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Model Dependence of the Activation Energy Derived from Nonisothermal Kinetic Data
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This work intends to explain mathematically the model dependence of the activation eBgrggrived

from fitting nonisothermal kinetic data to a kinetic model. Artificial data following single reaction mechanisms,
both isothermal and nonisothermal, were generated to fit exactly the following simulated kinetic models:
first-order reaction, fourth-order AvramErofeyev process, and one-dimensional diffusion. To simulate more
closely experimental data, random errors, correspondingd% of the maximum conversion value, were
embedded in the data by adding a random number boundet0b301 to each data point. For isothermal
data, any kinetic model leads to the correct valu&pfHowever, for nonisothermal data, the calculaigd
deviates from the correct value by an amouxig, that depends strongly on the kinetic model to which the
data are fit. In addition, the apparent frequency factor depends slightly on the kinetic model for isothermal
data, but depends strongly on the model for nonisothermal data. The results highlight the severe limitations
of fitting nonisothermal data to kinetic models.

Introduction approximation has the following form:

Kinetic analyses of solid-state reactions are usually performed 2 _ _ _
by the model-fitting approach, in which the kinetic data are fitted Infg0)/T IN[(ARGE)(L — 2RTE)] ~ E/RT  (3)

to a variety of kinetic equations in the following form: whereq is the linear heating rate in degrees Celsius per minute.

However, in isothermal studies, the activation energies
obtained by fitting the data to different models are often found
to be identical° In other words, model-fitting of isothermal
data will always afford a consistent activation energy regardless
of the reaction model fitted. On the other hand, in nonisothermal
studies, the activation energy differs significantly among dif-
ferent fitted models, such that the kinetic parameters of the
reaction appear ambiguo#$!-12The nonisothermal Arrhenius
parameters often disagree with the isothermal values, even when
only a single reaction mechanism is involved. Possible reasons
are that Arrhenius parameters are highly model-dependent and
that the reaction model may not have been determined correctly.
Application of the model-fitting approach to nonisothermal
kinetic data has raised concerns. Generally, the agreement
between the results obtained from isothermal and nonisothermal
data is poor unless the correct model is used. This disagreement
has led some authors to conclude that nonisothermal data are
not meaningful® However, this point of view has been seriously
challenged.

The model independence of the isothermal activation energy
and the model dependence of the nonisothermal activation
energy have not yet been explairfeld. this article, we wish to
. . present our understanding of, and hence to explain, these
= Lk(ﬂ dt = ﬁ) Aexp(—E/RT) dt (2) phenomena in model-fitting. First, a general mathematical
treatment to model-fitting analysis is presented. Second, the
mathematically derived conclusions are scrutinized by analyzing
the simulated data. Real experimental data were not used
because the inherent experimental errors might lead to spurious
conclusions. Furthermore, the true mechanistic conclusions
cannot be guaranteed for real experimental data.
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dx/dt = k(T) f(x) = Aexp(—E/RT) f(x) Q)

wherex is the fraction of reactant converted f0x < 1),tis

the time, and(T) is the rate constant that depends only on the
absolute temperaturel,, the activation energyE, and the
frequency factorA. The term fk) represents the specific reaction
model (Table 9), and is sometimes also called the differential
conversion function or the differential kinetic functiéA.The
three kinetic parameterg,, A, and f§), are considered to be
crucial to kinetic studies and are sometimes referred to as the
“kinetic triplet”, and are usually not separable. The aim of kinetic
studies is to extrapolate this kinetic triplet, which can be useful
for mechanistic interpretation and kinetic prediction. In the
model-fitting approach, this goal is achieved by fitting various
reaction models to the kinetic data and determining the model
of best fit, on the basis of statistical arguments, namely, the
determination coefficientR?, and the randomness of the
residuals. After the model of best fit has been determined, the
activation energy and frequency factor can then be calculated.
More often, the integral version of eq 1 is used to reduce the
noise of the differential daté:

x d
g<x>=f0&

where gK) is termed the integral kinetic function that represents
various reaction models (Table 9). In nonisothermal studies,
approximations have been applied to the integral in various
forms*° to linearize eq 2. For example, the CoaRedfer}
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the frequency factord, obtained from fitting various reaction
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In isothermal studies, because each experiment is performed

models to solid-state kinetic data. Because no particular at the same temperature, the kinetic da¢awill not show
mechanistic or mathematical kinetic model is assumed, the temperature dependence other than that predicted by the

conclusion should be generally valid.

