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The difficulty in simulating a large number of large molecules lies in the enormous difference in time scale
between translational and intramolecular motions. If a molecular dynamics simulation is to model an event
of microsecond duration, a computation time step on the order of a femtosecond is still required, making the
simulation virtually impossible. One approach is to ignore intramolecular interactions (i.e., a hard spheres or
rigid molecule model; see, for example, Chushak, Y. G.; Bartell, L. S.J. Phys. Chem. B1999, 103, 11196),
which may be adequate if the energy stored inside a molecule is unaltered. This excludes a number of important
applications, such as MALDI and laser desorption/ionization of organic particles, which are based on the
ability of molecules to absorb energy. Another approach is to combine all molecular motions into a single
degree of freedom with a time scale that is chosen based on the phonon spectrum of the particle (Zhigilei, L.
V.; Kodali, P. B. S.; Garrison, B. J.J. Phys. Chem. B1997, 101, 2028). This approach has been used to
model MALDI (Zhigilei, L. V.; Yingling, Y. G.; Itina, T. E.; Schoolcraft, T. A.; Garrison, B. J.Int. J. Mass
Spectrom.2003, 226, 85) and laser ablation of nanosized (Zhigilei, L. V.; Garrison, B. J.Appl. Surf. Sci.
1998, 129, 142) and micrometer-sized (Schoolcraft, T. A.; Constable, G. S.; Zhigilei, L. V.; Garrison, B. J.
Anal. Chem.2000, 72, 5143) particles, although the incorporation of chemical reactions is quite challenging
in this approach due to the difficulty in enforcing energy conservation. We propose an alternative molecular
dynamics model (based on the notion of dissipative particle dynamics with energy conservation, developed
by Avalos and Mackie; see, Avalos, J. B.; Mackie, A. D.J. Chem. Phys.1999, 111, 5267; Avalos, J. B.;
Mackie, A. DEurophys. Lett.1997, 40, 141) that uses concepts of statistical mechanics and thermodynamics
of irreversible processes to describe the intramolecular energy. This is manifested in the definition of an
internal molecular temperature, which describes the stored energy and governs the energy transfer into and
out of the molecule. This model allows for the incorporation of some quantum statistical phenomena of the
internal interactions and satisfies irreversibility of collision processes, while remaining computationally
inexpensive. In this approach, criteria for chemical reactions to take place can be easily stated in terms of
internal molecular temperatures and proximity of approach. Also energy conservation can be implemented in
a computationally efficient manner. We apply the model to the laser ablation of chlorobenzene nanoparticles,
a system similar to that studied by Yingling et al. (Yingling, Y. G.; Zhigilei, L. V.; Garrison, B. J.Nucl.
Instrum. Methods Phys. Res., Sect. B2001, 180, 171).

I. Introduction

Consider a particle comprised ofN molecules of a condensed
organic compound subjected to a laser pulse of known fre-
quency, intensity, and duration. The interaction of the photons
with the molecules may cause ablation, disintegration of the
individual molecules, and recombination to create new com-
pounds. One of the standard techniques for dealing with the
simulation of such events is molecular dynamics, wherein the
entire set of atoms composing all the molecules is treated as a
set of points (or spheres) that interact with each other. If we
assume that these atoms obey the laws of classical mechanics,
the equations of motion can be derived via Lagrangian mechan-
ics, wherein the coordinates of the particles are treated as
generalized coordinates.

For particles made up of large molecules (with a number of
constituent atoms), simulation of each individual atom is almost
impossible because the interactions between the atoms that make
up the molecule are substantially different from those between
the molecules. Typically, the latter are very weak for nonpolar
organic molecules, whereas the intramolecular forces are very
strong. Thus, even if it were possible, the fastest time scale of

interest (which controls the time-stepping scheme in the
simulations) is associated with the natural frequency of the
intramolecular interactions and is typically on the order of a
few femtoseconds, whereas the simulation time is on the order
of microseconds. This means that the computation time would
become prohibitively large. Moreover, the intramolecular
interactions cannot be fully described by classical mechanics.
One must instead use a quantum mechanical formulation to deal
with them. Apart from the near impossibility of solving the
Schrödinger equation for a large organic molecule, a single
particle may contain as many as 106 molecules making the task
virtually impossible. Molecular dynamics simulation of the
individual atoms is also complicated by the interaction with the
photons and subsequent fragmentation.

