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A new cost-effective approach and computational program POLMAG-3 for performing ab initio calculations
of molecular magnetic susceptibility have been developed within the framework of the coupled perturbed
Hartree-Fock approach based upon the simultaneous analytical dependence of both the bond order matrix
and basis set functions on the corresponding perturbation parameters. The test calculations performed for a
series of molecules within the proposed approach with the 6-31G basis set show good agreement with
experiments.

I. Introduction

Accurate calculations of second-order molecular magnetic
properties, such as magnetic susceptibility and nuclear magnetic
shielding, are still challenging tasks for theoretical chemists.
Presently methods for calculating these parameters are imple-
mented at most of the standard correlated high-level quantum-
chemical approaches.1 These methods allow one to achieve
chemical accuracy, but due to high CPU requirements, such
calculations are still restricted only to small systems. This
justifies the continuous interest in the Hartree-Fock approxima-
tion that is applicable to most medium and large systems of
interest in NMR experiments, providing results of reasonable
quality at reasonable computer expense.1,2 Another problem of
ab initio calculations of magnetic properties is the choice of
the atomic basis set. It should be large enough to describe the
effects of the applied perturbation but small enough to allow
predictions of the properties for the system of interest. Usually
in order to obtain reliable results it is necessary to apply
extended basis sets augmented by polarization and diffuse
functions.

In this paper, we propose a new cost-effective method for
calculating molecular magnetic susceptibilities at the coupled
perturbed Hartree-Fock (CPHF) algebraic level of theory for
one-determinant wave functions. This approach takes into
account the simultaneous dependence of orbital coefficients and
basic functions on the perturbation parameters. Explicit analyti-
cal expressions of physically justified correction functions are
generated by the solution of the nonhomogeneous Schro¨dinger
equation for the model “one-electron atom in an external
uniform field” problem, using the closed representation of
Green’s function. The developed method has been implemented
into the standard CPHF scheme. The calculated values of
magnetic susceptibility for the test series of molecules have been
compared with experimental values and with the results of
calculations at the conventional CPHF level.

II. Theory

The exact calculation of the physical properties of many-
body systems with the quantum mechanical formalism rests first
of all on the many-electron problem difficulties that can be
avoided by using some approximate methods. One of the most
widespread methods of the electronic wave function calculations
is CPHF. Due to the approximate solution of the corresponding
equations, the wave function does not provide a true description
of electronic density distribution in all domains of the config-
uration space. However, it should be noted that even reaching
the minimum value of total energy of a molecule does not ensure
that reliable values of the molecular properties will be obtained,
as long as they are defined by the electronic density distribution
not only in the internuclear molecular space but also in
peripheric regions and near-nuclei domains that virtually give
no contribution to the total molecular energy value. The well-
known solution to this problem is an “extension” of the initial
basis set of atomic orbitals (AO) used in calculations. A
traditional method for such an “extension” is the increase of
the quantity of basic AOs by means of augmentation of the
so-called polarization and diffuse functions to the initial set of
atomic orbitals. However, in such a case, the size of the basis
set obtained exceeds considerably the initial basis set size. In
addition, neither the required quantity nor the functional form
of the additional functions are defined by any physically justified
manner. Commonly, the choice of additional basis functions
depends only on the intuition and professional experience of
the researcher.

In the approximation considered by us the expressions for
the second-order correctionE(2) to the energy of unperturbed
moleculeE(0) are computed as

Here Wi
(n,m) is the matrix with matrix elementsWipq

(n,m) )
〈øp

(n),Ŵiøq
(m)〉; Ŵi corresponds to the property perturbation

operator;øp
(1) is the first-order correction function to the initial

basis functionøp
(0).
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Needful explicit expression for the first-order density (bond
order) matrixP(1) to the zero-order matrixP(0) has been derived
in ref 3:

where Kba ) (εa - εb)-1[C̃b
(0)(F(1) - εaµ̃ - εbµ)Ca

(0)]; εa are
one-electron energies;F(1) is the first-order correction to the
Fock operator matrix;µ is the matrix with elementsµpq

(n,m) )
〈øp

(n),øq
(m)〉; S-1 is the matrix reverse to an overlap matrixS; and

Ca
(0) is the molecular orbital expansion coefficient.
It should be noted that eq 2 is the solution of the matrix

equation

obtained by differentiating on perturbation of the Hartree-
Fock-Roothaan equation for theP matrix

under the additional condition

which can be determined from the generalized idempotency
condition

by being differentiated with respect to a parameter.
By multiplying the first-order equation on the left and on

the right sides by theS-1 matrix and by inserting eq 2 with
simultaneous applications of the following relations

wherePV ) ∑b Pbb is a matrix which is analogous to theP matrix
but constructed by using the virtual orbital coefficientsCb, one
concludes the identity of both sides of the foregoing equation.

