
Universal Features of the Topological Bond Properties of the Electron Density

Aurora Costales,* M. A. Blanco, A. Martı́ n Pendás, Paula Mori-Sánchez,† and Vı́ctor Luaña
Departamento de Quı´mica Fı́sica y Analı´tica, Facultad de Quımica, UniVersidad de OViedo,
33006-OViedo, Spain

ReceiVed: NoVember 27, 2003; In Final Form: February 2, 2004

Every pair of atoms can be bonded together showing a variety of different bonding regimes, the internuclear
distance being the controlling parameter that decides under which chemical pattern a given pair will act. The
type of bond that best describes a given compound is thus a consequence of the equilibrium distances on its
main atomic pairs. Therefore, we should act cautiously in extrapolating the typical molecular regime to material
science, particularly when high pressures or far from room temperatures are involved.

I. Introduction

The concept of chemical bond is one of the main pieces of
the chemical language. It summarizes our knowledge about the
structure, geometry, stability, and reactivity of substances. Being
one of the cornerstones of chemistry, it has logically suffered
conceptual shifts as it became more and more systematized:
from an unknown force of nature gluing the atoms in a molecule
to a kind of geometrical object with little relationship to binding
or cohesion. The currently dominating paradigm is based upon
the ideas proposed by Pauling1 and extended by many others
and is heavily rooted in the orbital model. However, besides
being not observable, the orbital description, and thus all
bonding models based on it, is not invariant under the
transformation laws of quantum mechanics.

The theory of Atoms in Molecules (AIM) of Bader et al.2

surmounts these problems by proposing a description of the
chemical bond that is invariant under the symmetry laws of the
problem. By focusing on the electron density as a fundamental
observable object, the theory recovers the image of atoms and
functional groups of chemistry as regions of space, even though
these regions are now completely determined by the quantum
mechanics of subsystems.

The AIM theory identifies the structural elements of chem-
istry, bonds, rings, molecular graphs, etc., with the characteristics
of the critical points of the gradient field of the electron density,
∇BF. Other scalars constructed fromF, like the Laplacian,∇2F,
complement the picture.

Soon after the initial AIM ideas were proposed, it was
recognized that the Laplacian in free atoms was intimately linked
to the traditional atomic shell structure.3,4 A shell is signaled
by an outer region of charge depletion (∇2F > 0) followed by
an inner region of charge accumulation (∇2F < 0). An exam of
the behavior of the Laplacian in molecules evidences how the
valence shells distort upon bond formation and gives theoretical
support to the valence shell electron pair repulsion model
(VSEPR) of Gillespie3,5,6 by showing how closely the charge
accumulation regions are in correspondence to the bonded and
lone pairs of the VSEPR model. A thorough investigation of
this scalar field has also been used in a wider context to redefine

acidity in terms of the balance between kinetic and potential
energy densities,7 to propose a complementary principle useful
in the study of the nucleophilic and electrophilic attacks,8 to
predict sites of protonation9 and in a wealth of other applications
in chemical reactivity.

A large amount of knowledge about the behavior of the
valence shells has been recorded since these ideas were
introduced. However, most of it is limited to the equilibrium
configurations of isolated molecules or to reaction pathways in
supermolecules. Little is known about the evolution of topolo-
gies, densities, and Laplacians at far from equilibrium molecular
geometries. This fact has obvious origins, for chemists do not
observe easily systems frozen at such exotic geometries. After
all, our world is one at near room pressure and temperature.

The development of very high pressure techniques is changing
quickly this landscape. We are starting to have experimental
access to unexplored regions of internuclear distance regimes
where the interaction between inner atomic shells cannot be
neglected. In these circumstances, our intuitions about the
chemical behavior of substances, based on valence shell
interactions, break, and new chemistry is expected to arise. Some
examples have been already found, like the unexpected dimer-
ization of lithium at very high pressures,10,11the polymerization
of CO2 to form a three-dimensional network,12 or the predicted
break of the triple bond in N2 as pressure is increased.13 This is
just the tip of an iceberg in front of us awaiting exploration.14

It should be clear, in the light of these considerations, the
importance of acquiring a global perspective on the bonding
behavior, overcoming the artificial constraint posed by the small
geometrical window that corresponds to the equilibrium geom-
etry of a small set of molecules. One of the most interesting
conclusions of this window-opening is the observation that the
electron density around a bond mimics closely the superposition
of the free atomic densities (i.e., the promolecular model) to
zero order15,16 or the electron density of the corresponding
diatomic to first order.17

