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Nonrelativistic clamped nuclei interaction energies for a pair of helium atoms have been computed using the
Gaussian geminal implementation of the coupled cluster theory with single and double excitations (CCSD).
Effects of triple and quadruple excitations were subsequently included employing the conventional orbital
approach and very large augmented, correlation-consistent bases extended by sets of bond functions. Up to
the coupled cluster doubles (CCD) level, the Gaussian geminal expansions provide nearly an order of magnitude
better accuracy than orbital expansions even if the latter results are extrapolated. The recommended values
of the helium dimer interaction energy are 292-50.04 K, —11.009+ 0.008 K, and—4.619+ 0.007 K at

the interatomic distances equal to 4.0, 5.6, and 7.0 bohr, respectively. The major contributions to the error
estimates come from the orbital parts of the calculations beyond the CCSD level.

1. Introduction of such potentials in fact surpassed that of empirical potentials
fitted to experimental dat®. Since 1995, more than 10 papers
have been published describing large-scale calculations for He
These papers predicted the potential depth at the equilibrium
internuclear distanc® = 5.6 bohr ranging from—10.95 to
—11.10 K, with often incompatible uncertainti&s12.14-24 The
nanodroplet3:? Since the interactions between helium atoms Itg)west publjshed rigorous upper bound tq this quantity, optgined
y subtracting the exact monomer energies from the variational

are very weak, the properties of gaseous helium are closer to - .
those (?1: the ideal 923 Itohan propegrties of any other substance EN€r9Y of a 2400-term explicitly correlated Gaussian functon,

- : amounts t0—-10.981 K. Results with narrow error bars include
Helium is therefore used as a benchmark system for thermo- .
physical studies of the relations between the pressure of a gasthe latest from a series of papers by Gdaffitz,10.980 0.004

; i - h K, the value from a previous paper from our grétipqual to
its temperature, molar polarizability, dielectric constant, and .
virial coefficients3# If the molar polarizability and the virial —11.008+ 0.008 K, and the very recent result of unpublished

coefficients of helium were known with sufficient accuracy, such Monte .Carlo calculations by Anderson (qtgd in_ref .25)
relations could be used to establish a new pressure standard@mounting 10-10.998 K and subject to a statistical uncertainty
based on capacitance measurement of the dielectric cofstant. of 10 = 0.005 K.
A very accurate interatomic potential, preferably to within a  The 1996 SAPT potentitt'®for He; has been used in several
few millikelvin in the well region (1 hartree= 315 774.65 K), ~ applications, in particular in thermal physics. As discussed by
would be required for this purpo8é. A high-quality He Hurly and Moldover® quantum mechanical calculations of the
potential is also needed to describe the very unusual bound statsecond virial coefficient and of the transport properties of helium
of this system. The depth of the potential is only about 11 K, can provide more accurate results than measurements. The ab
barely accommodating one vibrational level. The wave function initio properties computed from the SAPT potential have been
of this state is spread over distances of the order of 30'A.  used as reference data for an acoustic visconiéter study
Subkelvin variations in the values of the potential have a helium flow propertie$®29in capacitance measurements of the
substantial impact on the binding energy, average-He dielectric constant? and to develop an interpolating and a
separatiort®and the scattering length. The aim of our work primary low-temperature acoustic gas thermom&tévers et
is to provide a Hg potential with relative uncertainties below al-3? have used the theoretical values of viscosities computed
0.1%, which amounts to a few millikelvin in the region of the by Hurly and Moldovet® from the SAPT potential to test the
well. performance of their new viscometer for the case of helium gas.

High-quality ab initio pair potentials for helium started They found agreement to withitt 0.03% which enabled them
appearing in the middle of the 19984t that time, the accuracy ~ tO calibrate viscosity and density measurements of other gases.
In the present paper, we report results of very accurate
IPart of the special issue “Fritz Schaefer Festschrift”. electronic structure calculations for the helium dimer employing
s Bﬂ:xgg::y 8; \?Vﬂfs"g\’l‘vre- the Gaussian geminal implementafid?f of the coupled cluster

y : singles and doubles (CCSD) modeks The results forR =

I'Polish Academy of Sciences.
U Princeton University. 5.6 bohr have already been utilized in ref 24 as benchmarks in
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Helium is an extraordinary system from the point of view of
both experimental and theoretical physics. It exhibits superflu-
idity, one of the most striking macroscopic manifestations of
the quantum character of matter. Helium also forms a new and
exciting medium for high-resolution spectroscopy, the helium
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investigations of the basis set extrapolation techniques. In set expansions and extrapolation techniques. These two contri-
addition to the CCSD energies, we have also computed the basisbutions are studied separately since the domiiarterm can
set-saturated many-body perturbation theory (MBPT) energiesbe evaluated using much larger basis sets than those practical
at the second-order (MP2) and third-order (MP3) level. The in FCI calculations.
interaction energies reported here have been obtained using the The total CCSD correlation energy of a closed-shel
supermolecular approaéhthat is, by subtracting the atomic  electron system can be expressed as
energies from the total electronic energy of the dimer, both
energies obtained using the same level of theory and the same tot.cr 1 1 3
basis set. This means that the basis set superposition error Ecdsp= Zfau"' ;(Eaﬂ-i_ 6&/5) (4)
(BSSE) has been eliminated using the counterpoise (CP) = as
procedure of Boys and Bernardi.

The interaction energy contributions beyond the CCSD level
have been obtained by us using the conventional, orbital-based s 1 s
CCSD(T}o4° (coupled cluster singles and doubles with non-  €as = m@aﬁbﬁ”lzﬂaﬁ T 7,35+ 2= 977,10 (5)
iterative account of triple excitations) and the full configuration b
interaction (FCI) methods,_ following the approach of ref 24. and¢a, o = 1, 2, ...N/2, are occupied Hartregrock orbitals.
Very large corrglat|on-con3|stent bases (up to doubly au_gmentedThe one- and two-electron spinless cluster functmndtzﬁ
septuple-zeta in the CCSD(T) case) supplemented with Iargeare defined by the set of integro-differential equations of first-

sets of bond functions have been applied. All the contributions quantized CCSD theofyand the condition of strong orthogo-
gt th's leﬁ.l h.f["“/? altsho t;e_eln cP gorrecéed. ITO Ob.tf“? the co[ngletena"ty to the space spanned by the occupied orbtfalhe s =
asis Set limits for the triple- and guadruple-excitation contribu- 4 (“singlet”) ands = 3 (“triplet”) two-electron cluster functions
tions to the interaction energy and to estimate the error bars for

o . . or pair functions) have definite exchange symmetry, that is,
Fhese quantities, we _em_ploy_ed extrapolatl_o n techniques teste hese functions are symmetric and antisymmetric, respectively
in ref 24 for the equilibrium internuclear distance. ' '

with respect to the exchange of electronic coordinates,

N/2 N/2

where the pair contributions are defined by

S S
2.G | Methodol Top(l2, 1) = (2 = 97g4(ra, 12). _ N
ene-ra e- oaology ) ) “The pair functions were expanded in terms of explicitly
The interaction energy of the helium dimeEy, was correlated Gaussian geminajgr, ro), that is,
computed using the following partitioning
K
Eint = Eccspt Er + 0B (1) rzﬁ(rl, r) = Asnaﬂzciaﬁs (1, T2) (6)
=

where Eccsp is the interaction energy at the CCSD level of
theory,Er is the triple-excitation contribution to the interaction g(ry, 1)) =

energy accounted for by the CCSD(T) method, expyylry — Ai|2 — yull,— |3i|2 —0jr; — r2|2) @)
Er = Eccsom ~ Ecesp @) where the operatoAs = 1 + (2 — 9)P1, (P12 being the

permutation operator) ensures the appropriate exchange sym-

metry andIl.s enforces the correct spatial symmetryujg,

OEre1 = Erei — Ecespm (3) the same as .the symmetry of the corfespon(ﬂng orpltal product.
For the specific case of the helium dimél,s = 1 + 1, where

collects the remaining triple-excitation effects and the whole 1.iS the inversion in the molecular midpoint. Thus, the operators
quadruple-excitation contribution obtained using the FCI ap- [11andIlz; symmetrize and the operatbii, antisymmetrizes
proach. It is known that the former effects dominag:-c,.4! ai(r1, ro) with respect to the inversion. The_ nonlinear parameters
Unless otherwise noted, all energy symbols, such asine@s1 Y% Ai» 72, Bi, andd; are to be determined by a nonlinear
will always refer to the interaction energies, rather than total OPtimization procedure. To guarantee fiie symmetry of the

dimer energies. The CCSD interaction enefyesp, OF Some pair functions, the vectord; andB; are constrained to lie on
approximations thereto considered further on, will always the axis defined by the nuclei. The one-electron cluster functions

include the HartreeFock (HF) part, obtained in the self- 74(r) are expanded in terms of the floating Gaussian orbital basis
consistent field (SCF) procedure and denotedgy The same L
will be assumed abouEccspry and Erc. To denote the _ B o - A2
correlation-only part of the ir(1t)eraction energy predicted by TN =1y p & expCyilr = Gl ®)
methodX, we shall use the symbd@y, for example E¢csp = R R
Eccsp — Esce where the operatolly plays a similqr role a%lys, that is, for

