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We present a theoretical study of the effect of Dushinskii rotations on the vibrational population created in
an excited electronic state through photoexcitation. Special attention is given to the effect of Dushinskii rotations
on the possibility of cooling the vibrational population in the excited state, relative to the thermal distribution
in the ground state. The absorption spectrum and corresponding average energy in the excited state are calculated
using a closed-form expression for the harmonic correlation function between the ground and excited electronic
states, which includes the effects of Dushinskii rotations, equilibrium position shifts, and frequency shifts
between the excited- and ground-electronic-state normal modes. We investigate numerically the separate and
joint effects of rotation, position shifts, and frequency shifts on the absorption spectrum and average vibrational
energy in the excited electronic state. We find that, although the Dushinskii rotations generally diminish the
cooling effect, the effect does not disappear and, in some cases, may also increase slightly.

I. Introduction

In a series of recent papers,1-6 it was shown that photoex-
citation of a thermal polyatomic molecule from the ground
electronic state to an excited electronic state could, under
favorable circumstances, be accompanied by cooling of the
vibrational population in the excited state. Most recently, we
have shown that this phenomenon accounts correctly for the
measured fluorescence lifetimes of naphthalene in the S1 state.6

Beddard and co-workers7,8 showed that, at low photoexcitation
energy, increasing the pressure of the buffer gas caused a
decrease in the fluorescence lifetime, which suggested that,
initially, the molecular vibrations in the excited state were cold
and the collisions would heat the molecule, leading to a faster
decay. This interpretation was shown to be consistent with ab
initio computations for the naphthalene molecules, and it showed
that, indeed, cooling of the excited-state vibrations does occur
when the photoexcitation frequency is close to or to the red
side of theω00 transition frequency.

The phenomenon of cooling was also used to interpret the
experimental finding that the isomerization lifetime of photo-
excited trans-stilbene decreases when going from the gas to
the condensed phase. Gershinski and Pollak1 noted that if the
molecule is initially cooled, then immersion in a liquid would
reheat the molecule and thus lead to faster decay and shorter
lifetimes. This explanation has been the the topic of rather-
heated debate, because of the uncertainty in the details of the
excited-state potential energy surface of stilbene.9-12

Wadi and Pollak2 gave an in-depth study of the conditions
that lead to the cooling phenomenon, in the absence of

Dushinskii rotations.14 Within the Condon approximation and
using harmonic potentials for the ground and excited potential
energy surfaces, they showed that cooling typically will occur
when the vibrational frequencies in the excited electronic state
are somewhat weaker than the frequencies in the ground state.
However, if the equilibrium positions of the excited state differ
significantly from those of the ground state, cooling will not
occur. Thus far, however, nothing is known about the effect of
Dushinskii rotations on the cooling phenomenon. That is, what
happens to the cooling phenomenon when there is no longer a
one-to-one correspondence between the normal modes of the
ground and excited electronic states?

The central theme of this paper is to study the effects of
Dushinskii rotations on the vibrational population in the excited
state. We will show that, although typically, the rotations reduce
the cooling phenomena, they do not destroy it completely and
may even, at times, increase it.

In Section II, we present the necessary formalism for
computation of the spectra and the average energy in the excited
state. In Section III, we consider a model harmonic molecule
with 45 degrees of freedom, to study numerically the different
possible effects of Dushinskii rotations on the average vibra-
tional energy in the excited electronic state. We end with a
discussion.

II. Theory

A. General Formalism. The Fermi Golden Rule expression
for the (normalized) absorption spectrum into the excited
electronic state, obtained within the Condon approximation,
using an infinitely narrow laser pulse of frequencyω, is2,15
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whereHg is the ground-state Hamiltonian and

may be called the frequency-dependent partition function. The
parameter∆E is the energy gap between the bottom of the
potential of the excited-state HamiltonianHe and the bottom of
the potential of the ground-state HamiltonianHg. The thermal
cross-correlation function of the ground and excited states,ø-
(τ,â), is defined by

As was shown in ref 2, the average energy of the excited
state may be calculated via the relation