In addition, the work by several groups, including ours, has
provided strong evidence that both the electron density and its
Laplacian at bond critical points exhibit a clear exponential
behavior if expressed as a function of the internuclear
distance.17-28 This was first exploited by Boyd et al. in the
definition of group electronegativities on organic molecules,18-20

even though the range of distances involved in these seminal
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studies was still rather limited. Espinosa et al. demonstrated
the exponential behavior of the bond density for molecular
crystals containing hydrogen bonds.21,22,29We have extended
these results to a large variety of crystals and molecular
clusters.17,24-28 We have shown, for instance, that ionic bonds
in highly ionic crystals display properties in complete parallelism
to those known in covalently bonded crystals and molecules.24,27

Furthermore, we have proved that unusual bonding phenomena,
like the existence of nonnuclear maxima (NNM) of the electron
density17 or the inversion of bond polarity upon compression28

in low-heteropolarity compounds, can be rationalized as extreme
aspects in the evolution of chemical bonds with internuclear
distance.

The aim of this work is to abound on these issues, trying to
gather a number of loose facts into the seed of a universal model
of the chemical bond between a given pair of atoms, valid in
wide ranges of internuclear distances. As we will see, the type
of interaction shown by such a pair is mainly determined by
their internuclear distance, and a kind of universal bonding
sequence emerges as this distance is decreased and inner atomic
shells start to interact with each other.

The rest of the paper is organized as follows. Section II, will
present some computational details and will show the similarity
of the densities and Laplacians obtained with different quality
calculations on a prototype diatomic. Section III presents
evidence supporting a universal sequence of bonding regimes
determined by the internuclear distance. We examine first a
selection of homo- and heterodiatomic molecules and show that
the main topological features of the electron density at the bond
critical points can be predicted using simple models for the
electron density. Section IV shows how the diatomic molecules
may be used as a good model for the electron density of general
molecules and crystals along internuclear lines, in such a way
that the bonding sequence is qualitatively maintained in
arbitrarily complex situations. Finally, in section V, we show
that different bonded pairs that share a common atom can be
organized into common trend laws by using the topological
radius of the common atom instead of the interatomic distance
as the grouping variable. Section VI ends the paper by recalling
our main conclusions.

II. Computation of Electron Density Properties

The electron density is an observable, and there exist a
number of experimental and theoretical schemes to obtain it,
which differ in accuracy. Its general trends are, nevertheless,
easily captured: the restructuration of the electron density on
forming a particular molecule is small when compared to the
superposition of atomic densities. Thus, methods that build upon
atomic superposition like the LCAO (local combinations of
atomic orbitals) procedures or the promolecular models will
succeed in predicting the qualitative behavior of the electron
density. This is not only analogous but also related to what
happens with the energy: while the total energy is basically
the sum of the individual atomic energies, it is precisely the
small (compared to the total energy) energy difference that
accounts for the binding of the molecule. This binding energy
is of course mainly determined30 by the small deformations of
F with respect to the atomic densities, and it is in these “fine
details” where the differences between methodologies will show.

The main features ofF will then be found even with very
simple models. For instance, many atomic shell structure
features are conserved on going from the atoms to the molecules.
Although real shells do not interpenetrate in a rigid way, the
promolecular model gives very reasonable zero-order results.

To illustrate the above statements, we have plotted in Figure
1 electron densities (Fb in the inset) and Laplacians (∇2Fb) at
thebond critical point(BCP or bond CP) for the X-1Σg

+ ground
state of N2. These values come from several models: (a) a
promolecular model with high-quality31 spherical atomic densi-
ties; (b) Hartree-Fock (HF) calculations using both 6-31G**
and TZV+(3d,1f) basis sets as implemented in GAUSSIAN98;32

(c) CISD (Configuration Interaction including all single and
double excitations) calculations using the same TZV+(3d,1f)
basis set; and (d) Generalized Gradient Approximation to
Density Functional Theory (GGA-DFT) calculations using the
TZV+(3d,1f) basis set with the functionals of Becke33 and of
Perdew and Wang34 to represent the exchange and correlation
contributions, respectively (BPW91).