Because of all these difficulties and the fact that we are
primarily interested in a statistical description of the properties
of the fragments (such as the yield of the different species as a
function of time, the velocity distributions, etc.), it is sufficient
to develop anapproximatemethod to simulate the photofrag-
mentation of such particles, ignoring the details of molecular
structure.
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Garrison and co-workers in a series of papers2-5,8-10 have
pioneered this approach, using a “breathing spheres” molecular
dynamics model to account for the internal degrees of freedom
of a molecule. In this model, the internal degrees of freedom
of the molecules are modeled by attributing a single vibrational
degree of freedom to each molecule so that the molecule
expands and contracts. In this model, the incoming laser pulse
simply increases the amplitude of the oscillations. The interac-
tion between the internal degrees of freedom and the transla-
tional modes of the molecule is treated by assuming that the
interaction potentials explicitly depend on the internal degree
of freedom. The model was used to gain a great deal of
qualitative insight into such processes as MALDI3 and particle
laser ablation.4,5 Some comparison with experiment was also
presented concerning stress distributions in a solid upon laser
irradiation and the threshold laser fluence for ablation of solid
surfaces. An important drawback to the model, which may make
further quantitative comparison tenuous, is that the vibrational
and rotational modes of the molecule are “lumped” into a single
degree of freedom that is treated within the context of classical
mechanics. Quantum effects are thus completely ignored.

In this paper, we propose an alternative approach that allows
for treatment of intramolecular quantum effects, while still
preserving computational feasibility. This approach shares a
number of features in common with the breathing spheres model
such as (1) the intramolecular degrees of freedom are accounted
for in an approximate way by means of a single scalar variable,
(2) the governing equations are modified to account for the
interaction between the intramolecular and translational degrees
of freedom, and (3) the absorption of photons and subsequent
splitting are treated as chemical reactions or “collision pro-
cesses” so that the details of the interaction are not modeled.
Rather, a simple “before and after” description is used. However,
the manner in which the intramolecular degrees of freedom are
accounted for and the nature of the interactions are quite
different in the present approach. Instead of using a single
intramolecular degree of freedom and a suitably modified
Lagrangian to account for the interactions between the various
degrees of freedom, we utilize the notion of a “molecular
temperature” to characterize the energy distribution due to the
intramolecular degrees of freedom (see Avalos and Mackie6,7).
However, the quantization of the internal modes is not ignored
since it is crucial to the ability of the molecule to absorb the
incident photons. The procedure to be adopted for the analysis
is based on the notion ofcollectiVe motionof dynamical systems.
In other wordswe find equations that represent the eVolution
of quantities that represent meaningful aVerages of internal
states of the system.We shall present here a physical argument
based on the idea that the motion of a large collection of
interacting molecules (such as that considered in a typical
molecular dynamics simulation) can be considered as a super-
position of two motions, one that occurs on a time scale that is
much larger than that associated with the intramolecular motions,
and another on much a faster time scale representing the internal
motions of the individual molecules.

Consider the Hamiltonian dynamics of a particle consisting
of N molecules (whereN is a very large number) each of which
containsn atoms. Due to the vast differences in the strength of
the intra- and intermolecular forces, the Hamiltonian is highly
oscillatory in nature so that it is impossible to simulate the actual
dynamics of theN×n atoms for durations larger than a few
nanoseconds (see, for example, Reich11). However, since the
primary quantities of interest are related to the correlated motion
of the molecules that occurs over time scales on the order of

microseconds, additional variables are introduced that represent
the collective motion. These variables represent a small sub-
manifold in phase space of lower dimensionality (N) corre-
sponding to the predominant, observable degrees of freedom
of the body. The generalized coordinates and momenta associ-
ated with this subset are given asqi (i ) 1,N). These represent
the “macrostates of the system”. For the case of the organic
particle in question, the collective motion is represented by the
positions and momenta of the center of mass of the molecules.
Now, we consider the set of all possible configurations of the
system and classify them into cells, according to the value of
these generalized coordinates. The configurations inside the cell
represent the “microstates” of the system. For each macrostate,
a partition function is calculated, according to the probability
distribution of these states. Several precise results regarding the
nature of the average response can be obtained based on certain
assumptions regarding the ergodicity of the “fast” internal
variables,12,13 i.e., the variables describing the “microstates” of
the body.

Variations of such state space reduction techniques, usually
referred to as “collective variable theory”,14 have been success-
fully adopted to deal with a wide range of phenomena, including
the transmission of pulses in nonlinear optics and lasers,15 the
study of solitons,16 and the study of vortices and domain walls
in condensed matter systems.17 The connection with statistical
mechanics is obvious. Hence, we can utilize the ideas of
statistical mechanics to describe the energy distribution associ-
ated with the intramolecular motions by means of a single
“molecular temperature”θi. Thus, in this model, there are two
temperatures. The first is the bulk temperature,θT, which
represents the mean translational kinetic energy of the molecules

whereN is the total number of molecules in the particle,k is
Boltzmann’s constant,vi is the velocity of the center of mass
of the ith molecule andvj ()1/mtotal Σi)1

N mivi) is the velocity of
the center of mass of the particle. The second is the molecular
temperature,θi, which represents the energy distribution of the
intramolecular degrees of freedom.

