions of He2, the accuracy
achieved with four individually optimized bases, each of length
K, can be easily matched using just one universal basis of length
only slightly larger thanK, optimized to simultaneously
reproduce all pair functions. Such an approach shortens the
overall time spent on optimizations.Third, the use of universal
bases dramatically reduces the time requirements of the
subsequent CCSD calculations. In contrast to the MP2-level
theory, the CCSD equations couple different pair functions.
Therefore, when such calculations are performed in a universal
geminal basis, the number of costly many-electron integrals can
be an order of magnitude smaller than it would be if each pair
function were expanded in its individual basis set.

The high efficiency of the CP method in the context of
Gaussian geminal calculations of the interaction energy was
demonstrated earlier in ref 15. In fact, it is impossible to define
a non-CP-corrected interaction energy and calculate the mag-
nitude of BSSE in an unambiguous way using a generally
optimized GTG basis. This is because the Gaussian centers are
distributed at many points along the internuclear axis (floating-
center basis), and the monomer part of the basis cannot be
uniquely defined. This is in contrast to ref 15, where the pair
functions were built as combinations of monomer bases and
dispersion bases, which enabled an approximate evaluation of
BSSE. ForR ) 5.6 bohr, this BSSE was,15 for example, 33
and 1 mK in bases of length 120 (D60M60) and 340
(D190M150), respectively. These results show that in the largest
basis sets used by us, containing 800 geminals, the BSSE would
be negligible even if it were not removed by the CP approach.

The universal basis approach has also been employed in the
case of the one-electron cluster functions. The nonlinear
parameters of the orbital basis sets from eq 8 were determined
separately for eachR by optimizing the single-excitation
contribution to the MP4 energy of the dimer (see ref 33 for
details). Similarly to the two-electron case, this choice corre-
sponds to finding optimal second-order single-excitation func-
tions rather than the converged CCSD ones, an approximation
which works very well in practice.33

During the optimizations of geminal bases, the strong
orthogonality condition was imposed within the WO scheme,
that is, using a penalty function with theη parameter (see ref
33) ranging from 0.1 to 0.05, depending on the progress of the
optimization and the internuclear distanceR. The WO approach
was also applied to force the orthogonality of the one-electron
cluster functions during the MP4 optimizations of the corre-
sponding bases, withη ) 0.01. The first-order pair functions
employed in these optimizations were obtained withη ) 0 and
approximately projected before insertion into the MP4 func-

tional, which is consistent with the spirit of the SWOP approach.
All the final coupled cluster and MBPT results reported in this
work have been calculated using the parameterη set equal to 0
for the pair functions and 0.01 for the one-electron cluster
functions.

The contributionES in eq 10 depends on three separate basis
sets with the expansion lengthsM, K, andL. In studying the
convergence patterns of CCSD interaction energies, three
degrees of freedom in expansion lengths would require too large
a number of independent calculations. Therefore, we used the
constraintL ) M. In each CCSD run, defined by particular
values ofM andK, the nonlinear parameters in eq 8 assumed
the values optimized earlier using theM-term and K-term
expansions for the SCF orbitals and MP2 pair functions,
respectively. The starting values of the nonlinear parameters
used in the optimizations of the single-excitation basis sets were
those of the SCF functions of the same length.

4. Results of Geminal Calculations

The most extensive GTG calculations, employing the largest
number of combinations ofM and K, were performed at the
equilibrium distanceR ) 5.6 bohr. The results of these
calculations had already been utilized in ref 24 to investigate
extrapolations of orbital methods. These results were also used
to develop a strategy which could be subsequently employed
in GTG computations at the other distances, allowing us to limit
the number of runs. From all the optimized GTG pair functions
of the form of eq 6 (K ) 75, 150, 300, 600, 800), the 300-term
expansion is the largest one we could use within reasonable
computer resources at all levels of theory up to CCSD. One
full CCSD calculation withM ) 24, K ) 300, andL ) 24
required about 7000 cumulative CPU hours on a Beowulf cluster
with 1 GHz Athlon nodes.

4.1. Convergence withM. We first tested how fast different
contributions to the interaction energy saturate with respect to
M. These tests were done withK ) 300. The results forR )
5.6 bohr andM ) 10, 16, and 24 are listed in the upper part of
Table 2.EMP2

cr andEFCCD
cr are seen to be most sensitive to the

quality of the reference SCF wave function. We have calculated
them also with our largest SCF expansion,M ) 32, which
changed these quantities by-1.1 and-1.2 mK, respectively,
compared to theM ) 24 results.EMP3

cr is seen to converge
much faster withM, changing only by-0.17 mK when going
from M ) 24 to M ) 32. Since each step in our sequence of

TABLE 2: Convergence of Interaction Energy
Contributions (in kelvin) with the SCF Basis SizeM for K )
300 (Upper Part) and with the GTG Basis SizeK for M )
24 (Lower Part) at R ) 5.6 bohr

K ) 300

M EMP2
cr EMP3

cr EFCCD
cr ENF ES

10 -15.963 49 -2.508 20 -18.168 62 0.017 86 -0.196 40
16 -16.001 83 -2.512 44 -18.199 83 0.018 13 -0.176 36
24 -16.008 95 -2.513 37 -18.207 56 0.018 16 -0.176 92
32 -16.010 06 -2.513 54 -18.208 80

M ) 24

K EMP2
cr EMP3

cr EFCCD
cr ENF ES

75 -15.818 40 -2.381 23 -17.699 94 0.000 69 -0.153 92
150 -15.976 14 -2.505 16 -18.155 24 0.018 07 -0.176 17
300 -16.008 95 -2.513 37 -18.207 56 0.018 16 -0.176 92
600 -16.010 67 -2.513 77 -18.209 89
800 -16.010 76 -2.513 79 -18.210 21

M ) 32
800 -16.011 86 -2.513 96 -18.211 44
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values ofM results in an increment of the interaction energy
components that is several times smaller than the increment
obtained in the previous step, we can predict thatM ) 32 yields
the values ofEMP2

cr andEFCCD
cr saturated in the size of the SCF

basis at least to 0.3 mK (EMP3
cr at least to 0.1 mK). Another

argument supporting this conclusion is the observation that the
increments of these quantities are almost linear functions of the
increments ofESCF (when enlargingM for R ) 5.6 bohr, the
changes ofESCF are 72, 12, and 1.6 mK, cf. Table 1, and the
changes ofEMP2

cr are 38, 7.1, and 1.1 mK). As discussed above,
ESCF for M ) 32 should be within 0.1 mK from the infinite
basis set limit. Thus, theEMP2

cr versusESCF extrapolation leads
to an estimate of the uncertainty ofEMP2

cr due to truncation of
M amounting to about 0.1 mK, not far from the estimate given
above.