The rationale for the partitioning eq 1 are the different the He dimer,Il; symmetrizes andl, antisymmetrizes with
physical characteristics and computational requirements of therespect to inversion.
three contributions. The bulk of the (notoriously slowly In general, the functions 6 and 8 would have to contain
convergent) correlation effects is containedEgrsp, which is prefactors of powers of Cartesian coordinates ensuring their
ideally suited for computations employing the Gaussian-type proper symmetry and basis set completerié4dn the present
geminals (GTGs). This basis proved to yield accuracy unreach-case, when all one-electron cluster functions are ®fmmetry
able with orbital methods, not only in the CCSD contéxiut and all pair functions oE™ symmetry, these prefactors can be
also at the level of the second- and third-order MBPT within dropped without affecting the completeness of the basis set, as
the Maller-Plesset partitioning scheme (MP2 and MPand long as the Gaussian centéys B, andC; are distributed along
in direct variational calculation®. The two remaining contribu-  some finite segment of the internuclear axis and the exponents
tions, Er and 0Erc;, have been calculated using orbital basis are allowed to assume all positive valdé4>In our calculations

and 0Erc,, defined as
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the centers were allowed to move along the axis within 10 bohr CCSD to CCD has the overall scaling similar to #é<3 term,
from the center of the molecule and the exponehtsould the prefactor of the former term is much larger than that of the
assume the value of zero, in addition to the positive values latter.
required by the completeness criteria. The linear coefficients It has been found#’that the contribution of the nonfactor-
¢ andc of egs 8 and 6 were found by solving iteratively the izable diagrams, which generaté?K? four-electron integrals
first-quantized CCSD equatioA%Accurate (or even reasonable) in the CCD equations, is very small and rather easy to converge
results can be obtained only with a suitable choice of the with small geminal basis sets. The neglect of these diagrams
nonlinear parametens;, Ai, v, Bi, di, yi, andC;. In the present leads to the so-called factorizable CCD (FCCD) method, defined
work we followed ref 33 and optimized these parameters by in ref 47, which scales @4*K + M2K2in the SWOP approach
minimizing the total MP2 energy of the dimer, except for and requires only two- and three-electron integrals. In the context
andC; which were obtained by minimizing the single-excitation ~of orbital coupled cluster theory, the FCCD method has been
contribution to the fourth-order MBPT energy of the dimer. The considered by Adams et &:#°and by Chiles and Dykstr&.
details of the nonlinear optimization procedure are presented Since the FCCD contribution to the interaction energy converges
in section 3. considerably slower witl, in absolute terms, than the (small)

To avoid BSSE, the geminal and orbital basis sets optimized contributions from the remaining, computationally more de-
for the dimer were also used in the coupled cluster and MBPT manding levels of the CCSD theory, the FCCD interaction
calculations for the monomer (see section 3.2 for a detailed energy was computed with substantially larger geminal basis
discussion of this issue). The only monomer pair functibn sets. This strategy leads to the following partitioning of the
was represented using the same gemigads those used ineq CCSD and CCD interaction energies
6 for the dimer pair functions, according to the formula

P ’ Eccsp= Ecep 1 Es (10)

K _
Til(rlv r)= Al (Cigi(ry, 1) +E1g(ry, o) 9 Feen ™ Ercen ™ Eve (1)

where Eccp (Erccp) is the interaction energy in the CCD
(FCCD) approximation, whereds andEng terms, defined by

the equations above, are contributions of single excitations and
nonfactorizable CCD diagrams, respectively.

where the coefficients; and¢; are independent. Similarly, the
one-electron cluster function of the monomer was expanded
in the Z_-term basis containing all the orbitals used in eq 8 and
all the functions obtained from these orbitals by applying the
inversion operatiof. Note that expansions similar to eq 9, with
g andig; treated as independent basis functions, could have 3.1. SCF Basis SetsThe first-quantized CCSD equations
been used also in the case of the dimer. However, the symmetryare strictly valid only in the limit of the exact solution of the

3. Optimization of the Nonlinear Parameters

of the dimer Hamiltonian implies that, in this casg,= +¢ Hartree-Fock problem. To reduce uncertainties due to the use
and thus the symmetry-adapted functidfig;g; were employed of approximate solutions, fairly good quality SCF bases should
instead. be used. On the other hand, since the cost of CCSD calculations

The number of three- and four-electron integrals in GTG in geminal bases scales as the fourth power of the SCF basis
calculations is significantly reduced if the so-called weak set sizeM, one would like to use as compact SCF basis sets as
orthogonality (WO) approadhis employed. In this approach, possible. With the time requirements of the current geminal
the strong orthogonality conditions are imposed on the cluster codes, large traditional basis sets containing hundreds of
functions approximately by means of a penalty function rather Gaussian orbitals are impractical. In fact, it would be pointless
than by the explicit projection of raw geminals. Further to use such basis sets, which are mainly aimed at describing
reductions of the computational cost are achieved by the use ofelectron correlation effects, when one needs only to describe
the approximate projection technidfievhich allows one to omit  the ground-state HF orbitals. Thus, the geminal CCSD calcula-
costly projectors in several terms of the CCSD equatins. tions usually employ compact yet accurate expansions in
Combination of this technique with the WO approach, referred spherical Gaussian functions, such as those appearing in eq 8,
to as the superweak orthogonality plus projection (SWOP) with carefully optimized exponents and centers. The starting
method, becomes exact in the limit of the complete geminal point for the SCF optimization was obtained by adding to atom-
basis set. All geminal MP2 and coupled cluster calculations centered functions optimized for the SCF energy of the helium
reported in this work have been performed using the WO and atom a number (2680% depending oR andM) of functions
SWOP methodology, respectively. The MP3 energies were scattered between the nuclei, with the more diffuse Gaussian
obtained using the WO first-order pair functions approximately orbitals placed closer to the center of the molecule. The whole
projected before being inserted into the third-order formula. space of the B nonlinear parameters was then optimized by

With simplifications resulting from SWOP, the computational the Powell method of conjugate directiotiswith the linear
burden of the complete explicitly correlated CCSD method parameters evaluated in each step by the usual SCF procedure.
scales approximately ad4*K? + M2K3, assuming tham = L, The total dimer SCF energies obtained for different values of
whereM is the number of basis functions in the expansion of M, as well as CP-corrected SCF interaction energies are listed
the occupied HartreeFock orbitals and andL are defined in in Table 1. We have also calculated strict upper bOLFIﬂ§5§F
egs 6 and 8, respectively. Calculation of four-electron integrals to the Hartree-Fock interaction energies by subtracting twice
is still required, most of them in expressions containing one- the accurate helium atom HF energy-62.861 679 995 612 21
electron cluster functions. Unlike in the conventional orbital hartre&3from the dimer energies. To further assess the quality
case, the geminal implementation of the coupled cluster doublesof the optimized basis sets, we prepared a reference set in the
(CCD) theory® is computationally much less expensive than following way. In the largest basis used in our orbital calcula-
the full CCSD treatment. The scaling of computational cost of tions (see the description of basis sets in section 5);+42235,

CCD in the SWOP approachig?k® + M*K. Although typically we replaced all 15functions on each atom (contracted tg)8
K ~ M? and therefore th#1*K? term dropped when going from by a new uncontracted set of 32functions with exponents
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TABLE 1: Total Dimer SCF Energies E (in hartrees), energies folR = 4.0 and 5.6 bohr to the functidé(M) = E.,
Interaction Energies Escr, and Strict Upper Bounds to the + ae™. For R = 5.6 bohr the limit value from the fit is
:ante(acnon Energy Egee (EOtg in keIV{/TI) ?(OmpUIEd Using 9.220 15 K, slightly above the upper error bar and in fact 0.05
asis Sets Optimized in the Present Wor mK above our best upper bound. We believe this is due to an
Mma E Escr EL incomplete optimization of théM = 24 function since the
R = 4.0 bohr corresponding interaction energy lies distinctly above the fit.
10 —5.721 960 737 870 436.59566 441.84874 ForR= 4.0 bohr the limit value from the fit was 428.7821 K,
16 —5.722001 211419 428.80165 429.06822 above the lowest computed value. Since the SCF interaction
:2;2‘ :g;gg 882 83‘11 ggi jgg-;gi g% igg-ggé (2)2 energy is not a variational quantity, getting below the limit value
(a7Z+b135)13% 5722002115291 42878278 42878280 'S POssible, in particular if our optimizations put too much
R— &6 bohr emphasis on the dimer component of the b_aS|_s set at the expense
10 _5.723 316 545 900 930628 13.718 93 ZfzsthYeSZmogoorgir-lgenteLedbpart. Wlth this |n]:°,|ght, _we took
16 —5723330598175  9.23379  9.28158 782+ 0. as the best estimate Bécr for R = 4.0
24 —5.723330786 077  9.22164  9.22224  bohr.
32 —5.723330792855  9.22000  9.22010 A clear conclusion from the results presented above is that
(a7z+b135)-32  —5.723 330 793 142 9.21999 922001 jndeed one can use floating Gaussian expansions much more
0 . 723R3js76%g%t2)r7 029497 470669 compact (about 10 time shorter) than the standard bases to
16 5793 356 003 124 0.291 71 0.312 02 represent the occupied HF orbitals at a given Ievgl of accuracy.
24 —5.723 359 077 527 0.288 39 0.288 52 3.2. Two- and One-Electron Cluster Functions. The
32 —5.723 359 078 954 0.287 97 0.28807 parameters of the GTG functions of eq 7 were optimized with