II. The Molecular Temperature Model

The basic idea behind this scheme is that, unlike the
translation degrees of freedomri of the molecules, the internal
degrees of freedom are treated in a statistical sense based on
the ergodicity of the motion of the fast variables. Thus, when
calculating the internal vibrational and rotational modes of a
molecule, we assume that the molecule is isolated and that the
center of mass of the molecule is stationary. This is a reasonable
approximation since the internal modes undergo many cycles
of oscillation on the time scale associated with the simulation.
Such quantum mechanical calculations of the energy levels
associated with a molecule are readily available. For example
if one considers a simple diatomic molecule such as HCl in
contact with a thermal reservoir, the energy of the molecule in
its normal electronic state is given in terms of the vibrational
and rotational quantum numbers as18

whereυ is the vibrational quantum number,K is the rotational
quantum number,ν is the vibrational frequency,I is the moment

θT )
1

3Nk
∑
i)1

N

mi(vi - vj)‚(vi - vj) (1)

W(υ,K) ) (υ + 1/2)hν + K(K + 1)
h2

8π2I
(2)
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of inertia of the molecule (both of which depend on the nature
of molecule and the interaction forces), andh is Planck’s
constant. Now, over a time scale that is much larger than the
time scale associated with the vibrational modes of HCl, we
assume that the molecule occupies all the quantum states that
are available due to its interaction with the thermal reservoir.
Thus, the probability of finding the molecule in any particular
quantum state is given by Boltzmann statistics as

where B and C are normalization constants andθ is the
molecular temperature. The average energy of the internal modes
of the molecule is then simply a function of the molecular
temperature and is given by

For complex molecules, we can simplify eq 4 using Boltzmann
statistics to give

assuming that the energy density of states,F(ε), is known.19

Using this process, we can define the internal temperature,θi,
of the ith molecule. If the temperatures are high, then eq 3 can
be replaced with its high-temperature equipartition value, i.e.,

whereni is the total number of atoms in theith molecule,Ci )
(3ni - 4.5)k is theheat capacityof the molecule, andk is the
Boltzmann constant. Equation 6 comes from a simple counting
procedure assuming that each rotation degree of freedom
contributes1/2(kθi) and that each vibrational degree of freedom
contributeskθi to the total internal energy. Of course, the
equipartition assumption is not accurate for the vibration of very
stiff bonds unless the temperature is high enough. In this case,
either one needs to calculate the internal energy-temperature
relation from statistical mechanics for the energy levels or one
can assume that the higher frequencies are “frozen” (so that
the heat capacity is lower) until a critical temperature is reached
(similar to the approach used for low-temperature heat capacity
calculations for polyatomic molecules20). Thus, for HCl, we
could count only the rotational degrees of freedom in the
calculation for the heat capacity, adding the extra term due to
the vibrational degrees of freedom at a higher temperature.

II.1. Interaction Forces between the Molecules and the
Evolution of the State of the Particle. We now turn our
attention to the evolution of the state of the system, i.e., the
equations that govern the way in which the positions and
momenta of the individual particles, as well as the molecular
temperature, evolve with time. In order to derive these equations,
we identify four types of interactions: (1) interactions between
the center of masses of the individual molecules, (2) interactions
between the molecules and external fields, such as applied
electromagnetic fields, (3) interactions between the internal
degrees of freedom of the molecules, and (4) interactions
between the internal degrees of freedom of a molecule with the
translational modes of another molecule. These interactions take
place over the space and time scales of the translational motion.
In addition to these are the various photon absorption and

fragmentation processes that occur on time scales that are much
smaller than that associated with the translational motions of
the molecules. We will now discuss each of these in turn.

II.1.a. Interactions between the Centers of Mass of the
Molecules.We model these interactions by a standard Lennard-
Jones interaction potential between theith and thejth particle
of the form

wherer ij ) r i - r j, andε0 andr0 are the Lennard-Jones energy
and radius, respectively. Since several different types of
molecules are created, the interaction potentials for these
different species are required. Lennard-Jones parameters are
listed for several common organic compounds (see ref 21). It
has been observed that these parameters depend on the number
of electrons in the outer shells which in turn depend on the
molecular weight,Mw, of the compounds (see Pauling22). Thus
simple regression relations (r0 ) 366.84 - 343.31
exp(-0.0299Mw) (inangstroms)andε0) (3.409+0.0322Mw)kθ0)
are used to estimate the Lennard-Jones parameters for the
various products of photofragmentation. For interactions be-
tween two dissimilar molecules, the Lennard-Jones parameters
are taken as the average of those for each molecule. No external
electrostatic field was considered for the cases simulated here.