By definition, the vibrational population in the excited electronic
state is considered to be cooled for those excitation frequencies
ω for which 〈E〉(ω,â) e 〈Eg〉(â), where the ground-state average
energy〈Eg〉(â) is

The condition for cooling may thus be expressed as

B. Harmonic Model. The formal results for the two-state
problem may be calculated (almost) analytically, provided that
the ground and excited electronic state Hamiltonians are
harmonic. Thus, the ground-state Hamiltonian is a collection
of N normal modes:

where qgi and pgi are the ith mass-weighted normal-mode
coordinate and momentum, respectively.

The excited-state Hamiltonian is also composed ofN normal
modes, but with different coordinates, momenta, frequencies,
and position shifts:

where qei and pei are the ith mass-weighted normal-mode
coordinate and momentum of the excited-state Hamiltonian,
respectively. The excited-state coordinatesqei are assumed to
be given as linear combinations of the ground-state coordinates
qgi:

where Sij is the Dushinskii14 rotation matrix element, which
defines the projection amplitude of thejth ground-electronic-
state normal-mode coordinate on theith excited-electronic-state
normal-mode coordinate.Di is the equilibrium position of the
ith mode in the excited state, relative to the ground state.

Using vector-matrix notation, we may rewrite eq 2.9 as

whereS is the orthogonal rotation matrix andD is the vector
of equilibrium position shifts of the excited state, relative to
the ground state. Note: Throughout this paper, we will denote
(column) vectors by an underline, row vectors will be denoted
by an additional superscript “T”, and matrixes will be boldface.

To obtain the absorption spectrum, it is necessary to find an
explicit expression for the cross-correlation function (eq 2.3).
Defining

and tracing over the ground-electronic-state coordinates, we have

where the vectorx represents the ground-electronic-state normal-
mode coordinatesqgi. By inserting a complete set of ground-
electronic-state coordinatesy, and two complete sets of excited-
electronic-state coordinatesx′ andy′, we may express eq 2.12
as

The off-diagonal matrix element〈x|e-iτH|y〉 for a harmonic
HamiltonianH ) 1/2(p2 + ω2q2) is known16 to be

wherea(τ) ) ω/sin(pωτ) andb(τ) ) ω/tan(pωτ). Hence, if the
Hamiltonian is a collection ofN independent normal modes, as
defined for the ground- and excited-electronic-state Hamiltonians
(eqs 2.7 and 2.8), we have

wherea andb are diagonal matrixes with elementsai(τ) ) ωi/
sin(pωiτ) and bi(τ) ) ωi/tan(pωiτ), respectively. The time
dependence ona andb has been omitted, for the sake of brevity.

The inner product between the ground- and excited-electronic-
state coordinates〈x′|x〉, using eq 2.10, is given by

where theδ function of a vector is defined as the product of
the individual δ functions of its components. Therefore, the
correlation function (eq 2.13) may be integrated overx′ andy′
and expressed as

Z(ω;â) ) p
2π∫-∞

∞
dτ e-iτ(∆E-pω)ø(τ,â) (2.2)

ø(τ,â) ) Tr[e-iτHee-(â-iτ)Hg] (2.3)

〈E〉(ω,â) ) pω - ∆E - ∂

∂â
ln Z(ω;â) (2.4)

〈Eg〉(â) ) - ∂

∂â
ln (Tr[e-âHg]) (2.5)

pω - ∆E - ∂

∂â
ln P(ω;â) e 0 (2.6)
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(pei
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2) + ∆E (2.8)

qei
) ∑

j)1

N

Sijqgj
+ Di (2.9)

qe ) Sqg + D (2.10)

ø(τg,τe) ) Tr(e-iτgHge-iτeHe) (2.11)

ø(τg,τe) ) ∫ dx〈x |e-iτgHge-iτeHe|x〉 (2.12)

ø(τg,τe) ) ∫∫∫∫ dx dy dx′ dy′ 〈x|e-iτgHg|y〉 〈y|y′〉

〈y′|e-iτeHe|x′〉 〈x′|x〉 (2.13)