(a7Z+b135)+32> —5.723359079180  0.28797  0.28800  respect to the total MP2 correlation energy of the He dimer by

aM denotes the number of symmetry-unique basis functions (the MiNimizing the second-order functional being a sum of the
dimension of the Fock matrix isN). P The aug-cc-pV7Z Dunning et~ Hylleraas-type pair functionals (see eq 13 of ref 15). Although
al. type basis set published by Gdahitwith s functions replaced by  the first-order pair functions, obtained from such minimizations,
the 32 set on each atom optimized by us plus tispd3f3g3h set of are obviously not identical with the converged CCSD cluster
bond functions developed by Partridge and Bauschligher. functions, if the geminal basis is large enough, the linear

optimized for the HartreeFock energy of the helium atom. parameters can compensate for the not fully optimgl 'no.nlin.ear
This basis, containing 561 functions, reproduces the monomerParameters, as shown by the results of ref 3. The minimizations
HF energy given above with an error of only 0.014 mK. The _Of the funcuon_al (separately at each_ vaIueRQ)_f/vere performe_d
interaction energies obtained in this basis are listed in the last!" €Ycles running through aK Gaussian geminals. To optimize
row of each series in Table 1. Since the monomer energy is soach geminal in a given cycle, just one iteration of the standard
accurate, the upper bounds are almost equal to the regular cpPowell method! was executed. Since the parameters of all the

corrected values for all three distances. This equality does not9€minals are mutually coupled through the minimized func-
mean, of course, that the valuesirare converged t6-0.01 tional, it is advantageous not to fully converge the _Powell
mK. Neither can we assume that the SCF interaction energiesprocedure in each step but rather to return to _each geminal more
in the reference, 561-orbital basis are closer to the exact valuesiMes (perform more cycles). Before performing the cycles, the
than those computed in our largeidt= 32, floatings-symmetry initial valu_es of the nonlinear parameters were obtained _W|th
bases. However, since the differences are only 0.85, 0.01, and"€ following “shoot-and-sort” procedure. First, for a geminal
0.00 mK forR = 4.0, 5.6, and 7.0 bohr, respectively, for all ©f the form of eq 7, 80 sets of parameters were randomly
practical purposes the two sets of bases give identical results 9&nerated. The set giving the lowest value of the MP2 functional
Since the discussed bases have been obtained by very differenfV@s then optimized with one Powell iteration. The process
procedures, this agreement seems to suggest that the exact HEOntinued, increasing the size of the basis set by one in
interaction energies are reproduced by the best results in TablecOnsecutive steps, until this size reacledn a given step, all
1 to within about 0.0001%. On the other hand, the convergencethe geminals from previous steps were held fixed. This strategy
patterns for the floating-symmetry bases displayed in Table 1 Proved extremely successful in RayleigRitz variational
point to a lower accuracy. The change Bjcr betweenM = calculations? In almost all of the optimization cycles, the
24 andM = 32 is 0.38, 1.64, and 0.42 mK f&® = 4.0, 5.6, shorter SCF expansions from Table 1 were usdd<16). In
and 7.0 bohr, respectively. On the basis of these values, thethe final cycle,M = 24 was applied. To test the convergence
accuracy of theM = 32 results has to be significantly of the results at all thellevels of Fheory considered in this work,
downgraded. Combining both estimates, we assigned, ratherV® generated expansions of different lengths, fiér+ 300
conservatively, the errors of tH&scrvalues as 1, 0.1, and 0.1 (K =75 forR=5.6 bohr) toK = 800. Each optimization was
mK, respectively (relative errors of 0.0002%, 0.001%, and done independently, that is, the optimizations of larger expan-
0.03%). Thus, the HartreeFock component of the interaction sions did not use any information from the shorter functions.
energy has been computed with an error negligible compared In Gaussian geminal computations of the MP2 energy
to the errors of other components discussed later. performed in the past, different geminal basis sets (different
From the monotonically decreasing behavior of the series in nonlinear parameters) were usually employed for differgnt
M (for all R), one may expect that at the limit of infinite basis J, ands, that is, for different pair functions. Since at the MP2
the SCF interaction energies will be a little below the lowest level each pair yields a separate contribution, this choice is
computed values. To account for this anticipated lowering at  optimal. In the present work we decided to represent each pair
= 5.6 and 7.0 bohr, we have decreased the lowest computedfunction using a universal geminal basis, as indicated by eq 6.
result by about 0.1 mK as suggested by the convergence rate This choice is dictated by three factorst, as shown in ref
that is, we have chosen the limit values as 9.2199 and 0.287915, in calculations of the interaction energies rather than of the
K, respectively. Then the best computed results are within the total energies only, the universality of the geminal basis is
estimated error bars. We have also fitted the SCF interaction necessary if the interaction energy is to be made free from BSSE
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by the use of the CP scheme. Although this problem ceases toTABLE 2: Convergence of Interaction Energy

be important as the basis approaches the completeness IimitgOntrIIOUItlonS (in keW'”)_Vﬁ'”r‘] the SCF Basis .S'Ze]!\" for K =

calculations in smaller bases, farther from this limit, are also 20 (Upper Part) and with the GTG Basis SizeK for M =
(Lower Part) at R = 5.6 bohr

necessary to assess the convergence of the results. Such BSSIE-

free calculations would not be possible if each pair function K'=300

were expanded in its own, individually optimized geminal ES., ESs EY oo Ene Es
e . g .

basist> Secondfrom _the analysis qf ref 15 itis clear that, in 10 1596349 —2.50820 —18.16862 0.017 86 —0.196 40

the case of the He dimer, the geminals optimaldachof the 16 —16.00183 —2.51244 —18.19983 0.018 13 —0.176 36

singlet pair functions have to describe essentially the same 24 —16.00895 —2.51337 —18.20756 0.018 16 —0.176 92
physical effects, correlation within the monomers and the 32 —16.01006 —2.51354 —18.208 80

dispersion interaction, whereas the triplet paig only ac- M= 24

counts for the latter effect. It follows that the individual - - p

optimizations of singlet pairs would in fact yield three geminal Ewez Ewps Erceo Ene Es
bases very similar to one another, and an optimization of a basis75 —15.818 40 —2.38123 —17.699 94 0.000 69 —0.153 92
for the triplet pair would replicate dispersion-specific geminals 190 —15.97614 —2.50516 —18.15524 0.01807-0.17617
already present in the singlet pair bases. Because of thisggg :ig'ggg g? :ggig 3; :ig'ggg gg 0.01816 ~0.176 92
redundancy between different pair functions obHke accuracy  ggg —16.01076 —2.51379 —18.210 21

achieved with four individually optimized bases, each of length M =32

K, can be easily matched using just one universal basis of lengthggg —16 01186 —2.51396 —18.211 44

only slightly larger thanK, optimized to simultaneously

reproduce all pair functions. Such an approach shortens thetonal, which is consistent with the spirit of the SWOP approach.
overall time spent on optimization$hird, the use of universal Al the final coupled cluster and MBPT results reported in this

bases dramatically rEdUCQIS the time requirements of thework have been calculated using the parameteet equa| to 0
subsequent CCSD calculations. In contrast to the MP2-level for the pair functions and 0.01 for the one-electron cluster

theory, the CCSD equations couple different pair functions. fynctions.
Therefore, when such calculations are performed in a universal  The contributiorEs in eq 10 depends on three separate basis
geminal basis, the number of costly many-electron integrals cansets with the expansion length, K, andL. In studying the
be an order of magnitude smaller than it would be if each pair convergence patterns of CCSD interaction energies, three
function were expanded in its individual basis set. degrees of freedom in expansion lengths would require too large
The high efficiency of the CP method in the context of a number of independent calculations. Therefore, we used the
Gaussian geminal calculations of the interaction energy was constraintL = M. In each CCSD run, defined by particular
demonstrated earlier in ref 15. In fact, it is impossible to define values ofM andK, the nonlinear parameters in eq 8 assumed
a non-CP-corrected interaction energy and calculate the mag-the values optimized earlier using thé-term andK-term
nitude of BSSE in an unambiguous way using a generally expansions for the SCF orbitals and MP2 pair functions,
optimized GTG basis. This is because the Gaussian centers argespectively. The starting values of the nonlinear parameters
distributed at many points along the internuclear axis (floating- used in the optimizations of the single-excitation basis sets were
center basis), and the monomer part of the basis cannot bethose of the SCF functions of the same length.
uniquely defined. This is in contrast to ref 15, where the pair
functions were built as combinations of monomer bases and 4. Results of Geminal Calculations
dispersion bases, which engbled an approximate evaluation of The most extensive GTG calculations, employing the largest
BSSE. ForR = 5.6 bohr, this BSSE was, for example, 33 hymper of combinations dfl andK, were performed at the
and 1 mK in bases of length 120DOME0) and 340  equjlibrium distanceR = 5.6 bohr. The results of these
(D190M150), respectively. These results show that in the largest cajcylations had already been utilized in ref 24 to investigate
basis sets used by us, containing 800 geminals, the BSSE wouldsyirapolations of orbital methods. These results were also used
be negligible even if it were not removed by the CP approach. o develop a strategy which could be subsequently employed
The universal basis approach has also been employed in thén GTG computations at the other distances, allowing us to limit
case of the one-electron cluster functions. The nonlinear the number of runs. From all the optimized GTG pair functions
parameters of the orbital basis sets from eq 8 were determinedof the form of eq 6 K = 75, 150, 300, 600, 800), the 300-term
separately for eactR by optimizing the single-excitation  expansion is the largest one we could use within reasonable
contribution to the MP4 energy of the dimer (see ref 33 for computer resources at all levels of theory up to CCSD. One
details). Similarly to the two-electron case, this choice corre- full CCSD calculation withM = 24, K = 300, andL = 24
sponds to finding optimal second-order single-excitation func- required about 7000 cumulative CPU hours on a Beowulf cluster
tions rather than the converged CCSD ones, an approximationwith 1 GHz Athlon nodes.
which works very well in practicé3 4.1. Convergence withM. We first tested how fast different
During the optimizations of geminal bases, the strong contributions to the interaction energy saturate with respect to
orthogonality condition was imposed within the WO scheme, M. These tests were done wikh= 300. The results foR =
that is, using a penalty function with theparameter (see ref 5.6 bohr andVl = 10, 16, and 24 are listed in the upper part of
33) ranging from 0.1 to 0.05, depending on the progress of the Table 2.Ey;,, and Ef.p are seen to be most sensitive to the
optimization and the internuclear distariReThe WO approach  quality of the reference SCF wave function. We have calculated
was also applied to force the orthogonality of the one-electron them also with our largest SCF expansidh,= 32, which
cluster functions during the MP4 optimizations of the corre- changed these quantities byl.1 and—1.2 mK, respectively,
sponding bases, with = 0.01. The first-order pair functions  compared to theM = 24 results.E} -, is seen to converge
employed in these optimizations were obtained witlk 0 and much faster withiM, changing only by-0.17 mK when going
approximately projected before insertion into the MP4 func- from M = 24 toM = 32. Since each step in our sequence of
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values ofM results in an increment of the interaction energy bohr: going fromM = 16 to M = 24 change<£;;,, by —1.4
components that is several times smaller than the incrementmK (compared with—7 mK) and fromM = 24 toM = 32 by
obtained in the previous step, we can predict Mat 32 yields only —0.3 mK (compared with-1.1 mK). However, this just
the values of p, andEfcc, saturated in the size of the SCF  reflects the decreased magnitudes of all components. On the
basis at least to 0.3 mKEf»; at least to 0.1 mK). Another  other hand, the difference between fecontributions aM =
argument supporting this conclusion is the observation that the 16 andM = 24 is surprisingly large (1.3 mK), and we would
increments of these quantities are almost linear functions of the have to ascribe an uncertainty of 2 mK to this quantity, based
increments ofEscr (when enlargingl for R = 5.6 bohr, the  only on the GTG convergence M. Furthermore, aR = 7.0
changes oEscrare 72, 12, and 1.6 mK, cf. Table 1, and the ponr (and also at 4.0 bohr), we have not investigated the
changes oEyp, are 38, 7.1, and 1.1 mK). As discussed above, convergence oEsin K. However, as will be shown in section
Escr for M = 32 should be within 0.1 mK from the infinite 51 extrapolated values computed in orbital basis sets agree
basis set limit. Thus, thEy,, versusEscr extrapolation leads  with theM = L = 24,K = 300 geminal results and allow us to
to an estimate of the uncertainty Bf;s, due to truncation of  provide reliable estimates of the limits and of the error bars.
M amounting to about 0.1 mK, not far from the estimate given The Ey contribution appears to be converged to 0.01 mR at
above. = 7.0 bohr.