It is readily apparent that all of the curves present the same
qualitative behavior, which only deviates in a significant way
from the rest in the zero-order promolecular model. This
dependence indicates that the electron density at the bond critical
point is mainly determined by the sum of the atomic contribu-
tions. The electron density in the bonding region may be viewed
as the superposition of the atomic exponential tails. Self-
Consistent-Field (SCF) and correlation effects introduce small
differences, mainly in the bonding region, increasing theF values
with respect to the promolecular ones. As the Laplacian is
concerned, these effects do alter the position of the frontiers of
the different bonding regimes but do not modify the qualitative
description at all. It must be noted here that N2, with its classical
description as a triple-bonded diatomic, is perhaps the worst-
case scenario, with one of the largest charge buildups in the
covalent bonding region. It is remarkable that, even in this case,
the promolecular model may serve as a qualitative guide, a
behavior parallel and quite close to that obtained with better
descriptions.

The similitude among the HF, CI, and DFT calculations is
truly remarkable. It should be noticed, however, that these
calculations differ in the equilibrium properties, particularly in
the equilibrium geometry, thus causing an indirect effect on the
density-related properties. This has often been a cause of much
confusion. We have also analyzed the influence of the basis set
on the electron density, finding that the use of flexible enough
basis sets is far more important than the electronic calculation
technique in determining the quality of topological properties.35

These are very sensitive to basis sets when the latter are small
and rigid, but they converge quickly and correctly as the quality

Figure 1. Promolecular, HF, CISD, and DFT-BPW91 Laplacians,∇2Fb,
of the electron density at thebond critical pointof the N2 X-1Σg

+

ground state for a ample range of internuclear separations. The
corresponding BCP electron densities are shown in the inset. Notice
the logarithmic scale and the use of absolute values for the Laplacian.
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of the basis set increases. We can see in Figure 1 thatFb and
∇2Fb at the HF level employing TZV+** and 6-31G**
(intermediate quality basis sets) are almost coincident in the
short interatomic distance region.

Throughout the rest of the article, our analysis will be based
on a diverse collection of electronic structure calculations of
molecules and solids. The molecular calculations have been
carried out with the GAUSSIAN9832 code (HF, DFT, and CI
LCAO) and its wave function analyzed using the AIMPAC
suite36 and the PROMOLDEN program.37 Solid-state calcula-
tions have been performed with the PI7R15 (HF and DFT
localized LCAO),38 CRYSTAL98 (HF and DFT periodic
LCAO),39 and WIEN97 (DFT fpLAPW)40 codes, and their
densities were analyzed with CRITIC.41 The results presented
here will only include a small subset of the whole ranges of
computational levels and compounds studied. They have been
selected as representatives of the global behavior and span a
wide range of bonding types.

III. Universal Behavior of the Shell Structure of
Diatomics

In this section, we will show how the preservation of the
atomic shells in molecules leads to a certain kind of universal
behavior in diatomics. To do so, we will first describe the
evolution of the topological properties of a representative
molecule, N2, with the interatomic distance. Later on, we will
compare this behavior with that of other homo- and heterodi-
atomics, spanning a wide range of chemical bond types, and
we will explain how these behavior is related to the atomic shell
structure.

Let us examine the evolution of the bond critical point
properties with the internuclear distance, taking the X-1Σg

+

ground state of the N2 molecule depicted in Figure 1 as a
representative example. The most prominent feature ofFb is its
exponential decay for a wide range of distances. This is a general
trend for many molecules; it shows that the electron density at
the bond critical point is mainly determined by the sum of the
atomic contributions, and in a general sense, the promolecular
approximation is valid.27

The BCP Laplacian also behaves exponentially over smaller
segment ranges, but its structure is more complex due to the
sign changes associated with the atomic shell structure.3,4 These
sign changes appear as asymptotic peaks in a logarithmic
representation of|∇2Fb|. The value of∇2F(rb) provides a local
measure of the charge density accumulation atrb. Accordingly,
the actual sign of the Laplacian at a bond CP helps classify the
bonding regimes into two gross types: (a) closed-shell ones,
which occur when∇2F(rbbcp) > 0 (depletion of density from the
bonding region) and are typical in ionic compounds and long-
range van der Waals interactions, and (b) shared-shell regimes,
which appear when∇2F(rbbcp) < 0 (concentration of electronic
charge in the bonding region) and are usually found in covalent
compounds. Thus, the N2 molecule passes from a regime of
closed-shell bonding for internuclear distancesd > 3 bohr, to
a typical shared-shell regime for 3> d > 1 bohr (which includes
the equilibrium distance), and again to a closed-shell regime
whend < 1 bohr.

