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We show that the Troullier-Martins scheme for constructing scalar-relativistic pseudopotentials on a particular
density functional for plane-wave calculations can be applied in Gaussian-function based LCAO codes. As
an example we consider the noble metals silver and gold and derive 11-electron relativistic effective core
potentials, as well as a response function basis set generated by the method of Lippert et al. (J. Phys. Chem.
1996, 100, 6231). With several tests we demonstrate a better performance of these effective core potentials
and basis sets as compared to non-DFT-based ECPs of equal quality.

1. Introduction

The low-energy physics and chemistry of molecules and
solids is governed by valence electrons. The corresponding
orbitals are nevertheless affected by core electrons to ensure
orthogonality to core orbitals. Pseudopotentials or effective core
potentials can represent the effect of the core electrons and
decrease the computational effort by focusing on valence
electrons only. Moreover, once derived from relativistic calcula-
tions, effective core potentials can include relativistic effects,
which are important in heavy elements, even though nonrela-
tivistic theory is applied to valence electrons.

It is a long-standing practice in the condensed matter
community to use pseudopotentials in plane wave density
functional theory (DFT) calculations with the density functional
that was employed to generate them from a reference atomic
state. For reviews on plane-wave based methods see refs 1 and
2, and on norm-conserving pseudopotentials in plane-wave
calculations see ref 3. This is a natural and logical choice
whenever one of the plane-wave DFT codes developed by
different groups is used, e.g., CPMD,4 ABINIT, 5 CASTEP,6

FHI96md7 (norm-conserving pseudopotentials), DaCapo,8 PWscf,9

VASP10 (ultrasoft pseudopotentials). The LCAO based code
SIESTA11 employs the same numeric pseudopotentials as plane-
wave based codes. An alternative approach is used in the Slater-
orbital based ADF code,12 where so-called core functions are
introduced. They are not variational degrees of freedom and
serve as fixed core charges which generate the potential
experienced by valence electrons.

In quantum chemistry Gaussian-function-based LCAO com-
putations, effective core potentials were originally derived either
from a reference calculation of a single atom within the
Hartree-Fock or Dirac-Fock approximations, or from some
method including electron correlations. A review of these
methods, as well as a general theory of ECPs is provided in ref
13. Effective core potentials are based on the frozen-core
approximation and serve to represent the potential generated
by core electrons, also incorporating relativistic effects. So-called
shape-consistent ECPs are rather easy to derive and contain no

adjustable parameters. On the contrary, energy-consistent ECPs
are used for high-quality studies of specific systems and specific
quantities. The parameters of such ECPs and the underlying
basis set can be adjusted in accordance with representative
experimental data, not only for the ground state, but also for
excited states, electron affinities, ionization potentials, and so
on. Being of semiempirical origin, they can perform remarkably
well for a given system, but their transferability to other
environments can be poorer than that of shape-consistent
ECPs.

The construction of shape-consistent ECPs is based on the
original proposal of Christiansen-Lee-Pitzer14 where norm-
conservation was introduced. Simultaneously, norm-conserving
pseudopotentials were introduced in computational condensed
matter physics by Hamann et al.15 For transition metals, a widely
used analytical form of Hartree-Fock ECPs was obtained by
the Los Alamos group.16,17

In the past, a flurry of work dealing with noble and transition
metals within DFT employed effective core potentials derived
for mainstream quantum chemistry approaches. Both transport
and ground-state electronic structure calculations followed this
way. As some examples, we mention recent studies of medium-
size silver clusters,18 adsorption on gold and platinum clusters19-21