Activation Energy. According to eq 1, the activation energy
for an arbitrary reaction model, ), fitted to the differential
data, can be obtained from:

__dIn[(dx/dt)/f(x)]
. d(m
__dIn[(dx/dt)/f°(x)] L pAinlF (]
- dam ©d@m
=E.+ AE, 4

Arrhenius equation. Thereforé(X) and d(x) have no apparent
additional temperature dependence, and thiig= 0. In other
words, no matter which model is used to fit the isothermal
kinetic data, the correck, is always obtained. A similar
conclusion is not reached for the frequency facfaras will

be shown later. However, this conclusion is valid only for
reactions with a single mechanism. For reactions that have
complicated mechanisms, the conclusion does not hold. Unfor-
tunately, many solid-state reactions are complicated, usually
involving multiple steps. The complexity of a solid-state reaction
can be readily detected by the model-free (or isoconversional)
method!“ an alternative kinetic approach to the model-fitting
method. The purpose of this article, however, is not to explain
how to determine the correct kinetic parameters, especially for

where f(x) is the exact reaction model, which can be ascertained those complicated solid-state reactions, but rather to explain

only with simulated data, while'(k) = f(x)/f°(x) is the
“correction term” of the fitted model with respect to the exact
model by assuming £ = f 9(x) f'(x). Therefore, the apparent
activation energy for any fitted model consists of two terms,
the true activation energyE?, and the activation energy
correction AE,, whereAE, = RdIn[f'(x))/d(1/T), which depends
only on the above correction term of the fitted model.
Alternatively, model fitting can be performed on the integral
kinetic data utilizing eq 2. Under a linear heating rate and
applying the CoatsRedfern approximatioh,eq 2 can be
simplified. The fitted appareri, can be calculated as:

. din[g(x)/T9]
E,= R—d am
_ _din[®®)/T _din[g ()]
7 dam T odam
=E,+AE, (5)

where §(x) is the exact model, while'€) = g(x)/g°(x) is the
correction term of the fitted integral model with respect to the
exact model and\E; = —R dIn[g'(X)]/d(1/T) is the correction
term. When the integral model is fitted to isothermal data,
exactly the same\E, term is obtained, and therefore eq 5 is
valid for fitting of both isothermal and nonisothermal data to
the integral models.

Combining the above considerations, no matter whether the

differential form or the integral form is used, the fitted activation
energy,E,, is equal to the true activation enerds, plus the
correction termAE;.

The derived correction terms of the various models in Table
9, with respect to the first-order model (F1), the fourth-order
Avrami—Erofeyev model (A4), and the one-dimensional dif-
fusion model (D1), are shown in Tables-102, respectively.
Because'fx) and d(x) are mathematical functions that have a
unique form for a given model, or more exactly, becauiég f
and d(x) have a different temperature dependence, fitting of
data to the differential form of a given model generally will
not give the samé&, as fitting to the integral form of the same
model.

Equations 4 and 5 show how different situations arise from
model-fitting of isothermal and nonisothermal data. Becdtise
= EL + AE, model-fitting will give the correct activation
energy only whenAE, = 0; otherwise model-dependent
activation energy is expected.

certain published kinetic data.

On the other hand, in nonisothermal studies, the temperature
is arranged to change appreciably. The fractional conversion,
X, depends on the reaction mechanism (usually represented by
a kinetic model, as in Table 9), the tinteand the temperature,

T. As a result, the kinetic information is convoluted with the
temperature regime so that is forced to depend on the
temperature regime besides that determined by the Arrhenius
equation. Therefore, unless the correct model is uaég= 0

for model-fitting of nonisothermal data, and thus different
models of fitting lead to different apparent activation energies.
The trueE; will not be obtained for nonisothermal data unless
the correct model is selected. The conditionx) f constant

fO(x), leads to the samg, value.