By substituting (2) into (1) one obtains

Here the first and second terms appear in the case of an
unperturbed basis; the third term expresses the basis set
dependence on perturbation; and the fourth term takes into
account the complicated dependence of the first-order bond order
matrix P(1) on the perturbation parameterλ [i.e., P(1) )
f(λ,ø(λ))].

It is necessary to note that ifø(1) is zero, then the expression
for P(1) is reduced to the form arising from the standard
perturbation theory that is used in almost all software packages
for calculating molecular properties.

Determination of the explicit form of the first-order correction
functionsø(1) to the basis set AO’sø(0) is based upon the solution

of the inhomogeneous Schro¨dinger equation

whereV(r) is a potential that defines the form of basis set AO’s
andŴ(r) is the perturbation operator. The differential eq 4 can
be reduced to the integral equation of the second kind, from
the solution of which it follows that the first-order correction
to the solutionø(0)(r) corresponding to the homogeneous form
of eq 4 (λŴ(r) ≡ 0) is determined by the relation

Here GE(r,r′) is the Green’s function of the homogeneous
Schrödinger equation. For the spherically symmetrical potential
V(r) the Green’s function can be expressed in the form

whereYlm are spherical functions of the argumentr0 ) rb/|r|
andgl(r,r′;E) is a radial part of the Green’s functionGE(r,r′).

In molecular calculations the Slater- and Gauss-type functions
are the most widespread as the basis set functions

which are eigenfunctions of the homogeneous Schro¨dinger
equations corresponding to eq 4 with the potentials

respectively, whereA ) n(n - 1) - l(l + 1); ê is an orbital
exponent; andNn is a normalization factor. With this form ofA
the Slater- and Gauss-type functions contain the nodeless
functions only, and they do not form the complete basis set
because they are the solutions of the Schro¨dinger equation with
different potentials of type (8).

In the case of dependence of the magnetic field operator
Ŵ(r) on the choice of the coordinate system, the vector potential
for the molecular problem is expressed as follows:

where rb is the electron position vector relative to a nucleus,
andRB is the nucleus position vector relative to the molecular
reference system. Since the influence of theŴ0 operator on the
basis functionø(0) is reduced to the modification of the magnetic
quantum numberm, the contribution of this operator to (5)
vanishes. Thus the operator-(ep/2mc)‚[RB × ∇B] is the appropri-
ate perturbation operator.

The radial Green function for potentials in eq 7 can be written
in a closed analytical form through the Whittaker functions.

As an example, below are represented the Slater- and Gauss-
type response functions for thex-component of the perturbation
operator

P(1) ) ∑
a)1

n

∑
b)n+1

m

(Cb
(0)KbaC̃a
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[- 1
2
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l,m

gl(r,r′;E)Ylm(r0)Y*lm(r′0) (6)
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n-1 exp(-êr2)Ylm(r0) (7)
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(1) Slater-type functions:

(2) Gauss-type functions:

whereYlm
C andYlm

S are the real spherical functions:

The above-described approach leads in a natural way to the
physically justified improvements of the approximate wave
function in those regions of the configuration space that give
the dominant contribution to the molecular properties under
consideration.

It should be emphasized that the sizes of all matrixes used in
the calculations coincide with those for the unperturbed zero-
order basic set functions.

III. Performance of Proposed Approach

The performance of a recently developed program using the
6-31G basis set, in comparison with standard CSGT-CPHF

calculations6 with different size and quality basis sets, is
illustrated by the results of the test calculations of the magnetic
susceptibilities (see Tables 1 and 2 and Figure 1) for the number
of species. Calculations of magnetic susceptibility for all
considered molecules have been performed for the MP2/6-311G-
(d) optimized geometries. Both geometry optimization and
CSGT calculations have been carried out with the Gaussian 98
software.7

Our test sets consist of (a) ten-electron second-row hydrides
HF, H2O, NH3, and CH4 for which the total magnetic suscep-
tibilities as well as the dia- and paramagnetic contributions have
been measured experimentally in the gas phase (Table 1) and
(b) saturated hydrocarbons up to C5H12, ethylene, cyclopropene,
cyclopropane, oxirane, and nitrogen-containing molecules HCN,
CH3NH2, and CH3NC (Table 2).