and on platinum and silver slabs,22-24 transport through a
molecular wire contacted to noble metals,25-28 metallo-organic
complexes,29 metal hydrides,30 and so on. The common trend
to make these potentials more flexible for density-functional
theory treatment is to vary exponents and contraction coefficients
of Gaussian primitives to attain an optimum description.
However, when used with DFT, this simple adjustment of basis
functions cannot cure the problem that most popular ECPs in
quantum chemistry were not derived for DFT. We must mention
at the outset that this issue is not so important whenever a small
core can be assumed. The smaller the core, the less important
is the method by which ECP is derived. In the limit of a bare
nucleus, the potential becomes∼1/r, which is of course
independent of the method. Our primary interest is in large
systems containing heavy noble and nearly-noble metals used
as substrates in adsorption studies. For these metals thens and
np atomic levels lie distinctly below thend levels (n ) 4 for* Corresponding author. E-mail: audrius.alkauskas@unibas.ch.
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Ag and 5 for Au), whereas the (n + 1)s and (n + 1)p levels are
relatively close to thend levels so that states derived from all
three levels overlap and significantly contribute to bonding in
the bulk and at surfaces. Treatingns andnp states together with
lower-lying ones as belonging to the core is therefore a
reasonable choice that leads to 11 electron ECPs. Includingnd
states in the core would require a large core radius and would
ignoresp-d hybridization effects that are known to be important
near the Fermi level of noble metals. On the other hand, treating
ns and np states as valence pseudo-orbitals, leading to 19
electron ECPs, while ensuring a small core radius, increases
computing time and storage at a cost that is not justified for
most properties, except those significantly affected by the
polarization of the states in question. For our purposes, 11
electron ECPs represent the best compromise.

There have already been reports by the Bonacic-Koutecky
group31,32about BLYP single-electron ECPs for silver and gold
that were successfully applied to silver and mixed silver-gold
clusters. These ECPs are energy-consistent, hence difficult to
construct, and are intended for high-quality studies of specific
properties.

For the sake of completeness, let us briefly mention existing
ECPs for silver and gold:

1. Los Alamos 11-electron ECPs16 and 19-electron ECPs,17

designated as Lanl1DZ and Lanl2DZ. These ECPs are shape-
consistent and are derived from reference calculations on an
isolated atom within scalar-relativistic Dirac-Fock theory,
which includes mass-velocity and Darwin terms.

2. Bonacic-Koutecky 1-electron ECP for silver to be used
with the BLYP functional.31,32 The parameters are fitted to
reproduce experimental observables of small systems.

3. Bonacic-Koutecky 11-electron ECP33 for silver, intended
for usage at a correlated level of theory (MRD-CI, CCSD) and
supplied with a large basis set (6s5p5d/5s3p2d). The initial
parameters were taken from the Los Alamos group and then
re-optimized in accordance with experimental data.

4. Stuttgart-Dresden 1-electron and 19-electron ECPs,34,35

designated as SDD. These energy-consistent ECPs are con-
structed to reproduce experimental observables of a single atom,
like ionization potentials and excitation energies, within rela-
tivistic Dirac-Fock theory.

5. Basch ECP for silver.36 Like Lanl1DZ, it is derived from
relativistic Dirac-Fock calculations and replaces the [Kr] core.

6. Steven-Basch-Krauss 19-electron ECPs,37 named CEP.
Like Lanl2DZ, they are shape-consistent and derived from
Dirac-Fock theory.

To the best of our knowledge, there are currently no
11-electron ECP for silver and gold derived for DFT-based
methods to be used in Gaussian codes. Motivated by our current
interests, namely the study of adsorbed molecules on silver and
gold surfaces or clusters within density-functional theory, we
found the present situation unsatisfactory. Our primary goal is
not to construct ECPs that would rival the best existing ECPs
for these metals, but rather to construct computationally effective
ECPs consistent with pseudopotentials extensively used with
plane waves together with a suitable Gaussian basis set that
would yield a LCAO description at the same level of DFT. To
derive a basis set consistent with a given ECP and a given
density functional, we follow the systematic procedure of Lippert
et al.38 Their construction is based on response functions of a
given atom that describe the linear, quadratic, cubic, etc.
response to an external perturbation. Linear response functions
are closely connected to the so-called chemical hardness,39 a
useful concept for molecular systems when interactions between

subsystems is weak. In the work presented here we included
only linear response functions, which yield a basis set of
double-ú quality. Computations on small test systems demon-
strate that results obtained with our 11-electron ECPs are
superior to these obtained with Lanl1DZ, and slightly less
accurate than those using 19-electron ECPs.

