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The distance (RDA) and orientation dependence of the rate for electronic excitation transfer (EET) from a
segment of polyfluorene (PF6) to tetraphenylporphyrin (TPP) is studied using semiempirical quantum chemical
methods. The fundamental issue concerns the applicability of the traditional Fo¨rster theory, which uses a
point-dipole approximation, in describing the transfer rate in such systems involving large chromophores that
may approach each other closely. In our theoretical calculation of the resonance-Coulomb rate, explicit account
is taken of the extended transition dipole moment densities that are spread along the donor and acceptor
molecules. Although we recover the Fo¨rster rate at large separations, the present study reveals several results
not anticipated in the conventional theory: (a) The actual rate shows a much weaker short-range distance
dependence (closer toRDA

-2 than to the Fo¨rsterRDA
-6 value). The Fo¨rster expression overestimates the energy

transfer rate by more than 2 orders of magnitude at short separation (RDA < 1 nm). (b) The distance at which
the Förster rate is recovered is observed to be rather large (∼10 nm). Thus, the Fo¨rster expression seems to
be inappropriate for condensed-phase systems where donors and acceptors can be closely packed, as, for
example, in thin films. (c) Significant excitation transfer can occur via states that are optically dark (that is,
carry very small oscillator strength). Fo¨rster theory excludes these potentially important pathways. (d)
Irrespective of the interchromophore separation, the calculated orientation dependence of the resonance-
Coulomb rates generally follows the Fo¨rster expression, with dependence on the cosine of the angle between
the donor and acceptor transition dipole moment vectors. At close distances, however, the orientation
dependence can make the rates differ by a factor of∼2.

1. Introduction

The fluorescence resonance energy transfer (FRET) phenom-
enon has provided physicists, chemists, and biologists with a
very powerful and versatile tool for studying the structure and
dynamics of large molecules in the condensed phases. Because
the scale for energy transfer is strongly dependent on the
distance between the donor and the acceptor, FRET has been
used to study the folding of proteins and DNA, as well as the
conformational dynamics of other polymers. In many important
photophysical and photochemical processes, the excitation
energy of an excited state can migrate, by the same resonance
transfer process, over a long distance before the energy is
emitted as light (as in many conjugated polymers) or used up
in chemical reactions, as in the photosynthetic reaction center.
The dynamics of this process can often be studied optically.
Because this transfer process is central to the efficient conversion
of solar energy to chemically storable forms in plants and
bacteria, the mechanism of this long-range energy transfer has
been a subject of much attention in the past few decades.1-15

Light-harvesting antenna complexes, for example, can collect
and channel solar energy to the reaction center with 95% overall
efficiency. It is believed that excitation transfer in conjugated
polymers is similarly facile and that this process ultimately
influences the optoelectronic function of devices fabricated from
these organic semiconductors.16 The study of electronic excita-

tion energy transfer (EET) mechanisms has taken an additional
importance because of the discovery that, in a thin film
environment, a conjugated polymer can consist of long rodlike
stiff segments that are broken by quenched chemical defects.17-19

Excitation transfer in such a polymeric system may be quite
different from that in a random-coil polymer, which has been
often considered.20,21 The interchain migration rate ultimately
will be dependent on the relative internal geometries between
the donor and acceptor chromophores. An understanding of the
spatial and orientation dependence of the excitation transfer is
therefore one key to optimizing the performance of molecular-
based devices involving electronic excitation transfer.

Despite the great interest in this process and the routine use
of the Förster mechanism22-39 to explain the optical properties
of conjugated polymers, there have been surprisingly few
microscopic calculations of the transfer rate.40,41Such a calcula-
tion should start directly from the Fermi Golden rule rate
expression and evaluate the Coulomb matrix element within the
donor-acceptor basis set.42-49 Although the Fo¨rster theory37,38

conveniently relates the transfer rate to experimentally measur-
able donor fluorescence and acceptor absorption spectra via the
simple and elegant expression

the point-dipole approximation used in the formulation is
expected to be inadequate at short distances, particularly when
the electrostatics of the donor and acceptor systems themselves
are extended, as in the case of conjugated polymers.50,51 In the
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aforementioned rate expression,kD
rad denotes the donor radia-

tive decay rate andRF represents the Fo¨rster radius, which can
be expressed as an overlap integral between the donor emission
ID(ω) and acceptor absorptionRA(ω) spectra:

The orientation factorκDA
2 , which takes into account the effect

of the relative orientation of the two transition dipole moment
vectors (see Figure 1), is given by

whereθD and θA are the angles that the donor and acceptor
transition dipole moments, respectively, make with the inter-
molecular separation vectorRDA andΦARD is the dihedral angle
defined by the corresponding three vectors. A quick inspection
of the orientation factor shows that theκDA

2 value can range
from 0 to 4. It is common to assume a random orientational
average value of2/3, because this parameter is not easily
extracted from most experiments.

The explicit connection of the Fo¨rster rate to optically bright
states highlights another limitation of the approach. Fleming
and co-workers have investigated the appropriateness of Fo¨rster
theory in the context of energy transfer dynamics in aggregated
molecular assemblies.42-45 These authors not only presented a
general formalism for calculating the energy transfer rate in
multiple donor-acceptor systems, but also illustrated the two
aforementioned limitations of the Fo¨rster expression. Their
results show that, at short distances, the rate can be considerably
different from the prediction of the Fo¨rster rate, which is due
to the transfer to optically dark acceptor states.43 Recently,
Beljonne et al. compared the relative rates of interchain to
intrachain EET in acceptor-capped conjugated polymers using
a multicentric distributed monopole method.40 Their calculations
show that intramolecular energy transport along segments of a
polymer is intrinsically slow, compared to intermolecular
transfer between polymer chains. Although interchain excitation
transfer occurs within a few tens of picoseconds, intrachain
transfer proceeds on a nanosecond time scale (a slow rate

compared to typical excited-state depopulation rates of conju-
gated polymers). Their results also indicate that their multicentric
formulation of EET is less sensitive to donor-acceptor orienta-
tion then is Fo¨rster theory. Thus, although one clearly knows
that the Fo¨rster expression is inadequate at short separation
between the donor and the acceptor, not much seems to be
known about the quantitative aspects of this dependence.