The observation that the increments of the SCF and MP2 _ ;
interaction energies with changind are of similar size is For R = 4.0 bohr (see Table 4) the difference at i,
different than that for the total SCF and MP2 energies in the
earlier work with geminal bases. As shown in ref 54 (see Table

oo ; ; f —
V in that reference), the total SCF energies and the MP2 T_T(atlEMﬁ? IS 7ﬂt|mes Iartﬂerln m_ar?n:ude Ri[_. 4'(.) bohfr.rl]\/lost
(correlation) energies havelative errors of similar magnitude. Ikely this re egts problems with the optimization of the SCF,
Therefore, since the SCF energies are about 2 orders Ofbases for this distance and the fact that the 32-term SCF function

magnitude larger than the correlation energies, the latter havelS Not as well optimized as the 24-term function, rather than
about two more significant digits than the former. It appears the true saturation of the results with respeditan any case,

that the differences between this behavior and the one observedEyp, @nd all the other quantities in Table 4 are clearly better
now for the interaction energies is mainly due to the greater converged in relative terms than f&= 5.6 bohr.

sensitivity of the dimer MP2 energies to the quality of the SCF 4.2, Convergence withK. Once we have established the
functions compared to the monomer energies investigated ininfluence of the SCF basis si2@ on the MBPT and CCSD

ref 54. As an example, consider the resultsRer 4.0 bohrM interaction energies, we can analyze the convergence of various
= 10, andK = 300 (notice that the errors due to the truncation quantities with the GTG basis expansion lenijtHdeally, one

in K are not discussed here). As reference resultsMor  shoyld perform for this purpose a series of calculations using
becoming infinite, we will use estimates obtained in the same in all of them the most accurate SCF functidn.= 32. This

way as described above, although from the point of view of
the present discussion the resultsNbr= 32 would work equally
well. The monomer total SCF and MP2 energies Nbr= 10

are in errors of 8.3 and 0/zhartree, respectively, not far from
the 2 orders of magnitude ratio expected from the conclusions

of ref 54. However, the same quantities for the dimer are 41 d dent seri f th lculati ith th ¢
and 7uhartree, the ratio of only 6. Furthermore, in the MP2 ependent series of runsepeat tne calcuiations wi € mos

case, the error of the interaction energy equal taddrtree is accurate GTG basi&(= 800) andVl = 32 for the contributions

almost the same as the error of the total energy (as it has to beMOst sensitive td (Eyp, andEgcp) and also forEyp, since
because of the relation between the errors of the dimer andthis term is relatively inexpensive.
monomer quoted above), but in the SCF case there is some TheK-dependence of the resultsRit= 5.6 bohr is presented
cancellation of errors and the SCF interaction energy is accuratein the lower part of Table 2. The convergence in each column
to 25 uhartree. This leads to the errors of the SCF and MP2 is monotonic and quite smooth, with the exception of khe:
interaction energies that are indeed of similar size. 75 results in the last two columns. The analysis of the differences
For R = 5.6 bohr, the small terrinr is fairly insensitive to in each series reveals th&f,; exhibits the fastest conver-
the quality of the SCF function and appears to be converged togence rate, followed b, The increments, when going

below 0.1 mK withM = 24. This conjecture is supported by  from K = 600 toK = 800. are—0.09 and—0.32 mK forES,
the orbital results (see discussion in section 5.1). It is more andEY cr

e ; respectively. Thu saturates almost as fast
difficult to estimate the convergence BE, because the value L P y Sl.':'FCCD . X
for M = 10 is far apart from those fovl = 16 andM = 24 asEyp,, Which is consistent with our assumption that the first-
and one might even consider the small difference betweén the_OrOIer pair functions are rather good approximations to the fl.J”y
two latter results as coincidental. One may expect to see a mordt€rated cluster functions. In all the three columns, by doubling
erratic convergence pattern fs than for other quantities in (e basis set size, one gets roughly one more significant digit,
Table 2 since each step involves a chanigeandL. However similarly as in GTG RayleighRitz variational calculations on
the value fortM = 24 equal to-177 mK is consistent with the ~ two-électron systemf&.This is not surprising since in both cases
extrapolations of orbital calculations described in ref 24Ror ~ the dominant effect is the two-body correlation. A perusal of
= 5.6 bohr and discussed later (for all three separations) in the results in the lower part of Table 2 allows one to roughly

level between thé1 = 24 andM = 32 results amounts to only
0.14 mK, compared to 1.1 mK &= 5.6 bohr, despite the fact

would be, however, neither practical nor necessary, because the
convergence pattern with respectt@emains almost identical

as long as any SCF function with a sufficiently high accuracy
is used throughout the whole series. We decided toMise

24 for this purpose andonly after finishing the wholeK-

section 5.1. estimate that the finaEy,, values are probably converged in
Results forR = 7.0 and 4.0 bohr analogous to those Roe K to a fraction of 0.1 mK andEy,, and Efc, to about one

5.6 bohr discussed above are presented in Tables 3 and 4digit less. A more rigorous discussion of the convergence will

respectively. FOR = 7.0 bohr, the convergence wikhh (when be given in section 4.3. We observe that, in all the three cases,

expressed in absolute numbers) is better than it R & 5.6 the effect of going fromM = 24 toM = 32 is, to within 0.01
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TABLE 3: Convergence of Interaction Energy
Contributions (in kelvin) with the SCF Basis SizeM for K =
300 (Upper Part) and with the GTG Basis SizeK for M =
24 (Lower Part) at R = 7.0 bohr

K= 300
M Eﬁ/lrpz E;\:/IIP3 EIC:rCCD Enr Es
10¢ —3.77737 —0.67768 —4.42107 —0.00341 —0.046 33
16 —3.77808 —0.67820 —4.41647 —0.00340 —0.04293

24 —3.77943 —0.67836 —4.41794 —0.00339 —0.044 26
32 —38.77978 —0.67841 —4.41832

M=24
K Eez Eles Efceo
300 —3.779 43 —0.678 36 —4.417 94
600 —3.780 92 —0.678 76 —4.41931
800 —3.780 99 —0.678 77 —4.419 37
M =32
800 —3.781 34 —0.678 82 —4.41977

@ The linear equation system not positive-definite (see text).

TABLE 4: Convergence of Interaction Energy
Contributions (in kelvin) with the SCF Basis SizeM for K =
300 (Upper Part) and with the GTG Basis SizeK for M =
24 (Lower Part) at R = 4.0 bohr

K =300
M Eve2 Ewps Efceo Ene Es

10 —115.46019 —11.17489 —121.506 78 0.473 77—0.671 86
16 —117.48544 —11.402 64 —123.574 11 0.487 11-0.736 04

24 —117.493 31 —11.403 25 —123.582 16 0.487 18—0.735 87
32 —117.49345 —11.403 26 —123.582 29

M=24
K Elip2 Evps Efceo
300 —117.493 31 —11.403 25 —123.582 16
600 —117.498 71 —11.404 50 —123.596 15
800 —117.498 97 —11.404 60 —123.597 13
M =32
800 —117.499 11 —11.40361 —123.597 29

mK, the same when using GTG expansions Witk 300 and
K = 800. This shows that the errors M andK are indeed
cumulative.