All calculations have been performed with the Gaussian03
package.40

2. Procedure

Our starting point is to select a well-defined and well-tested
pseudopotential scheme. Among several possibilities, we choose
the popular and relatively simple Troullier-Martins scheme.41

For the details of constructing numerical Troullier-Martins
pseudopotentials for the differentl-channels we refer to the
original article. Briefly, a pseudo-orbital of angular momentum
l is written in the core region asrl exp[p6(r)] with p6(r) being
a sixth-order polynomial with seven fitting constants. The latter
are adjusted to ensure norm-conservation, continuity of the
pseudo-orbital, and its first and second derivatives at a chosen
core radiusrc, as well as other specific requirements. Then,
screened pseudopotentials are derived by inverting the Schro-
dinger equation (using the all-electron energy eigenvalue) and
transferable ionic pseudopotentials are finally obtained by
subtracting from thosel-dependent pseudopotentials Hartree and
exchange-correlation potentials produced by pseudo valence
electrons. Atomic pseudo-orbitals are therefore solutions to the
single-particle radial Schrodinger equation for a screened
pseudopotential, as well as solutions of the self-consistent
Kohn-Sham equations for the corresponding ionic pseudopo-
tentials. The required all-electron calculations are performed in
the spin-restricted formalism (with half occupancies allowed)
and scalar-relativistic mass-velocity and Darwin terms are
included in the radial Kohn-Sham equation:

where Veff(r) is the effective Kohn-Sham potential and
M(r) ) 1 + (εi - Veff(r))/2c2.

2.1. Effective Core Potentials.To perform all-electron
calculations and construct a numerical Troullier-Martins DFT
pseudopotential, we use the well-tested and widely used fhi98PP
code.42 In this article we present results obtained with the BLYP
generalized-gradient functional.43,44

We choose thef (l ) 3) component to be local and equal to
the bare core potential:

In our caseZ ) 11; the l-dependent components for lower
angular momentum channels are defined as

wherel ) 0, 1, 2 (s, p, d) and TM stands for Troullier-Martins.
Because the latter pseudopotentials are finite at the origin,
Vl-L(r) behave liker-1 asr f 0 in contrast to Stuttgart-Dresden
or Los Alamos ECPs, which diverge liker-2. In a manner
similar to those ECPs we expand these projections as a finite

[ 1
2M(r)(- d2

dr2
- 1

2M(r)c2

dVeff(r)

dr
r

d
dr

1
r

+
l (l + 1)

r2 ) +

Veff(r) - εi]unl(r) ) 0 (1)

VL(r) ) - Z
r

(2)

Vl-L(r) ) Vl
TM(r) +Z

r
(3)

6864 J. Phys. Chem. A, Vol. 108, No. 33, 2004 Alkauskas et al.



sum of weighted Gaussians multiplied by the Jacobian weighting
factor r2:

wherenk ) 1 for k ) 1 andnk ) 2 otherwise. The expansion
coefficientsbk’s and exponentsúk’s are to be determined by a
suitable fitting procedure. Of course, the parameters are different
for different l-components.

2.2. Basis Set.Troullier-Martins, as well as all norm-
conserving pseudopotentials, share the property that logarithmic
derivatives of pseudo-orbitals and all-electron orbitals for a given
l are equal at the appropriate core radius and reference energy
(atomic eigenvalue). This property strictly applies in the limit
of a full basis set. In practice, one can make use of norm-
conservation if a rather good basis set is chosen.

There are many ways to generate a suitable and compact basis
set for a given problem (see, e.g., refs 45-47 and references
therein). Assuming that an atom is subject to an external
perturbation parametrized byt, Kohn-Sham orbitals can be
expanded in a Taylor series with respect to the perturbation:

Lippert et al.38 showed that the local atomic basis set

provides a rapidly convergent description of the atom embedded
in a molecule or a solid. Here we apply this procedure for a
pseudoatom keeping only linear terms. A similar procedure was
applied for pseudoatom calculations to generate basis functions
for O(N) calculations in ref 48. As the perturbation, we consider
the change in partial occupancies of atomic s and p states, the
total charge being conserved.