In the present study, we investigate the distance and orienta-
tion dependence of EET between a six-unit oligomer of
polyfluorene (PF6) and tetraphenylporphyrin (TPP); the chemical
structure and representative orientations of the two are given
in Figure 1. In this system, one expects very efficient energy
transfer from the blue-emitting conjugated polymer (at∼420
nm) to the red-emitting TPP guest molecules (at∼620 nm).52

Such systems are of interest, because related host-guest systems
comprised of polymer/polymer and polymer/dye blends are
currently being utilized to achieve color tunability and saturated
color emission53,54 in displays, as well as to reduce self-
absorption loss in laser applications.55-57 Cerullo et al. recently
observed ultrafast EET on the picosecond time scale from poly-
(9,9-dioctylfluorene) (PFO) to TPP in thin films using femto-
second pump-probe spectroscopy.52 When fitting their results
to the Förster expression, they obtained a value of 4.2 nm for
the Förster radius. Considering that typical radiative lifetime
for conjugated polymers is on the order of a nanosecond and
that the Fo¨rster rate dissipates asRDA

-6 with increasing donor-
acceptor (DA) separation, the excitation must be transferring
at a distance of∼1 nm or less (see eq 1). This is the regime
where one expects the Fo¨rster treatment to be most limited. An
approach that goes beyond the point-dipole simplification is
necessary for treating molecular assemblies with similar length
scales; we present such an approach in this paper. Our main
objectives for studying this particular system is that it provides
us with a well-defined, experimentally accessible and compu-
tationally tractable system that can be used to answer funda-
mental questions about excitation transfer, particularly, the
distance and orientation dependence of the rate in conjugated
polymeric systems.

The computational approach used in this study is based on a
classic semiempirical Pariser-Parr-Pople (PPP) Hamiltonian,58-60

Figure 1. Schematic representation of the donor chromophore polyfluorene (PF6) and the acceptor chromophore tetraphenylporphyrin (TPP) in an
arrangement where the transition dipole moments are aligned (1) parallel to each other and (2) orthogonal to the donor-acceptor (DA) intermolecular
axis (cofacial parallel) and parallel to the DA intermolecular axis (collinear parallel). The related cofacial orthogonal and collinear orthogonal
orientations are similar in arrangement, except that the TPP acceptor has been rotated 90° about they-axis such that the transition dipole moment
vectors are orthogonal to each other. The red green blue (RGB) axes define the reference frame of each molecule, whereas theB-axis (z-axis) shows
the direction of the transition dipole moment vector.

RF
6 ∝ κDA

2 ∫0

∞ dω
ω4

ID(ω)RA(ω) (2)

κDA
2 ) (sin θD sin θA cosΦARD - 2 cosθD cosθA)2 (3)
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coupled with single configuration interaction (SCI).61 The PPP
electronic structure method has proved to be quite adequate in
reproducing the electronic transition energies of related PPV
class of conjugated polymers and similar conjugated ring
heterocycles.17,62-65 From the PPP/SCI wave functions, elec-
tronic transition energies, and transition dipole moments (at
optimized geometries of PF6 and TPP), we compute the full
resonance-Coulomb coupling matrix element as well as the
point-dipole approximation to the coupling. Combined with
molecular visualization, this method allows us to explore the
geometrical aspect of excitation transfer and to delineate the
limitations of the Fo¨rster theory. We find the following main
results. For a given orientation, the transfer rate between a rigid
segment of PF6 and TPP varies rather slowly (∼RDA

-2) at short
distances. To obtain the familiarRDA

-6 form quantitatively, one
must reach anRDA value of∼10 nm. In qualitative agreement
with time-resolved experimental results,52 the resonance-
Coulomb rate at short distances is on the order of 1012 s-1. At
the same separations, the Fo¨rster expression would predict a
rate close to 1015 s-1. We find that a significant amount of
energy transfer can occur to optically dark acceptor states, that
is, to states that have very small oscillator strengths. These
processes are not included in the conventional Fo¨rster formula-
tion where the rate is proportional to the spectral overlap of the
donor emission and acceptor absorption. For a given DA
separation, both the Fo¨rster and resonance-Coulomb rates
effectively follow a cosine function of the angle between the
DA transition dipole moment vectors, although the absolute rates
are dependent on the theory used. However, for fixed parallel
orientation of transition dipole vectors at close DA separation,
the resonance-Coulomb rate can vary by a factor of∼2,
depending on the degree of rotation about the acceptor transition
dipole axis. Even at the Fo¨rster radius, such orientation
dependence can provide resonance-Coulomb rates that vary by
30%. The corresponding Fo¨rster rates lack this orientation
dependence. In the orthogonal arrangement of transition dipole
moment vectors at close DA separation, the resonance-Coulomb
rates can differ from Fo¨rster theory by 3 orders of magnitude;
however, the rates in this arrangement are on a time scale of
nanoseconds, so these rates are not expected to be of practical
interest.

The organization of the remainder of the paper is as follows.
To clarify the approximations inherent in Fo¨rster theory, we
provide in the next section a brief derivation of the Fo¨rster rate
equation, starting from the Fermi Golden rule expression. An
alternative approach, which bypasses these approximations, is
also presented for calculating EET rates within a microscopic
framework based on quantum chemical methods. We then
describe the details of our numerical implementation. The
Results and Discussion section delineates the Fo¨rster and non-
Förster regimes of EET by comparing the distance and orienta-
tion dependence of the transfer rates from the two methods.
Last, we assess the impact of the present results on the
interpretation of experimental studies of excitation transfer and
conclude with prospects for further study.

2. Theoretical Formulation
The electronic excitation transfer process can be broadly

characterized into two categories: coherent and incoherent.41,66

The coherent case corresponds to the strong electronic coupling
limit where the time scale of EET is much faster than that of
vibrational relaxation. An initial local excitation of the donor,
thus, rapidly delocalizes spatially across both the donor and
acceptor chromophores. The system can then be represented
simply as a two-level model comprised of linear combinations

of localized excitation on the donor and localized excitation on
the acceptor. Emission from excimers and exciplexes are
radiative signatures of the aftermath of EET in the strong
coupling limit. At relatively high temperatures and in relatively
disordered systems such as thin films of conjugated polymers,
it is believed that the coupling is weak and, thus, the relevant
excitation migration can be assumed to be incoherent. In this
limit, fast nuclear relaxation localizes the initial excitation prior
to EET; subsequent relaxation and localization of the excitation
on the acceptor effectively makes the entire process irreversible.
One then can describe the electronic excitation migration as a
random walk between pairs of donor and acceptor molecules.20

The presence of excimers and aggregates in polymer thin films
have been correlated with the reduction in photoluminescence
quantum yield (possibly due to EET to these low-energy traps).
However, the present study of EET will concentrate only on
those elements associated with weak coupling. The analysis
developed here, nonetheless, would also be applicable to
excimers. However, the detrimental role of such photophysical
traps is important and is an appropriate subject for future study.