These different electron density arrangements can be distin-
guished in Figure 2, where the Laplacian isosurfaces from CISD
calculations are plotted on a plane that contains both N nuclei.
At long distances, we can appreciate a deformation of the
spherical atomic shells due to the still small interaction between
both atoms. The Laplacian is positive at the bond CP, and the
charge depleted from the internuclear region is accumulated in

the rear part of the atoms. When the internuclear distance
decreases, the atomic shells fuse, giving rise to a shared valence
shell surrounding the atoms, with a high charge accumulation
in the interatomic region, which causes the BCP Laplacian to
be negative. At an interatomic distances around 1.4 bohr a new
phenomenon appears, and whereas the shared valence shell is
maintained, the system fulfills the necessary conditions to form
a nonnuclear maximum between the two nuclei. The experi-
mental and theoretical evidences related to these nonnuclear
maxima have been repeatedly discussed, and a short review can
be found in refs 17, 42, and 43. At even shorter distances, the
valence shells of both atoms fuse together. Bonding is now
dominated by the polarization of the inner electronic shells, thus
giving place to a new regime of closed-shell interaction.

The sequence of bonding regimes observed in the N2 molecule
is, in fact, general of the homodiatomic molecules. The
Laplacians of Na2 and Ne2, represented in Figure 3, provide
two further examples. We can see that, on decreasing the
interatomic distance, the bonding properties follow the very
same sequence for the three molecules: closed-shell, shared-
shell, eventually nonnuclear maxima, and again closed-shell as
the inner shells start to dominate the interaction. The three
molecules, however, differ completely on the distances at which
each regime occurs and even more on the actual regime shown
when compared only at their respective equilibrium distance:
N2 equilibrium (2.090 bohr) lies well within the shared-shell
bonding region; Na2 (5.978 bohr) and Ne2 (4.923 bohr) present
a long equilibrium distance which causes the bond density and
its Laplacian to be close to zero but within the shared-shell
bonding region in the case of Na2 and within the closed-shell
region in the case of Ne2.

It would be simple to disregard the actual importance of
bonding properties at distances far from equilibrium. However,
as it is going to be discussed in the next section, the electron
density of the diatomic molecule serves as a good model for
the behavior of the actual electron density of polyatomic
molecules and solids along the interatomic lines. Nature provides
then access to a wide range of interatomic distances, particularly
when the effect of pressure in the solid state is considered.

The coincidence in the bonding behavior of the above three
molecules is not a proof of general behavior. Henceforth, it is
relevant that these phenomena can be interpreted as a conse-

Figure 2. CISD/6-31G** Laplacian of the electron density (thin lines),
bond lines (solid thick lines), and atomic surfaces (dotted thick lines)
for the N2 molecule for different interatomic distances. The thick frame
indicates the equilibrium distance. Solid and dotted contours correspond
to negative and positive Laplacian values, respectively. Isolines span
a logarithmic scale with 38 lines in the range 10-3 < |∇2F| < 103 au.
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quence of the shell structure in the spherical atomic densities.
To this end, let us consider the outcome of a promolecular model
of the electron density in the homodiatomic molecule A2. When
evaluated at the midpoint between both nuclei, a critical point
enforced by symmetry and usually a bond CP, the curvatures
and Laplacian are

where| and⊥ represent the parallel and perpendicular directions
to the A-A line, respectively;FA′ is the first andFA′′ the second
radial derivative of the electron density of the atom A; andrA

is the distance from the A nucleus to the midpoint. For all atoms
FA′ < 0 because atomic densities always decay when increasing
the distance to the nuclear attractor. The sign of∇2F is mainly
dependent on the balance betweenFA′′ and FA′. At long
distances, the first term is dominant, and since the tails of atomic
densities are convex,∇2Fb is positive. When the interatomic
distance decreases, the importance of the first radial derivative
increases, giving rise to an interval in which∇2Fb is negative.
This effect is enhanced in some atoms by a convex region in
the radial decay of the electron density, i.e., a region in which
FA′′ < 0. This accounts for nonnuclear maxima17 because the
three curvatures are now negative. If the compression continues,

it is possible to access again to a range of distances in which
the ∇2Fb is positive because the atomic shells become inter-
penetrated. In this case, the dominant term is again the second
radial curvature, now corresponding to the inner electronic shell
of the atom. As this shell organization of the atomic density is
a direct consequence of Pauli’s principle and is only slightly
modified from atom to atom, the analysis of the promolecular
model leads us to conclude that the sequence found on N2,
Na2, and Ne2 should be general among the homodiatomic
molecules.