The observation that the increments of the SCF and MP2
interaction energies with changingM are of similar size is
different than that for the total SCF and MP2 energies in the
earlier work with geminal bases. As shown in ref 54 (see Table
V in that reference), the total SCF energies and the MP2
(correlation) energies haverelatiVeerrors of similar magnitude.
Therefore, since the SCF energies are about 2 orders of
magnitude larger than the correlation energies, the latter have
about two more significant digits than the former. It appears
that the differences between this behavior and the one observed
now for the interaction energies is mainly due to the greater
sensitivity of the dimer MP2 energies to the quality of the SCF
functions compared to the monomer energies investigated in
ref 54. As an example, consider the results forR ) 4.0 bohr,M
) 10, andK ) 300 (notice that the errors due to the truncation
in K are not discussed here). As reference results forM
becoming infinite, we will use estimates obtained in the same
way as described above, although from the point of view of
the present discussion the results forM ) 32 would work equally
well. The monomer total SCF and MP2 energies forM ) 10
are in errors of 8.3 and 0.2µhartree, respectively, not far from
the 2 orders of magnitude ratio expected from the conclusions
of ref 54. However, the same quantities for the dimer are 41
and 7µhartree, the ratio of only 6. Furthermore, in the MP2
case, the error of the interaction energy equal to 6.4µhartree is
almost the same as the error of the total energy (as it has to be,
because of the relation between the errors of the dimer and
monomer quoted above), but in the SCF case there is some
cancellation of errors and the SCF interaction energy is accurate
to 25 µhartree. This leads to the errors of the SCF and MP2
interaction energies that are indeed of similar size.

For R ) 5.6 bohr, the small termENF is fairly insensitive to
the quality of the SCF function and appears to be converged to
below 0.1 mK withM ) 24. This conjecture is supported by
the orbital results (see discussion in section 5.1). It is more
difficult to estimate the convergence ofES, because the value
for M ) 10 is far apart from those forM ) 16 andM ) 24,
and one might even consider the small difference between the
two latter results as coincidental. One may expect to see a more
erratic convergence pattern forES than for other quantities in
Table 2 since each step involves a changedM andL. However,
the value forM ) 24 equal to-177 mK is consistent with the
extrapolations of orbital calculations described in ref 24 forR
) 5.6 bohr and discussed later (for all three separations) in
section 5.1.

Results forR ) 7.0 and 4.0 bohr analogous to those forR )
5.6 bohr discussed above are presented in Tables 3 and 4,
respectively. ForR ) 7.0 bohr, the convergence withM (when
expressed in absolute numbers) is better than it is atR ) 5.6

bohr: going fromM ) 16 to M ) 24 changesEMP2
cr by -1.4

mK (compared with-7 mK) and fromM ) 24 toM ) 32 by
only -0.3 mK (compared with-1.1 mK). However, this just
reflects the decreased magnitudes of all components. On the
other hand, the difference between theES contributions atM )
16 andM ) 24 is surprisingly large (1.3 mK), and we would
have to ascribe an uncertainty of 1-2 mK to this quantity, based
only on the GTG convergence inM. Furthermore, atR ) 7.0
bohr (and also at 4.0 bohr), we have not investigated the
convergence ofES in K. However, as will be shown in section
5.1, extrapolated values computed in orbital basis sets agree
with theM ) L ) 24,K ) 300 geminal results and allow us to
provide reliable estimates of the limits and of the error bars.
TheENF contribution appears to be converged to 0.01 mK atR
) 7.0 bohr.

For R ) 4.0 bohr (see Table 4) the difference at theEMP2
cr

level between theM ) 24 andM ) 32 results amounts to only
0.14 mK, compared to 1.1 mK atR ) 5.6 bohr, despite the fact
thatEMP2

cr is 7 times larger in magnitude atR ) 4.0 bohr. Most
likely this reflects problems with the optimization of the SCF
bases for this distance and the fact that the 32-term SCF function
is not as well optimized as the 24-term function, rather than
the true saturation of the results with respect toM. In any case,
EMP2

cr and all the other quantities in Table 4 are clearly better
converged in relative terms than forR ) 5.6 bohr.

4.2. Convergence withK. Once we have established the
influence of the SCF basis sizeM on the MBPT and CCSD
interaction energies, we can analyze the convergence of various
quantities with the GTG basis expansion lengthK. Ideally, one
should perform for this purpose a series of calculations using
in all of them the most accurate SCF function,M ) 32. This
would be, however, neither practical nor necessary, because the
convergence pattern with respect toK remains almost identical
as long as any SCF function with a sufficiently high accuracy
is used throughout the whole series. We decided to useM )
24 for this purpose andsonly after finishing the wholeK-
dependent series of runssrepeat the calculations with the most
accurate GTG basis (K ) 800) andM ) 32 for the contributions
most sensitive toM (EMP2

cr andEFCCD
cr ) and also forEMP3

cr since
this term is relatively inexpensive.

TheK-dependence of the results atR ) 5.6 bohr is presented
in the lower part of Table 2. The convergence in each column
is monotonic and quite smooth, with the exception of theK )
75 results in the last two columns. The analysis of the differences
in each series reveals thatEMP3

cr exhibits the fastest conver-
gence rate, followed byEMP2

cr . The increments, when going
from K ) 600 toK ) 800, are-0.09 and-0.32 mK forEMP2

cr

andEFCCD
cr , respectively. Thus,EFCCD

cr saturates almost as fast
asEMP2

cr , which is consistent with our assumption that the first-
order pair functions are rather good approximations to the fully
iterated cluster functions. In all the three columns, by doubling
the basis set size, one gets roughly one more significant digit,
similarly as in GTG Rayleigh-Ritz variational calculations on
two-electron systems.42 This is not surprising since in both cases
the dominant effect is the two-body correlation. A perusal of
the results in the lower part of Table 2 allows one to roughly
estimate that the finalEMP3

cr values are probably converged in
K to a fraction of 0.1 mK andEMP2

cr and EFCCD
cr to about one

digit less. A more rigorous discussion of the convergence will
be given in section 4.3. We observe that, in all the three cases,
the effect of going fromM ) 24 to M ) 32 is, to within 0.01
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mK, the same when using GTG expansions withK ) 300 and
K ) 800. This shows that the errors inM and K are indeed
cumulative.

Tables 3 and 4 present the results forR ) 7.0 and 4.0 bohr,
obtained in the same way as just discussed, with the exception
that we did not use the shortest GTG expansions (K ) 75 and
150). The convergence patterns of theEMP2

cr andEMP3
cr compo-

nents with respect toK at 7.0 bohr are similar to those at 5.6
bohr, andEFCCD

cr converges here as fast asEMP2
cr . It should be

noted that atR ) 7.0 bohr the accuracy of the shortest SCF
function turned out to be insufficient to ensure the positive-
definite character of the system of equations used to find the
linear coefficients of the pair functions of eq 6. As a result, the
values in this row carry larger errors, apparent in particular in
the case ofEFCCD.

At R ) 4.0 bohr (see Table 4) most contributions are
converged to about one significant digit less than at the two
other distances. This is mainly because the helium-helium
interaction is stronger and the interaction energy is about 30
times larger in magnitude forR ) 4.0 than forR ) 5.6 bohr.
However, apparently the wave functions are more complicated
at R ) 4.0 bohr than for larger distances since we encountered
more problems with optimizations in this case. Nevertheless,
in relative terms the results forR ) 4.0 bohr are actually more
accurate than forR ) 5.6 bohr, as expected in the super-
molecular approach.