Mediated by the Coulombic interactions between the donor
and acceptor electronic states, electronic excitation transfer
involves the simultaneous de-excitation of the donor and
excitation of the acceptor chromophores. The initial state is
composed of a direct product of the donor in the excited state
with the acceptor in the ground state,|ΨD*

M ΨA0
N 〉 ) |ψD

* øD*
M ψA

0

øA0
N 〉, where øD*

M is the Mth vibrational state of the excited
electronic state of the donorψD

* andøA0
N is theNth vibrational

state of the acceptor in the ground electronic stateψA
0 . The

final state describes the composite system with the donor in
the ground state and the acceptor in the excited state,|ΨD0

S

ΨA*
T 〉. Within first-order time-dependent perturbation theory,

the thermal average transition rate is given by the Fermi Golden
rule,

where the sum over the sets of quantum states of nuclear modes
on the initial electronic surface{M, N} averages over the
quantum distribution of initial conditions with weightsf(ED*

M )
and f(EA0

N ), and the sum over{S, T} times the delta function
includes the final nuclear states that conserve the total energy.
In the Condon approximation, the matrix element of the
Coulomb operator reduces to an electronic coupling weighted
by Franck-Condon overlaps between the initial and final
vibrational states:

VDA
Coul denotes the Coulomb potential,

whereRDA represents the distance between the centers of mass
of the donor and acceptor andrD(j) andrA(k) respectively denote
the coordinates of thejth electron of the donor and thekth
electron of the acceptor. At short donor-acceptor separation
where direct overlap between orbitals of the donor and the

kDA )
2π

p
∑

{M,N}
∑

{S,T}
f(ED*

M ) f(EA0
N )|〈ΨD

MΨA0
N |VDA

Coul|ΨD0
S ΨA*

T 〉|2 ×

δ(ED*
M + EA0

N - EA*
T - ED0

S ) (4)

〈ΨD*
M ΨA0

N |VDA
Coul|ΨD0

S ΨA*
T 〉 )

〈ψD
* ψA

0 |VDA
Coul|ψD

0 ψA
* 〉〈øD*

M |øD0
S 〉〈øA0

N |øA*
T 〉 (5)

VDA
Coul )

1

2
∑
j,k

e2

|RDA + rD(j) - rA(k)|
(6)
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acceptor occurs, the exchange integral in the electronic coupling
dominates the interaction and the transfer proceeds via the so-
called Dexter mechanism.67 The Dexter rate decreases expo-
nentially with distance as exp(-RDA/λD), whereλD is the Dexter
radius (typically<5 Å). For DA separations beyond van der
Waals contact, the Coulomb integral dominates and the transfer
proceeds via the long-range resonance-Coulombic interaction
of the DA transition dipole densities.68,69 Although the Dexter
mechanism can be operative for some molecular assemblies, it
is unlikely to be the dominant mechanism in the case of the
conjugated polymers, where the distance of closest approach
between the DA pairs is hindered by steric interactions. The
main source of the steric hindrance are the flexible side groups,
which are normally functionalized onto the backbone to increase
solubility. Thus, the resonance-Coulomb mechanism is believed
to be the main cause of electronic excitation transfer in
conjugated polymers. If one expands eq 6 in a multipole
expansion in powers of|rD(j) - rA(k)|/|RDA| and keep terms
only up to second order, one can express the electronic coupling
in terms of transition dipole moments:

where the orientational factor is defined asκDA ) nD‚nA -
3(eDA‚nD)(eDA‚nA), wherenD andeDA are unit vectors pointing
in the directions of the transition dipole momentdD and donor-
acceptor distance vectorRDA, respectively. To obtain the Fo¨rster
expression for the rate in terms of the S1 f S0 donor emission
spectrum and the S0 f S1 acceptor absorption spectrum, one
decouples the transition dipole moment of the donor from that
of the acceptor and rewrites the delta function in the rate as

whereE is the excitation energy involved in the transfer (E )
pω). The donor transition dipole moment then is related to the
donor fluorescence spectrum by

and the acceptor transition dipole moment is related to the
acceptor absorption coefficient by

where the inclusion of the index of refractionη accounts for
the effect of the medium on the speed of light (c). The final
rate expression

is dependent on the fluorescence and absorption characteristics
of the donor and acceptor, respectively, and the rate decreases
as the sixth power with increasing donor-acceptor separation.
It is common to express the Fo¨rster rate in the simpler and
elegant form of eq 1, where the Fo¨rster radiusRF is defined as
the critical separation for which the excitation transfer rate is
equal to the radiative decay rate of the isolated donor chromo-
phore. Note that while fitting the Fo¨rster expression to experi-
mental EET rates, one must determinekD

rad and RF indepen-
dently. The computation ofRF also entails performing an
unrestricted averaging over the ensemble of orientations between
the donor and acceptor chromophores (see eq 2).70-72

In terms of the fluorescenceFD(ω) and the absorptionAA(ω)
line shapes, with each normalized to a unit area on an energy
scale, the EET rate takes an alternative, more general, form that
does not invoke an expansion of the Coulomb operator for large
separation, namely

whereJ ≡ ∫0
∞dωFD(ω)AA(ω) is the spectral overlap integral

and〈VDA
Coul〉 denotes the matrix element of the Coulomb poten-

tial between the initial and final electronic states. The Franck-
Condon factors and energy conservation condition is contained
within this spectral overlap integral. In the point-dipole ap-
proximation, eq 12 reduces to the Fo¨rster expression.

Notably, at this juncture, the expression in eq 12 does not
explicitly assume that the donor and acceptor states involved
are bright states. The Coulomb coupling between dark states,
or between bright and dark states, can also be obtained from
〈VDA

Coul〉. However, the Franck-Condon factors for vibronic
states satisfying energy conservation are not provided by the
line shape overlap in the equations, because the dark states do
not, of course, contribute there. In the following calculations,
we treat both the bright and dark states in terms of the same
generic line shape and overlap (see Section 2.1); that treatment
simply creates the same dependence on the DA energy gap for
all state pairs (see eq 14, below).

As discussed by others previously, this multipole expansion
in powers of|rD(j) - rA(k)|/|RDA| should become unreasonable
when the distance|rD(j) - rA(k)| becomes comparable to|RDA|.
This happens at relatively large values of|RDA|, in the case of
spatially extended systems, such as conjugated polymers. For
such systems and distances, one must evaluate the full resonance-
Coulomb matrix element directly, using quantum chemical
methods.