A comparison of the calculated and experimental values
clearly demonstrates the superiority of the proposed approach
with the small-sized 6-31G basis set over the standard CSGT
calculations with the 6-31G and 6-31G(d,p) basis sets. In most
cases calculations with the new method provide even better
results if compared to the CSGT calculations with the extended
6-311++G(d,p) basis set. Linear regression analyses show that
the results calculated at the POLMAG-3/6-31G level have the
slope closest to unity and the smallest intercept. It should be
noted that the 6-311++G(d,p) basis set is about three times
larger than the 6-31G basis set so it requires more than 100
times more CPU time for performing analogous calculations.

The discrepancies which one can see in Table 2 fori-C4H10

between the experimental data and the current results indicate

TABLE 1: Magnetic Susceptibilities of the Second-Row Hydrides (ppm cgs/mol)

method HFa H2Ob NH3
c CH4

d

G98/CSGT/6-31G total -7.88 (11)e -9.01 (13)e -10.29 (15)e -11.61 (17)e

G98/CSGT/6-31G(d,p) total -9.12 (20)e -11.38 (25)e -13.36 (30)e -14.59 (35)e

G98/CSGT/6-311++G(d,p) total -9.58 (29)e -12.29 (36)e -14.94 (43)e -16.13 (50)e

POLMAG-3/6-31G dia -10.48 (11)e -15.06 (13)e -20.79 (15)e -28.19 (17)e

para 0.78 (11)e 1.97 (13)e 4.02 (15)e 9.17 (17)e

total -9.70 (11)e -13.09 (13)e -16.76 (15)e -19.02 (17)e

expt dia -11.01 -14.5 -20.2 -26.682
para 0.61 1.51 3.923 9.298
total -10.4 -13.12( 1.78 -16.3( 0.8 -17.4( 0.8

a Experimental values taken from ref 8.b Experimental values taken from ref 9.c Experimental values taken from ref 10.d Experimental values
taken from ref 11.e Number of basis functions.
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Figure 1. The calculated isotropic magnetic susceptibilities are plotted
versus experimental data. The solid line has unit slope and zero
intercept.
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that there is a strong influence of intramolecular forces on the
susceptibilities. Such discrepancies are noted for the systems
for which experimental liquid-phase values are used for
comparison.

IV. Conclusions

We have shown that the proposed approach for calculating
molecular magnetic susceptibility, based upon the simultaneous
analytical dependence of both the density (bond order) matrix
and basis set functions on the corresponding perturbation
parameters within the framework of the coupled Hartree-Fock
theory, is very promising for chemical applications. The
POLMAG-3 program can be used for fast and accurate
predictions of the magnetic susceptibility of large molecules
with use of small size basis sets. It is a cost-effective alternative
to the time-consuming calculations at the standard (CPHF) level
that requires the application of very large basis sets.

The POLMAG-3 program is under further development.
Forthcoming applications include ab initio calculations of
nuclear magnetic shielding.
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TABLE 2: Magnetic Susceptibilities of the Series of Molecules (ppm cgs/mol) and Parameters of the Linear Regression
Equation δexpt ) aδcalc + ba

molecule
G98/CSGT/

6-31G
G98/CSGT/
6-31G(d,p)

G98/CSGT/
6-311++G(d,p)

POLMAG-3/
6-31G expt

C2H6 -17.29 -22.93 -24.72 -27.06 -27.40b (-26.8)c

C3H8 -22.00 -32.33 -35.62 -41.48 -40.5d (-38.6)c

n-C4H10 -30.89 -41.77 -46.51 -59.3 -50.0e

i-C4H10 -31.25 -42.25 -47.69 -44.27 -51.7e(liquid)
i-C5H12 -38.47 -52.01 -58.66 -64.49 -63.0 to-64.0e

C2H4 -9.14 -14.95 -18.04 -23.31 -19.70b (-18.8)c

c-C3H6 -26.42 -33.73 -38.67 -41.24 -39.9d (-39.2)c

c-C3H4 -16.27 -22.17 -24.92 -34.53 -29.0f

oxirane -21.35 -27.22 -29.08 -38.36 -43.1d (liquid)
HCN -9.99 -13.34 -14.67 -18.81 -16.8f

CH3NH2 -15.42 -20.89 -21.90 -29.78 -27.0g

CH3NC -15.39 -21.38 -23.66 -26.10 -27.6h

R 0.98 0.99 0.98 0.97
A 1.64 1.21 1.07 0.96
B -0.75 -0.93 -1.68 -0.42

a Linear regression equation includes data for all of calculated compounds from Tables 1 and 2.b Reference 12.c Reference 13.d Reference 14.
e Reference 15.f Reference 8.g Reference 16.h Reference 17.

New Approach for Calculations of Magnetic Susceptibility J. Phys. Chem. A, Vol. 108, No. 22, 20044933


