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Nanosecond Dynamics of Single-Molecule Fluorescence Resonance Energy Transfer
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Motivated by recent experiments on photon statistics from individual dye pairs planted on biomolecules and
coupled by fluorescence resonance energy transfer (FRET), we show here that the FRET dynamics can be
modeled by Gaussian random processes with colored noise. Using Monte Carlo numerical simulations, the
photon intensity correlations from the FRET pairs are calculated, and are turned out to be very close to those
observed in experiment. The proposed stochastic description of FRET is consistent with existing theories for
microscopic dynamics of the biomolecule that carries the FRET coupled dye pairs.

1. Introduction drastically the molecular conformation over nanoseconds, and
R t sianificant ad . technol ke it the quantum optical processes of a pair of FRET coupled dyes,
ecent signiicant advances in nanotechnology make it nich are also of the time scale of nanoseconds. In this paper,
p_053|ble to investigate molecular dynamics and structures al e show that the laser-induced FRET dynamics can be modeled
single-molecule level. Measurement of fluorescence resonantby the stochastic OrnsteirUhlenbeck (OU) processThe
energy transfer (FRET) between gcouple qf dye molequles thatunderlying stochastic process is a Gaussian random pfocess
are atttaghgd to c;gmlp Ielmentz?r)ll stl)tes ofa tt);lomor:eculle (ljllk(i DNA \\ith finite correlation time. The density matrix equations acquire
gr pro deln tlsa_par};(cjg arly_u?e u ’t' ecsu;\tle etﬁ a(;p Y QIStance- ye character of stochastic differential equations which can be
ependen “ Ipotedipole in eracnlon etween the dye pair can - sqyed using well-established methods. We shall demonstrate
Serve as a "spectroscopic ruler” for the biomolecufeFRET that the OU process is a good approximation to the FRET
means a nonra@atl_vc_e_ quantum energy transfer from a dor_‘ordynamics as measured on biomolecules. This paper is organized
that is a dye which initially absorbs light to an acceptor that is as follows. In section 2, we present our theoretical model of

another dye. . . FRET. The idea of modeling FRET dynamics as an OU
The FRET can be considered in the framework of the theory giqchastic process is further elucidated in the context of

of Forster! An input laser light excites the donor, whose one piomolecular dynamics in solution. In sections 3 and 4, we

of decay channels is to migrate its excitation energy to the hresent the results of Monte Carlo simulations and compare them
acceptor via dipoledipole interaction. The energy transfer \yiih the experimental work.

typically finishes within nanoseconds. The requirements for
FRET to occur efficiently are, at least, that one of the 2 Theory
chromophores should have a sufficient quantum yield and that

the donor fluorescence spectrum must overlap the acceptor 10 calculate the photonphoton correlation functions, we
absorption spectrum. adopt a master equation approach. To derive the master equation

for the system with two molecules coupled by FRET, we assume
that the coherence time is much shorter than the time scale of
experiments. We further note that a FRET-coupled system is
not a cascaded quantum systthi,e., to obtain an equation
for only donor variables, after tracing over the acceptor variables
from the general master equation, is impossible. The master
equation for the density operatprfor the donofr-acceptor pair
couples four possible statgsl ® |pldhereq=0,1 (=0, 1)
stands for the ground and excited states of the donor (accéptor):

Photon-photon correlations associated with the chro-
mophores contain information on the conformational distance
of the biomolecule. Such information is usually washed out in
traditional ensemble measurement, but is readily available in
single-molecular measurement. Recently, using a Harbury
Brown—Twiss* time-interval apparatus, Berglund et>atave
measured photon intensity correlations for individual denor
acceptor pairs on DNA. To interpret the experimental data, they
proposed a dual FRET model. A continuous model emphasizing
overall conformational cgsgge of the biomolecule has also been 5 S 1
studied by several authot$.However, it is important to note - oAttt T A At
that there exists nontrivial interplay between biomolecular dt W;Fm(t){ Lo Z(le“mp * pl“ml“m)} @)
diffusion, which under physiological conditions can change

whereI',, m = 1-5 are rate coefficients for the dominant

lMax-PIaan-lnstitut fu Quantenoptik. processes: spontaneous emissions of the donor and acceptor
Texas A&M University. ; ; - ~ A