II.1.b. EVolution of the Translational Modes of One Molecule
Due to Internal Modes of Molecules in the Vicinity.We model
the energy transfer between the internal modes of one molecule
and the translational modes of those in the vicinity in such a
way as to drive the molecular temperature to become equal to
the translational temperature so that the body achieves thermal
equilibrium. In order to accomplish this, we introduce aVelocity-
dependent interaction force. The introduction of such a force
is motivated by the use of athermostat control23 for modeling
isothermal systems that interact with a heat bath (see eqs 5-9
in ref 24 for a comparison between two different thermostat
controls). In such molecular dynamics algorithms, the interaction
with a heat bath is modeled by a velocity-dependent force that
depends on the history of the temperature. This may be viewed
as a nonlocal control algorithm to maintain a constant temper-
ature. For example, consider a system ofN molecules that is
maintained at a constant temperature with a Gaussian thermo-
static control. The equations of motion for such a system are
given by

where V is the total potential energy of the system. Such a
system maintains the total kinetic energy at a constant value of
3Nkθ.

Here, following the procedure outlined in refs 6 and 7, we
consider the molecule to be in a thermal bath provided by the
surrounding molecules so that the interaction force (1) is
appreciable only when then molecules approach within a certain
interaction distance, (2) leaves invariant the linear and angular
momentum of the particle and is in the form of a pairwise central
force, and (3) results in a net energy transferto the translational
modes when the internal temperatures of the interacting
molecules is higher than the translational temperature and vice
versa. To satisfy these conditions, and motivated by the form

P(υ,K,θ) ) P(υ,θ)P(K,θ) )

(B e-((υ+1/2)hν)/(kθ) )(C e-(K(K+1)h2)/(8π2Ikθ) ) (3)

f(θ) ) ∑
υ)0

∞

∑
K)0

∞

W(υ,K)P(υ,K,θ) (4)

〈ε〉 ) ∫F(ε) e-ε/kθ dε ) f(θ) (5)

f(θi) ) (3ni - 9
2)kθi ) Ciθi (6)

Vij(r ij) ) ε0( r0
12

||r ij||12
-

r0
6

||r ij||6) (7)

d

dt
(mivi) ) -

∂V

∂r i

- (-∑
j)1

N ∂V

∂r j

‚ vj

3kθ
)(mivi), i ) 1, ...,N (8)
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of eq 8 for the Gaussian thermostat and by the form of eq 7 for
the interaction potential, we stipulate that this interaction force
is given by

The above pairwise central force is Galilean invariant, and it
can be shown that (1) there is no change in the total linear and
angular momentum of the particle, (2) the force vanishes
whenever the temperature of the particle is equal to the
molecular temperatures of the interacting molecules, (3) there
is a net loss of energy of the translational modes if the
translational temperature is higher than that of the interacting
molecules, and (4) there is a net gain of energy of the
translational modes if the translational temperature is lower than
that of the interacting molecules.

Here, the control depends on the instantaneous internal
temperature of the molecules, and hence it is nonlocal in space.
Also the force constantly fluctuates due to the fluctuating
velocity and temperatures of the particles. The approach is
analogous to that considered in dissipative particle dynamics
(DPD) for the simulation of suspensions, wherein the particles
are assumed to move through a fluid that exerts a velocity-
dependent stochastic force on them.25 Since there is no fluid in
this case, we depart from the use of a stochastic forcing function
used in DPD but obtain a similar effect from the fluctuating
states of the neighboring molecules. This is fully in keeping
with the notion that each molecule is like a thermodynamic
system that is interacting with the “heat bath” provided by the
surrounding molecules (i.e., a grand canonical ensemble) (see
ref 7).

With these assumptions, Newton’s laws for the translational
degrees of freedom become

whereFij is the velocity- and temperature-dependent dissipative
force defined by eq 9.

This velocity-dependent force only comes into play between
molecules that are close together (since it decays with distance),
and its direction depends on the sign of

For example, if the average internal temperature of the two
interacting molecules isless than the macroscopic particle
temperature and the distance between the molecules isincreas-
ing, then the force between the molecules isattractiVe. This
will tend to reduce the relative velocity between the molecules
and hence decrease the particle temperature defined by eq 1.
The loss of kinetic energy in turn will cause the internal energy
of the molecule to increase thus increasing the internal tem-
peratures. Thus there will be a net transfer of energy from the
translational mode to the internal modes of the molecules.