To be specific, s and d basis functions are derived by a least-
squares fit of a finite sum of primitive Gaussians to numerical
Troullier-Martins pseudoorbitals, that is

wherel ) 0, 2 andgl stand for normalized primitive Gaussians
with exponentsRil. Linear response s and d functions, which
we call s+ and d+, are derived by performing a spin-restricted
calculations of an atom with occupancy of d set to 10.0, but
occupancies of s and p set to 0.95 and 0.05, respectively. From
the resulting numerical pseudoorbitalsψ′, linear response
functions are obtained by a least-squares fit of the difference:

N being a normalization factor. Polarization functions p and p+

are derived by making use of the known result that the partial
occupancy of the valence p atomic state in solid silver and gold
is approximately 0.3.49 Therefore, we performed atomic calcula-
tions with occupancies of s and p states set to 0.7, 0.3 as well
as 0.65, 0.35, respectively, and derived pseudo-orbital and linear
response functions p and p+ by a similar fitting procedure.
Choosing three primitive Gaussians we obtain compact basis
sets (6s6p6d/2s2p2d) for silver and (6s6p5d/2s2p2d) for gold.

If necessary, more basis functions can be generated, and
polarization f functions can be added by slightly modifying the
procedure.

3. Results

3.1. ECPs.Numerical Troullier-Martins pseudopotentials for
silver are plotted in Figure 1. There is still freedom in
constructing a pseudopotential given a well-defined scheme,
namely, choosing the core radii at which all-electron and
pseudoatom Kohn-Sham orbitals are matched. Usually, the
bigger the radius, the smoother the pseudopotentials, and hence
the lower the cutoff for plane-wave calculations. On the contrary,
the smaller the core radius, the harder the pseudopotentials, but
the better their transferability. In plane-wave codes, constructing
a pseudopotential is therefore a tradeoff between those two
extremes. In the LCAO formulation wave functions need not
be smooth, and therefore transferability can be better. Neverthe-
less, for a meaningful comparison we choose core radii to be
the same as used in plane-wave calculations, namely 2.40 bohr
for s and d, and 2.60 bohr for p states.

The differentl-components as well as Gaussian fits in the
case of silver are depicted in Figure 2. In the course of our
work, we found that fitting a numerical ECP to a sum of
Gaussians is by far the most delicate task. It appeared easier to

Ul-L(r) ) Vl-L(r)r
2 ) ∑

k

bkr
nke-úkr2

(4)

ψ(t) ) ψ(0) + t
∂ψ
∂t

+ t2

2
∂

2ψ
∂t2

+ ... (5)

ψ,
∂ψ
∂t

,
∂

2ψ
∂t2

... (6)

ψl(r) ) ∑
i

cilgl(Ril, r) (7)

ψl
+(r) ) N(ψl(r) - ψl′(r)) ) ∑

i

dilgl(âil,r) (8)

Figure 1. Numerical Troullier-Martins pseudopotentials for silver.

Figure 2. Effective core potentials for silver. Symbols show numerical
values, and solid lines represent analytical fits.
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fit the wave functions than ECPs. Nonlinear fits were performed
with the help of Grace package,50 using the Levenberg-
Marquardt algorithm without weighting function. It is also more
important to get accurate fits for the pseudopotentials, because
SCF calculations are variational in orbital space, but not in
pseudopotentials. As a result, the performance of a given ECP
will largely depend on the care devoted to the fitting procedure,
for which sophisticated algorithms might improve the quality
of the fit.

Parameters of our ECP for silver are presented in Table 1
and those for gold in Table 2. The coefficientsb1 of eq 4 are
close to 11.0 becausen1 ) 1, whereasnk ) 2 for k > 1. Instead
of imposingb1 ) Z, we treat allbk’s and úk’s as adjustable
parameters to obtain the best possible agreement in the range
where each of theUl-L is large.

3.2. Basis Set.The pseudoorbitals and linear response orbitals
of silver are plotted in Figure 3. The p function is the most
diffuse, showing the fact that it is weakly bound, whereas the
d function is highly localized. The node of the s+ function occurs
at approximately 3.2 bohr, that of the p+ function at 5.1 bohr,
and of the d+ function at 2.0 bohr, which is almost the extent
of the pseudoorbitals themselves. Parameters of the response
function basis set of double-ú quality are presented in Tables 3
and 4.