〈x|e-iτH|y〉 ) xa(τ)
2πip

exp{ i
p[12b(τ)(x2 + y2) - a(τ)xy]}

(2.14)

〈x|e-iτH|y〉 ) x det(a)

(2πip)N
exp{ i

p[12(xTbx + yTby) - xTay]}
(2.15)

〈x′|x〉 ) δ(x′ - (Sx + D)) (2.16)

ø(τg,τe) ) e-iτe∆Exdet(ag)

(2πip)Nx det(ae)

(2πip)N

∫∫ dx dy exp{ i
p[12(xTbgx + yTbgy) - xTagy]}

exp{ i
p[12(x′Tbex + y′Tbey) - x′Taey]} (2.17)
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whereag, bg andae, be are defined as in eq 2.15 for the ground
and excited states, respectively, andx′, y′ represent (Sx + D),
(Sy + D), respectively, according to eq 2.16.

We further define the following matrixes:

This allows us to rewrite eq 2.17 as

The remaining Gaussian integrations are somewhat tedious
but straightforward, and one finds

andø(τ,â) is obtained by settingτe ) τ andτg ) â - iτ in eq
2.23.

Equation 2.23 gives the two-state correlation function,
including rotation and displacement in closed form (see also
the derivation in ref 15). Fourier transforming the correlation
function numerically gives the “frequency-dependent partition
function” as in eq 2.2, which also gives the normalized
absorption spectrum. One then follows eq 2.4 to obtain the
average energy in the excited state.

III. Numerical Results

In this section, we shall use different harmonic models of a
polyatomic molecule to study numerically the effect of Dush-
inskii rotation and equilibrium position shifts on the thermal
absorption spectrum and the average vibrational energy in the
excited electronic state. If the equilibrium positions and frequen-
cies in the excited electronic state are the same as in the ground
state and in the absence of rotation, the absorption spectrum is
a “δ” function centered at theω00 transition frequency, which
is defined more generally as

The average energy in the excited state is then identical to the
average energy in the ground state; there is no cooling or
heating. Our first model will therefore be one in which we have
only Dushinskii rotations. Any change in the absorption
spectrum and in the average energy will be, in this case, purely
a result of the rotations.

In our second model, we introduce position shifts without
rotations and without frequency shifts. Here, any change in the
absorption spectrum and in the average energy will result only
from the position shifts. We then also study the case of both
rotation and position shifts, without frequency shifts.

Typically, however, a polyatomic molecule in its excited state
will have vibrational frequencies that are lower than the ground-
state frequencies. Electronic excitation serves to weaken vibra-
tional bonds. If there are no equilibrium position shifts and no
rotations, then one will typically observe substantial cooling of
the excited-state population, provided that the photoexcitation
frequency is in the vicinity of theω00 transition frequency. The
fourth case will then be to study the effects of Dushinskii
rotations when there are no equilibrium position shifts but the
frequencies are shifted. Finally, we will consider the case where
position shifts are also included.

The energy gap∆E between the ground and excited electronic
states is unimportant, because it simply sets the scale of
frequencies for the photoexcitation laser, so it will be set to
zero. For convenience, the average energy will always be scaled
to 〈E〉(ω,â) - 〈Eg〉(â), so that a positive average energy implies
heating and a negative average energy implies cooling. We will
also define an effective temperature parameter for the excited
state by looking for that temperature at which a Boltzmann
distribution in the excited state would give the resulting average
energy. More precisely, the effective (inverse) temperature is
defined as the solution of the equation

A. Case 1: Rotations Only.Our model polyatomic molecule
will have 45 degrees of freedom, divided into three groups: low,
medium, and high frequencies. The low-frequency group ranges
from 50 to 470 cm-1 with an equal spacing of 30 cm-1, the
medium-frequency group ranges from 800 to 1220 cm-1 with
the same spacing, and the high-frequency group ranges from
2000 to 2700 cm-1 with an equal spacing of 50 cm-1. These
three groups mimic a typical frequency distribution of a
polyatomic molecule.