II.1.c. EVolution of the Internal Modes of One Molecule Due
to the Translational and Internal Modes of Molecules in the

Vicinity. It is here that we depart from the approach of
dissipative particle dynamics with energy conservation, as
presented by Avalos and Mackie.6,7 In those studies, the
fluctuating force for the translational degrees of freedom arises
from the surrounding fluid bath. Here, there is no fluid bath, so
the fluctuating force must be supplied by the internal modes in
such a way that the total energy is conserved. To conserve
energy, the rate at which energy is lost by the translational
modes must equal the rate at which energy is transferred to the
internal modes. There will also be energy exchange between
the internal modes of the molecules. The driving force for this
latter exchange is the difference between the internal temper-
atures of the interacting molecules. We assume that the rate of
change of the internal energy of one molecule due to its
interaction with the internal degrees of freedom of the other
molecules is proportional to all of the differences in molecular
temperature taken pairwise, i.e.,

where µ is a coefficient analogous to a heat conduction
coefficient andR ) 6. The value ofR is chosen since we expect
the interaction between the internal degrees of freedom to
decrease at the same rate as that due to the Lennard-Jones
potentials. Note that, due to the form of this interaction term,
there is no net gain or loss of internal energy due to these
interactions but merely an irreversible redistribution. This
irreversibility is the counterpart of the irreversibility associated
with the heat conduction across a temperature difference. The
rate of change of molecular temperature is thus given by

The first term inside the summation on the right-hand side of
the above equation is the counterpart of the classical heat
conduction equation and represents the direct energy transfer
between the internal degrees of freedom of the molecules due
to the difference in temperature. The constantµ is the
counterpart of the conductivity. The second term on the right-
hand side represents the energy transfer from the translational
degrees of freedom due to the difference between the molecular
and translational temperatures. The term dfi/dθi is the “heat
capacity” of theith molecule.

Equations 10 and 13 are the governing differential equations
for the evolution of the state of the particle when no photo-
fragmentation processes occur. It can be demonstrated that the
above set of equations conserves the total linear and angular
momentum of the particle as well as the total energy of the
particle.

II.2. Photofragmentation Processes.So far, we have only
considered processes that conserve the total energy of the
system. We now consider processes where energy may be
absorbed or released,28 as required for modeling photofragmen-
tation and chemical reaction. We consider three fundamental
types of processes: (a) absorption of a photon by a molecule,

Fij ) -η(2θT - θi - θj)(r ij)‚(vi - vj)
r ij

||r ij||6
(9)

η(2θT - θi - θj)(r ij)‚(vi - vj) ) η
2
(2θT - θi - θj)

d||r ij||2
dt

(11)

Rate of energy increase due to interaction) ∑
j)1

N µ(θj - θi)

||r ij||R
(12)
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(b) fragmentation of a molecule, and (c) recombination of two
molecules to form a new molecule. Every chemical reaction
between molecules will be considered as a suitable combination
of (b) and (c).

II.2.a. Absorption of Photons.Let us assume that the system
is exposed to a laser pulse with frequencyν, uniform fluence,
and of finite duration. When the photons pass though the particle
a certain number of them are absorbed by the molecules.
Whether or not a photon is absorbed by a molecule depends on
the current quantum state of the molecule and its relationship
to the energy of the photon. To elaborate, a photon can be
absorbed if and only if the absorption will allow molecule to
jump to a different quantum state, i.e., if and only if

where∆E is an allowable jump in the energy level. The above
condition implies that only certain frequencies can be absorbed
by a given type of molecule.

Following Yingling et al.,9 we model the absorption of a
photon by depositing a quantumhν of energy to the internal
modes of the absorbing molecule, i.e,

In our model, this results in a rise in its internal temperature. If
the absorption is very rapid, then we can assume “adiabatic”
conditions and we calculate the jump in the molecular temper-
ature as

This energy will be gradually distributed to the other molecules
through the “thermal” and mechanical interactions between the
molecules.

II.2.b. Fragmentation.The fragmentation process is modeled
as a chemical reaction of the form

where∆E is the internal energy released due to the breaking of
the bonds. In order to model this event, we need to consider
two issues. First, when does such an event occur? And second,
what are the positions, velocities, and internal temperatures of
the product molecules, given those of the parent molecules and
the bond energies?

Considering the first issue, we assume that a reaction of the
type 16 occurs only if the parent molecule A has sufficient
internal energy to overcome the energy barrier to splitting. We
stipulate that such an event can occur if its internal temperature,
θi, is greater than a critical value,θ*, for a sufficiently long
time. This latter condition implies that fragmentation can occur
only if other molecules are sufficiently far away (at least one
Lennard-Jones radius) so that the molecule is isolated and the
high temperatures can be maintained. We assume that when
these two conditions are met, fragmentation can occur.

Once fragmentation occurs, the states of the products are
assigned as follows: (1) the products are separated by a distance
of one Lennard-Jones radius (of the parent) of each other in a
random direction, (2) the distance between the location of a
product and that of the parent molecule is inversely proportional
to the mass of the product, (3) the velocity of the products is
the same as that of the parent (so that linear and angular
momenta and kinetic energy are conserved by the reaction), and

(4) the final temperatures of the products are equal and given
by

whereθA,B,C are the internal temperatures of the reactants,CA,B,C

are the heat capacities of the molecules, and∆U is the increase
in the interaction energy due to the disappearance of the
molecule A and the appearance of the molecules B and C at
new locations. This last correction is essential to maintain energy
conservation in the sense that the increase in total energy due
to this reaction must exactly equal the release of bond energy.