4.3. Recommended Values and Error Bounds.Table 5
summarizes our recommended values of the components of the
interaction energy computed using GTG basis sets. In the case
of EMP2

cr , EMP3
cr , andEFCCD

cr , the errors of each quantityE were
obtained as sums of the independentM- andK-related uncer-
tainties. Since the convergence with respect to bothM andK is
monotonic, the exact values ofE most likely lie below the
computed ones. Let us define a quantity∆EN (whereN ≡ M or
N ≡ K) in such a way that the unknown saturated value ofE
(corresponding toN ) ∞) is contained between the most
accurate calculated result (i.e., the result forM ) 32 andK )
800),Ecalc, andEcalc + ∆EN. The values of∆EN will be chosen
as small as possible based on the patterns of convergence inN.
The values of∆EM for EMP2

cr , EMP3
cr , andEFCCD

cr , respectively,
were assumed as-0.3, -0.1, and-0.3 mK atR ) 5.6 bohr,
as discussed previously. A similar analysis led us to the estimates
of -0.2, -0.06, and-0.2 mK atR ) 7.0 bohr and-3, -1,
and -3 mK at R ) 4.0 bohr, respectively. To estimate∆EK,
we notice that doubling of the geminal basis set typically
improves the accuracy by one additional digit. Thus, it seems
safe to set∆EK equal to twice the difference between the results
calculated withK ) 800 andK ) 600. For example, in the
case of theEMP2

cr energy, this gives-0.52,-0.18, and-0.14
mK for R ) 4.0, 5.6, and 7.0 bohr, respectively.

We next assume that the basis set converged result,E, is
0.5(∆EK + ∆EM) below theK ) 800,M ) 32 result, denoted
by Ecalc. Thus, our recommended (complete basis set limits)
values ofEMP2

cr , EMP3
cr , and EFCCD

cr energies and the errors of
these values are given by the formula

Although our estimation procedure may seem overly cautious,
it leads to uncertainties forEMP2

cr , EMP3
cr , andEFCCD

cr of the order
of 0.1 mK atR ) 5.6 and 7.0 bohr and 1 mK atR ) 4.0 bohr,
which are small compared to the uncertainties of some remaining
components of the interaction energy discussed later on.

An additional argument in favor of such a simple extrapola-
tion scheme can be obtained by extrapolating the results
corresponding to the three largest basis sets (K ) 300, 600,
and 800) forM ) 24 with the formulaEK ) E∞ + aK-γ, where
a and γ are fitting parameters. We tried other extrapolation
formulas but they reproduced the convergence pattern less
satisfactorily. The values ofE∞ obtained in this way differ by
at most 0.4, 0.06, and 0.04 mK forR ) 4.0, 5.6, and 7.0 bohr,
respectively, from the results of the simple extrapolations inK
only described above. These are very small differences indeed,
well within the error bars of Table 5.

In the case ofENF andES components, limited amounts of
data from the geminal calculations do not allow definitive
conclusions about the convergence trends, in particular forR
) 4.0 and 7.0 bohr where theK dependence was not investi-
gated, so the error bounds of these quantities could not be
established based on such calculations alone. The limit values
and error estimates ofENF andES given in Table 5 have been
inferred from comparisons with the results of orbital calcula-
tions, described in section 5.1.

One should note that in comparison with the data forR )
5.6 bohr reported in ref 24, the values given in Table 5 are
slightly more negative and/or ascribed slightly larger uncertain-
ties, mainly due to a more careful consideration of the
dependence onM in the present work. The estimate of the CCSD
contribution changed from-9.150( 0.001 K to-9.1509(
0.0012 K.

TABLE 3: Convergence of Interaction Energy
Contributions (in kelvin) with the SCF Basis SizeM for K )
300 (Upper Part) and with the GTG Basis SizeK for M )
24 (Lower Part) at R ) 7.0 bohr

K ) 300

M EMP2
cr EMP3

cr EFCCD
cr ENF ES

10a -3.777 37 -0.677 68 -4.421 07 -0.003 41 -0.046 33
16 -3.778 08 -0.678 20 -4.416 47 -0.003 40 -0.042 93
24 -3.779 43 -0.678 36 -4.417 94 -0.003 39 -0.044 26
32 -3.779 78 -0.678 41 -4.418 32

M ) 24

K EMP2
cr EMP3

cr EFCCD
cr

300 -3.779 43 -0.678 36 -4.417 94
600 -3.780 92 -0.678 76 -4.419 31
800 -3.780 99 -0.678 77 -4.419 37

M ) 32
800 -3.781 34 -0.678 82 -4.419 77

a The linear equation system not positive-definite (see text).

TABLE 4: Convergence of Interaction Energy
Contributions (in kelvin) with the SCF Basis SizeM for K )
300 (Upper Part) and with the GTG Basis SizeK for M )
24 (Lower Part) at R ) 4.0 bohr

K ) 300

M EMP2
cr EMP3

cr EFCCD
cr ENF ES

10 -115.460 19 -11.174 89 -121.506 78 0.473 77-0.671 86
16 -117.485 44 -11.402 64 -123.574 11 0.487 11-0.736 04
24 -117.493 31 -11.403 25 -123.582 16 0.487 18-0.735 87
32 -117.493 45 -11.403 26 -123.582 29

M ) 24

K EMP2
cr EMP3

cr EFCCD
cr

300 -117.493 31 -11.403 25 -123.582 16
600 -117.498 71 -11.404 50 -123.596 15
800 -117.498 97 -11.404 60 -123.597 13

M ) 32
800 -117.499 11 -11.403 61 -123.597 29

E ) [Ecalc + 1
2
(∆EM + ∆EK)] ( 1

2
(∆EM + ∆EK) (12)
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The current values ofEMP2
cr and EMP3

cr , saturated up to a
fraction of a millikelvin, allow us to estimate the accuracy of
the former GTG work.15 At R ) 5.6 bohr, theEMP2

cr value
reported in ref 15 is 9 mK too high, whereasEMP3

cr is 4 mK too
high. The other explicitly correlated calculation by Klopper and
Noga,14 using the MP2-R12 ansatz, yieldedEMP2

cr too high by
52 mK and, at the same time,EMP3

cr too low by 36 mK. The
interaction energy at the level of MBPT(3)) SCF+ MP2 +
MP3 reported in ref 14 was in error by only 16 mK, because of
a cancellation of errors. Klopper and Noga also obtained the
ECCSDvalue of-9.14 K, which is about 11 mK from the current
limit value.

5. Orbital Calculations

The primary goal of the orbital calculations was to provide
accurate estimates of the interaction energy contributions beyond
CCSD, namely, the quantitiesET and δEFCI of eqs 2 and 3.
Following ref 24, these contributions will be obtained by
extrapolations of the results calculated in large orbital bases.
The same technique will also be used to verify the values ofES

andENF obtained from the geminal coupled cluster calculations
and provide error estimates of these quantities, needed in Table
5. The orbital calculations gave also the interaction energy
components at MP2, MP3, and FCCD levels. These results, as
discussed in ref 24, are less accurate than the geminal results
and will not be reported here.