Let us explore now how this image changes on considering
heterodiatomic cases. It is easy to recognize that they should
follow the homodiatomic behavior when the two atoms are of
comparable electronegativities, so we will examine instead two
examples in which the bonded atoms are unequivocally different.
Our first example is NaF, traditionally classified as an ionic
compound. The chemical image that we can extract from the
Laplacian map represented in Figure 4 is analogous to that of
the homonuclear molecules at long and at short distances. A
different behavior occurs, however, around the equilibrium
distance region: in this case, the atomic shells are never fused.
The difference is due to the large charge transfer from the
sodium to the fluorine atom. The sodium atom, in fact, loses
the M valence shell, so both atoms exhibit only two atomic
shells. This is the most typical feature of an ionic closed-shell
interaction. Our second example is the AlN molecule, also

Figure 3. CISD/6-31G** Laplacian of the electron density (thin lines),
bond lines (solid thick lines), and atomic surfaces (dotted thick lines)
for Na2 and Ne2 molecules for different interatomic distances. The thick
frame indicates the equilibrium distance. Isolines span a logarithmic
scale with 38 lines in the range 10-3 < |∇2F| < 103 au.

F|′′ ) 2FA′′(rA) (1)

F⊥′′ ) 2FA′(rA)/rA (2)

∇2F ) F|′′ + 2F⊥′′ ) 2FA′′(rA) + 4FA′(rA)/rA (3)

Figure 4. CISD/6-31G** Laplacian plot for the NaF and AlN
molecules at different interatomics distances. Fluorine and nitrogen
atoms are located at the left of their respective images. Each figure
contains the isocontours of the electron density Laplacian (thin lines),
bond path lines (solid thick lines), and interatomic surfaces (dotted thick
lines). The thick frame indicates the equilibrium distance. Isolines span
a logarithmic scale with 38 lines in the range10-3 < |∇2F| < 103 au.
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represented in Figure 4. The atoms in this molecule present a
high electronegativity difference that induces a significant charge
transfer from the electropositive (Al) to the electronegative (N)
atom. However, the electronegativity difference is not large
enough for Al to lose its valence shell, contrary to what
happened with Na in NaF, but it induces a strong deformation
of the spherical shape of the atomic shells. Molecules like AlN
are best referred to as polar compounds.

The promolecular model may help us now understand the
behavior of heterodiatomic molecules, AB. The interatomic
midpoint is no longer fixed by symmetry to be a critical point,
but rather the bond CP occurs at the internuclear position in
which the two atomic densities match in slope:FA′(rA) )
FB′(rB), whereFA and FB are the A and B atomic densities,
respectively, andrA andrB are the distances from the bond CP
to the atoms A and B. The Laplacian is given by∇2Fb ) FA′′(rA)
+ FB′′(rB) + 2FA′(rA)/rA + 2FB′(rB)/rB. Therefore, we have more
degrees of freedom than in the homodiatomic case, but it is
easy to recognize that the regimes dominated by the atomic
curvatures (and thus∇2Fb > 0) or by the slopes (producing∇2Fb

< 0) can also occur on the heteroatomic compounds. In addition,
the atomic density slope at the valence tail is related to the
atom’s electronegativity.27 Hence, in the case of two atoms, A
and B, of identical electronegativity, the bond CP should appear
at the interatomic midpoint, and the topological properties of
AB would approach those of a homodiatomic system. However,
if the atomic electronegativities are different, the AB diatomic
molecule develops a behavior proper of ionic systems in which
the valence shells are transferred totally or partially without
actually fusing and are strongly deformed as a consequence of
polarization.