II.2.c. Recombination.For a recombination reaction

to occur, we require that (1) the reactants A and B are
sufficiently close to one another, (2) the particles have sufficient
internal energy for the bond formation, and (3) they are in the
right orientation for the reaction to occur. We model the first
two conditions by stipulating that a recombination occurs if the
distance between the reactants is less than their Lennard-Jones
radius and that their internal temperatures are higher than a
critical value. For simplicity, we do not enforce condition 3 in
the present study. In future work, condition 3 may be imple-
mented by using Boltzmann statistics and an accurate description
of the energy levels associated with the rotational degrees of
freedom of the system.

For this case, we assume that the product is located along
the line joining the reactant molecules and its velocity is given
by momentum conservation as

Again the temperature of the product is given by energy
conservation as

Unlike eq 17, there is also a change in the kinetic energy of the
system due to “inelastic” impact of the two reactants.

III. Example System and Computational Techniques

To illustrate the procedure, a particle initially composed of
20 000 chorobenzene (C6H5Cl) molecules irradiated by a 193
nm laser pulse was chosen. Yingling et al.9 also used a
chlorobenzene system, and so some qualitative comparisons can
be made. The particle is placed in a large square box with
perfectly reflecting sides. When the particle is irradiated by a
laser, the following reactions are considered:9

θB ) θC )
CAθA + ∆E - ∆U

CB + CC
(17)

A + B f C + ∆E (18)

r3 C )
mAr3 A + mBr3 B

mC
(19)

θC )
CAθA + CBθB + ∆E - (∆U + ∆KE)

CC
(20)

C6H5Cl + hν f C6H5Cl*

C6H5Cl f C6H5‚ + ‚Cl ( ∆E
3kθ0

) -47.9)
C6H5Cl + ‚Cl f C6H4Cl‚ + HCl ( ∆E

3kθ0
) 2.6)

C6H4Cl‚ + C6H4Cl‚ f C12H8Cl2 ( ∆E
3kθ0

) 50.8)
C6H4Cl‚ + C6H5‚ f C12H9Cl ( ∆E

3kθ0
) 50.8) (21)

hν ) ∆E (14)

A + hν f A*

( ∂fi
∂θi

)∆θi ) hν (15)

A f B + C + ∆E (16)
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The given reaction energies were calculated from the bond
enthalpies and normalized usingθ0 ) 300 K. We seek to
simulate this process and calculate the number of molecules of
different species (there are a total of six species) as functions
of time, the trajectories of the molecules, the temperature of
the particle, and the molecular temperatures. The heat capacity,
C, was calculated from the number,n, of atoms per molecule
using Ci ) (3ni - 4.5)k. All distances and masses were
nondimensionalized with the Lennard-Jones radius,rb, and mass,
mb, of the benzene molecule, respectively. Velocities were
nondimensionalized with the rms velocity of a benzene molecule
at 300 K, i.e.,

We combine this characteristic velocity with the characteristic
distance,rb, to define a characteristic time:

It can be shown thatη/(3krb
2) is a characteristic time associated

with the exchange of energy between the internal and transla-
tional degrees of freedom, and it is set to 0.1t0. Similarly, it
can be shown that 3krb

6/µ is a characteristic time associated
with the exchange of energy between the internal degrees of
freedom of two interacting molecules; and it has also been set
to 0.1t0. Both of these parameters were selected so that the
redistribution of intramolecular energy of an excited molecule
within a particle and subsequent vibrational cooling2 occurs on
the order of∼10 ps. The critical internal temperature for
fragmentation was taken to be 10θ0, and the minimum separation
was taken to be one Lennard-Jones radius of the fragmenting
molecule.

The entire computer program was implemented in C with a
LabView front end using the CINRun facility provided by
LabView and was run on a laptop with a Pentium 4 processor.
The use of a LabView front end allows for real-time display of
the positions of all the particles, as well as a variety of statistics
that were used to monitor the program. The dataflow concept
utilized by LabView (as opposed to the control flow concept
used by usual programming languages) allows for changing the
system parameters as the program runs to investigate a variety
of “what if” scenarios. It also provides early warning of
catastrophic instabilities (due to programming errors, etc.), and
it is easy to see the precise nature of the instability.

The state variables of the system areS) {ri,Vi,θi}. The basic
algorithm for carrying out the simulation is shown in Table 1:
We shall discuss each step in this algorithm in turn

III.1. Initialization. The molecules are initially placed at
random inside a circular region whose radius is determined by
the density of chlorobenzene and its atomic mass. The velocities
are assigned at random from a Maxwell distribution at a
temperature of 300 K. The internal temperatures are also set to
300 K. Of course, due the interactions between the molecules,
the particle will not remain at 300 K but will change its
temperature substantially (since this is a constant energy
simulation rather than a constant temperature simulation). When
the temperature is substantially different from 300 K, the particle
is “quenched”, i.e., its velocity distribution is reassigned from
a Maxwell distribution and its internal temperature is reset to
300 K. This process is repeated until a stable temperature is
reached.