The methodology of the orbital calculations performed in the
present work has been described in detail in ref 24. The core of
the procedure is an extrapolation to the complete basis set limit
from finite basis sets forming various systematic sequences. Two
such sequences used by us were the augmented and doubly
augmented correlation-consistent polarized-valenceX-tuple-zeta
basis sets, aug-cc-pVXZ and d-aug-cc-pVXZ, of Dunning et
al.,55-58 where X ) 3, 4, 5, and 6. TheX ) 7 basis was
developed by Gdanitz in ref 11. These sequences will be referred
to as aXZ and dXZ, respectively. Two additional sequences were
obtained by combining the aXZ bases with two sets of bond
functions: 6s6p6d3f1g1h (95-term set) and 6s6p6d3f3g3h (135-
term set), developed by Partridge and Bauschlicher.52 We refer
to these combined sets as aXZ+bm, wherem ) 95 or m )
135. Since theX-tuple-zeta basis sets give energies forming
regular sequences in the cardinal numberX, the results can be
(approximately) extrapolated to the infinite basis set limit by
assuming an inverse-power dependence of the calculated
quantities onX, E(X) ) E(∞) + AX-n. Typically, the exponent
n is assumed equal to 3, although other values have been tried
as well. We will use the notationX-n for such two-point
extrapolation based on the calculated valuesE(X - 1) andE(X)
and the exponentn.

In a different type of extrapolation, the quantityE is treated
as a function of another quantity,Ẽ(X), that is,E(X) ) f (Ẽ(X)).

If the functional dependence and the infinite basis set limitẼ(∞)
are known, then the limiting value ofE is readily found:E(∞)
) f (Ẽ(∞)). In the close vicinity ofẼ(∞), that is, for sufficiently
large X, the functionf (Ẽ) is approximately linear (from the
Taylor expansion aroundẼ(∞)). E(∞) can then be found
assuming thatf (Ẽ(X - 1)), f (Ẽ(X)), and f (Ẽ(∞)) lie on a
straight line (cf. eq 8 of ref 24). We will refer to this
extrapolation asf (Ẽ) or E(Ẽ) extrapolation. Obvious choices
for Ẽ areEMP2

cr or EFCCD
cr , because these quantities are known

practically exactly from the GTG calculations.
Most of our orbital coupled cluster calculations were per-

formed using the MOLPRO package,59 whereas the FCI energies
were obtained with the LUCIA program.60

5.1. Single-Excitation and Nonfactorizable Contributions.
The orbital calculations of the single-excitation contributionES

at R ) 5.6 bohr have been reported in ref 24. The results forR
) 7.0 bohr andR ) 4.0 bohr, obtained in the present work, are
listed in Tables 6 and 7, respectively, and presented graphically
in Figures 1 and 2, respectively.

Let us first estimate the limit value and its uncertainty for
the single-excitation contribution atR ) 5.6 bohr. The geminal
value quoted in ref 24 was-178( 1 mK. This value was based
on the data presented here in Table 2, except that the value for
M ) L ) 24 andK ) 300 was not known at that time. The
latter value is equal to-176.9 mK and represents the current
best calculated result. The data in Table 2 do not allow rigorous
extrapolations; however, it is likely that the result will be
lowered in the limit of infiniteM, L, andK, possibly even down
to -178 K as the last increments withM ) L andK were-0.56
and-0.75 mK, respectively. Thus,-177.5( 0.5 mK would
be our best estimated value based only on the geminal results.
Let us now consider orbital results. The best calculated values

TABLE 5: Recommended (Extrapolated in Most Cases, See Text) Values of Various Gaussian Geminal Contributions to the
Helium Dimer Interaction Energy (in kelvin)

4.0 bohr 5.6 bohr 7.0 bohr

ESCF 428.782( 0.001 9.2199( 0.0001 0.2879( 0.0001
EMP2

cr -117.5007( 0.0018 -16.01210( 0.00024 -3.78151( 0.00017
EMP3

cr -11.4052( 0.0006 -2.51403( 0.00007 -0.67886( 0.00004
EFCCD

cr -123.5996( 0.0025 -18.21191( 0.00047 -4.41993( 0.00016
ENF 0.487( 0.001a 0.01816( 0.00010a -0.00339( 0.00002a

ECCD 305.6694( 0.0045 -8.9738( 0.0007 -4.1354( 0.0003
ES -0.734( 0.002b -0.1771( 0.0005b -0.0442( 0.0005b

ECCSD 304.935( 0.007 -9.1509( 0.0012 -4.1796( 0.0008

a Computed geminal values with error bars based on both geminal and orbital results, see text.b Extrapolation and error bars based on both
geminal and orbital results, see text.

TABLE 6: Computed and Extrapolated Single-Excitation
Contributions ES ) ECCSD - ECCD to the Helium Dimer
Interaction Energy (in kelvin) at R ) 7.0 bohr

basis size ES X-3 f (ECCD
cr )a

aTZ+b95 141 -0.071 96
aQZ+b95 187 -0.056 75 -0.045 65 -0.059 37
a5Z+b95 255 -0.049 92 -0.042 75 -0.011 14
a6Z+b95 349 -0.047 36 -0.043 84 -0.043 95
a7Z+b95 473 -0.046 19 -0.044 20 -0.044 46
dTZ 64 -0.066 05
dQZ 124 -0.055 56 -0.047 91 -0.051 17
d5Z 210 -0.049 49 -0.043 12 -0.044 39
d6Z 326 -0.047 07 -0.043 75 -0.044 89
d7Z 476 -0.045 91 -0.043 94 -0.042 49
aTZ+b135 181 -0.072 05
aQZ+b135 227 -0.056 76 -0.045 60 -0.059 25
a5Z+b135 295 -0.049 94 -0.042 78 -0.072 29
a6Z+b135 389 -0.047 38 -0.043 86 -0.044 90
a7Z+b135 513 -0.046 21 -0.044 22 -0.044 82

a The assumed accurate (GTG) value ofECCD
cr is -4.4233 K.
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from Table III of ref 24 (given there with less significant digits)
and from a new series of calculations are-179.0, -183.0,
-184.4, and-184.4 mK in bases a7Z, d7Z, a7Z+b135, and
d7Z+b135, respectively. These numbers illustrate the finding
of ref 24 that the additions of a second diffuse shell or of bond
functions slow the convergence (the two factors acting in similar
but not additive ways). Although results of orbital calculations
in such bases are 6-7 mK from the extrapolated geminal result,
the orbital X-3 extrapolations are very close to each other:
-176.7,-176.6, and-176.8 mK in bases d7Z, a7Z+b135, and
d7Z+b135, respectively, that is, only 0.7-0.8 mK from the
extrapolated geminal result. In contrast, although the a7Z
computed result is closest to the geminal value (which may be,
however, fortuitous24), the aXZ series converges in such a way
(values are nearly constant) that the extrapolated result equal
to -179.5 K cannot be trusted. Since at this point we cannot

decide whether the geminal- or orbital-extrapolated results are
more accurate, we decided to use an average of them, equal to
-177.1 mK, as our recommended limit value forES and assign
the error bar of( 0.5 mK encompassing both results. The
ES(ECCD

cr ) extrapolations (with the GTG limit value ofECCD
cr

equal to-18.1938 K) give, withX ) 7, -179.4 mK and-176.8
mK for the aXZ and dXZ sequences, respectively, and-174.5
mK for both bases with bond functions. Because of this scatter
and because the extrapolations with lowerX are even farther
off from the geminal result, we have not used the information
from the ES(ECCD

cr ) extrapolations in our determination of the
recommended values ofES.