Frequency Factor.The frequency term, |A, is also obtained
from model fitting. Rearranging eq 1, lacan be obtained from
fitting to the differential kinetic data. Thus:

In A= In[(dx/dt)/f(x)] + E/RT
= {In[(dx/dt)/f°(X)] + EIRT} +
{—In[f'(X)] + AE/RT}
(6)

whereA° is the true frequency factor. Similarly, when fitting
to the integral data:

=InA’+ AIn A

In A= In A’ + {In[g'(x)] + AE/RT}

=InA°+ Aln A (7)

By analogy with the final line of eq 5, IA also consists of
two components: the true |A° and the correction termlIn
A

In isothermal studiesAE, = 0. However, InA = In A° —
In[f'(x)] for fitting of the isothermal kinetic data to the
differential form, or InA = In A° + In[g'(X)] for fitting the
same data to the integral form. Therefore, although the correct
E, is obtained from isothermal data regardless of the model
fitted, the fitted frequency factor, I@, is slightly model-
dependent. In nonisothermal studiéds, = 0, and therefore,
In A depends not only on IAfi)] or In[g’'(xX)], but especially on
the correction termAE, BecauseAE, is strongly model-
dependent, IrA will also be strongly dependent on the fitted
model. As a consequence, both the appakrand In A are
model-dependent for nonisothermal data.
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The results of the above analysis do not depend on the origin 1.0
of the simulated data. Hence, the results should be generally
applicable to kinetic data from all sources, corresponding to

o . . . 0.8
any mechanistic or mathematical kinetic model.
Data Simulation and Analysis.Three solid-state processes,
a first-order process (F1), a fourth-order Avrarkirofeyev 06

process (A4), and a one-dimensional diffusion process (D1),
were simulated under isothermal and nonisothermal conditions.
The kinetic parameters were assumed to be the same in all three
cases:E, = 167.2 kJ/mol andA = 10 min~1. These models
were chosen because they are frequently encountered in many o2 A
solid-state reactions. The first-order reaction is a simple model
that approximates many degradation proce¥s€3he Avrami- J
Erofeyev’~2 model usually describes the crystallization kinetics o0
from amorphous phasé%2223as well as that of many processes
involving nucleation and growth of nuclei. The so-called square- Time (min)
root time relationship is an example of one-dimensional 1.0
diffusion24 However, a similar relationship can be derived from
the KWW equation that describes the molecular dynamics of
amorphous materiaf,whose chemical and physical stabilities,
including protein aggregation and crystallizat®nproceed
according to the time raised to the power @&f which is a
constant that describes the dynamics of the amorphous material.

The first-order process (F1) was simulated isothermally at
140, 150, 160, and 17AC and nonisothermally at heating rates
of 8, 12, 16°C/min, using eq 2. Under isothermal conditions,
eq 2, when applied to the first-order model, is relatively simple, 0.2
and the fractional conversion can be calculated as:

0.4

Conversion

100 200 300 400 500 600

o
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version

Con
n

(b)

_ 1 - 0.0 4 . . .
x=1—exp[~k(T)] 8) 150 175 200
Under a linear heating rate aj °C/min, eq 2 can be Temperature (°C)

transformed as: Figure 1. Simulated first-order process (F1) with Arrhenius parameters,

E. = 167.2 kd/mol and log{*min) = 19, under (a) isothermal

T o :
Xx=1— exp[—(A/ expE/RNd 9 conditions (170, 160, 150, and 14C from left to right) and (b)
PE( q)v/(‘) PCE/RT dT] ©) nonisothermal conditions (heating rates of 8, 12 °Cémin from left
to right).
The integral in the exponential can be accurately evaluated oht)
using the SenumYang approximatior! as follows, wherez TABLE 1: Activation Energy, E, and the Common
= E/RT Logarithm of the Frequency Factor, log A, Obtained from

Fitting of the Simulated First-Order Kinetic Data (from x =

exp(=2) 24102+ 18 0.01 tox = 0.99) under Isothermal Conditions (shown in

Z _ — Figure 1a) to a Range of Kinetic Functions, Corresponding
j(‘) zzexp( 2) dz Z A4 12P+ 362+ 24 (10) to Various Models
. . . model Ea (kd/mol) log @*min) R?
_In all cases, the data_are_generated in equal intervals of _tlme. AD 1672+ 0.1 18.57+ 0.01 1.000
Differentiation of the kinetic data was performed employing A3 167.2+ 0.2 18.37+ 0.02 1.000
the centered difference approximatiéh: Ad 167.24+0.2 18.23+ 0.02 1.000
D1 167.3+£ 0.2 18.35+ 0.02 1.000
dx/dt) = (%, — X _.)/2At 11 D2 167.3+0.1 18.36+ 0.01 1.000
(D), = (640 = %) (1) D3 167.2+ 0.0 18.17+ 0.00 1.000
.. . . . D4 167.3£ 0.1 17.86+ 0.01 1.000
v_vher_e the subscrlptdenotes_ theth data point andit is the F1a 167.2+ 0.0 19.00+ 0.00 1.000
time interval betwe_en the adjacent data points. Bec.ause a large g2 167.1+= 0.3 20.20+ 0.04 1.000
number of data points (20681000) are generated, differentia- P1 167.2+ 0.1 19.12+ 0.02 1.000
tion does not lead to significant noise, as can be seen from the  PL2 167.3+ 0.3 18.04+0.04 1.000
small standard deviations of the fitted parameters to the  PL3 167.2+£ 0.4 17.91+0.05 1.000
: PL4 167.2+ 0.4 17.81+ 0.05 1.000
simulated data.