The inverse rotation matrixST is synthesized by diagonalizing
a symmetric matrixR, with the diagonal elements having the
integer values of 1-45. The off-diagonal elements ofR will be
kept small, so thatSTRSis a diagonal matrix with eigenvalues
close to the integers 1-45. The off-diagonal elements ofRwill
be chosen as identical for all first off-diagonal elements, second
off-diagonal elements, etc. This means that allRij are equal for
a givenk ≡ |i - j|, wherek is an integer between 1 and 44. We
can thus define a vector with elementsRk, such that all elements
Rij of the matrixR obeyingk ≡ |i - j| will be equal toRk.
Thus,Rk will be used as a parameter that characterizes the extent
of rotation. For example, we may useR1 ) 0.4,R2 ) 0.1, and
Rk ) 0 (for k g 3). This way of synthesizing a rotation matrix
ensures a larger rotation for low frequencies and a smaller
rotation for high frequencies, as would be expected for a typical
polyatomic molecule.

To simplify the numerics for this case, we will use a laser
pulse with a finite frequency width (σ ) 15 cm-1), because,
for a zero-width pulse, the spectrum is aδ function that demands
an infinite time integration. Figure 1a shows the absorption
spectrum without rotation, and with the two rotation valuesR1

) 0.2 andR1 ) 0.4, but with all higher-order rotations set to
zero (Ri>1 ) 0). Figure 1b shows the average energy in the
excited state, as a function of the excitation frequency. In all
cases, the temperature of the ground electronic state is 300 K.

As may be expected, the spectrum broadens under rotation;
however, the average energy has a minimum only when rotation
is present. Without rotation, each transition from a given ground-
state energy level can occur only to the same excited-state
energy level. Therefore, the average energy increases linearly

A(τg,τe) ) ag(τg) + STae(τe)S (2.18)

B(τg,τe) ) bg(τg) + STbe(τe)S (2.19)

G(τg) ) bg(τg) - ag(τg) (2.20)

E(τe) ) be(τe) - ae(τe) (2.21)

ø(τg,τe) ) e-iτe∆Exdet(ag)

(2πip)Nx det(ae)

(2πip)N ∫∫ dx dy

exp{ i
p[12(xTBx + yTBy) - xTAy + DTED + DTES(x + y)]}

(2.22)

ø(τg,τe) ) e-iτe∆Ex det(ag)det(ae)

det(B)det(B - AB-1A)

exp{ i
p
[DTES(B - A)-1GSTD]} (2.23)

ω00 ≡ ∑
i

(ωei
- ωgi

) (3.1)

〈Ee〉 ) - ∂

∂âeff
lnTr[e-âeffHe] (3.2)
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aspω increases. Cooling appears only when rotation is present.
The results of Figure 1b thus show that Dushinskii rotations
may induce cooling. To examine the extent of the cooling, we
plot the maximal possible cooling as a function of the magnitude
of the rotation in Figure 2. Although cooling is possible, it is
not very large. Interestingly, however, cooling increases as the
magnitude of the rotation increases. Thus, the maximal cooling
whenR2 ) 0.4 is always larger than whenR2 ) 0.2.

B. Case 2: Position Shifts Only.One typically expects
significant position shifts in the excited state only for the low-
frequency modes. We will choose the displacement vectorD
to be nonzero only for the 15 modes with low frequencies. The
normalized dimensionless valuedi ≡ Dixωei

/pwill be chosen
as a small number between 0 and 1.

In Figure 3a, we first consider the effect of displacement
without rotation. Figure 3a displays the spectrum obtained for
displacement values of 0, 0.1, 0.2, and 0.3, and Figure 3b
displays the average energy and effective temperature in the
excited state for the same cases. As expected, the spectrum
becomes more and more structured as the displacement in-
creases. Although the displacement alone can induce cooling,
it is not very significant. Displacement alone or rotations alone
are insufficient for significant cooling to occur.