We can conclude, from the previous analysis, that any given
pair of atoms may present different bonding regimes: closed-
and shared-shell bonding in particular. The interatomic distance
is the magnitude that controls the bonding type actually
displayed by a diatomic molecule. This explains, for example,
why F2 has a positive∇2Fb. The second row diatomics N2, O2,
F2, and Ne2 have increasing equilibrium distances, whereas the
negative Laplacian (shared-shell) regime has a range that
narrows in going from N2 to Ne2 (see ref 17). In the case of F2,
the equilibrium distance (2.655 bohr) is just outside of the
shared-shell regime distance range (0.83-2.31 bohr), something
that does not happen for the previous molecules (N2, O2) but
does happen for the next (Ne2).

IV. Universality of the Bond between a Pair of Atoms

Our analysis on the distance evolution of bonding in diatomics
remains useful in general molecules and crystals. To show this,
we examine, for instance, the C-C bonding pair in a collection
of systems, spanning a wide range of C-C interatomic distances,
and compare its properties to those of the C2 diatomic molecule.
We include molecules containing single (ethane), double (eth-
ylene), and triple (acetylene) C-C bonds, aromatic molecules
(benzene, anthracene), and alene, plus the diamond and graphite
phases of carbon and the tetragonal structure of calcium carbide,
CaC2(II). All the molecules have been examined at their
respective equilibrium geometries using a standard B3LYP/6-
311G(3df,p) calculation as implemented in the GAUSSIAN98
code.32 All crystals have been calculated at the DFT/GGA level
with the Perdew-Burke-Ernzerhof exchange and correlation
functional,44 using the full potential Linear Augmented Plane
Wave (fpLAPW) technique implemented in the WIEN97 code.40

CaC2 has been examined at the experimental geometry under
room pressure and temperature (RPT).45 Graphite has been

calculated in a volume spanning 75-150% of the experimental
RPT volume, and similarly, a range of 55-300% of the
experimental RPT volume has been explored in diamond.

Figure 5 presents a graphical comparison of theFb and∇2Fb

values for all the systems described above. The range of C-C
distances is quite large, 2-7 bohr, the largest values corre-
sponding to the interplanar bonding in graphite and to the
secondary bonds among C2 groups in CaC2. This makes even
more remarkable the excellent correlation with the C-C distance
that is shown by the bonding densities of all the systems.
Molecular and crystal values can be fitted to

with a correlation coefficient of 99.8%. The agreement between
molecules and crystals applies also to the bond Laplacians (see
the inset in Figure 5). In addition, all systems follow the same
sequence of bonding regimes. For instance, the C-C bonding
remains a prototypical shared-shell interaction if the interatomic
distance is less than 3.2 bohr, but it is a closed-shell interaction
for larger distances.

The C2 diatomic molecule provides a good model for the
C-C bond path in any compound, as Figure 5 clearly shows.
To do this comparison, we must consider a triplet electronic
state of C2 (either the3Πu or the3Σg

- will serve, as their bond
density and Laplacian are essentially identical), as the unpaired
electrons will couple to the rest of the molecule in the larger
compounds causing only a small effect on the C-C line.

The above evidence indicates clearly that the C-C bonding
properties are transferable among many different molecular and
crystalline systems, once the interatomic distance is taken into
account. The same behavior is found when other atomic pairs
are considered, and we should point to ref 24, where we have
reported a similar but less exhaustive analysis of the O-O
bonding. Similarly, Espinosa et al. have demonstrated that the
experimental bond CP properties correlate with the bond length
distance for-O‚‚‚H-, -N‚‚‚H-, and -F‚‚‚H- hydrogen
bonds,21,22,29 a correlation also confirmed by Ga´lvez et al.,46

and Mallinson et al. have shown that the inter- and intra-
molecular experimental bond CP properties of a collection of
naphthalene derivatives follow exponential dependences on the
bond length.47 The cause for this transferability can be easily
pointed out if we assume that the electron density at a given
point is dominated by the contribution from the closest atoms

Figure 5. C-C bond density and Laplacian (inset) for a collection of
molecules (open circles) and crystals (solid circles) described in the
main text. The properties of the3Πu state of the C2 diatomic molecule
are also represented (solid line) for comparison. The vertical lines
indicate the changes in the nature of the bonding.

Fb ) ce-γdCC, c ) 5.21 e bohr-3, γ ) 1.06 bohr-1 (4)
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around it, as it happens within the promolecular model, and
the influence of the crystalline or molecular environment is
small. The correlation shown by the high-quality densities
depicted in Figure 5 does not depend, however, on any crude
estimation, but it should be regarded as an attribute of the density
along the interatomic bond path. A significant consequence of
this kind of universal behavior is the continuity in the bonding
properties from the molecular to the crystalline compounds.