Although, as shown in ref 24, the componentES converges
fastest in the aXZ series of basis sets, the best computed result
for R ) 5.6 bohr is still 1.5 mK from the extrapolated geminal
value. Despite the fact that the bases with additional diffuse
functions and/or bond functions converge slower, the extrapo-
lated results are very consistent and closer to this value.
Therefore, we have decided to use only such bases forR ) 4.0
and 7.0 bohr.

At R ) 7.0 bohr, theX-3 extrapolations predict results in the
range-43.9 to-44.2 mK, whereas the best computed geminal
value from Table 3 is-44.3 mK. At this distance (in contrast
to R) 5.6 bohr) we do not have enough information to perform
any meaningful extrapolation of the geminal results (no variation
in K is available, cf. Table 3), and therefore, we assume the
computed value as the best geminal estimate. Taking the average
of the average of orbital values and of the geminal result, one
gets-44.2 ( 0.5 mK, with the error again encompassing all
the discussed values. Table 6 and Figure 1 show that the
convergence in the bases with bond functions is slower than in
the dXZ basis. However, once bond functions are used the results
are almost the same with single and double augmentation. The
ES(ECCD

cr ) extrapolations predict withX ) 7 results in the range
-42.5 to-44.8 mK, that is, as forR ) 5.6 bohr, the scatter is
larger than that of the other predictions. One can also see in

TABLE 7: Computed and Extrapolated Single-Excitation
Contributions ES ) ECCSD - ECCD to the Helium Dimer
Interaction Energy (in kelvin) at R ) 4.0 bohr

basis size ES X-3 f (ECCD
cr )a

aTZ+b95 141 -1.3059
aQZ+b95 187 -0.9766 -0.7364 -0.6611
a5Z+b95 255 -0.8378 -0.6921 -0.6755
a6Z+b95 349 -0.7879 -0.7194 -0.7051
a7Z+b95 473 -0.7671 -0.7318 -0.7189
dTZ 64 -1.0183
dQZ 124 -0.9105 -0.8318 -0.8509
d5Z 210 -0.8127 -0.7102 -0.7486
d6Z 326 -0.7764 -0.7264 -0.7359
d7Z 476 -0.7599 -0.7320 -0.7336
aTZ+b135 181 -1.3233
aQZ+b135 227 -0.9838 -0.7362 -0.6671
a5Z+b135 295 -0.8420 -0.6932 -0.6777
a6Z+b135 389 -0.7902 -0.7191 -0.7039
a7Z+b135 513 -0.7686 -0.7317 -0.7186

a The assumed accurate (GTG) value ofECCD
cr is -123.1126 K.

Figure 1. Convergence of the computed single-excitation contribution,
ES, at R ) 7.0 bohr. The horizontal lines denote the upper and lower
bound for our recommended value (broken line), see Table 5.

Figure 2. Convergence of the computed single-excitation contribution,
ES, at R ) 4.0 bohr. The horizontal lines denote the upper and lower
bound for our recommended value (broken line), see Table 5.

Helium Dimer Interaction Energies J. Phys. Chem. A, Vol. 108, No. 15, 20043219



Table 6 that for smallerX and bases with bond functions the
predictions are very poor. This is probably related to the
nonmonotonic convergence ofECCD

cr . For largeX, the predic-
tions from these sequences are, however, reasonable. On the
other hand, the dXZ prediction based onX ) 6 and 7 is very
inaccurate. The reasons are not clear to us; however, the plot
of the dependenceES(ECCD

cr ) is fairly nonlinear in the region of
large X, so the linear extrapolation clearly cannot work well.
One possible explanation for the observed behavior could be
some numerical inaccuracies for this largest of the distances
considered by us.

For R ) 4.0 bohr, as for the other two separations, theX-3

extrapolation works very well and predicts consistent results
for all basis set sequences, all equal to-0.732 K, in excellent
agreement with the GTG calculations of section 4, the difference
being only 4 mK, small compared the interaction energy at this
distance. We see again how powerful the extrapolation tech-
niques are since the best computed results are about 30 mK
from this range. This behavior is well illustrated by Figure 2.
Following the procedure forR ) 5.6 bohr, we take the average
of the geminal andX-3-extrapolated orbital results as our
recommended value:ES ) -734 ( 2 mK. The ES(ECCD

cr )
extrapolation from dXZ sequence works very well, exactly
predicting the recommended value of-734 mK. The extrapola-
tion from sequences with bond function both predict-719 mK,
fairly distant from the best estimate. Similarly as for the other
two separations, we will disregard these extrapolations.

Although the convergence of the nonfactorizable contribution
ENF in geminal calculations was found to be very fast, we
decided, as an independent check, to perform orbital calculations
of this quantity in the aXZ sequence of basis sets. In particular,
we wanted to verify the convergence of the geminal results for
R ) 4.0 bohr (see Table 4), where the agreement between the
last two values could be accidental. The orbital results for all
three distances are listed in Table 8. The componentsENF

converged so well in the aXZ sequence that there was no point
to perform calculations in doubly augmented bases or add bond
functions. AtR ) 4.0 bohr, the values appear to converge to
0.488 K or slightly below, so choosing the computed geminal
result of 0.487 K as the recommended value in Table 5 seems
appropriate. Whereas the geminal results presented in Table 4
may appear to be converged to 0.1 mK, orbital results suggest
a somewhat larger uncertainty, of about 1 mK. ForR ) 5.6
and 7.0 bohr, the values obtained in large basis sets are also in
very good agreement with the corresponding geminal results.
Thus, as forR ) 4.0 bohr, we have taken the geminal values
as the recommended ones. The error estimates forENF, given
in Table 5, are chosen based on convergence patterns observed
in Table 8. ForR ) 5.6 and 7.0 bohr, these uncertainties are
consistent with those following from geminal convergence
patterns.

An interesting conclusion from Table 8 is that the termENF,
quite expensive to compute in Gaussian geminal bases, can
easily be saturated using orbital basis sets of moderate sizes.

Thus, one can restrict the GTG calculations to the inexpensive
FCCD level and still obtain very accurate CCD energies by
taking theENF contribution from orbital calculations. Using
extrapolated orbital single-excitation contributions, accurate
CCSD energies can also be obtained in such a mixed approach,
at a fraction of the costs of the all-geminal CCSD calculations.