. L R1 167.3+ 0.2 18.224+ 0.03 1.000
_The fourth-order AvramiErofeyev kinetics (A4) were R2 167.3+ 0.1 18.264+ 0.02 1.000
simulated under the same conditions as in the simulated first- R3 167.3+£ 0.1 18.22+ 0.01 1.000

order process. The fractional conversions under isothermal
conditions and nonisothermal conditions were calculated ac-
cording to eqgs 12 and 13, respectively.

a8 This model corresponds exactly to the simulated data.

Again, the integral in the exponential was evaluated using
the Senum-Yang approximatior’

The one-dimensional diffusion kinetics (D1) were simulated

_ T 2 under isothermal conditions (140, 150, and 180) and
x=1- exp{—[(A/q)ﬂj expCE/RT) dT]}  (13) nonisothermal (8, 12, and 2€/min) conditions. The fractional

x=1— exp[-(kt)]] (12)
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TABLE 2: Activation Energy, E, and the Common TABLE 4: Activation Energy, E, and the Common
Logarithm of the Frequency Factor, log A, Obtained from Logarithm of the Frequency Factor, log A, Obtained from
Fitting of the Simulated First-Order Nonisothermal Fitting of the Simulated Fourth-Order Avrami —Erofeyev
(12 °C/min) Kinetic Data (from x = 0.01 tox = 0.99) to Kinetic Data (from x = 0.01 tox = 0.99) under Isothermal
Differential Kinetic Functions, f(x), Corresponding to Conditions (shown in Figure 2a) to a Range of Kinetic
Various Models Functions, Corresponding to Various Models
E.= model Ea (kJ/mol) log@*min) R?
o
model  Ef log(Armin)  R® ~ AES B+ AR A2 167.3% 0.1 10.26+ 0.01 1.000
A2 79.8+ 0.2 8.80+£0.02 0.999 -87.3 79.9 A3 167.2+ 0.0 19.11+ 0.00 1.000
A3 50.7£ 0.2 533+ 0.02 0.996 —116.4 50.8 A4 167.2+ 0.0 19.00+ 0.00 1.000
A4 36.1+ 0.2 3.56+0.02 0.992 —130.9 36.3 D1 167.3£ 0.0 19.03+ 0.00 1.000
D1 217.1+4.9 24.01+£0.57 0.872 50.0 217.2 D2 167.3+£ 0.1 18.98+ 0.01 1.000
D2 252.0+£ 3.7 27.94+0.43 0.942 85.0 252.2 D3 167.5£ 0.3 18.714+ 0.04 1.000
D3 298.0+ 1.8 32.83+0.21 0.990 131.0 298.2 D4 167.4+£ 0.1 18.45+ 0.02 1.000
D4 268.1+ 3.0 29.23+£0.35 0.965 101.1 268.3 F1 167.5+ 0.3 19.58+ 0.03 1.000
F1° 167.0£ 0.2 18.98+0.02 1.000 0 167.2 F2 168.3+ 1.4 20.67+ 0.17 1.000
F2 256.6+ 3.7 29.79+:0.43 0.943 89.6 256.8 P1 167.2£ 0.1 19.86+ 0.01 1.000
P1 274+ 1.2 3.45+£0.15 0.627 —139.6 27.6 PL2 167.1+ 0.1 18.94+ 0.01 1.000
PL2 7.7+3.1 0.11+0.36 0.021 —159.4 7.6 PL3 167.1+ 0.1 18.85+ 0.02 1.000
PL3 —-156+29 —-2.66+0.34 0.092 —182.7 —15.5 PL4 167.1+ 0.1 18.77+ 0.02 1.000
PL4 —27.2+2.8 —4.08+0.32 0.250 —194.3 -—27.1 R1 167.2+ 0.1 19.02+0.01 1.000
R1 775+ 3.7 8.18+0.43 0.605 —89.6 77.6 R2 167.3+ 0.0 18.95+ 0.00 1.000
R2 122.3+£1.8 13.28+0.22 0.938 —44.38 122.4 R3 167.3+ 0.1 19.26+ 0.01 1.000