Tables 3 and 4 present the results For= 7.0 and 4.0 bohr,
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4.3. Recommended Values and Error BoundsTable 5
summarizes our recommended values of the components of the
interaction energy computed using GTG basis sets. In the case
of Egpa Enps aNdEZ.cp the errors of each quantif were
obtained as sums of the independbdhtandK-related uncer-
tainties. Since the convergence with respect to bb#ndK is
monotonic, the exact values & most likely lie below the
computed ones. Let us define a quaniitigy (whereN = M or
N = K) in such a way that the unknown saturated valud of
(corresponding toN = o) is contained between the most
accurate calculated result (i.e., the resultNb= 32 andK =
800), Ecai, andEcaic + AEn. The values oAEy will be chosen
as small as possible based on the patterns of convergehte in
The values ofAEy for Eyp,, Eyps and Efcp, respectively,
were assumed as0.3, —0.1, and—0.3 mK atR = 5.6 bohr,
as discussed previously. A similar analysis led us to the estimates
of —0.2, —0.06, and—0.2 mK atR = 7.0 bohr and-3, —1,
and —3 mK atR = 4.0 bohr, respectively. To estimateEg,
we notice that doubling of the geminal basis set typically
improves the accuracy by one additional digit. Thus, it seems
safe to sef\Ex equal to twice the difference between the results
calculated withK = 800 andK = 600. For example, in the
case of the‘Efv:P2 energy, this gives-0.52,—-0.18, and—0.14
mK for R = 4.0, 5.6, and 7.0 bohr, respectively.

We next assume that the basis set converged resuls
0.5(AEk + AEy) below theK = 800,M = 32 result, denoted
by Ecae Thus, our recommended (complete basis set limits)
values ofEyp, Enps and Ef.cp energies and the errors of
these values are given by the formula

E=|E

ot S(AEy + AE)| £ 5(AE, + AE) (12)
Although our estimation procedure may seem overly cautious,
it leads to uncertainties fdyp,, Eyps aNdEf.cp Of the order
of 0.1 mK atR = 5.6 and 7.0 bohr and 1 mK &= 4.0 bohr,
which are small compared to the uncertainties of some remaining
components of the interaction energy discussed later on.

An additional argument in favor of such a simple extrapola-
tion scheme can be obtained by extrapolating the results
corresponding to the three largest basis skts=(300, 600,
and 800) foM = 24 with the formuleEx = E., + aK™7, where
a andy are fitting parameters. We tried other extrapolation

obtained in the same way as just discussed, with the exceptionformulas but they reproduced the convergence pattern less

that we did not use the shortest GTG expansi¢hs=(75 and
150). The convergence patterns of ., and Ey»; compo-

nents with respect t& at 7.0 bohr are similar to those at 5.6

bohr, andEf.p converges here as fast B§;p,. It should be

satisfactorily. The values d., obtained in this way differ by
at most 0.4, 0.06, and 0.04 mK f&= 4.0, 5.6, and 7.0 bohr,
respectively, from the results of the simple extrapolationk in
only described above. These are very small differences indeed,

noted that aR = 7.0 bohr the accuracy of the shortest SCF well within the error bars of Table 5.

function turned out to be insufficient to ensure the positive-

In the case oEnr and Es components, limited amounts of

definite character of the system of equations used to find the data from the geminal calculations do not allow definitive
linear coefficients of the pair functions of eq 6. As a result, the conclusions about the convergence trends, in particulaRfor
values in this row carry larger errors, apparent in particular in = 4.0 and 7.0 bohr where tHé¢ dependence was not investi-

the case oErccp.

gated, so the error bounds of these quantities could not be

At R = 4.0 bohr (see Table 4) most contributions are established based on such calculations alone. The limit values
converged to about one significant digit less than at the two and error estimates &yr andEs given in Table 5 have been

other distances. This is mainly because the hetitnelium

inferred from comparisons with the results of orbital calcula-

interaction is stronger and the interaction energy is about 30 tions, described in section 5.1.

times larger in magnitude fdR = 4.0 than forR = 5.6 bohr.

One should note that in comparison with the dataRo+

However, apparently the wave functions are more complicated 5.6 bohr reported in ref 24, the values given in Table 5 are
atR = 4.0 bohr than for larger distances since we encountered slightly more negative and/or ascribed slightly larger uncertain-
more problems with optimizations in this case. Nevertheless, ties, mainly due to a more careful consideration of the
in relative terms the results f& = 4.0 bohr are actually more  dependence ol in the present work. The estimate of the CCSD
accurate than foR = 5.6 bohr, as expected in the super- contribution changed from-9.1504+ 0.001 K to—9.1509+
molecular approach. 0.0012 K.
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TABLE 5: Recommended (Extrapolated in Most Cases, See Text) Values of Various Gaussian Geminal Contributions to the
Helium Dimer Interaction Energy (in kelvin)

4.0 bohr 5.6 bohr 7.0 bohr
Esce 428.782+ 0.001 9.2199 0.0001 0.2879 0.0001
Enpa —117.50074- 0.0018 —16.012104 0.00024 —3.78151+ 0.00017
Eps —11.40524 0.0006 —2.514034 0.00007 —0.67886+ 0.00004
Efcen —123.5996+ 0.0025 —18.21191+ 0.00047 —4.41993+ 0.00016
Enr 0.4874+ 0.00F 0.018164+ 0.00016 —0.00339+ 0.00002
Ecco 305.6694+ 0.0045 —8.9738+ 0.0007 —4.13544 0.0003
Es —0.734+ 0.002 —0.1771+ 0.000% —0.0442+ 0.000%
Eccsp 304.935+ 0.007 —9.1509+ 0.0012 —4.17964+ 0.0008

aComputed geminal values with error bars based on both geminal and orbital results, se&xtepolation and error bars based on both
geminal and orbital results, see text.

The current values oEj,, and Eyp,, Saturated up t0 @  TABLE 6: Computed and Extrapolated Single-Excitation
fraction of a millikelvin, allow us to estimate the accuracy of Contributions Es = Eccsp — Ecep to the Helium Dimer

the former GTG work5 At R = 5.6 bohr, theE(,, value Interaction Energy (in kelvin) at R = 7.0 bohr
reported in ref 15 is 9 mK too high, whereg§; is 4 mK too basis size Es X3 f(EQeD)?
high. The other explicitly correlated calculation by Klopper and 171,05 141  -007196
Nogal using the MP2-R12 ansatz, yielde&;), too high by aQz+h95 187 —-0.05675 —0.04565 —0.059 37
52 mK and, at the same tim&g,,; too low by 36 mK. The a5zt+h95 255  —0.04992 -0.04275 —0.01114
interaction energy at the level of MBPT(3) SCF+ MP2 + abZ+bos 349 -0.04736 —0.04384  —0.04395
MP3 reported in ref 14 was in error by only 16 mK, because of a%+b95 4672’ :8'822 ég ~0.04420  —0.044 46
a cancellation of errors. Klopper and Noga also obtained the oz 124 —-005556 —0.04791 —0.05117
Eccspvalue of—9.14 K, which is about 11 mK from the current dsz 210 —0.04949 —-0.04312 —0.04439
limit value. d6z 326 —0.04707 —0.04375 —0.044 89
d7z 476 —0.04591 —0.04394 —0.042 49

aTZ+b135 181 —0.07205
aQZz+b135 227 —0.05676 —0.04560 —0.05925
The primary goal of the orbital calculations was to provide a5z+b135 295 —0.04994 —-0.04278 —-0.07229
accurate estimates of the interaction energy contributions beyond 26Z+b135 389 ~ —0.04738  —0.04386  —0.04490
CCSD, namely, the quantitiegr and 0Erc) of egs 2 and 3. arz+b13s 513 —-0.04621 004422 004482
Following ref 24, these contributions will be obtained by 2 The assumed accurate (GTG) valueg§f., is —4.4233 K.
extrapolations of the results calculated in large orbital bases. ~
The same technique will also be used to verify the valuggsof  If the functional dependence and the infinite basis set I(w)
andEyr obtained from the geminal coupled cluster calculations are known, then the limiting value & is readily found: E()
and provide error estimates of these quantities, needed in Table= f (E(x)). In the close vicinity of(w), that is, for sufficiently
5. The orbital calculations gave also the interaction energy large X, the functionf (E) is approximately linear (from the
components at MP2, MP3, and FCCD levels. These results, asTaylor expansion aroundE(«)). E(w) can then be found
discussed in ref 24, are less accurate than the geminal result@ssuming that (E(X — 1)), f (E(X)), andf (E(w0)) lie on a
and will not be reported here. straight line (cf. eq 8 of ref 24). We will refer to this
The methodology of the orbital calculations performed in the extrapolation ag (E) or E(E) extrapolation. Obvious choices
present work has been described in detail in ref 24. The core offor E are Efj, or Ef, because these quantities are known
the procedure is an extrapolation to the complete basis set limitpractically exactly from the GTG calculations.
from finite basis sets forming various systematic sequences. Two Most of our orbital coupled cluster calculations were per-
such sequences used by us were the augmented and doublformed using the MOLPRO packagfewhereas the FCI energies
augmented correlation-consistent polarized-valettgple-zeta were obtained with the LUCIA prograf.
basis sets, aug-cc-pA&Z and d-aug-cc-pXZ, of Dunning et 5.1. Single-Excitation and Nonfactorizable Contributions.
al.>> %8 where X = 3, 4, 5, and 6. TheX = 7 basis was  The orbital calculations of the single-excitation contributign
developed by Gdanitz in ref 11. These sequences will be referredat R = 5.6 bohr have been reported in ref 24. The resultsfor
to as &Z and &KZ, respectively. Two additional sequences were = 7.0 bohr andRk = 4.0 bohr, obtained in the present work, are
obtained by combining theX@ bases with two sets of bond listed in Tables 6 and 7, respectively, and presented graphically