4. Test Results

In this section we discuss test results for several simple silver
and gold systems. Results obtained with different ECPs are

compared. In the following table the present ECPs are denoted
as TM (Troullier-Martins) and SZ (single-ú) or DZ (double-
ú). For atoms, a very big basis set including twelve Gaussians
(for each ofs andd functions) was also tested in the case of
TM and Lanl1 ECPs.

4.1. Atomic Tests.Results for the silver atom are presented
in Table 5. We did not include numerical ionization potentials
(IPs) and electron affinities (EAs) mainly because neutral atom
calculations were performed in the spin-restricted formalism
(spin-singlet state with half occupancies). This raises the energy
of an isolated atom and therefore decreases the IP value and
increases the EA value. Numerical Kohn-Sham eigenenergies
are close to those of TMSZ and TMDZ; SDD also shows very
good agreement, whereas Lanl2DZ slightly overbinds d-states.
Lanl1DZ performs very poorly, over-binding d-states and under-
binding the s-state, thus giving rise to a s- d difference of
5.88 eV, which can lead to a poor description of s-d

Figure 3. Ag pseudoorbitals (top) and linear response orbitals (bottom). Symbols show numerical values, and solid lines represent analytical fits.

TABLE 1: ECP Parameters for Silver

s - L p - L d - L

k nk úk bk nk úk bk nk úk bk

1 1 1.712 11.074 1 0.897 11.074 1 12.668 9.524
2 2 1.391 -166.201 2 1.2260-22.6472 2 1.662 227.659
3 2 1.194 255.676 2 0.9789 16.8557 2 1.400-363.576
4 2 1.033 -91.757 2 1.205 150.286

TABLE 2: ECP Parameters for Gold

s - L p - L d - L

k nk úk bk nk úk bk nk úk bk

1 1 2.286 10.881 1 1.380 10.721 1 11.000 9.383
2 2 1.088 -97.386 2 1.111-63.222 2 1.660 225.822
3 2 1.267 270.134 2 0.987 60.634 2 1.342 286.233
4 2 1.499 -171.733 2 1.437-497.561

TABLE 3: Parameters of the Response Function Basis Set
for Silver

s p d

i Ri0 ci0 Ri1 ci1 Ri2 ci2

1 0.2453 -2.8644 0.4583 -0.0478 1.3546 0.6361
2 0.2023 3.29386 0.1198 0.4529 0.4226 0.4217
3 0.0365 0.49972 0.0274 0.6994 0.1271 0.1444

s+ p+ d+

i âi0 di0 âi1 di1 âi2 di2

1 0.2725 -2.4880 0.5756 -0.0417 1.1744 0.2168
2 0.1765 4.4625 0.1224 0.59572 0.6084 0.1877
3 0.0570 -2.0099 0.0067 -0.8984 0.0982 -1.0009

TABLE 4: Parameters of the Response Function Basis Set
for Gold

s p d

i Ri0 ci0 Ri1 ci1 Ri2 ci2

1 0.2668 -2.9011 0.3837 -0.0770 1.2109 0.5513
2 0.2137 3.4494 0.1268 0.4872 0.4059 0.4709
3 0.0354 0.3681 0.0290 0.6863 0.1257 0.1801

s+ p+ d+

i âi0 di0 âi1 di1 âi2 di2

1 0.2870 -2.9512 0.4947 -0.0700 0.8854 0.4146
2 0.1870 5.5399 0.1306 0.6590 0.08670-0.9702
3 0.0750 -2.6642 0.0084 -0.8922
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hybridization in polyatomic systems. Even when the large 12Z
basis set is used in conjunction with TM and Lanl1 ECPs, the
trends remain the same. Compared to experimental IP and EA
values, all ECPs with double-ú basis sets (except Lanl1DZ)
show a good agreement. Lanl1DZ, on the contrary, underesti-
mates IP and severely underestimates EA; TMSZ, being of
“minimal” nature, performs not too well either but gives some
improvement over Lanl1DZ. The same tendencies are apparent
for the gold atom (Table 9). For the eigenvalues, SDD and
TMDZ perform very well, whereas Lanl2DZ slightly overbinds
d-states. Lanl1DZ again overbinds d-states and underbinds the
s-state. For IPs and EAs, Lanl2DZ, SDD, and TMDZ perform
very much alike, whereas Lanl1DZ fails once again. Given that
SDD, CEP, and Lanl2DZ are 19-electron ECPs, the good
performance of 11-electron ECP TMDZ is encouraging.

