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Motivated by recent experiments on photon statistics from individual dye pairs planted on biomolecules and
coupled by fluorescence resonance energy transfer (FRET), we show here that the FRET dynamics can be
modeled by Gaussian random processes with colored noise. Using Monte Carlo numerical simulations, the
photon intensity correlations from the FRET pairs are calculated, and are turned out to be very close to those
observed in experiment. The proposed stochastic description of FRET is consistent with existing theories for
microscopic dynamics of the biomolecule that carries the FRET coupled dye pairs.

1. Introduction

Recent significant advances in nanotechnology make it
possible to investigate molecular dynamics and structures at
single-molecule level. Measurement of fluorescence resonant
energy transfer (FRET) between a couple of dye molecules that
are attached to complementary sites of a biomolecule like DNA
or protein is particularly useful, because the sharply distance-
dependent dipole-dipole interaction between the dye pair can
serve as a “spectroscopic ruler” for the biomolecule.1-3 FRET
means a nonradiative quantum energy transfer from a donor
that is a dye which initially absorbs light to an acceptor that is
another dye.

The FRET can be considered in the framework of the theory
of Förster.1 An input laser light excites the donor, whose one
of decay channels is to migrate its excitation energy to the
acceptor via dipole-dipole interaction. The energy transfer
typically finishes within nanoseconds. The requirements for
FRET to occur efficiently are, at least, that one of the
chromophores should have a sufficient quantum yield and that
the donor fluorescence spectrum must overlap the acceptor
absorption spectrum.

Photon-photon correlations associated with the chro-
mophores contain information on the conformational distance
of the biomolecule. Such information is usually washed out in
traditional ensemble measurement, but is readily available in
single-molecular measurement. Recently, using a Hanbury-
Brown-Twiss4 time-interval apparatus, Berglund et al.5 have
measured photon intensity correlations for individual donor-
acceptor pairs on DNA. To interpret the experimental data, they
proposed a dual FRET model. A continuous model emphasizing
overall conformational change of the biomolecule has also been
studied by several authors.6,7 However, it is important to note
that there exists nontrivial interplay between biomolecular
diffusion, which under physiological conditions can change

drastically the molecular conformation over nanoseconds, and
the quantum optical processes of a pair of FRET coupled dyes,
which are also of the time scale of nanoseconds. In this paper,
we show that the laser-induced FRET dynamics can be modeled
by the stochastic Ornstein-Uhlenbeck (OU) process.8 The
underlying stochastic process is a Gaussian random process9

with finite correlation time. The density matrix equations acquire
the character of stochastic differential equations which can be
solved using well-established methods. We shall demonstrate
that the OU process is a good approximation to the FRET
dynamics as measured on biomolecules. This paper is organized
as follows. In section 2, we present our theoretical model of
FRET. The idea of modeling FRET dynamics as an OU
stochastic process is further elucidated in the context of
biomolecular dynamics in solution. In sections 3 and 4, we
present the results of Monte Carlo simulations and compare them
with the experimental work.

2. Theory

To calculate the photon-photon correlation functions, we
adopt a master equation approach. To derive the master equation
for the system with two molecules coupled by FRET, we assume
that the coherence time is much shorter than the time scale of
experiments. We further note that a FRET-coupled system is
not a cascaded quantum system,10 i.e., to obtain an equation
for only donor variables, after tracing over the acceptor variables
from the general master equation, is impossible. The master
equation for the density operatorF̂, for the donor-acceptor pair
couples four possible states|q〉1 X |p〉2 hereq ) 0, 1 (p ) 0, 1)
stands for the ground and excited states of the donor (acceptor):5

where Γm, m ) 1-5 are rate coefficients for the dominant
processes: spontaneous emissions of the donor and acceptor
are described by the quantum jump operatorsΓ̂1 ) σ̂1 X 1̂2 and
Γ̂2 ) 1̂1 X σ̂2; laser excitations of the donor and acceptor byΓ̂3

) σ̂1
+ X 1̂2 and Γ̂4 ) 1̂1 X σ̂2

+; transfer of energy from the
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donor to the acceptor byΓ̂5 ) σ̂1 X σ̂2
+. Here σ̂i (σ̂i

+) is the
lowering (raising) operator between the excited and the ground
states for theith dye molecule (i ) 1 for the donor and 2 for
the acceptor). The master eq 1 ignores all coherence effects as
they play no important role in FRET. The conditional photon
count probability of the donor-acceptor system within a time
delay τ can be represented as a normally ordered correlation
function10

whereF̂(t) is the stationary operator solution of eq 1 andV̂(τ)
is the evolution operator of the whole system satisfyingV̂(τ)-
F̂(t) ) F̂(t + τ).