5.2. Triple-Excitation Contribution. The values of the triple-
excitation contribution,ET, computed in three sequences of
orbital basis sets forR ) 7.0 and 4.0 bohr, are listed in Tables
9 and 10, respectively, along with the results of various
extrapolation schemes. Convergence ofET with the cardinal
numberX is also presented graphically in Figures 3 and 4. In
contrast to theES contribution, the convergence ofET is
dramatically improved by using the bond functions (cf. Figures
3 and 4). The quality of extrapolations ofET is difficult to assess
because no accurate explicitly correlated results for this quantity
are available and its functional dependence onX is not known.
At R ) 5.6 bohr we arrived24 at the estimateET ) -1.535(
0.002 K by combining theX-3, X-2, andET(ECCSD) extrapola-
tions. We have repeated theET(ECCSD) extrapolations with the
current limit value ofECCSD ) -9.1509 K instead of-9.150
K used in ref 24. This increased the magnitude of the
extrapolatedET by 0.1 to 0.7 mK (depending on the basis set
sequence), not significant enough to modify the limit value from
ref 24 quoted above. We have also computed the complete

TABLE 8: Contribution from Nonfactorizable
Double-Excitation Terms ENF ) ECCD - EFCCD to the Helium
Dimer Interaction Energy (in kelvin) from Orbital
Calculationsa

basis size R ) 4.0 R ) 5.6 R ) 7.0

aTZ 46 0.481 34 0.017 81 -0.003 473 5
aQZ 92 0.490 90 0.018 41 -0.003 410 4
a5Z 160 0.489 10 0.018 22 -0.003 378 8
a6Z 254 0.488 50 0.018 19 -0.003 378 8

a Distances are in bohr.

TABLE 9: Computed and Extrapolated Triple-Excitation
Contributions ET ) ECCSD(T) - ECCSD to the Helium Dimer
Interaction Energy (in kelvin) at R ) 7.0 bohr

basis size ET X-3 X-2 f (ECCSD)a f (ECCD
cr )b

aTZ+b95 141-0.347 07
aQZ+b95 187-0.356 35-0.363 12-0.368 28-0.357 60-0.354 75
a5Z+b95 255-0.359 21-0.362 21-0.364 29-0.359 53-0.375 45
a6Z+b95 349-0.360 63-0.362 58-0.363 86-0.360 99-0.362 52
a7Z+b95 473-0.361 35-0.362 57-0.363 34-0.358 11-0.362 41
dTZ 64 -0.329 13
dQZ 124 -0.351 39-0.367 63-0.380 01-0.359 37-0.360 72
d5Z 210 -0.357 04-0.362 97-0.367 08-0.362 22-0.361 79
d6Z 326 -0.359 50-0.362 88-0.365 09-0.361 47-0.361 71
d7Z 476 -0.360 40-0.361 93-0.362 89-0.363 65-0.363 05
aTZ+b135 181-0.347 66
aQZ+b135 227-0.356 86-0.363 57-0.368 69-0.359 18-0.355 36
a5Z+b135 295-0.359 41-0.362 09-0.363 94-0.359 74-0.351 05
a6Z+b135 389-0.360 79-0.362 69-0.363 93-0.368 34-0.362 13
a7Z+b135 513-0.361 47-0.362 63-0.363 35-0.363 95-0.362 28

a The assumed accurate (GTG) value ofECCSD is -4.1796 K.b The
assumed accurate (GTG) value ofECCD

cr is -4.4233 K.

TABLE 10: Computed and Extrapolated Triple-Excitation
Contributions ET ) ECCSD(T) - ECCSD to the Helium Dimer
Interaction Energy (in kelvin) at R ) 4.0 bohr

basis size ET X-3 X-2 f (ECCSD)a f (ECCD
cr )b

aTZ+b95 141 -10.1412
aQZ+b95 187 -10.3203 -10.4510 -10.5506 -10.4752 -10.4919
a5Z+b95 255 -10.3905 -10.4641 -10.5153 -10.4720 -10.4725
a6Z+b95 349 -10.4234 -10.4685 -10.4981 -10.4744 -10.4779
a7Z+b95 473 -10.4424 -10.4749 -10.4952 -10.4872 -10.4867
dTZ 64 -8.6812
dQZ 124 -9.8901 -10.7723 -11.4445 -10.5185 -10.5578
d5Z 210 -10.2412 -10.6096 -10.8654 -10.4615 -10.4716
d6Z 326 -10.3551 -10.5116 -10.6140 -10.4804 -10.4818
d7Z 476 -10.4044 -10.4881 -10.5407 -10.4810 -10.4830
aTZ+b135 181 -10.2384
aQZ+b135 227 -10.3554 -10.4408 -10.5059 -10.4613 -10.4646
a5Z+b135 295 -10.4067 -10.4604 -10.4977 -10.4653 -10.4660
a6Z+b135 389 -10.4319 -10.4666 -10.4893 -10.4713 -10.4740
a7Z+b135 513 -10.4481 -10.4757 -10.4930 -10.4858 -10.4855

a The assumed accurate (GTG) value ofECCSD is 304.935 K.b The
assumed accurate (GTG) value ofECCD

cr is -123.1126 K.
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dXZ+b135 sequence (only the d7Z+b135 value was available
in ref 24), our largest size sequence. TheX-3, X-2, and
ET(ECCSD) extrapolations of this series gave atX ) 7 -1.534,
-1.536, and-1.536 K, increasing our confidence in the
estimated limit value.

At R) 7.0 bohr (see Table 9) the lowest computedET energy
is -0.3615 K, theX-3 extrapolations range between-0.3619
K and-0.3626 K, and theX-2 extrapolations between-0.3629
K and -0.3634 K. The average of the extrapolated results is
-0.3628 K and appears to be a reliable estimate of the limit
value. TheET(ECCSD) extrapolations from dXZ and aXZ+b135
sequences agree to within 1 mK with this estimate, only the
aXZ+b95 sequence deviates by 5 mK. We have found that even
smoother extrapolation is obtained within theET(ECCD

cr )
scheme, presented graphically in Figure 5, probably due to the
fact that the singles contributions included inECCSD are not
sufficiently well converged forR ) 7.0 bohr. The linearized
functional dependenceET(ECCD

cr ) is plotted in Figure 5 for each
basis set sequence by drawing straight lines through the points
corresponding to the two largest basis sets (X ) 6 andX ) 7)
in each case. The lines cross the dashed vertical line corre-
sponding to the (extrapolated) GTG result of-4.4233 K from
Table 5 atET ) -0.36228,-0.36241, and-0.36305 K (note
that even if we did not knowECCD

cr from the geminal calcula-
tions, we could still obtain a good estimate ofET by taking the
point where the three lines intersect). These values, listed at
the end of each series in the last column of Table 9, are in very
good agreement with the results of theX-n extrapolations. By
assumingET ) -0.363 ( 0.001 K, we encompass all the
extrapolated results from the largest basis sets in each sequence,
with the exception of theET(ECCSD) result from the aXZ+b95
sequence.

At R ) 4.0 bohr (see Table 10) the results of extrapolations
are also very consistent with each other. The only exception is
the X-2 scheme with the dXZ sequence which overshoots the
average of other extrapolations by about 60 mK. This is a similar
effect as observed in theX-2 extrapolations ofET with bases
without bond functions forR) 5.6 bohr in ref 24. By discarding

Figure 3. Convergence of the computed triple-excitation contribution,
ET, at R ) 7.0 bohr. The horizontal lines denote the upper and lower
bound for our recommended value (broken line), see Table 13.