C. Case 3: Position Shifts and Rotations Only.Next, we
analyze the effect of rotation and displacement, by holding the
displacement at the fixed value ofdi ) 0.1. Large displacement
and rotation significantly decreases the magnitude of the
absorption spectrum, making the calculation increasingly dif-
ficult. There is no qualitative change in the results if the shift
is increased further.

Figure 4a shows the absorption spectrum without rotation,
as well as for the two rotation valuesR1 ) 0.2 andR1 ) 0.4,
with Ri>1 ) 0. We note that displacement and rotation have a
tendency to broaden the spectrum and decrease the overall
absorption probability. The average energy and effective tem-
perature of the excited state is shown in Figure 4b, as a function
of excitation frequency; the figure shows that cooling increases

Figure 1. (a) Absorption spectrum and (b) average energy in the
excited state, under conditions where the frequencies are the same in
the ground and excited states and there are no position shifts. Panel a
shows the absorption spectrum for three different values of the rotations,
whereas panel b shows the average energy as a function of the excitation
frequency. Note the effective temperature (Teff) scale on the right axis
in panel b.

Figure 2. Minimal average energy and effective temperature in the
excited state, as a function of rotation, under conditions where the
frequencies in the excited and ground state are the same and there are
no position displacements. Note that cooling is more extensive when
R2 * 0.

Figure 3. (a) Absorption spectrum and (b) average energy in the
excited state under conditions where the frequencies are the same in
the ground and excited states and there are no rotations. Panel a shows
the absorption spectrum for four different values of the position shifts
and panel b shows the average energy, each as a function of the
excitation frequency.
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as rotation increases. However, as mentioned previously, the
extent of cooling is not very large. In Figure 5, we plot the
maximal cooling found for the fixed value of the displacement,
as a function of the magnitude of the rotation in the first off-
diagonal element. The results resemble Figure 2, except for the
fact that, for no rotation, there is some cooling, whereas, for
large rotations, there is less cooling. We find that both rotation
and displacement reduce the maximal heating and increase the
temperature at the maximal cooling.

D. Case 4: Frequency Shifts and Rotations Only.As
already mentioned previously, in a typical polyatomic molecule,
one expects to find lower vibrational frequencies in the excited
electronic state. The effect will be stronger for low-frequency
modes than for high-frequency modes. The frequency shifts will
be thus modeled as in previous work.3 That is, frequencies of
the low-frequency group are multiplied by a constant factor of
0.95, those in the medium-frequency group are multiplied by
0.98, and those in the high-frequency group are multiplied by
0.99.

In Figure 6a, we plot the absorption spectrum for the three
casesR1 ) 0, R1 ) 0.2, andR1 ) 0.4, where, for all cases,Ri>1

) 0. The resulting average energy and effective temperature in
the excited state are plotted as a function of the excitation
frequency in Figure 6b. As known from our previous investiga-
tions and as shown in the figure, frequency shifts can lead to
extensive cooling. Dushinskii rotation has a tendency to broaden
the absorption spectrum, reduce the absorption probability, and
reduce the cooling phenomenon. However, the cooling is not
destroyed completely, nor is the dependence on the magnitude
of the rotation monotonic.

Figure 7 shows a plot of the maximal cooling observed, as a
function of the magnitude of the rotation. We note that, when
R2 ) 0, we get a sharp increase in the minimum energy asR1

is increased. Rotation significantly limits the cooling effect.
However, it does not disappear, and, in the presence of large
rotation, approaches a constant value; that is, the average energy
is reduced to approximately-800 cm-1.

E. Case 5: Position, Frequency Shifts, and Rotations.It
has already been shown in previous work2 that, without

Figure 4. (a) Absorption spectrum and (b) average energy in the
excited state under the conditions where the frequencies are the same
in the ground and excited states and the position shift isd ) 0.1. Panel
a shows the absorption spectrum for three different values of the
rotations and panel b shows the average energy, each as a function of
the excitation frequency.

Figure 5. Minimal average energy and effective temperature in the
excited state, as a function of rotation, under conditions where the
frequencies in the excited and ground state are the same and the position
shift is d ) 0.1.