3. Computational Details

We have considered excitation transfer from an oligomer of
fluorene with degree of polymerization of 6 to a TPP molecule,
with both the donor and the acceptor held fixed at a set of
distances and orientations. The optimized first singlet excited-
state geometries of the donor PF6 was obtained within the
semiempirical AM173 model with complete active space con-
figuration interaction (CI); the active space was increased
systematically until convergence of the energy occurred. The
optimized ground-state structure of TPP was obtained with an
AM1 single determinant treatment. From the optimized geom-
etries, we form the matrix element of the Coulomb operator
between wave functions described within the simpler PPP
Hamiltonian.58-60 The excited state consists of a linear combi-
nation of single excitation determinants, whereas the SCF
determinant describes the ground state. One-center repulsion

kDA ) 2π
p

|〈VDA
Coul〉|2∫0

∞
dωFD(ω)AA(ω) (12)

〈ψD
* ψA

0 |VDA
Coul|ψD

0 ψA
* 〉 ≈ dD·dA

|RDA|3
- 3

(RDA·dD)(RDA·dA)

|RDA|5
(7)

) κDA

|dD||dA|
|RDA|3

δ(ED*
M + EA0

N - EA*
T - ED0

S ) )

∫-∞

∞
dEδ(ED*

M - ED0
S - pω)δ(EA0

N - EA*
T + pω) (8)

ID(ω) )
4η3ω3

3pc3
|dD|2∑

{M}
∑
{S}

f(ED*
M )|〈øD*

M |øD0
S 〉|2 ×

δ(ED*
M - ED0

S - pω) (9)

RA(ω) )
4π2ηω

3c
|dA|2∑

{N}
∑
{T}

f(EA0
N )|〈øA0

N |øA*
T 〉|2 ×

δ(EA0
N - EA*

T + pω) (10)

kDA
Förster)

9pc4
κDA

2

8πη|RDA|6 ∫0

∞ dω
ω4

ID(ω)RA(ω) (11)
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and core parameters, used in our PPP implementation, were
derived from the spectroscopic data of Hinze and Jaffe.63,74The
two-electron repulsion matrix elements were obtained from the
Mataga-Nishimoto equation,75 whereas the resonance integrals
follow directly from the Linderberg equation,76 using Slater 2p
atomic orbitals. Electronic transition energies to excited states
and the corresponding oscillator strengths were obtained from
configuration interaction with all possible single excitations
(SCI).61 Similar procedures applied to related conjugated
systems, including ring heterocycles, were successful in repro-
ducing experimental spectra.17,62-65

One can then readily evaluate the matrix element of the
Coulomb potential between electronic states described within
the PPP method.58-60 The electronic coupling takes the form

whereCa
r and Ca′

r′ are, respectively, the SCI expansion coef-
ficients describing the donor and acceptor excited states,cµ

r is
theµth expansion coefficient of molecular orbitalr, andγµν is
the two-electron repulsion matrix element; the derivation is
provided in the Appendix. We note that the SCI and the
molecular orbital coefficients that enter into the expression above
are obtained from separate calculations for the donor and
acceptor molecules. Our calculation of the EET transfer rate
proceeds directly from eq 12. In addition to the matrix element,
one also needs the spectral overlap integral. Because we do not
explicitly treat nuclear motion here (the donor and acceptor
geometries are held static), we only have delta function spectra
from the singlet excitation energy calculations. The effect of
the Franck-Condon factors within the spectral overlaps is to
broaden the distribution of transition energies. To mimic this
homogeneous broadening, we convolute each “stick” spectra
with a Gaussian of width 30 nm centered at each transition
energy; this value is comparable to widths used in earlier spectral
fittings.17,50,77Generally, of course, the widths of the donor and
acceptor spectra are particular to the chromophore and environ-
ment. However, this rough scheme is sufficient for our current
comparative study of the Fo¨rster expression and the full rate;
the choice of the width parameter affects the absolute radial
values but not the relative radial values of the transfer rate (see
eqs 15 and 16). The overlap between two Gaussian spectra of
equal widthσ whose centers are displaced by the amount∆DA

is given by

With all terms thus explicitly defined, the final expressions
for the EET rate, within the PPP formalism and within the
Förster approximation, are

The standard form of the Fo¨rster rate equation (eq 11) is written
in terms of experimental fluorescence and absorption spectra,
with an orientation factor reflecting the ensemble average of
relative orientations between the donors and acceptors. The
transition dipole moment vectors are embedded within the
fluorescence (eq 9) and absorption (eq 10) spectra and are
experimentally inaccessible. We have the actual transition dipole
moment vectors within our microscopic formulation of EET;
therefore, we directly compute the point-dipole approximation
to the resonance-Coulomb coupling. For a specific donor-
acceptor orientation, one would need to sum over the rates
between all pairs of DA excitation transition energies. The
macroscopic rate also entails averaging over an ensemble of
microscopic donor-acceptor orientations representative of the
bulk system.

4. Results and Discussion

The spatial extent, intermolecular separation, and relative
orientations of transition dipole densities on the donor and
acceptor chromophores can be viewed as ultimately determining
the rate of electronic excitation transfer. While it is routine to
analyze experimental measurements according to Fo¨rster theory,
as noted previously, such a point-dipole approximation to the
rate is expected to be invalid when the transition dipole densities
are distributed on a length scale similar to the DA separation.
Considering that the first singlet exciton state in conjugated
polymers is delocalized over a few monomer units spanning
∼20 Å or more,17,50,51,78,79excitation transfer in this class of
materials is expected to include the non-Fo¨rster regime. The
limitations of the point-dipole formulation are delineated in this
section by comparing the calculated distance and orientation
dependence of the Fo¨rster rate to the full resonance-Coulomb
rate calculated from identical wave functions.

Because electronic transitions are fundamental to the theory,
we begin by presenting the values obtained here for singlet
excitation energies and corresponding oscillator strengths for
the donor PF6 and acceptor TPP molecules (Table 1). As the
geometry of the donor molecule corresponds to the optimized
geometry in the first excited state, the donor transition energies
represent fluorescence, whereas the transition energies for the
optimized ground-state acceptor represent absorption. The key
motivation in deciding to optimize PF6 in the lowest excited
state rather than in other higher excited states is that it is the
dominant optically active mode (Table 1; 358 nm) and that the
nuclear relaxation of the donor is expected to precede energy
transfer to an acceptor. Thus, it seems justified to assume that
EET occurs from the relaxed lowest excited state of the donor

TABLE 1: Donor and Acceptor Excitation Energy (E) and
Oscillator Strength (f)a

donor acceptor

E (eV) E (nm) f E (eV) E (nm) f

3.464 357.897 4.34 1.837 675.113 0.26
3.736 331.866 0.18 1.983 625.087 0.06
3.973 312.104 0.82 2.893 428.637 2.00
4.206 294.790 0.08 2.964 418.330 1.44
4.453 278.446 0.36 3.182 389.649 0.70
4.899 253.075 0.14 3.378 367.078 0.38