4.2. Diatomic Molecules.Turning now to properties of
dimers, for Ag2 the performance of TMDZ is poorer than that
of Lanl2DZ and SDD if compared to experimental results.

Lanl1DZ performs worse than TMSZ, but keeping in mind the
underbinding tendency of the BLYP functional,51 the larger-
than-experimental values of binding energies obtained with
Lanl2DZ and CEP seem to indicate an intrinsic deficiency of
these ECPs when used with DFT. For Au2 (Table 10), all ECPs
seem to perform rather well; SDD, CEP, and Lanl2DZ yield a
somewhat better agreement, whereas Lanl1DZ fails here also.
For the case of AgH (Table 7), Lanl2DZ and SDD perform
slightly better than TMDZ, but the latter gives significant
improvement over Lanl1DZ. The dipole moments predicted by
of all the ECPs, except Lanl1DZ, are close to each other.

It is very important to test molecules, in which charge transfer
is expected to be significant. Results for molecule AgCl and
AuF are presented in Tables 8 and 11, respectively (6-31G basis
set was use for F, and Lanl2DZ for Cl). Compared to Lanl2DZ,
CEP and SDD, TMDZ shows the same trends as in Ag2 and
Au2: equilibrium distances are slightly larger, binding energies
and vibrational frequencies slightly smaller, but dipole moments
are similar, as well as Mulliken charges on chlorine and fluorine
atoms.

We note, however, that the comparison of different ECPs
should be viewed with some care. Lanl2DZ, SDD, and CEP
include semicore states and there is a total energy gain in the
molecular system because of the semicore polarization. In
contrast, no semicore states are included in the calculations
employing TM and Lanl1 ECPs. Nevertheless, in our opinion,
the adopted method of constructing effective core potentials and
basis functions for Gaussian codes has the advantage of being
systematic and thus open for improvement.

TABLE 5: Comparison of Kohn -Sham Eigenenergies,
Ionization Potentials, and Electron Affinities of the Ag Atom

ε4dv (eV) ε4dV (eV) ε5sv (eV) Etot (au) IP (eV) EA (eV)

numerical
value

-7.34 -4.45 -35.9900

Lanl1DZ -9.80 -9.67 -3.92 -38.9551 6.97 0.39
Lanl2DZ -7.46 -7.32 -4.60 -145.6558 7.80 1.10
Lanl1-12Z -9.75 -9.62 -3.94 -38.9621 7.05 0.97
SDD -7.30 -7.13 -4.73 -146.9080 8.08 1.43
CEP -7.13 -6.97 -4.53 -146.1825 7.88 1.06
TMSZ -7.42 -7.20 -4.67 -35.9650 8.14 0.63
TMDZ -7.34 -7.16 -4.66 -35.9652 7.92 1.18
TM-12Z -7.23 -7.05 -4.72 -35.9797 8.03 1.42
exp 7.58 1.30

TABLE 6: Comparison of Equilibrium Distances re, Binding
EnergiesDe, and Vibrational Frequenciesωe for the Ag2
Dimer.

ECP re (Å) De (eV) ωe (cm-1)

Lanl1DZ 2.75 1.26 131
Lanl2DZ 2.62 1.69 174
SDD 2.60 1.66 175
CEP 2.62 1.68 172
TMSZ 2.71 1.41 157
TMDZ 2.67 1.48 164
exp 2.50 1.67 192

TABLE 7: Comparison of Equilibrium Distances re, Binding
EnergiesDe, Vibrational Frequencies ωe, Dipole Moments µe,
and Mulliken Charges on Hydrogen Atom ∆qH for the AgH
Molecule

ECP re (Å) De (eV) ωe (cm-1) µe (D) ∆qH

Lanl1DZ 1.77 2.00 1385 3.25 -0.06
Lanl2DZ 1.64 2.41 1702 2.55 +0.03
SDD 1.63 2.47 1765 2.31 +0.05
CEP 1.64 2.44 1742 2.40 +0.03
TMSZ 1.69 2.26 1643 2.45 +0.01
TMDZ 1.68 2.29 1640 2.40 +0.02
exp 1.62 2.39 1760

TABLE 8: Comparison of Equilibrium Distances re, Binding
EnergiesDe, Vibrational Frequencies ωe, Dipole Moments µe,
and Mulliken Charges on Chlorine Atom ∆qCl for the AgCl
Molecule.