5. Orbital Calculations

functions: 6&6p6d3flglh (95-term set) andBp6d3f3g3h (135- in Figures 1 and 2, respectively.
term set), developed by Partridge and Bauschli€h@/e refer Let us first estimate the limit value and its uncertainty for
to these combined sets a¥Xztbm, wherem = 95 orm = the single-excitation contribution &= 5.6 bohr. The geminal

135. Since theX-tuple-zeta basis sets give energies forming value quoted in ref 24 was178+ 1 mK. This value was based
regular sequences in the cardinal numKgthe results can be  on the data presented here in Table 2, except that the value for
(approximately) extrapolated to the infinite basis set limit by M = L = 24 andK = 300 was not known at that time. The
assuming an inverse-power dependence of the calculatedatter value is equal te-176.9 mK and represents the current
quantities ornX, E(X) = E(») + AX™". Typically, the exponent  best calculated result. The data in Table 2 do not allow rigorous
nis assumed equal to 3, although other values have been triedextrapolations; however, it is likely that the result will be

as well. We will use the notatiorK™" for such two-point lowered in the limit of infiniteM, L, andK, possibly even down
extrapolation based on the calculated valg€s — 1) andE(X) to —178 K as the last increments wilh = L andK were—0.56
and the exponent. and —0.75 mK, respectively. Thus;177.5+ 0.5 mK would

In a different type of extrapolation, the quantByis treated be our best estimated value based only on the geminal results.
as a function of another quantit(X), that is,E(X) = f (E(X)). Let us now consider orbital results. The best calculated values
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TABLE 7: Computed and Extrapolated Single-Excitation

Contributions Es = Eccsp — Eccep to the Helium Dimer

Interaction Energy (in kelvin) at R = 4.0 bohr

basis size Es X3 f(E¢cp)?
aTZ+b95 141 —1.3059
aQZz+h95 187 —0.9766 —0.7364 —0.6611
a57+b95 255 —0.8378 —0.6921 —0.6755
a6Z+b95 349 —0.7879 —0.7194 —0.7051
a7z+b95 473 —0.7671 —0.7318 —0.7189
dTZ 64 —1.0183
dQz 124 —0.9105 —0.8318 —0.8509
d5z 210 —0.8127 —0.7102 —0.7486
d6z 326 —0.7764 —0.7264 —0.7359
d7z 476 —0.7599 —0.7320 —0.7336
aTZ+b135 181 —1.3233
aQZz+hb135 227 —0.9838 —0.7362 —0.6671
a57+b135 295 —0.8420 —0.6932 —0.6777
a6z+b135 389 —0.7902 —0.7191 —0.7039
a7z+b135 513 —0.7686 —0.7317 —0.7186

2 The assumed accurate (GTG) valueE. is —123.1126 K.
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Figure 1. Convergence of the computed single-excitation contribution,
Es, at R = 7.0 bohr. The horizontal lines denote the upper and lower
bound for our recommended value (broken line), see Table 5.

from Table Il of ref 24 (given there with less significant digits)
and from a new series of calculations ard79.0, —183.0,
—184.4, and—184.4 mK in bases a7Z, d7Z, ath135, and
d7Z+b135, respectively. These numbers illustrate the finding
of ref 24 that the additions of a second diffuse shell or of bond
functions slow the convergence (the two factors acting in similar
but not additive ways). Although results of orbital calculations
in such bases are-& mK from the extrapolated geminal result,
the orbital X3 extrapolations are very close to each other:
—176.7,—176.6, and-176.8 mK in bases d7Z, a#135, and
d7Z+b135, respectively, that is, only 6-D.8 mK from the
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Figure 2. Convergence of the computed single-excitation contribution,
Es, at R = 4.0 bohr. The horizontal lines denote the upper and lower
bound for our recommended value (broken line), see Table 5.

decide whether the geminal- or orbital-extrapolated results are
more accurate, we decided to use an average of them, equal to
—177.1 mK, as our recommended limit value Eyand assign

the error bar of+ 0.5 mK encompassing both results. The
Es(EZ-p) extrapolations (with the GTG limit value dEd.,
equal to—18.1938 K) give, withK =7, —179.4 mK and-176.8

mK for the &XZ and &XZ sequences, respectively, ard74.5

mK for both bases with bond functions. Because of this scatter
and because the extrapolations with loweare even farther

off from the geminal result, we have not used the information
from the Es(E¢cp) extrapolations in our determination of the
recommended values &s.

Although, as shown in ref 24, the componé&itconverges
fastest in the #Z series of basis sets, the best computed result
for R= 5.6 bohr is still 1.5 mK from the extrapolated geminal
value. Despite the fact that the bases with additional diffuse
functions and/or bond functions converge slower, the extrapo-
lated results are very consistent and closer to this value.
Therefore, we have decided to use only such baseR fort.0
and 7.0 bohr.

At R= 7.0 bohr, thex=23 extrapolations predict results in the
range—43.9 to—44.2 mK, whereas the best computed geminal
value from Table 3 is-44.3 mK. At this distance (in contrast
to R= 5.6 bohr) we do not have enough information to perform
any meaningful extrapolation of the geminal results (no variation
in K is available, cf. Table 3), and therefore, we assume the
computed value as the best geminal estimate. Taking the average
of the average of orbital values and of the geminal result, one
gets—44.2 + 0.5 mK, with the error again encompassing all
the discussed values. Table 6 and Figure 1 show that the
convergence in the bases with bond functions is slower than in

extrapolated geminal result. In contrast, although the a7Z the dXZ basis. However, once bond functions are used the results
computed result is closest to the geminal value (which may be, are almost the same with single and double augmentation. The
however, fortuitoud’), the &Z series converges in such away Es(E¢p) extrapolations predict witk = 7 results in the range
(values are nearly constant) that the extrapolated result equal—42.5 to—44.8 mK, that is, as foR = 5.6 bohr, the scatter is
to —179.5 K cannot be trusted. Since at this point we cannot larger than that of the other predictions. One can also see in
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TABLE 8: Contribution from Nonfactorizable TABLE 9: Computed and Extrapolated Triple-Excitation
Double-Excitation Terms Eng = Eccp — Ercep to the Helium Contributions Er = Eccspr) — Eccsp to the Helium Dimer
Dimer Interaction Energy (in kelvin) from Orbital Interaction Energy (in kelvin) at R = 7.0 bohr
Calculations? ] j
- - basis sSize Er X3 X2 f (Eccs[))a f (EgCD)b
basis size R=4.0 R=5.6 R=7.0
aTz+b95 141-0.347 07
aTz 46 0.481 34 0.01781  —0.003 4735 aQz+b95 187 -0.356 35—0.363 12—0.368 28—0.357 60—0.354 75
aQZz 92 0.490 90 0.01841 —0.0034104 a5Z+bh95 255—0.359 21—0.362 21—0.364 29—0.359 53—0.375 45
a5z 160 0.489 10 0.01822 —0.003 3788 a6Z+b95 349-0.360 63—0.362 58—0.363 86—0.360 99—0.362 52
a6z 254 0.488 50 0.01819 —0.0033788 a7zZ+h95 473-0.361 35—0.362 57—0.363 34—0.358 11—-0.362 41
2 Distances are in bohr arz 08 032913
: dQz 124 —0.351 39—0.367 63—0.380 01—0.359 37—0.360 72
. . d5z 210-0.357 04—0.362 97—0.367 08—0.362 22—0.361 79
Table 6 that for smalleK and bases with bond functions the ggz 326 —0.359 50—0.362 88—0.365 09—0.361 47—0.361 71
predictions are very poor. This is probably related to the d7z 476 —0.360 40—0.361 93—0.362 89—0.363 65—0.363 05
nonmonotonic convergence &f.p. For largeX, the predic- ~ 2TZb135 181-0.347 66

tions from these sequences are, however, reasonable. On thégzzjgllgs ggzs:gggg 2?:8'322 gg:gggg gi:gggg %i:g'ggi gg

other hand, the XZ prediction based oX = 6 and 7 is very = apz+b135 389-0.360 79—0.362 69—0.363 93—0.368 34—0.362 13
inaccurate. The reasons are not clear to us; however, the plota7z+b135 513-0.361 47—0.362 63—0.363 35—0.363 95—0.362 28
N g . . .

of the dependencis(Eccp) is fairly nonlinear in the region of aThe assumed accurate (GTG) valueEotspis —4.1796 K. The

large X, so the linear e_xtrapolatlon clearly cannot _vvork well. - assumed accurate (GTG) value B, is —4.4233 K.