V. Transferability across Different Bonded Pairs

Bonding density-distance correlations such as that found in
eq 1 can be obtained for any pair of atoms bonded together. It
is difficult, however, to establish comparisons among pairs
formed between different atoms. In our recent analysis of group
III nitride clusters and crystals (MN, M) Al, Ga, and In), we
have found26 that the correlations can be extended even to
different pairs of atoms when the distance from the bond point
to a common atom (rN or rM, in this case) is employed instead
of the internuclear distance. This is readily shown in Figure 6,
where the bond density (Fb) is represented in a logarithmic scale
versusrN (main figure) and versusrM (inset). We can see that
the electron density at the M-N bond CP varies as a decreasing
exponential with either therN or the rM radius.

It is remarkable that Figure 6 contains data from a wide
collection of compounds of very different nature: molecules
containing short N-N covalent bonds like N2 and several
nitrogen hydrides; clusters containing weak M-N bonds like
M6N2-2, M2N2, and M2N2-2 (see the description of cluster names
and geometries in ref 26); and compounds containing highly
polar or ionic M-N bonds like the M6N2 clusters or the B3
phase of the group III nitride crystals. Even though the points
are more scattered in the long distance region, corresponding
to heteronuclear bonds, there is a clear dependence of the bond
CP electron density on the distance, not only when the same
pair of atoms is involved but also when only one of the atoms
(N) is common in all of the bonds. Henceforth, all compounds

containing N share a common trend, revealed by plottingFb

versusrN, even though we are comparing in the same plot
N-Al, N-Ga, N-In, N-H, and N-N bonds. This trend would
not be apparent if the interatomic M-N distances were being
used. However, the common trend splits in different trends for
different bonds (similar to those displayed byFb versusd) when
we focus inrM, the distance from the bond point to the non-
nitrogen atom (inset of Figure 6).

A simplification of the promolecular model provides now a
specific prediction that justifies the above exponential trends.
Let AB be the two atoms bonded andrA the distance from A to
the bond CP. The BCP will occur at the point in which the two
atomic densities match in slope,FA′(rA) ) FB′(rB), whereFA′
and FB′ are the radial derivatives. Within theexponential tail
model27 the radial density of an atom in the promolecule is
described as a single exponential for a range of distances
containing the distance to the BCP:FA(rA) ) ae-RrA. Used in
the slope match condition, this provides the relationshipRFA(rA)
) âFB(rB). The total density at the BCP is made up of the
contribution of both atoms, so

If we consider the same pair AB in a collection of compounds,
the decaying exponential behaviorFb ) Ce-RrA is immediate
and will resemble theFb versusd behavior already described
in section IV.

The case of different pairs AB, AC, AD, ... sharing a common
atom A is more interesting. SinceFb

AA(rA) ) 2FA(rA), we can
rewrite eq 5 asFb

AB(rA) ) (1 + R/â)Fb
AA(rA)/2 or, equivalently,

Fb
AB(rB) ) (1 + â/R)Fb

BB(rB)/2: Fb
AB has the same behavior

of the homodiatomics modulated by theR/â ratio. If we con-
sider C, D, ... instead of B, we will have theR/γ, R/δ, ... ratios
instead of theR/â ratio. To estimate the variation in the
logarithmic plot upon modification ofâ, we substitute
(1 + R/â)/2 by(1 + (R - â)/2â) and Taylor-expand the
logarithm up to first order

Thus, according to the exponential tail model, the AB molecules
will deviate from the AA diatomic exponential behavior by a
constant, half of the relative deviation of the exponents. This
would be obviously smaller, and thus the different trends closer,
when eitherR , â or R = â. Unfortunately, the exponent of
the nitrogen atom is larger (2.70 bohr-1, obtained from a
calculation on the N2 molecule) and not smaller than those of
the group III metal atoms: 1.42, 1.96, and 1.82 bohr-1 for Al,
Ga, and In, respectively. Using these numbers, we should expect
deviations within the 10-20 range, as Figure 6 readily shows.
Ga and In nitrides, on the other hand, are expected to behave
quite similarly, since their (R - â)/2â values are very similar
on a logarithmic scale.