§ Physical Research Laboratory, Navrangpura. gre_dgscrlt)e.d by the qyarjtum Jump operalars= 01 ® 1, a[]d

Il Princeton University. I = 1; ® Go; laser excitations of the donor and acceptoidhy

U National University of Mongolia. = 0,7 ® 1, andI'y = 1; ® 6,7; transfer of energy from the
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donor to the acceptor bijs = 6; ® .. Hered; (6i1) is the
lowering (raising) operator between the excited and the ground
states for theth dye moleculei(= 1 for the donor and 2 for
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that the OU stochastic process is stationary. Thus eq 1 becomes
a stochastic differential equation &s(t) = I's(0) + &(t). We
assume thaf(t) is a colored noise, which is described by the

the acceptor). The master eq 1 ignores all coherence effects asangevin equatiof?

they play no important role in FRET. The conditional photon
count probability of the doneracceptor system within a time
delay 7 can be represented as a normally ordered correlation
function'©

@)

wherep(t) is the stationary operator solution of eq 1 .'if/(d)
is the evolution operator of the whole system satisfy\f{g)-
p(t) = p(t + 7).

FRET measurements provide us information about dipole
dipole coupling, which varies asr#!! The FRET rate coef-
ficient is given by

O 1t + D)l :0= T {67 6 V(0){6,p(05; '}

RO 6

I_‘S(t) Iﬂ:l.(r (t))
whereRy is the Faster radius and(t) = |ri(t) — ra(t)| is the
distance between two chromophores. Considering intrachain
diffusion of a biomolecule, e.g., a protein molecule that carries
the donor and the acceptor at a couple of complementary sites
the displacement of the doneacceptor distance from its fixed
(or initial) value, x(t) = r(t) — r(0), can be modeled as a
Brownian motion in a harmonic potential. Since a biomolecule
consists of a large number of atoms and molecules, we
essentially deal with the over-damped regime, where the
Brownian motion is described by the Langevin equétion

x(t) _
e

3

—AX(t) + Af (1) 4)
where 1 = w?ny with » being the frequency of harmonic
oscillator, andy the friction coefficient. The random fordgt)

is a pure Gaussian characterized yt)0= 0 and @ (t)fx(t +
t')O= 2606(t — t'). The solution of the Langevin equatiox(f),
resembles a white noise: its equilibrium distribution is

g =L _i)
P q(X) - mex 201 (5)
and the correlation is
X(tX(t') = Ore ! (6)

Now let us turn to the FRET rate eq 3, which can be rewritten
as I's(t) = T's(0)/[1 + x(t)/r(0)]® with T's(0) = T'1[Ry/r(0)]¢

corresponding to the FRET rate at some fixed interdye distance.

If the displacement is small as compared t@0), then we have
oT's(t) ~ x(t) )

This is a possible interplay between the diffusion process and
the FRET dynamics, although neither they are completely
uncorrelated nor fully correlated. It turns out that a variance
(i.e., “noise”) of the FRET rate has the statistical signature of
a white noise. A sign such as “noise of the noise” usually leads
to colored noise in the OU stochastic dynamics. Equation 7 is

d
d_tg

—A& + () (8)

where time averages of white noise should% =0 and

nn(t) = 200 — ). .
As is well-known, eq 8, yields the steady-state correlation
function

{EM)E(t)} = Die M 9)

with &(t) = 0 and{..} denotes the stochastic average over the
initial conditions!® A parameteD might be proportional to the
diffusion coefficientd andA is the same in eqs 6 and 9. The
stochastic differential equation eq 1 will be solved using Monte
Carlo numerical simulations. A BexMueller algorithm and the
Euler—Maruyama method have been used to realize the colored
noise. Moreover, by virtue of an integral algorithm developed
in ref 13, we have verified that the Monte Carlo generated
correlation fits perfectly to its analytical expression, eq 9. To
achieve this, a stochastic averaging over as large as 1000
realizations is essenti#l It must be borne in mind that the FRET
rate is always positive which is done by keeping a background
constant valud's(0). However, some large negative random
numbers have to be omitted. To prove that these omitted random
numbers do not play important role, we have also calculated
the correlation fol's(t) which decreases exponentially as given