3.663 338.514 0.26
3.671 337.769 0.06
3.793 326.848 0.10
4.075 304.289 0.22

a The experimental absorption spectrum of the PFO donor peaks at
385 nm, whereas the absorption spectrum of the TPP acceptor peaks
at 418 nm.〈ψD

* ψA
0 |VDA

Coul|ψD
0 ψA

* 〉 ) ∑
ar

∈{D}

∑
a′r′

∈{A}

Ca
rCa′

r′[2∑
µν

cµ
r cµ

acν
a′cν

r′γµν] (13)

J ≈ xπ
2σ

exp(-
∆DA

2

4σ2) (14)

kDA )
2π

p | ∑
ar

∈{D}

∑
a′r′

∈{A}

Ca
rCa′

r′[2∑
µν

cµ
r cµ

acν
a′cν

r′γµν]|2 xπ

2σ
×

exp[-∆DA
2 /4σ2] (15)

kDA
Förster) 2π

p | dD·dA

|RDA|3
- 3

(RDA·dD)(RDA·dA)

|RDA|5 |2 xπ
2σ

exp(-
∆DA

2

4σ2)
(16)
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molecule. This simplification may not be applicable for other
systems; however, the generalization to include multiple donor
states, as well as multiple acceptor states, is relatively straight-
forward.42 The TPP acceptor molecule exhibits significant
oscillator strengths from 338 nm to 429 nm (see Table 1). The
aforementioned calculated excitation energies agree reasonably
well with the experimental absorption spectra of PFO (385 nm)
and TPP (418 nm).52 It is expected that the effect of vibronic
progression will red-shift the computed excitation energies of
the PF6 donor to wavelengths that are more representative of
the vibronic bands [423 nm, (0-0); 441 nm, (0-1); 468 nm,
(0-2)] in the PFO experimental spectrum. In the discussion
below, we will only include EET from the lowest singlet donor
excited state to acceptor states described by transition bands
between 367 nm and 429 nm. Other acceptor states are not
included, because their spectral overlaps with the donor band
are small.

Our analysis of the couplings indicate that transition dipole
moment vectors are poor depictions of transition densities at
close DA separations. Table 2 displays representative values
of the resonance-Coulomb coupling and the corresponding
Förster approximation [(dAdD/RDA

3 )2] for several distances of
the centers of mass between PF6 and TPP. The couplings are
computed from parallel orientation of transition dipole moments
associated with the 358-nm donor band and the 367-nm acceptor
band and orthogonal orientation of these dipole vectors relative
to the DA separation (see Figure 1). Such a cofacial parallel
arrangement gives an orientation factor of unity. As expected,
the point-dipole approximation converges to the full coupling
at large (>100 Å) interchromophore separation. The point-dipole
expression, however, grossly exaggerates the coupling strength
at close DA distance to give EET rates that are orders of
magnitude larger than the correct value. The rates reported in
Table 2 are sums of individual rates between donor chromo-
phores characterized by the 358-nm band and acceptor chromo-
phores characterized by the 367-, 390-, 418-, and 429-nm bands.
The calculations do not take into account a distribution of
orientation factors; the individual rates are all computed for the
cofacial parallel case whereκDA

2 is unity. A strictly parallel
orientation in the Fo¨rster sense is not possible in the microscopic
calculation, because the transition dipole moment changes with
the electronic state. For example, a molecular arrangement of a
DA pair which aligns the 358-nm donor transition dipole
moment with the 367-nm acceptor transition dipole moment will
no longer provide a parallel orientation when one considers the
390-nm acceptor transition. One would have to reorient the DA
molecules such that the transition dipole vectors are parallel.
Although the configuration-averaged square of the Fo¨rster
orientation factor is2/3, a microscopic formulation of EET
permits κDA

2 to vary between a value of 0 for the case of

transition dipole vectors that are orthogonal both to each other
and to the DA separation (cofacial orthogonal orientation) and
a value of 4 for the collinear parallel/antiparallel arrangement
(see Figure 1).

By constructing a natural log plot of the rate as a function of
DA separation (Figure 2), we can observe theRDA dependence
of the excitation transfer. The resonance-Coulomb and Fo¨rster
transfer rates are also computed here for the cofacial parallel
alignment described previously. Panels A, B, C, and D in Figure
2 correspond to different EET processes involving donor
fluorescence at 358 nm and acceptor transitions at 367, 390,
418, and 427 nm, respectively. Table 1 and Figure 2 show that
there is a significant degree of EET between the donor and those
acceptor states which carry very small oscillator strength. A
comparison in panels B and C shows that the transitions with
midrange oscillator strengths (389 and 418 nm) dominate the
total rate. In fact, a separate calculation of the transfer rate
between the 331-nm dark state of the donor and the 338-nm
dark state of the acceptor (not shown) is on the same order of
magnitude as that between bright states. Although these states
do not absorb light and do not contribute to the absorption
spectrum of the acceptor chromophore, they can mediate EET.
This result is contrary to Fo¨rster’s macroscopic formulation of
EET, which relates the rate to the spectral overlap of the donor
fluorescence spectrum and acceptor absorption spectrum (see
eq 11). This subtle point is a manifestation of the breakdown
of the point-dipole approximation. Fleming and co-workers have
observed similar coupling between bright and dark states in
photosynthetic antenna systems.43

In Figure 2, we also have shown the distance dependence
predicted by the familiar Fo¨rster RDA

-6 expression (solid line).
Although the Fo¨rster rate merges with the full rate at large
distances (here, after∼100 Å), there are significant differences
at closer DA separation. In the range 6-10 Å, the rate can be
fitted empirically to RDA

-2 dependence (dashed line in Figure
2A), indicating that, at short distances, it is the local monopole
nature of the transition charge density that determines the
electronic coupling between the donor and the acceptor. At the
shortest distance allowed by steric hindrance, the dependence
of the rate is observed to be even weaker thanRDA

-2. However,
this behavior is presumably unreliable, because the zero-
differential overlap approximation in the PPP approach is
incompatible with the orbital overlap requirement of the Dexter
theory. In the regime of such small DA separations, the Dexter
mechanism dominates EET and the rate is expected to decrease
exponentially with increasing distance.