FRET measurements provide us information about dipole-
dipole coupling, which varies as 1/r3.11 The FRET rate coef-
ficient is given by

whereR0 is the Förster radius andr(t) ) |r1(t) - r2(t)| is the
distance between two chromophores. Considering intrachain
diffusion of a biomolecule, e.g., a protein molecule that carries
the donor and the acceptor at a couple of complementary sites,
the displacement of the donor-acceptor distance from its fixed
(or initial) value, x(t) ) r(t) - r(0), can be modeled as a
Brownian motion in a harmonic potential. Since a biomolecule
consists of a large number of atoms and molecules, we
essentially deal with the over-damped regime, where the
Brownian motion is described by the Langevin equation9

where λ ) ω2/η with ω being the frequency of harmonic
oscillator, andη the friction coefficient. The random forcefx(t)
is a pure Gaussian characterized by〈fx(t)〉 ) 0 and〈fx(t)fx(t +
t′)〉 ) 2θδ(t - t′). The solution of the Langevin equation,x(t),
resembles a white noise: its equilibrium distribution is

and the correlation is

Now let us turn to the FRET rate eq 3, which can be rewritten
as Γ5(t) ) Γ5(0)/[1 + x(t)/r(0)]6 with Γ5(0) ) Γ1[R0/r(0)]6

corresponding to the FRET rate at some fixed interdye distance.
If the displacementx is small as compared tor(0), then we have

This is a possible interplay between the diffusion process and
the FRET dynamics, although neither they are completely
uncorrelated nor fully correlated. It turns out that a variance
(i.e., “noise”) of the FRET rate has the statistical signature of
a white noise. A sign such as “noise of the noise” usually leads
to colored noise in the OU stochastic dynamics. Equation 7 is
a linearized approximate relation. Although, some dynamic
details cannot be seen for large variations, analytically, the exact
numerical simulation may be done. This rather involved and
so we have tried to produce reasonable results by retaining the
leading term. This captures the physics reasonably well. Note

that the OU stochastic process is stationary. Thus eq 1 becomes
a stochastic differential equation asΓ5(t) ) Γ5(0) + ê(t). We
assume thatê(t) is a colored noise, which is described by the
Langevin equation12

where time averages of white noise should beη(t) ) 0 and

η(t)η(t′) ) 2Dδ(t - t′).
As is well-known, eq 8, yields the steady-state correlation

function

with ê(t) ) 0 and{...} denotes the stochastic average over the
initial conditions.13 A parameterD might be proportional to the
diffusion coefficientθ andλ is the same in eqs 6 and 9. The
stochastic differential equation eq 1 will be solved using Monte
Carlo numerical simulations. A Box-Mueller algorithm and the
Euler-Maruyama method have been used to realize the colored
noise. Moreover, by virtue of an integral algorithm developed
in ref 13, we have verified that the Monte Carlo generated
correlation fits perfectly to its analytical expression, eq 9. To
achieve this, a stochastic averaging over as large as 1000
realizations is essential.14 It must be borne in mind that the FRET
rate is always positive which is done by keeping a background
constant valueΓ5(0). However, some large negative random
numbers have to be omitted. To prove that these omitted random
numbers do not play important role, we have also calculated
the correlation forΓ5(t) which decreases exponentially as given
in eq 9. Namely, we assume thatΓH g Γ5(t) g ΓL where the
FRET rate is finite.ΓH (ΓL) corresponds to minimum (maxi-
mum) inter-dye distance due to continues intrachain diffusion
of the protein molecule. The quantities are determined by
contour length and bending rigidity of the protein. In our case,
we have assumed that the FRET does not occur between distant
dyes, so thatΓL ) 0. We take alsoΓH ) max(Γ5(t)) as a
maximum value of the generated random numbers.

3. Results and Discussions

Using Monte Carlo simulations we have calculated correlation
functions as defined in eq 2. In Figure 1, we present the results
for the normalized correlationsg(2)

ij(τ) defined by

Since only two parameters,D andλ, are needed to completely
specify an OU process, their determination would be a desired
contact between theory and experiment. As we see in Figure 1,
the normalized correlation functions are very similar to those
observed in the experiment.5 For the data shown in Figure 1
the correlation time is taken to beτc ) 1/λ ) 7. In this case we
take the parameterΓ5(0) to be 0.65 in order to ensure that the
average FRET coefficient to be around 1. The FRET coefficients
fluctuate betweenΓL ) 0 andΓH ) 5. The estimated Fo¨rster
radius, for instance, for the TMR-Cy5 dye pair that is frequently
used in biomolecular measurement, is about 53 Å2. Given the
calculated average FRET coefficient of 1, the average distance
would be approximately 50 Å. Intensity autocorrelations show
the typical quantum feature of antibunching that is characteristic
of emissions from individual dye molecules. Following the initial
photon antibunching, photon bunching appears in the acceptor