III.2. Calculation of the Total Energy and the Estimation
of a Time Step.A cell structure scheme is used to carry out
the calculation of the interaction energy which involves a many
to many interaction. The entire domain is broken up into
numbered cells with the cell size being at least 3 to 5 times the
largest Lennard-Jones radius of the molecules. The particles in
each cell and the cell number associated with each particle are
stored. For each cell, only the interactions between the particles
within itself and with other particles that are in its lower near
neighbors are found (see Figure 1). This enables an efficient
search through all the cells that scales very well with the number
of particles.

The allowable time step is based on two fundamental
dynamical time scales involved in the calculation. If the particles
are far apart, a characteristic time can be calculated by dividing
the separation distance between the particles by the relative
speed of the particles toward each other (shortest time between
collisions for point particles). When they come near each other,
then the interaction force comes into play and we can calculate
a characteristic time by dividing the reduced mass (mj ) m1m2/
(m1 + m2)) by the curvaturek of the Lennard-Jones potential
well and taking the square root of the result. The time step is

TABLE 1: Algorithm for Simulation

Start
1. Initialize positions and velocities of C6H5Cl molecules to match specified temperature.
2. ChooseP molecules to each absorb a photon.
3. Calculate total energy of system and estimate time step dt.

At each timet:
3. Check for chemical reactions and find all the molecules that react with each other. Mark those molecules that combine.

Create new molecules as necessary. Update the total energy to account for energy released/absorbed by chemical reactions.
4. If no reactions occur at this time update positions and velocities using the estimated time step.

Go to 7
5. If reactions occur at this time, set time step to zero and update internal temperatures ignoring interaction energy.
6. Calculate total energy (internal+ interaction+ KE), sett ) t + dt, and estimate new time step dt.
7. Adjust the internal temperatures to conserve energy.

Go to 4

V0 ) x3kθ0

mb
(22)

t0 )
rb

V0
) xmbrb

2

3kθ0
(23)

Figure 1. Schematic of the cell structure used in the algorithm. The
domain is broken up into the numbered cells as shown. The calculation
proceeds from cell to cell. For each cell, the interaction forces are
calculated between all the particles in the current cell as well as those
in the adjoining cells whose number is greater than the current cell as
shown by the double arrows. This allows for an efficient search through
the particle list.
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then taken to be a fraction (typically a tenth) of the minimum
of these two characteristic times.

III.3. Calculation of the Change of State When There Is
No Chemical Reaction.The position and velocity of a molecule
is determined by eq 10, and its temperature is computed by eq
13. Due to the presence of velocity-dependent terms, standard
techniques such as Verlet, Leapfrog, Velocity Verlet, and
Beeman’s algorithms are not directly applicable. We used an
extremely simple Euler scheme, wherein the particle positions
and temperatures are computed at discrete times,tn ) n∆t.

Such a scheme is expected to be only conditionally stable at
best. Nevertheless, it was found that, in conjunction with the
stabilizing influence of the dissipative forces and the use of a
variable time step as described, fairly large time steps (of the
order of nanoseconds or larger) can be taken, except during the
early stages when there are a large number of particles in close
proximity and when chemical reactions are taking place. The
use of the internal temperature also allowed for a simple scheme
to ensure energy conservation and thus prevent catastrophic
build up of energy that could occur due to the drift that occurs
in explicit schemes.

III.4. Calculation of the Change in State When Chemical
Reactions Take Place.It is straightforward to implement the
change in the internal temperature and locations as described
earlier. The most challenging part of the procedure is to find
the particles that take part in the reaction. We implement the
following procedure:

1. At each time step, the closest particle to any given particle
is identified (this is done during the calculation of the total
energy and the time step, since the distance between the particles
is calculated here).

2. If the particle is capable of fragmenting and if there is no
particle within one Lennard-Jones radius of the particle, then
fragmentation occurs.

3. If a chemical reaction can occur between the closest
particles, then that reaction occurs.

4. If a particle has been created by a recent reaction, i.e, within
this time step, it is not considered to be capable of reacting
again in that time step.

5. An initial approximate temperature for the reacting
molecules is calculated from eq 17 for fragmentation reactions
and from eq 20 for recombination reactions by ignoring the
interaction and kinetic energy terms.