The resonance-Coulomb excitation transfer rates obtained at
short distances are indeed quite largesof the order of 1012

s-1swhich is in agreement with the femtosecond pump-probe
spectroscopic measurements of Cerullo et al., who reported a
comparable high rate of EET transfer between PFO and TPP.52

Although they analyzed their results using the Fo¨rsterRDA
-6 rate

expression, the present results show that the Fo¨rster rate gives
the wrong distance dependence at small values ofRDA. If one
extrapolated from the long-distance Fo¨rster regime, the Fo¨rster
rate at 4 Å interchromophore separation, for example, would
be exaggerated by∼3 orders of magnitude, to a femtosecond
time scale, compared to the picosecond scale of the time-
resolved data. From fitting the excited-state population decay
of PFO using a three channel model that includes fluorescence
decay described byτD ) 300 ps, exciton-exciton annihilation,
and Förster-type energy transfer, Cerullo et al. obtained a value
of 4.2 nm for the Fo¨rster radius.52 This pump-probe dynamics
derived value is in good agreement with the Fo¨rster radius (4.8

TABLE 2: Coupling Strength as a Function of
Intermolecular Distance (RDA) between the Donor and
Acceptor Centers of Mass for the Cofacial Parallel
Orientation (See Figure 1) of the DonordD (358 nm) and
Acceptor dA (367 nm) Transition Dipole Moments

RDA (Å)
(VDA

Coul)2

(10-43 J2)
(dDdA/RDA

3 )2

(10-43 J2) kDA kDA
Förster

5 57.18 64 029 1.0 ps-1 980.0 ps-1

10 19.15 1000 320.5 ns-1 15.3 ps-1

20 2.672 15.631 42.7 ns-1 239.3 ns-1

40 0.133 0.244 2.1 ns-1 3.7 ns-1

100 0.0008 0.0010 0.014 ns-1 0.015 ns-1

120 0.0003 0.0003 0.005 ns-1 0.005 ns-1

a The resonance-Coulomb and Fo¨rster rates are sums of individual
rates computed for the cofacial parallel case (κDA

2 ) 1).
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nm) computed from the overlap of the donor emission and
acceptor absorption steady-state spectra but is somewhat smaller
than the 5.4 nm deduced from quantum yield measurements.80

Our calculated value of 442 ps for the PF6 excited state
lifetime agrees reasonably with the experiment but represents
a lower bound, because this rate uses eq 9 with the simplification
that the product of Franck-Condon factors is unity. Defining
the Förster radius as the interchromophore separation at which
the probability for EET is equal to the probability for excited-
state depopulation of the donor, we arrive at a value of 4.0-
4.5 nm, which is consistent with the experimental analyses. If
we use the resonance-Coulomb rate instead of the Fo¨rster rate,
we arrive at a smaller Fo¨rster radius (3.5-4.0 nm). Although
this value is not grossly different from that which is extracted
based on Fo¨rster theory, it is expected that the radius obtained
via these two alternative routes will deviate significantly for
donors that are characterized by much shorter excited-state
lifetimes. Because the experiments of Cerullo et al. were
conducted in dilute concentrations of TPP in thin films of PF6,
one expects that energy transfer may involve a distribution of
distances, ranging from contact to values on the order of the
Förster radiusRF.

While the cofacial parallel orientation considered in the
distance dependence analysis so far gives aκDA

2 value of unity,
such an orientation is but one idealized choice among many
possibilities within the expected distribution of orientations in
condensed-phase polymeric systems. In Figure 3, we show the
orientation dependence of the rate for the cofacial case, for two
DA separation distances: 10 Å (Figure 3A and 3B) and 100 Å
(Figure 3C and 3D). For clarity, the rates have been normalized,
with respect to the maximum within each data set. Figure 3A
and 3C show the orientation dependence when the transition
dipole moments are aligned parallel to each other and orthogonal
to the DA interchromophore axis; the angleΘ corresponds to
rotation of the TPP acceptor molecule about the transition dipole
moment axis (z-axis of Figure 1). Under this arrangement, the
orientation factorκDA

2 is independent of rotation and is unity.
Panel A shows that the rate varies by a factor of∼2 in going
from 0° to 90°, whereas the dipole approximation to the rate
shows essentially negligible dependence. At large separation,
as expected, rotation of TPP about the transition dipole moment
axis shows weak orientation dependence of the rate (Figure 3C).
Near the estimated Fo¨rster radius (not shown), the transfer rate

Figure 2. Distance dependence of the rate for the cofacial parallel orientation of PF6 and TPP ((0) Förster rate and (b) resonance-Coulomb rates
calculated within the PPP/SCI framework). Panels A, B, C, and D correspond to EET between the donor molecule of wavelength 358 nm to
acceptor molecules of wavelengths 367, 390, 418, and 429 nm, respectively. The traditionalRDA

-6 distance dependence is shown by the solid line,
whereas the numerical fit of the resonance-Coulomb rates toRDA

-2 is shown by the dashed line in panel A and toRDA
-4 is shown by the dashed line

in panel D. Panels B and C also provide the total Fo¨rster and resonance-Coulomb rates, summed over states, indicated by the dotted and dashed-
dotted lines, respectively.
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increases by∼30% of the value for the cofacial parallel
orientation. If we take the same parallel alignment of the donor
and acceptor at 10 Å, but rotate TPP about either one of the
axes that is perpendicular to the transition dipole moment axis,
both the Fo¨rster and resonance-Coulomb couplings show the
same form of systematic change as a function of angle, although
the Förster expression provides couplings that are much larger.
At large separations, rotation of TPP about thex- or y-axis again
mirrors a cosine function of the angle between the transition
dipole moment vectors (Figure 3D), and the Fo¨rster and full
Coulomb rates converge.

Because even with parallel alignment of transition dipole
moments at a separation of 10 Å there is a significant orientation
dependence of the rate, in Figure 4, we also consider the
orientation dependence for the cofacial orthogonal arrangement.
The transition dipole moment vectors are aligned perpendicular
to each other and perpendicular to the DA interchromophore
axis and rotation is about the TPP dipole vector. Both normal-
ized Förster and Coulomb rates show similar trends; however,
the very small absolute values makes this DA orientation
insignificant to EET. Even at the most optimal “orthogonal”

orientation, the rate is in the time scale of hundreds per
microseconds. (In principle, this molecular arrangement should
provide aΘ-independent null orientation factor. As shown by
the inverted solid triangle in Figure 4, theκDA