The bond density Laplacians for the group III nitride clusters
and crystals, depicted in Figure 7, behave similarly to the
bonding densities, as we have already shown in ref 25. However,
in this case the exponential trends are different for each type of
bond. In a way this is not unexpected because∇2Fb is closely
linked to the character of the chemical bond.2 On the other hand,

Figure 6. Logarithmic plot of the electron density at the N-N and
M-N bond CP’s represented versus the N bonding radius (rN, main
figure) and versus the M radius (rM, inset). Most of the points
correspond to clusters of group III nitrides, and we have distinguished
between bonding toterminal and to bridge metal atoms, Mt (open
squares) and Mb (dark circles), respectively. The points labeledspecial
correspond to N-N bonds in a collection of reference compounds: the
N2 molecule, several N2Hm hydrides, and the zinc blende phase (B3)
of group III nitride crystals. The solid line is the electron density on
the bond point of the N2 molecule, calculated as a function of the
internuclear distance, and the dotted line is the promolecular estimation
of the same density. Computational details as well as a complete
description of the clusters composition and geometry can be found in
ref 26.

Fb
AB(rA) ) FA(rA) + FB(rB) )

(1 + R
â)FA(rA) ) a(1 + R

â)e-RrA (5)

ln Fb
AB(rA) ) ln Fb

AA(rA) + ln (1 + R - â
2â )

= ln Fb
AA(rA) + R - â

2â
(6)
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the promolecular with exponential tails model predicts for an
AB pair

Clearly, the behavior of the Laplacian is more complex than
that of the density, but we can still relate it to the behavior of
the homodiatomic

If we again Taylor-expand the logarithmic dependence, we get

again half a relative deviation, in this case of theR - 2/rA

magnitudes. Since this does depend on the distances to both
atoms, the trend will not be a single exponential as in the ln
Fb

AB case. Given the typical sizes of the atoms in this range (rN

∈ [1.9, 2.4],rAl ∈ [1.5, 1.8],rGa ∈ [1.8, 2.1],rIn ∈ [2.1, 2.4], all
values in bohr), we could expect wide variations in the relative
deviation. However, the relative deviations of Ga and In are
quite similar, since althoughRGa > RIn and rGa < rIn, RGa -
2/rGa = RIn - 2/rIn, and thus their curves almost overlap in
Figure 7. Notice, however, that this only happens when
employingrN, and thus the deviation occurs with respect to a
common∇2Fb

NN curve; the inset shows that the curves forrGa

andrIn are quite different, since∇2Fb
GaGaand∇2Fb

InIn are quite
different.

As mentioned in section II, the deviation of the actual density
from that of the promolecular model is a measure of the binding
energy of the system. The first theorem of Hohenberg and
Kohn30 warrants that the knowledge of the density suffices to
access the energy. The bond path, in general, and the bond
critical point, in particular, are regions of maximal density
changes with respect to the promolecular situation. This means
that the systematic study of the differences between pro-
molecular and actual densities at BCP’s may uncover clues about
the nature of the universal density functional. Further work is
clearly needed along these lines.

VI. Conclusions

Some general conclusions can be extracted from our analysis
of atomic pairs in diatomic and polyatomic molecules, clusters,
and crystals. First, a given pair of atoms follows a universal
sequence of bonding regimes which is entirely controlled by
the interatomic distance. This behavior is easily captured with
any density model built from atomic contributions, and it is
caused by the intrinsic electronic shell structure of atoms, which
is largely conserved in general compounds. Second, the actual
sequence goes as follows: closed-shell bonding is typical of
large internuclear separations and, as the two atoms approach,
a shared-shell regime appears; then nonnuclear maxima can
occur in some cases, up to the moment that the inner shells of
the atoms start to interact, and the cycle starts again with a
closed-shell regime. Third, diatomic molecules serve well to
predict the behavior of a bonding pair of atoms in a larger
molecular or crystalline environment. Fourth, the promolecular
model and, to a lesser extent, its exponential tails simplification
provide specific predictions for the bond CP electron density
and Laplacian that agree qualitatively and explain the trends
actually observed on state-of-the-art quantum mechanical
calculations. For instance, the electron density at an internuclear
bond CP decays exponentially with the bonding distance and
also with the distance from the bond CP to any of the bonded
atoms. This last dependence is also shown to be true even for
bonds of different atoms to a single one, provided that the
distance to the common atom is used. The absolute value of
the Laplacian at the bond CP usually decays exponentially, but
this trend may fail under appropriate circumstances.
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