〈: Î i(t + τ)Î j(t) :〉 ) Tri,j{σ̂i
+σ̂iV̂(τ){σ̂jF̂(t)σ̂j

+}} (2)

Γ5(t) ) Γ1( R0

r(t))6

(3)

∂x(t)
∂t

) -λx(t) + λfx(t) (4)

Feq(x) ) 1

x2πθλ
exp(- x2

2θλ) (5)

〈x(t)x(t′)〉 ) θλe-λ|t-t′| (6)

δΓ5(t) ∼ x(t) (7)

d
dt

ê ) -λê + λη(t) (8)

{ê(t)ê(t′)} ) Dλe-λ|t-t′| (9)

g(2)
ij(τ) )

〈:Î i(t + τ)Î j(t):〉
〈:Î i(t)Î j(t):〉

(10)
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autocorrelation function. A sufficient stochastic deviation from
its equilibrium distribution of the FRET rate is the hallmark of
the generation of photon bunching, which is a tendency for
clustered emissions. For largeτ the normalized correlation
functions go to unity indicating uncorrelated emissions. The
appearance of the photon bunching in the donor autocorrelation
was first predicted theoretically by Haas and Steinberg.6 A
pronounced antibunching associated with a photon blockade
effect and a photon bunching in the cross talk of the acceptor-
donor pair, for short time, has also been discussed in.5 We also
notice in the experimental results that over longer times, photons
emitted by the donor are becoming correlated with photons
emitted by the acceptor and vice versa. It is also worth noting
that because of off-resonant excitation of the acceptor, the
corresponding rate for the acceptor is as small asfΓ3 with f )
0.1. Otherwise, the acceptor would have already been excited
by the laser, and FRET may not occur. For the same reason the
laser excitation rate should not be too large. The bunching signal
can be described approximately by an exponentialy ) 1 +
Ce-λ0τ, with the fitting parameterλ0 proportional toλ. The tail
of exponential decay, especially in the acceptor autocorrelation
function is determined by the correlation timeτc of the OU
process. It is obvious that a larger value of the correlation time
results in a longer tail. While supported by the simulation results
(Figure 1), this point can be made clearer by assuming that the
intrachain diffusion of the biomolecule that carries the dyes,
and thereby, fluctuation of the donor-acceptor distance is much
slower than the quantum optical process of the donor and
acceptor. The population on the excited states then adiabatically
follows the slowly varyingΓ5(t), so that the intensity of the
acceptor can be approximated as7

According to this adiabatic approximation in longer time delay
τ, the intensity correlation is an exponential7

where we have assumed that the dual FRET rates result in a
high value and a low value of the emission intensity,IH andIL,
respectively. UsingΓH ) 5 and ΓL ) 0 obtained in the
calculation for Figure 1, we find thatIH ) 0.93 andIL ) 0.1
from eq 11. The correlation function under the adiabatic
approximation given by eq 12 has been also plotted, see the
dotted curve in Figure 1.

4. Conclusions

We have shown how the FRET process as measured for
biomolecules in solution can be modeled using the Ornstein-
Uhlenbeck stochastic theory. This theory predicts the fluores-
cence intensity correlations from the FRET coupled dye pair,
which are very similar to those observed in recent experiments.
An analytic study based on the local linearization procedure
also shows that it is consistent with existing theory for
microscopic dynamics of the biomolecule that carries the FRET
coupled dye pairs. The second-order intensity correlation
functions for a FRET coupled dye pair, are largely determined
by only a few statistical parameters of the FRET dynamics. It
is found that the stochastic OU description helps elucidate the
underlying mechanism for the experimentally observed fluo-
rescence correlations that typically exhibit exponential decay
over a nanosecond time scale.
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Figure 1. Normalized photon-photon correlation functions corre-
sponding to donor-donor, acceptor-acceptor and donor-acceptor
emissions. The parameters of the model (1) are chosen asΓ1,2,3 ) 1,

Γ4 ) 0.1, Γ5(0) ) 0.65, (Γ5(t) = 1, and 0e Γ5(t) e 5). The noise
parameters are taken asτc ) 1/λ ) 7 and D ) 7. The number of
numerical realizations and a time step are taken to beN ) 1000 and dt
) 0.01, respectively.

I2(t) ) Γ3(f +
Γ5(r(t))

Γ5(r(t)) + Γ1
) (11)

g22
(2)(τ) = 1 +

(IH - IL)2

(IH + IL)2
e-2t/τ (12)
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