2 values are
indeed small but not exactly zero, because we were unable to
precisely align the transition dipole vectors to be orthogonal
within numerical precision.) Beljonne et al. recently reported
that the resonance-Coulomb coupling can be significantly large,
even for the orthogonal orientation, when the molecular center
of the acceptor is displaced either longitudinally or laterally,
with respect to the center of the donor.40 We consider similar
orientation and distance dependence of the transfer rate here
with the molecular arrangements of the donor and acceptor
depicted in Figure 5. The initial geometry corresponds to the
cofacial orthogonal orientation at a DA separation of 10 Å.
Translation of the TPP along the transition dipole vector of the
donor is defined as the longitudinal direction, whereas translation
along the transition dipole vector of the TPP acceptor is defined
as the lateral direction. Whereas the orientation factor should
be theoretically zero, our implementation gives values that are

Figure 3. Orientation dependence of the normalized rate at short and long DA separation for an initial cofacial parallel alignment of the DA
transition moments ((0) Förster rate, (b) resonance-Coulomb rate, and (1) value of the orientation factorκDA

2 ). Panels A and C show the results
of rotation of the acceptor about the transition dipole moment axis (z-axis) for fixed DA separations of 10 and 100 Å, respectively. Panels B and
D are for rotation about an axis perpendicular to the transition moment axis (y-axis, Figure 1) at DA separation of 10 and 100 Å, respectively;
rotation about thex-axis gives orientation dependence similar to that of panels B and D. The rate values given in brackets are the maximum values
for that data set.

Excitation Transfer Rates in Conjugated Systems J. Phys. Chem. A, Vol. 108, No. 27, 20045759



small (10-4) but not numerically zero, for the same reason given
previously. Figure 6 shows the distance dependence of the rate
for displacement along the longitudinal (panel A) and lateral
(panel B) directions. The choice of negative and positiveRDA

axes in the plots is arbitrary; however, this choice is necessary
to show displacements on either side of the initial reference
cofacial orthogonal configuration (defined on the plots as the
pointsRDA ) (10 Å). Moreover, the asymmetry of the plot in
panel B simply reflects the asymmetry of the PF6 transition
dipole densities, with respect to the plane delineated by the
position of the reference TPP molecule. For this initial DA
configuration, the Fo¨rster and resonance-Coulomb rates differ
by approximately an order of magnitude and are in the
microsecond time scale (10 and 0.6µs-1, respectively). Although
the Förster rate decreases with displacement in the longitudinal
direction, the resonance-Coulomb rate increases by 3 orders of
magnitude at a DA separation of∼20 Å to give excitation
transfer rates in the nanosecond time scale. Displacement along
the lateral direction is accompanied by approximately an order
of magnitude increase in the resonance-Coulomb rate and
decrease in the Fo¨rster rate. While we observe similar enhance-
ment of the rate as reported by Beljonne et al. for the cofacial

orthogonal orientation when the centers of the donor and
acceptor are displaced longitudinally, we generally expect that
all variants of the orthogonal orientation to all have relatively
small EET rates. Excitation transfer at 1 nm in an optimal
longitudinally displaced orthogonal configuration is comparable,
for example, with a cofacial parallel oriented configuration with
a separation of 5 nm. Because this length scale is larger than
the Förster radius, it seems likely that EET would proceed via
pathways that are exclusive of orthogonally oriented acceptors.
Even if all the acceptors were artificially assembled in the
orthogonal orientation relative to a single donor, the intrinsic
radiative decay would compete efficiently. Nevertheless, the
limitations of Förster theory for systems characterized by
spatially delocalized transition densities and close DA separation
are evident in the orientation example considered here.

The familiarRDA
-6 dependence in the Fo¨rster expression is a

consequence of the decoupling of the orientation factor from
the magnitudes of the transition dipole moments. Therefore, this
dependence is only observed when the orientation factor is
independent of the DA separation. When the orientation factor
varies with DA distance, the trend can be either weaker or
stronger thanRDA

-6. We encounter such a situation for the
longitudinal displacement of TPP for the cofacial parallel
orientation. The donor and acceptor are initially separated by
10 Å. Translation along the donor transition dipole vector is
then defined as the longitudinal direction, whereas translation
along the vector that is orthogonal both to the donor transition
dipole moment and the DA separation vector is defined as
lateral. Figure 7A shows that the orientation factor (solid
inverted triangle) rapidly decreases from its initial value of 1
to 0 and then increases to an asymptotic value of 4 for
longitudinal displacement; the orientation factor maintains a
value of 1 for lateral displacement (panel B). Because the
orientation factors are both unity for lateral translations of TPP,
as well as vertical translations of TPP, along the DA intermo-
lecular axis (see Figure 2A), it is not surprising that the Fo¨rster
rates are identical in these two cases. A comparison of panels
A and B of Figure 7 indicates that longitudinal displacement
causes a dramatic decrease in the Fo¨rster ratesfaster than the
standardRDA

-6 dependence, correlated with the decrease of the
orientation factor. Likewise, the resonance-Coulomb rate de-
creases faster for longitudinal displacements, compared to the
lateral. Despite the fact that there is no simple correlation
between the orientation factor and the resonance-Coulomb rate,

Figure 4. Orientation dependence of the normalized rate for the
cofacial orthogonal arrangement of the donor and acceptor at a distance
of 10 Å, whereΘ denotes the angle of rotation about the acceptor
TPP transition dipole moment vector (z-axis). Symbols denote the same
quantities as in Figure 3.

Figure 5. Geometrical arrangement of PF6 and TPP for the study of excitation transfer rates associated with longitudinal or lateral displacement
of the acceptor. The reference position of TPP corresponds to the cofacial parallel or cofacial orthogonal orientation at a DA separation of 10 Å,
and the RGB-axis is identical to that in Figure 1. Displacement of TPP along the donor transition dipole moment axis (z-axis) is defined as the
longitudinal direction, whereas displacement perpendicular to the transition dipole vector in the plane of the TPP molecule (along thex-axis) is
defined as the lateral direction. The arbitrary choice of positive (+) and negative (-) displacement directions are also defined.
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the distance dependence of the rate parallels that of the
orientation factor, correlating with the dipole approximation.
As κDA

2 begins to recover and monotonically increases toward
the asymptotic value of 4, the Coulomb rate continues to
decrease until it begins a brief recovery at a separation of∼20
Å, only to decrease monotonically (∼30 Å) toward a rate of 0
at infinite separation. As expected, the distance dependence of
the resonance-Coulomb rate at large DA separation coincides
with the rates for the collinear parallel orientation whereκDA

2 is
4. The complexity of the behavior is best organized by
recognizing that there exists a set of curves, each individually
parametrized by a single value of the orientation factor.
Effectively, the plot in Figure 7A cuts across different curves
associated with different orientation factors and converges to
the curve whereκDA

2 is at its microscopic maximum, in the
collinear parallel orientation. Excitation transfer in the Fo¨rster
regime, thus, is most favorable in the collinear parallel arrange-
ment. Because the ideal cofacial parallel and collinear parallel
orientations are rarely to be expected in disordered polymer
systems, the orientations encountered in such systems, such as
films, will be in some intermediate regime and the probability
of EET will be based on a compromise between orientation and
DA separation. Such an interplay between orientation and DA
distance was illustrated in Figure 7A, where the orientation
dependence seems to dominate at short separation (where the

distance dependence is weak) and the distance dependence
(which asymptotically approaches theRDA

-6 Förster character)
dominates at large separation, hence, the resonance-Coulomb
rate decreases, althoughκDA

2 monotonically increases.