One possible explanation for the observed behavior could be _ o

some numerical inaccuracies for this largest of the distancesTABLE 10: Computed and Extrapolated Triple-Excitation

considered by us. Contributions Er = Eccsp(r) — Eccsp to the Helium Dimer
For R = 4.0 bohr, as for the other two separations, Xé Interaction Energy (in kelvin) at R = 4.0 bohr

extrapolation works very well and predicts consistent results  basis  size Er X3 X2 f(Eccsp? f(Ecep)®

for all basis set sequences, all e_qual—t0.732_ K, in exce_llent aTZ+b95 141 —10.1412

agreement with the GTG calculations of section 4, the difference aQz+b95 187 —10.3203 —10.4510 —10.5506 —10.4752 —10.4919

being only 4 mK, small compared the interaction energy at this a5Z+b95 255 —10.3905 —10.4641 —10.5153 —10.4720 —10.4725

distance. We see again how powerful the extrapolation tech- a6Zrb9s 349 ~10.4234 ~10.4685 ~10.4981 ~10.4744 ~10.4779

arz+b95 473 —10.4424 —10.4749 —10.4952 —10.4872 —10.4867

niques are since the best computed results are about 30 mKytz 64 —8.6812

from this range. This behavior is well illustrated by Figure 2. dQz 124 —9.8901 —10.7723 —11.4445 —10.5185 —10.5578

Following the procedure fdR = 5.6 bohr, we take the average  d5Z 210 —10.2412 —10.6096 —10.8654 —10.4615 —10.4716
i -3_ i d6z 326 —10.3551 —10.5116 —10.6140 —10.4804 —10.4818

of the geminal andX e_xtrapolated orbital results as our 7 470 10,4044 —10.4881 —10 5407 —10.4810 —10.4830

recommended valueEs = —734 + 2 mK. The Es(E¢¢ aTZ+b135 181 —10.2384

extrapolation from ¥Z sequence works very well, exactly —aQz+b135 227 —10.3554 —10.4408 —10.5059 —10.4613 —10.4646

predicting the recommended value-6734 mK. The extrapola- ag%igigg ggg —ig-ig% —ig-iggg —ig-ig;; —ig-igg —ig-iggg

tion from sequences with bond function both predi@LO mK, 27511552 S5 7 0%he) “104787 10,4930 10,4858 —10.4855

fairly distant from the best estimate. Similarly as for the other

two separations, we will disregard these extrapolations. @ The assumed accurate (GTG) valueEatspis 304.935 K. The
Although the convergence of the nonfactorizable contribution assumed accurate (GTG) valueEgcy is —123.1126 K.

Enr In geminal calculations was found to be very fast, we

decided, as an independent check, to perform orbital calculationsThus, one can restrict the GTG calculations to the inexpensive

of this quantity in the AZ sequence of basis sets. In particular, FCCD level and still obtain very accurate CCD energies by

we wanted to verify the convergence of the geminal results for taking the Ene contribution from orbital calculations. Using

R = 4.0 bohr (see Table 4), where the agreement between theextrapolated orbital single-excitation contributions, accurate

last two values could be accidental. The orbital results for all CCSD energies can also be obtained in such a mixed approach,

three distances are listed in Table 8. The compon&ats at a fraction of the costs of the all-geminal CCSD calculations.

converged so well in theX& sequence that there was no point 5.2. Triple-Excitation Contribution. The values of the triple-

to perform calculations in doubly augmented bases or add bondexcitation contribution,Er, computed in three sequences of

functions. AtR = 4.0 bohr, the values appear to converge to orbital basis sets foR = 7.0 and 4.0 bohr, are listed in Tables

0.488 K or slightly below, so choosing the computed geminal 9 and 10, respectively, along with the results of various

result of 0.487 K as the recommended value in Table 5 seemsextrapolation schemes. ConvergenceEgfwith the cardinal

appropriate. Whereas the geminal results presented in Table 4numberX is also presented graphically in Figures 3 and 4. In

may appear to be converged to 0.1 mK, orbital results suggestcontrast to theEs contribution, the convergence d&r is

a somewhat larger uncertainty, of about 1 mK. o= 5.6 dramatically improved by using the bond functions (cf. Figures

and 7.0 bohr, the values obtained in large basis sets are also irB and 4). The quality of extrapolations&f is difficult to assess

very good agreement with the corresponding geminal results. because no accurate explicitly correlated results for this quantity

Thus, as folR = 4.0 bohr, we have taken the geminal values are available and its functional dependenceXas not known.

as the recommended ones. The error estimateExgrgiven At R = 5.6 bohr we arrivetf at the estimat&; = —1.535+

in Table 5, are chosen based on convergence patterns observed.002 K by combining th&X=3, X2, andEr(Eccsp) extrapola-

in Table 8. ForR = 5.6 and 7.0 bohr, these uncertainties are tions. We have repeated tlg(Eccsp) extrapolations with the

consistent with those following from geminal convergence current limit value ofEccsp = —9.1509 K instead 0f-9.150

patterns. K used in ref 24. This increased the magnitude of the
An interesting conclusion from Table 8 is that the tefEqg, extrapolateder by 0.1 to 0.7 mK (depending on the basis set

quite expensive to compute in Gaussian geminal bases, carsequence), not significant enough to modify the limit value from

easily be saturated using orbital basis sets of moderate sizesref 24 quoted above. We have also computed the complete



Helium Dimer Interaction Energies

-0.345

-0.350 -

E:[K]

-0.360 -

-0.365

Figure 3. Convergence of the computed triple-excitation contribution,
Er, atR = 7.0 bohr. The horizontal lines denote the upper and lower
bound for our recommended value (broken line), see Table 13.
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Figure 4. Convergence of the computed triple-excitation contribution,
Er, atR = 4.0 bohr. The horizontal lines denote the upper and lower
bound for our recommended value (broken line), see Table 13.

dXZ+b135 sequence (only the d¥H135 value was available
in ref 24), our largest size sequence. TKe3, X2, and
Er(Eccsp extrapolations of this series gaveXat= 7 —1.534,
—1.536, and—1.536 K, increasing our confidence in the

estimated limit value.
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Figure 5. Extrapolation ofEr as a function oEg., atR = 7.0 bohr.
The straight lines are drawn through the points obtained Xith 6
(upper) andX = 7 (lower). The dashed vertical line corresponds to the
GTG value ofEg., = —4.4233 K.

At R= 7.0 bohr (see Table 9) the lowest compuigdnergy
is —0.3615 K, theX—3 extrapolations range betweer0.3619
K and—0.3626 K, and the&X™2 extrapolations between0.3629
K and —0.3634 K. The average of the extrapolated results is
—0.3628 K and appears to be a reliable estimate of the limit
value. TheEr(Eccsp) extrapolations from ¥Z and &Z+b135
sequences agree to within 1 mK with this estimate, only the
axXZ+b95 sequence deviates by 5 mK. We have found that even
smoother extrapolation is obtained within thEr(Egc
scheme, presented graphically in Figure 5, probably due to the
fact that the singles contributions included Egcsp are not
sufficiently well converged foR = 7.0 bohr. The linearized
functional dependendgr(E¢.p) is plotted in Figure 5 for each
basis set sequence by drawing straight lines through the points
corresponding to the two largest basis sets{(6 andX = 7)
in each case. The lines cross the dashed vertical line corre-
sponding to the (extrapolated) GTG result-04.4233 K from
Table 5 atEr = —0.36228,—0.36241, and-0.36305 K (note
that even if we did not knovEg., from the geminal calcula-
tions, we could still obtain a good estimatetsf by taking the
point where the three lines intersect). These values, listed at
the end of each series in the last column of Table 9, are in very
good agreement with the results of tKe" extrapolations. By
assumingEr = —0.363 £ 0.001 K, we encompass all the
extrapolated results from the largest basis sets in each sequence,
with the exception of th&r(Eccsp) result from the xZ+b95
sequence.

At R= 4.0 bohr (see Table 10) the results of extrapolations
are also very consistent with each other. The only exception is
the X~2 scheme with the XZ sequence which overshoots the
average of other extrapolations by about 60 mK. This is a similar
effect as observed in thé=2 extrapolations oEr with bases
without bond functions foR = 5.6 bohr in ref 24. By discarding
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TABLE 11: Computed and Extrapolated Values of the FCI
Contribution 6Erci = Erci — Eccsp(r) to the Helium Dimer

Cencek et al.

TABLE 13: Interaction Energies of the Helium Dimer and
Their Components (in kelvin)?

Interaction Energy (in kelvin) at R = 7.0 bohr R=40 R=56 R=70

basis size OEerc X3 f(Eup)®

f(Eccn)*  f(Eep)” Eccsp 304.935+ 0.007 —9.1509+ 0.0012 —4.1796+ 0.0008
aTZ+b95 141 —0.085 73 Er —10.485+ 0.010 —1.535+ 0.002 —0.363+ 0.001
aQZz+b95 187 —0.084 25—0.083 18 —0.084 49 —0.084 51 —0.084 55 OErc) —-191+0.02  —0.323+£0.005 —0.076+ 0.005
ab5z+b95 255 —0.082 64—0.080 95—0.070 71—0.073 48 —0.074 95 Eint 292.544+0.04  —11.0094+0.008 —4.619+ 0.007
d7Z 64 —0.084 77 Komasa&?® 292.784 —10.978 —4.583
dQz 124 —0.084 31—0.083 97 —0.084 12 —0.084 11—0.084 10 Komasd® —10.98%
dszZ 210 —0.082 67 —0.080 94 —0.081 18 —0.081 29 —0.081 30 Andersof —10.98+ 0.02
) Andersoi® —10.998+ 0.005
aThe assumed accurate (GTG) valuebtp is —4.1354 K. The vMD¢ 293.496 —11.004+ 0.03
assumed accurate (GTG) valueEf, is —4.4233 K.¢ The assumed vdBvD? 292.72+0.2 —10.99+ 0.02
accurate (GTG) value dE(p, is —3.78151 K. Gdanitz° 292.75£0.01  —10.980+ 0.004 —4.620+ 0.002
Klopper? 292.6+ 0.3 —10.99+ 0.02
Korona etal® 291.64+0.87 —11.059+ 0.03 —4.629+ 0.03

TABLE 12: Computed and Extrapolated Values of the FCI
Contribution 6Erci = Erci — Eccsp(r) to the Helium Dimer
Interaction Energy (in kelvin) at R = 4.0 bohr

basis size (3E|:c| X3 f(ECCD)a f(EgCD)b f(E(lz/:PZ)C

aTZ+b95 141 —2.0139
aQz+b95 187 —1.9679 —1.9343 —1.9288 —1.9238 —1.9188

a Distances are in bohP.Strict upper bound (variational calculation).
¢van Mourik and Dunning, ref 18.van de Bovenkamp and van
Duijneveldt, ref 17.