in eq 9. Namely, we assume thBt > T's(t) > I'L where the
FRET rate is finiteI'y (I'L) corresponds to minimum (maxi-
mum) inter-dye distance due to continues intrachain diffusion
of the protein molecule. The quantities are determined by
contour length and bending rigidity of the protein. In our case,
we have assumed that the FRET does not occur between distant
dyes, so thaf, = 0. We take alsd'y = max('s(t)) as a
maximum value of the generated random numbers.

3. Results and Discussions

Using Monte Carlo simulations we have calculated correlation
functions as defined in eq 2. In Figure 1, we present the results
for the normalized correlationg;(r) defined by

ot + )ij():0
Ol

@i (10)
Since only two parameterb, andA, are needed to completely
specify an OU process, their determination would be a desired
contact between theory and experiment. As we see in Figure 1,
the normalized correlation functions are very similar to those
observed in the experimeht-or the data shown in Figure 1
the correlation time is taken to he= 1/4 = 7. In this case we
take the parametdrs(0) to be 0.65 in order to ensure that the
average FRET coefficient to be around 1. The FRET coefficients
fluctuate betweed’, = 0 andI'y = 5. The estimated Fster
radius, for instance, for the TMRCy5 dye pair that is frequently
used in biomolecular measurement, is about 33Given the

a linearized approximate relation. Although, some dynamic calculated average FRET coefficient of 1, the average distance
details cannot be seen for large variations, analytically, the exactwould be approximately 50 A. Intensity autocorrelations show
numerical simulation may be done. This rather involved and the typical quantum feature of antibunching that is characteristic
so we have tried to produce reasonable results by retaining theof emissions from individual dye molecules. Following the initial
leading term. This captures the physics reasonably well. Note photon antibunching, photon bunching appears in the acceptor
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2 According to this adiabatic approximation in longer time delay
s 7, the intensity correlation is an exponential
o 1 - (IH _ IL)2 o
O () =14+ ——e (12)
(I +1)
y=1+0.7 g2 .
7 where we have assumed that the dual FRET rates result in a
= high value and a low value of the emission intendityandl,
@;&‘ 1 respectively. Usingly = 5 and 'L = 0 obtained in the
calculation for Figure 1, we find thdf; = 0.93 andl,. = 0.1
ol from eq 11. The correlation function under the adiabatic
approximation given by eq 12 has been also plotted, see the
. dotted curve in Figure 1.
e 4. Conclusions
P I We have shown how the FRET process as measured for
-20-15-10-5 0 5 10 15 20 biomolecules in solution can be modeled using the Ornstein

r,t Uhlenbeck stochastic theory. This theory predicts the fluores-

Figure 1. Normalized photorphoton correlation functions corre- ~ C€NCe intensity correlations from the FRET coupled dye pair,

sponding to donordonor, accepteracceptor and doneracceptor which are very similar to those observed in recent experiments.
emissions. The parameters of the model (1) are choséh as= 1, An analytic study based on the local linearization procedure

I, = 0.1,T5(0) = 0.65, [(t) = 1, and 0= T's(t) < 5). The noise also shows that it is consistent with existing theory for
parameters are taken as= 1/1 = 7 andD = 7. The number of microscopic dynamics of the biomolecule that carries the FRET
numerical realizations and a time step are taken thl ke1000 and d coupled dye pairs. The second-order intensity correlation
= 0.01, respectively. functions for a FRET coupled dye pair, are largely determined
by only a few statistical parameters of the FRET dynamics. It
is found that the stochastic OU description helps elucidate the
underlying mechanism for the experimentally observed fluo-
rescence correlations that typically exhibit exponential decay
over a nanosecond time scale.

autocorrelation function. A sufficient stochastic deviation from
its equilibrium distribution of the FRET rate is the hallmark of
the generation of photon bunching, which is a tendency for
clustered emissions. For largethe normalized correlation
functions go to unity indicating uncorrelated emissions. The
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