5. Conclusions

Conjugated polymeric systems are characterized by polymer
segments with a distribution of conjugation lengths, intersegment
separations, and relative segment-segment orientations. Inco-
herent excitation migration among the segments is a fundamental
element of the condensed-phase electronic dynamics. In relating
the transfer rate to the spectral characteristics of donor emission
and acceptor absorption, Fo¨rster formulated a rate expression
that is amendable to direct computation, based solely on
macroscopic measurements. However, the convenience and
simplicity of Förster theory comes with considerable ap-
proximation. Central to the formulation is the assumption that
electronic transition densities can be reduced to transition dipole
moment vectors, which is an approximation that is appropriate
only when the spatial scales of the densities are smaller than
their separation. Furthermore, there are many known examples
of efficient excitation transfer to quench sites, resulting in
degraded emission quantum yield, whereas Fo¨rster theory only
applies to bright states. What we have illustrated in this study
is that EET, in a conjugated polymer/tetraphenylporphyrin (TPP)

Figure 6. Distance dependence of normalized EET rates for the
cofacial orthogonal orientation along the (A) longitudinal and (B) lateral
directions (see Figure 5). ((0) Förster rate and (b) resonance-Coulomb
rate.) Note that 10 Å corresponds to the position of closest approach
for the displacement in Figure 5. The normalization factorkDA

max is
given in brackets for each data set.

Figure 7. Distance dependence of EET rates for the cofacial parallel
orientation along the (A) longitudinal and (B) lateral directions (see
Figure 5). ((0) Förster rate, (b) resonance-Coulomb rate, and (1)
relative value of the orientation factor.) The value in brackets for the
orientation factor is the normalization factor equal to its maximum
value.
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donor-acceptor system, can proceed with characteristics well
outside of the Fo¨rster regime for a considerable range of
distances. These conclusions, in many ways, parallel the results
of Fleming and co-workers in the context of photosynthesis.43

We have used a semiempirical quantum chemical method
(PPP/SCI) to calculate the distance and orientation dependence
of the electronic excitation transfer rate from a polyfluorene
polymer (PF6) segment to a TPP acceptor, which is a system
that has been previously studied experimentally.52 We found,
in agreement with experiments, that the excitation energy
transfer at short distances indeed occurs on the picosecond time
scale. Because we can calculate the radiative rate of the donor
within the same semiempirical formulation, we can also find
the value of the Fo¨rster radius directly. We obtained a value of
4-4.5 nm, which is similar to the experimental results.52

Although these experiments had been using the Fo¨rster RDA
-6

rate expression, we find that the Fo¨rster rate gives a quite
inaccurate distance dependence at values ofRDA less than the
Förster radiusRF.

Given the theoretical results obtained here, it may be
worthwhile to analyze the experimental results differently. The
most important result of the current calculations is the demon-
stration that, at short separations between the donor and the
acceptor, the distance dependence is much weaker than the usual
RDA

-6 value of the Fo¨rster theory. For many practical purposes,
such as the fitting of the experimental results, one might use
an expression of the following form:

where l is an approximate measure of the conjugation length
of the polymer. Clearly, such a form can reproduce the
calculated distance dependence both at short and long distances.

There are several other aspects that require further attention.
First, to understand the optical properties of condensed-phase
conjugated polymers in general, one must characterize the rates
of EET among polymer segments of varying lengths. Such work
is in progress. Another general point of interest is the coupling
of excitation migration to chromophore geometry and dynamics.
We have considered the donor in the geometry-optimized first
excited state and the acceptor in the ground state. However,
when EET is rapid, then EET may occur on the same time scale
as nuclear dynamics. A further complication is that, to under-
stand fluorescence from the acceptor state, the oscillator
strengths in the excited-state optimized geometry of the acceptor
will be needed.

Despite these many refinements remaining, the present
theoretical analysis provides considerable new insight on
electronic excitation transfer in conjugated polymers and
suggests several interesting routes toward further elucidation.

Appendix: Matrix Element of the Coulomb Potential
between Direct Products of the Hartree-Fock and Single
Excitation Determinants

We wish to evaluate the matrix element of the Coulomb
potentialH′ ) 1/2∑mn e2/|RDA + rD(m) - rA(n)| between the
initial stateΨi ) ψD

* ψA
0 and final stateΨf ) ψD

0 ψA
* :

where the superscripted asterisk and zero denote the excited
and ground states, respectively, of the donor (D) and acceptor
(A) molecules. Within the Hartree-Fock (HF) and single

excitation configuration interaction (SCI) approach, the matrix
element takes the form

where Ca
r are SCI expansion coefficients for the relevant

excited state within the basis set of the determinantsψD
afr

obtained from excitation of an electron from an occupied spin-
orbital (SO)a to a virtual SOr in the reference HF determinant
ψD

0 . The determinants that contribute to these matrix elements
for the Coulomb potential differ by two spin-orbitals:

wherep12 is the permutation operator and the integration is over
the spatial and spin variables (x1 ≡ {r1,ω}) of the SOør. The
last equality can be found in standard quantum chemistry texts.81

From an expansion of the molecular orbitals (MO),ψi, in terms
of atomic orbitalsψi(r) ) ∑µcµ

i
φµ(r) and integrating over the

spin variable, the matrix element in eq 20 reduces to

where the summation is now over all occupied and virtual spatial
MO (compared to summation over SO in eq 19); the factor of
2 comes from integration over the spin variable of each restricted
SO within the closed-shell HF formalism. In eq 21, we use the
standard notation

Because the SCI procedure is performed within the separate
donor and acceptor reference HF subspace, excitations from the
donor to the acceptor, or the reverse, are not included in the
summation. The last term in the aforementioned equation
involves the exchange of electrons between a donor and an
acceptor MO and is, therefore, neglected. In the zero-differential
overlap (ZDO) approximation, (µF|νσ) ) δµFδνσγµν, whereγµν
≡ (µµ|νν), so that the final Coulomb matrix element at the level
of the PPP Hamiltonian and SCI is written as

whereγµν represents the two-electron repulsion integral.
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