Figure 4. Convergence of the computed triple-excitation contribution,
ET, at R ) 4.0 bohr. The horizontal lines denote the upper and lower
bound for our recommended value (broken line), see Table 13.

Figure 5. Extrapolation ofET as a function ofECCD
cr at R ) 7.0 bohr.

The straight lines are drawn through the points obtained withX ) 6
(upper) andX ) 7 (lower). The dashed vertical line corresponds to the
GTG value ofECCD

cr ) -4.4233 K.
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this sequence and takingET ) -10.485( 0.010 K, we are
consistent with the extrapolated results from all the largest basis
sets in each sequence.

We can now compare the uncertainties of the triple- and
single-excitation contributions: the ratio is 5, 4, and 2 forR )
4.0, 5.6, and 7.0 bohr, respectively. This decreasing ratio
explains why theET(ECCSD) extrapolations are relatively less
accurate atR ) 7.0 bohr.

Our values of the interaction energies at the CCSD(T) level,
equal to 294.45,-10.686, and-4.543 K atR ) 4.0, 5.6, and
7.0 bohr, respectively, can be compared to the corresponding
values computed using the CCSD(T)-R12 approach by Klopper
and Noga14 and quoted in ref 18: 294.59,-10.659, and-4.536
K. The discrepancies amount to 140, 27, and 7 mK. The
exponential extrapolations of the CCSD(T) interaction energies
from bases up to d6Z by van Mourik and Dunning18 gave
295.511 and-10.672 K atR ) 4.0 and 5.6 bohr, respectively:
a much larger, 1.1 K discrepancy at the former distance but
only 14 mK at the latter.

5.3. Contributions beyond the CCSD(T) Level.The results
of the FCI calculations forR ) 7.0 bohr andR ) 4.0 bohr are
presented in Tables 11 and 12, respectively. Although our FCI
computations use larger basis sets than any previous work, these
sets are still relatively small compared to those in CCSD(T)
calculations:X e 5 versusX e 7, respectively. Thus, drawing
precise quantitative conclusions about the convergence ofδEFCI

is more difficult than for theES andET components discussed
before. A perusal of the convergence patterns for the latter two
components indicates that if the predictions were made based
only on X e 5 results, the error bars would be a few times
larger than those reported in the tables, but the estimates of
complete basis set values would actually agree to within error
bars.

The convergence of the computedδEFCI values from Tables
11 and 12 is not very regular. For example, going fromX ) 4
to X ) 5 at R ) 7.0 bohr brings larger increments than going
from X ) 3 to X ) 4 and the dXZ sequence atR ) 4.0 bohr is
not even monotonic. Generally, the extrapolations involving

bond functions lead to higher (less negative) values (with the
exception of theX-3 extrapolation atR) 7.0 bohr), particularly
the δEFCI(Ẽ) schemes. Our best estimates,δEFCI ) -0.076(
0.005 K atR ) 7.0 bohr andδEFCI ) -1.91( 0.02 K atR )
4.0 bohr, were obtained in such a way that the bounds
encompass all types of extrapolations from the largest bases
and the recommended result is in the middle of this range. The
result forR ) 5.6 bohr, obtained in ref 24, isδEFCI ) -0.323
( 0.005 K.

5.4. Comparison with Literature Results. The recom-
mended total interaction energies of the helium dimer have been
obtained according to eq 1 by combining the extrapolated CCSD
contributions from Table 5, calculated in geminal bases (except
for ENF and ES for which some orbital input was used), with
the ET and δEFCI components extrapolated from the orbital
calculations, as described in sections 5.2 and 5.3, respectively.
The error estimates of the total interaction energies are obtained
by linearly adding the errors of the components (as opposed to
taking a square root of the sum of squares), which provides
rather conservative estimates of the ranges where the accurate
values are located. The same linear addition of errors has been
applied before when assembling the CCSD values.

The interaction energies obtained in this way are compared
in Table 13 to some representative literature results. Our energies
are consistent with the best variational upper bounds by
Komasa.22,23The present estimates have the narrowest error bars
at all three distances, the only exceptions being the results of
Gdanitz20 and the very recent quantum Monte Carlo (QMC)
result of -10.998( 0.005 K for R ) 5.6 bohr obtained by
Anderson, quoted in ref 25. The discrepancies between our and
Gdanitz’s values are equal to 0.21 and 0.028 K atR ) 4.0 and
5.6 bohr, respectively, which amounts to about 20 and 7 times
the error bars of ref 20. AtR ) 7.0 bohr, the difference is 0.001
K and our result is within error bars of ref 20. The error estimate
of the QMC results corresponds to one standard deviation (68%
probability that the true value is within the error bars). The 2001
QMC result of Anderson61 was -10.98 ( 0.02 K. Our
prediction of the interaction energy atR ) 5.6 bohr,-11.009
( 0.008 K, is consistent (error bars overlap) with the new QMC
value, the difference being-0.011( 0.013 K.

The energies reported by Klopper,21 which were obtained
from extrapolated CCSD(T) and FCI calculations in orbital
bases, agree with the present results if the uncertainties given
by Klopper are taken into account. The extrapolated CCSD(T)
values of van Mourik and Dunning18 discussed earlier were
combined by these authors with nonextrapolated CCSDT and
FCI energies. For 5.6 bohr, the agreement with our result is

TABLE 11: Computed and Extrapolated Values of the FCI
Contribution δEFCI ) EFCI - ECCSD(T) to the Helium Dimer
Interaction Energy (in kelvin) at R ) 7.0 bohr

basis size δEFCI X-3 f (ECCD)a f (ECCD
cr )b f (EMP2

cr )c

aTZ+b95 141 -0.085 73
aQZ+b95 187 -0.084 25-0.083 18-0.084 49-0.084 51-0.084 55
a5Z+b95 255 -0.082 64-0.080 95-0.070 71-0.073 48-0.074 95
dTZ 64 -0.084 77
dQZ 124 -0.084 31-0.083 97-0.084 12-0.084 11-0.084 10
d5Z 210 -0.082 67-0.080 94-0.081 18-0.081 29-0.081 30

a The assumed accurate (GTG) value ofECCD is -4.1354 K.b The
assumed accurate (GTG) value ofECCD

cr is -4.4233 K.c The assumed
accurate (GTG) value ofEMP2

cr is -3.78151 K.

TABLE 12: Computed and Extrapolated Values of the FCI
Contribution δEFCI ) EFCI - ECCSD(T) to the Helium Dimer
Interaction Energy (in kelvin) at R ) 4.0 bohr

basis size δEFCI X-3 f (ECCD)a f (ECCD
cr )b f (EMP2

cr )c

aTZ+b95 141 -2.0139
aQZ+b95 187 -1.9679 -1.9343 -1.9288 -1.9238 -1.9188
a5Z+b95 255 -1.9338 -1.8981 -1.8961 -1.8941 -1.8850
dTZ 64 -2.0037
dQZ 124 -2.0263 -2.0427 -2.0382 -2.0387 -2.0410
d5Z 210 -1.9704 -1.9118 -1.9351 -1.9337 -1.9242

a The assumed accurate (GTG) value ofECCD is 305.669 K.b The
assumed accurate (GTG) value ofECCD

cr is -123.113 K.c The as-
sumed accurate (GTG) value ofEMP2

cr is -117.5007 K.