Figure 6. (a) Absorption spectrum and (b) average energy in the
excited state, under conditions where the frequencies in the excited
state are lower than those of the ground state but there are no position
shifts. Panel a shows the absorption spectrum for three different values
of the rotations and panel b shows the average energy, each as a function
of the excitation frequency.
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rotations, increasing the displacement diminishes the cooling.
Here, we show that also in the presence of displacement, rotation
also diminishes the cooling, although it does not disappear
completely. Figure 8a shows the absorption spectrum for the
three rotation valuesR1 ) 0, R1 ) 0.2, andR1 ) 0.4, keeping
Ri>1 ) 0 and the fixed value of the displacement atdi ) 0.1.
As may have been expected from the previous cases, both
displacement and rotation broaden the spectrum and reduce the
absorption probability. The displacement also leads to increased
structure in the absorption spectrum.

The average energy and effective temperature in the excited
states is plotted in Figure 8b. The lowest average energy is
observed at-1480 cm-1 and is obtained without rotation. This
value is higher than that found without displacement, as can be
seen by inspection of Figure 6b. However, we find that,
generally, the maximal cooling is not necessarily found when
there is no rotation. This is shown in Figure 9, where we plot
the maximal cooling as a function of the magnitude of the
rotation. One notes that, forR2 ) 0, the minimum energy sharply
increases asR1 increases but decreases slightly in the region of
R1 > 1. Similarly, forR2 ) 0.4, we observe the maximal cooling
at R1 ) 0.2.

IV. Discussion

In this work, we have presented a study aimed at understand-
ing how rotations affect the average energy in the excited state.
A short summary of our numerical findings is that reducing
the vibrational frequencies in the excited state leads to the
possibility of cooling, whereas displacement and rotations have
a tendency to mitigate the effect but do not destroy it completely.
In this work, we have presented results for an idealized model.
Our numerical experience with other models is qualitatively
similar. Although in any given molecule, the rotation matrix
will be more structured and nonuniform than in the model we
have used, our numerical experience on a variety of models
and conditions shows that the overall result remains the same.
Cooling of the vibrational population in the excited state may
be observed, provided that the displacement and rotations are
not “too strong”.

Does this mean that the cooling phenomenon generally can
be ignored? We do not believe that this can be done, for several
reasons. The previous analysis of the naphthalene molecule,
presented in ref 8, did take rotations into account, but cooling
remained rather significant when the excitation frequency was
in the vicinity of ω00. Dushinskii rotations are negligible for
the benzene molecule, where theory has also predicted extensive
cooling under the same conditions. They cannot be neglected
for stilbene. However, we do note that even the latest computa-
tions of an ab initio potential energy surface for this system
have not been shown to agree with experimental thermal
absorption spectra.12,13 The final word on the importance of
cooling in this intriguing system has not yet been said. In
addition, the effect of anharmonicity on the cooling phenomenon
remains completely unknown. For molecules such as stilbene,

Figure 7. Minimal average energy and effective temperature in the
excited state, as a function of rotation, under conditions where the
frequencies in the excited state are lower than in the ground state and
there are no position shifts.

Figure 8. (a) Absorption spectrum and (b) average energy in the
excited state, under conditions where the frequencies in the excited
state are lower than in the ground state and the equilibrium positions
in the excited state are shifted by a position shift ofd ) 0.1. Panel a
shows the absorption spectrum for three different values of the rotations
and panel b shows the average energy, each as a function of the
excitation frequency.

Figure 9. Minimal average energy and effective temperature in the
excited state, as a function of rotation, under conditions where the
frequencies in the excited state are lower than those in the ground state
and the position shift isd ) 0.1.
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with low barriers to isomerization, which are accessible at room
temperature, anharmonicity cannot be ignored. We also note
that we have not presented a study of non-Condon effects;
however, our recent results on cooling in the naphthalene6 and
benzene molecules4 have shown that non-Condon terms do not
destroy the cooling phenomenon.
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