6. The total initial energy is incremented by the amount of
energy released or absorbed by the reactions.

III.5. Updating the State and Implementing Energy
Conservation.Finally the current state of the particle is updated
to a new state, the actual energy of the system and the new
time step are calculated. Due to the fully explicit nature of the
calculations, the energy will not be conserved. Although the
error in the total energy is very small in each time step, these
errors accumulate and can lead to catastrophic instabilities in
the system. Conservation of energy is achieved by scaling the
internal temperatures of the molecules by the error in energy

Figure 2. Ablation of a two-dimensional chlorobenzene nanoparticle, initially composed of 20 000 molecules, after 10% of the molecules absorbed
a photon (193 nm). Both axes in the plots are labeled in nanometers.
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divided by the total heat capacity. Geometrically, this is
analogous to a projection operation where the state of the system
is projected onto the constant energy surface.

IV. Results and Discussion

Figure 2 displays a two-dimensional chlorobenzene nano-
particle undergoing ablation and chemical reaction upon absorp-
tion of 2000 photons with a wavelength of 193 nm. These
images correspond roughly to those presented by Zhigilei &
Garrison.4 In that study, a 55 nm two-dimensional particle
composed of a sample organic molecule and exposed to laser
pulses with varying duration was simulated using the breathing
spheres model. They observed microcrack initiation in the
interior of the particle and subsequent propagation to the edge
resulting in large clumps of molecules. A direct comparison is
difficult, not only because of the differences in modeling
approach, but also because we have allowed for molecular
fragmentation. In general, large clumps are missing in Figure
2, because molecular fragmentation releases energy that is
eventually redistributed in the translational motion of the
molecules. We have also deposited more energetic photons into
the particle, which would lead to higher translational energy.

The evolution of the various chemical species considered is
presented in Figure 3. These figures may be qualitatively
compared to those presented by Yingling et al.,8,9 using the
breathing spheres model, although any quantitative comparison
is beyond the scope of this manuscript. Some common trends
include the rapid production and ejection of HCl, the formation
and subsequent recombination of the C6H6‚ and C6H4Cl‚
radicals, and the increase in photochemical products with laser
fluence. One notable difference between the two models is that
the present model does not impose any time constraints on the
lifetime of radicals, such as Cl‚. Rather, they are permitted to
react whenever they encounter another potential reactant.

Nevertheless, all of the Cl‚ radical is quickly used up within
the first few picoseconds of the simulation, as shown in Figure
3b. Figure 4 shows the distribution of speeds that are obtained
from the calculation presented here. It is clearly Maxwellian
and can be shown to correspond to the particle temperature.
The evolution of the particle temperature, calculated from the
molecular velocities, is shown in Figure 5. The temperature
appears to stabilize within the first 10 ps of simulation for each
case.

Presently, comparison of the model to experimental results
is nontrivial because, similar to the breathing spheres model,
the rate of energy dissipation is dictated by several free variables
(such as the conduction parameter,µ, and the interaction
parameter,η) that require experimental verification. This would
entail determining the internal energy as well as the translational

Figure 3. Evolution of photochemical products, including (a) C6H6‚, (b) Cl‚, (c) C6H4Cl‚, (d) HCl, (e) C12H8Cl2, and (f) C12H9Cl.

Figure 4. Calculated velocity distributions.
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energy during a laser ablation experiment. Recently, Woods et
al.19 reported a promising technique for such measurements
using soft UV ionization coupled with mass spectrometry. In
that study, the internal energies of ethylene glycol molecules,
vaporized using a CO2 laser, were determined from the ratio of
the fragments produced after UV irradiation. This ratio is
sensitive to the internal energy of the parent ion, as determined
from photoelectron-photoion coincidence measurements. The
internal energy of the neutral parent is then recovered from
energy conservation. The authors of the study report average
internal energies varying from 1300 to 10 250 cm-1 for CO2

laser powers between 25 and 112 mJ/pulse. They even define
an “equivalent temperature” by equating the measured average
internal energy to the average calculated from a Boltzmann
distribution. With this definition, the equivalent temperature was
shown to vary between 400 and 1200 K.

Ultimately, the present model may be used to quantitatively
determine the ion fragments produced when a submicrometer
particle is exposed to a high-power UV laser pulse. The lack of
quantification of this phenomenon remains the Achilles heel of
single-particle mass spectrometers,26,27 which typically ablate
and ionize individual particles using a single UV laser pulse.
These instruments, which are capable of analyzing the composi-
tion of an aerosol population one particle at a time, lack an
inversion scheme that would allow determination of the number
of parent molecules in the target particle and, in the case of
organic molecules, identification of the parent molecules.

V. Conclusion

We have presented a modeling and computation technique
to facilitate the molecular dynamics simulations of complex
systems. The notion of an internal molecular temperature was
introduced to describe the storage of energy within individual

molecules. The model was applied to the laser ablation of a
two-dimensional submicrometer chlorobenzene particle, allow-
ing for chemical reaction. Although quantitative comparisons
are beyond the scope of the present work, the results exhibit
qualitative agreement with previous studies. Follow-up work
will extend the computation to three dimensions, in order to
begin comparison with experiments and further develop the
concept of energy transfer driven by differences in molecular
temperature.
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