TABLE 13: Interaction Energies of the Helium Dimer and
Their Components (in kelvin)a

R ) 4.0 R ) 5.6 R ) 7.0

ECCSD 304.935( 0.007 -9.1509( 0.0012 -4.1796( 0.0008
ET -10.485( 0.010 -1.535( 0.002 -0.363( 0.001
δEFCI -1.91( 0.02 -0.323( 0.005 -0.076( 0.005
Eint 292.54( 0.04 -11.009( 0.008 -4.619( 0.007
Komasa23 292.784b -10.978b -4.583b

Komasa22 -10.981b

Anderson61 -10.98( 0.02
Anderson25 -10.998( 0.005
vMDc 293.496 -11.004( 0.03
vdBvDd 292.72( 0.2 -10.99( 0.02
Gdanitz20 292.75( 0.01 -10.980( 0.004 -4.620( 0.002
Klopper21 292.6( 0.3 -10.99( 0.02
Korona et al.10 291.64( 0.87 -11.059( 0.03 -4.629( 0.03

a Distances are in bohr.b Strict upper bound (variational calculation).
c van Mourik and Dunning, ref 18.d van de Bovenkamp and van
Duijneveldt, ref 17.
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very good, to within our uncertainties, but for 4.0 bohr the
discrepancy is about 1 K. These authors give the error bars only
for the former distance. Note that van Mourik and Dunning18

also published interaction energies computed substituting their
CCSD(T) values by the CCSD(T)-R12 results from ref 14. For
5.6 bohr, this procedure significantly increased the discrepancy
with our calculations, whereas for 4.0 bohr the effect was
opposite. The multireference configuration interaction (MRCI)
calculations by van de Bovenkamp and van Duijneveldt17 predict
at R ) 4.0 bohr the energy by over 0.1 K higher than ref 21
and almost as high as the result of Gdanitz, but the error bars
are much larger than those given by Gdanitz, and therefore,
our and the MRCI values differ by-0.18( 0.24 K, that is, are
consistent.

The last row in Table 13 contains the results of the symmetry-
adapted perturbation theory (SAPT) calculations. An analysis
of the SAPT convergence patterns atR ) 5.6 bohr led to an
estimate of the uncertainty of the interaction energy equal to
0.03 K.10,16 For other distances, the error estimates for the
interaction energies computed in refs 10 and 16 were 0.3% or
0.03 K, whichever was larger (notice that for the fitting purposes
three times narrower uncertainties were used: 0.1% or 0.01 K).
The SAPT interaction energies are the lowest of all listed. AtR
) 4.0 bohr and 7.0 bohr the SAPT error bars overlap with the
current ones. Only atR ) 5.6 bohr our current result is in a
disagreement of 0.05( 0.04 K with the SAPT prediction.
Apparently, for this distance the cancellation of errors was less
favorable than for other distances. Work on improving the
accuracy of the SAPT interaction energies is underway in our
group. If the accuracy of the SAPT calculations matches the
accuracy of the present supermolecular calculations, this method
could provide a much less expensive route to the He-He
potential than the present approach.

6. Conclusions

In the present work we have computed the interaction energies
for the helium dimer which are believed to be more accurate
than any previously published results. In the post-CCSD
component, the accuracy relied on the extrapolations to the
complete basis set limit using the techniques developed in ref
24. ForR ) 5.6 bohr our results are virtually the same as in ref
24 as only the geminal single-excitation contribution was now
calculated using basis sets somewhat larger than before. This
extension and minor revisions of the extrapolations led to the
interaction energy of-11.009( 0.008 K, slightly different from
the value of-11.008( 0.008 K published in ref 24. The newly
obtained interaction energies forR ) 4.0 bohr andR ) 7.0
bohr are 292.54( 0.04 K and-4.619( 0.007 K, respectively.
In a forthcoming publication from our group, these interaction
energies, together with values for a few other interatomic
distances, will be used to obtain an analytic potential energy fit
for He2. On the basis of the analysis of the convergence of our
calculations discussed in the present work, the new potential
should be accurate to better than 10 mK in the well region
(0.08% at the minimum) and to about 0.02% higher on the
positive wall. The potential will also be nearly exact in the
asymptotic region. This will be an overall about 1 order of
magnitude increase in accuracy compared to the currently widely
used He2 potential from ref 10. At the present level of accuracy,
the adiabatic, relativistic, and probably even QED corrections
are larger than the errors of the Born-Oppenheimer curve. The
accurate adiabatic corrections are known,62 and work on the
remaining ones is underway in our group.

We were able to significantly reduce the error bounds of
helium dimer interaction energies compared to values published

before because of our use of a hybrid, geminal-orbital super-
molecular approach. The magnitude of the remaining uncertain-
ties illustrates well the mutual relation of explicitly correlated
and orbital-based methods in quantum chemistry. AtR ) 5.6
bohr, the ECCD contribution, constituting 82% of the total
interaction energy and containing 90% of notoriously slowly
convergent electron correlation component, was computed in
GTG bases with an error bar over 10 times smaller than the
remaining 18%, obtained with orbital methods. Stopping the
GTG calculations at the CCD level seems to be a good
compromise since because of the high cost of geminal CCSD
runs, only relatively small geminal basis sets can be used to
evaluate the effect of the singles, and the results are not
dramatically more accurate than those obtained from extrapola-
tions of large-scale orbital computations. An even more promis-
ing approach to CCSD-level calculations seems to be provided
by a combination of the inexpensive geminal-based FCCD
method with an orbital treatment of the nonfactorizable and the
singles contributions, both easy to saturate in basis sets. Such
an approach is certainly feasible for medium-size molecules
containing a few dozens of electrons. The present work
demonstrated that explicitly correlated bases can provide
significantly higher accuracies at the CCD level than orbital
calculations with extrapolations. The terms beyond the CCD
level coming from orbital calculations contribute a larger
absolute error to the interaction energy than that ofECCD coming
from the GTG calculations. This happens despite the fact that
the contribution to the correlation part of the interaction energy
is almost an order of magnitude smaller in the former case, that
is, the required relative accuracy is about 10 times lower. The
higher-order terms beyond CCD do not appear to be harder to
converge than CCD energies. If the orbital calculations ofECCD

presented in Table II of ref 24 were assigned error bars in a
similar way as we have estimated the uncertainties of the post-
CCD terms, these would be about( 5 mK, that is, as large as
the errors of the post-CCD components.

Further improvements of the accuracy of the helium dimer
potential depend entirely on the progress beyond the CCSD
level. The most promising approach would be to perform FCI
calculations involving basis sets larger than the currently used
∼250 orbitals or full CCSDT63,64 calculations. Other routes
include four-electron explicitly correlated computations23 with
several thousands basis functions and the SAPT calculations
discussed earlier.
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