ECP re (Å) De (eV) ωe (cm-1) µe (D) ∆qCl

Lanl1DZ 2.47 2.91 282 6.30 -0.39
Lanl2DZ 2.41 2.76 308 5.29 -0.28
SDD 2.38 2.82 312 5.05 -0.25
CEP 2.39 2.83 314 5.04 -0.30
TMSZ 2.46 2.51 288 5.06 -0.35
TMDZ 2.45 2.67 292 5.15 -0.33
exp 2.28 3.24 344 5.73

TABLE 9: Comparison of Kohn -Sham Eigenenergies,
Ionization Potentials, and Electron Affinities the Au Atom

ε4dv (eV) ε4dV (eV) ε5sv (eV) Etot (au) IP (eV) EA (eV)

numerical
value

-6.76 -5.77 -32.9259

Lanl1DZ -8.88 -8.66 -4.80 -34.7921 8.24 0.86
Lanl2DZ -7.14 -6.92 -6.07 -135.3516 9.49 2.22
Lanl1-12Z -8.80 -8.58 -4.87 -34.8028 8.28 1.52
SDD -6.93 -6.69 -5.95 -135.6906 9.53 2.29
CEP -6.72 -5.78 -6.49 -136.0018 9.39 2.03
TMSZ -7.00 -6.70 -5.96 -32.9691 9.82 1.54
TMDZ -6.93 -6.65 -5.95 -32.9693 9.50 2.15
TM-12Z -6.80 -6.53 -6.08 -32.9836 9.66 2.39
exp 9.23 2.31

TABLE 10: Comparison of Equilibrium Distances re,
Binding Energies De, and Vibrational Frequenciesωe for the
Au2 Dimer

ECP re (Å) De (eV) ωe (cm-1)

Lanl1DZ 2.74 1.53 138
Lanl2DZ 2.58 1.99 156
SDD 2.60 2.00 158
CEP 2.59 2.06 159
TMSZ 2.65 1.74 148
TMDZ 2.62 1.85 153
exp 2.47 2.29 191

TABLE 11: Comparison of Equilibrium Distances re,
Binding Energies De, Vibrational Frequencies ωe, Dipole
Moments µe, and Mulliken Charges on Fluorine Atom ∆qF
for the AuF Molecule

ECP re (Å) De (eV) ωe (cm-1) µe (D) ∆qF

Lanl1DZ 2.17 2.83 469 4.44 -0.34
Lanl2DZ 2.00 2.80 497 3.38 -0.30
SDD 2.00 3.11 512 3.75 -0.26
CEP 2.00 2.98 534 3.47 -0.28
TMSZ 2.05 2.42 483 3.12 -0.30
TMDZ 2.03 2.87 510 3.58 -0.27
MP452 1.94 3.05 540 5.00
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5. Conclusions

We have shown how Troullier-Martins atomic pseudo-
potentials, generated for a particular density functional, can be
used to construct effective core potentials for Gaussian-based
codes. Going beyond the present double-ú level, basis sets of
triple-ú and higher quality, as well as polarization functions,
can be constructed by similar means. Our 11-electron ECPs are
not expected to perform better than 19-electron ECPs (both
semiempirical like SDD or shape-consistent like Lanl2DZ) but
give significant improvement over non-DFT derived 11-electron
ECPs. They can be thus used for studies of larger systems, like
molecules adsorbed on noble metal clusters and slabs. Results
can in principle be more meaningfully compared to plane-wave
calculations based on the same density functional. In the present
study we tested the performance of these ECPs (together with
a double-ú response function basis set) for small systems
containing silver and gold atoms and showed them to perform
well as opposed to 11-electron ECP derived from Dirac-Fock
calculation (Lanl1DZ). This clearly demonstrates that the
derivation of ECPs and their application should be based on
the same model chemistry.
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