bond functions lead to higher (less negative) values (with the
exception of thex=3 extrapolation aR = 7.0 bohr), particularly

abZ+b95 255 —1.9338 —1.8981 —1.8961 —1.8941 —1.8850 - .

d7Z 64 —2.0037 the 0Erci(E) schemes. Our best estimaté&rci = —0.076+

dQz 124 —2.0263 —2.0427 —2.0382 —2.0387 —2.0410 0.005 K atR = 7.0 bohr anddErc; = —1.914+ 0.02 K atR =

dsz 210 —1.9704 —1.9118 —1.9351 —1.9337 —1.9242 4.0 bohr, were obtained in such a way that the bounds

encompass all types of extrapolations from the largest bases
and the recommended result is in the middle of this range. The
result forR = 5.6 bohr, obtained in ref 24, i8Erc; = —0.323
+ 0.005 K.
this sequence and takirfgr = —10.485+ 0.010 K, we are 5.4. Comparison with Literature Results. The recom-
consistent with the extrapolated results from all the largest basismended total interaction energies of the helium dimer have been
sets in each sequence. obtained according to eq 1 by combining the extrapolated CCSD
We can now compare the uncertainties of the triple- and contributions from Table 5, calculated in geminal bases (except
single-excitation contributions: the ratio is 5, 4, and 2Ro+= for Exr and Es for which some orbital input was used), with
4.0, 5.6, and 7.0 bohr, respectively. This decreasing ratio the Er and 0Erc; components extrapolated from the orbital
explains why theEr(Eccsp) extrapolations are relatively less  calculations, as described in sections 5.2 and 5.3, respectively.
accurate aR = 7.0 bohr. The error estimates of the total interaction energies are obtained
Our values of the interaction energies at the CCSD(T) level, by linearly adding the errors of the components (as opposed to
equal to 294.45:-10.686, and—4.543 K atR = 4.0, 5.6, and taking a square root of the sum of squares), which provides
7.0 bohr, respectively, can be compared to the correspondingrather conservative estimates of the ranges where the accurate
values computed using the CCSD(T)-R12 approach by Klopper values are located. The same linear addition of errors has been
and Nog&*and quoted in ref 18: 294.59,10.659, and-4.536 applied before when assembling the CCSD values.
K. The discrepancies amount to 140, 27, and 7 mK. The The interaction energies obtained in this way are compared
exponential extrapolations of the CCSD(T) interaction energies in Table 13 to some representative literature results. Our energies
from bases up to d6Z by van Mourik and Dunrifhgave are consistent with the best variational upper bounds by
295.511 and-10.672 K atR = 4.0 and 5.6 bohr, respectively: = Komasa223The present estimates have the narrowest error bars
a much larger, 1.1 K discrepancy at the former distance but at all three distances, the only exceptions being the results of
only 14 mK at the latter. GdanitZ° and the very recent quantum Monte Carlo (QMC)
5.3. Contributions beyond the CCSD(T) LevelThe results result of —10.998+ 0.005 K forR = 5.6 bohr obtained by
of the FCI calculations foR = 7.0 bohr andR = 4.0 bohr are Anderson, quoted in ref 25. The discrepancies between our and
presented in Tables 11 and 12, respectively. Although our FCI Gdanitz’s values are equal to 0.21 and 0.028 Rat 4.0 and
computations use larger basis sets than any previous work, thes&.6 bohr, respectively, which amounts to about 20 and 7 times
sets are still relatively small compared to those in CCSD(T) the error bars of ref 20. A& = 7.0 bohr, the difference is 0.001
calculations: X < 5 versusX < 7, respectively. Thus, drawing K and our result is within error bars of ref 20. The error estimate
precise quantitative conclusions about the convergendgwf of the QMC results corresponds to one standard deviation (68%
is more difficult than for theEs andEr components discussed  probability that the true value is within the error bars). The 2001
before. A perusal of the convergence patterns for the latter two QMC result of Andersoft was —10.98 +£ 0.02 K. Our
components indicates that if the predictions were made basedprediction of the interaction energy Bt= 5.6 bohr,—11.009
only on X < 5 results, the error bars would be a few times =+ 0.008 K, is consistent (error bars overlap) with the new QMC
larger than those reported in the tables, but the estimates ofvalue, the difference being0.011+ 0.013 K.
complete basis set values would actually agree to within error  The energies reported by Klopp&rwhich were obtained
bars. from extrapolated CCSD(T) and FCI calculations in orbital
The convergence of the computéBrc, values from Tables  bases, agree with the present results if the uncertainties given
11 and 12 is not very regular. For example, going frénr 4 by Klopper are taken into account. The extrapolated CCSD(T)
to X =5 atR = 7.0 bohr brings larger increments than going values of van Mourik and Dunnifg discussed earlier were
from X = 3 to X = 4 and the &Z sequence &R = 4.0 bohr is combined by these authors with nonextrapolated CCSDT and
not even monotonic. Generally, the extrapolations involving FCI energies. For 5.6 bohr, the agreement with our result is

aThe assumed accurate (GTG) valueEtp is 305.669 K. The
assumed accurate (GTG) value Bf.p is —123.113 K.°The as-
sumed accurate (GTG) value Bfyp, is —117.5007 K.
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very good, to within our uncertainties, but for 4.0 bohr the before because of our use of a hybrid, geminal-orbital super-
discrepancy is about 1 K. These authors give the error bars onlymolecular approach. The magnitude of the remaining uncertain-
for the former distance. Note that van Mourik and DunAfng ties illustrates well the mutual relation of explicitly correlated
also published interaction energies computed substituting theirand orbital-based methods in quantum chemistryRAt 5.6
CCSD(T) values by the CCSD(T)-R12 results from ref 14. For bohr, the Eccp contribution, constituting 82% of the total
5.6 bohr, this procedure significantly increased the discrepancyinteraction energy and containing 90% of notoriously slowly
with our calculations, whereas for 4.0 bohr the effect was convergent electron correlation component, was computed in
opposite. The multireference configuration interaction (MRCI) GTG bases with an error bar over 10 times smaller than the
calculations by van de Bovenkamp and van Duijnevéfatedict remaining 18%, obtained with orbital methods. Stopping the
at R = 4.0 bohr the energy by over 0.1 K higher than ref 21 GTG calculations at the CCD level seems to be a good
and almost as high as the result of Gdanitz, but the error barscompromise since because of the high cost of geminal CCSD
are much larger than those given by Gdanitz, and therefore,runs, only relatively small geminal basis sets can be used to
our and the MRCI values differ by0.18+ 0.24 K, that is, are evaluate the effect of the singles, and the results are not
consistent. dramatically more accurate than those obtained from extrapola-
The last row in Table 13 contains the results of the symmetry- tions of large-scale orbital computations. An even more promis-
adapted perturbation theory (SAPT) calculations. An analysis ing approach to CCSD-level calculations seems to be provided
of the SAPT convergence patternsRat= 5.6 bohr led to an by a combination of the inexpensive geminal-based FCCD
estimate of the uncertainty of the interaction energy equal to method with an orbital treatment of the nonfactorizable and the
0.03 K1016 For other distances, the error estimates for the singles contributions, both easy to saturate in basis sets. Such
interaction energies computed in refs 10 and 16 were 0.3% oran approach is certainly feasible for medium-size molecules
0.03 K, whichever was larger (notice that for the fitting purposes containing a few dozens of electrons. The present work
three times narrower uncertainties were used: 0.1% or 0.01 K).demonstrated that explicitly correlated bases can provide
The SAPT interaction energies are the lowest of all listedRAt  significantly higher accuracies at the CCD level than orbital
= 4.0 bohr and 7.0 bohr the SAPT error bars overlap with the calculations with extrapolations. The terms beyond the CCD
current ones. Only aR = 5.6 bohr our current result is in a level coming from orbital calculations contribute a larger
disagreement of 0.0% 0.04 K with the SAPT prediction.  absolute error to the interaction energy than th&®f> coming
Apparently, for this distance the cancellation of errors was less from the GTG calculations. This happens despite the fact that
favorable than for other distances. Work on improving the the contribution to the correlation part of the interaction energy
accuracy of the SAPT interaction energies is underway in our is almost an order of magnitude smaller in the former case, that
group. If the accuracy of the SAPT calculations matches the is, the required relative accuracy is about 10 times lower. The
accuracy of the present supermolecular calculations, this methodhigher-order terms beyond CCD do not appear to be harder to
could provide a much less expensive route to the-He converge than CCD energies. If the orbital calculationE&p
potential than the present approach. presented in Table Il of ref 24 were assigned error bars in a
similar way as we have estimated the uncertainties of the post-

6. Conclusions CCD terms, these would be abatt5 mK, that is, as large as
In the present work we have computed the interaction energiesthe errors of the post-CCD components.

for the helium dimer which are believed to be more accurate  Further improvements of the accuracy of the helium dimer

than any previously published results. In the post-CCSD potential depend entirely on the progress beyond the CCSD
component, the accuracy relied on the extrapolations to thelevel. The most promising approach would be to perform FCI
complete basis set limit using the techniques developed in ref calculations involving basis sets larger than the currently used
24. ForR = 5.6 bohr our results are virtually the same as in ref ~250 orbitals or full CCSD93.64 calculations. Other routes
24 as only the geminal single-excitation contribution was now include four-electron explicitly correlated computati&haith

calculated using basis sets somewhat larger than before. Thisseveral thousands basis functions and the SAPT calculations
extension and minor revisions of the extrapolations led to the discussed earlier.

interaction energy of-11.009+ 0.008 K, slightly different from
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