R3 137.2+1.2 1490+ 0.14 0.977 -29.9 137.3
2 In kilojoules per mole® This model corresponds exactly to the

2 This model corresponds exactly to the simulated data.

simulated data. TABLE 5: Activation Energy, E, and the Common
Logarithm of the Frequency Factor, log A, Obtained from

TABLE 3: Activation Energy, E,, and the Common Fitting of the Simulated Fourth-Order Nonisothermal

Logarithm of the Frequency Factor, log A, Obtained from (12 °C/min) Avrami —Erofeyev Kinetic Data (from x = 0.01

Fitting of the Simulated First-Order Nonisothermal to x = 0.99) to Integral Kinetic Functions, g),

(12 °C/min) Kinetic Data (from x = 0.01 tox = 0.99) to Corresponding to Various Models

Integral Kinetic Functions, g(x), Corresponding to Various E.—

Models a i > a 0
model Ed log(A*min) R AES 2+ AEa

E.=

A2 341.8+40.2 39.07/+0.02 1.000 174.7 341.9

model  Ed log'min) R? ~ AE®? ES+AE A3 2253+01 2571+001 1000 582 2254
A2 79.8+0.0 8.814+0.01 1.000 -87.3 79.9 A4P 167.1+£0.1 18.99+-0.01 1.000 0 167.2
A3 50.84£0.0 5.35£0.00 1.000 —116.4 50.8 D1 1116.1+9.7 126.69-1.11 0.979 947.0 1114.2
Ad 36.2+0.0 3.59+£0.00 1.000 —130.9 36.3 D2 1186.64+ 7.7 134.54-0.88 0.988 1019.5 1186.7
D1 271.8+ 2.5 30.51+0.29 0.977 104.6 271.8 D3 1282.3+ 4.3 144.93+£0.49 0.997 1115.0 1282.2
D2 289.7+ 2.0 32.414+-0.23 0.987 122.6 289.8 D4 1217.6+6.7 137.4740.76 0.991 1050.5 1217.7
D3 314.2+ 1.1 34.74:0.13 0.996 147.1 314.3 F1 691.2+ 0.4 78.92+0.04 1.000 524.1 691.3
D4 297.7+ 1.7 32.73:0.20 0.991 130.5 297.7 F2 904.9+-9.9 103.62:1.13 0.967 736.8 904.0
F1° 167.1+ 0.1 18.99+0.01 1.000 0 167.2 pP1L 115.2+ 0.5 13.94+0.05 0.995 —c —c
F2 221.7£25 25.69:0.29 0.965 54.6 221.8 PL2 273.3£2.4 31.09:0.28 0.977 105.7 272.9
PI 24.1+ 0.1 3.06+ 0.01 0.993 —c —c PL3 179.7£1.6 20.35+0.18 0.976 12.2 179.4
PL2 62.4+ 0.6 6.61+£0.07 0.972 —104.8 62.4 PL4 132.8+41.2 14.95-0.14 0.978 —345 132.7
PL3 39.1+ 0.4 3.85+0.05 0.968 —128.0 39.2 R1 554.2+-4.9 63.05-0.55 0.993 386.1 553.3
PL4 275+ 0.3 2.45+0.04 0.964 —139.7 27.5 R2 613.73.0 69.65-0.34 0.997 446.6 613.8
R1 132.2+1.2 14.67+0.14 0.975 -35.0 132.2 R3 637.3+£2.2 72.21+0.25 1.000 470.1 637.3
R2 147.3+0.8 16.25+-0.09 0.992 -19.8 147.4 a In Kiloi b i
R3 1534+ 0.6 16.82+0.06 0996 —13.8 153.4 n kilojoules per mole® This model corresponds exactly to the

simulated data¢ The activation energy in the table is obtained by an
a |n kilojoules per mole? This model corresponds exactly to the iterative process. Fitting of the kinetic function for P1 (Preut
simulated data¢ The activation energy in the table is obtained by an Tompkins) to nonisothermal kinetic data is more complicated, because
iterative process. Fitting of the kinetic function for P1 (Preut the model includes a ternty,, which depends on the fittel, itself.
Tompkins) to nonisothermal kinetic data is more complicated, because Hence, the correction ternE,, cannot be obtained for this kinetic

the model includes a ternty,, which depends on the fitteld, itself. function.
Hence, the correction tern\E,, cannot be obtained for this kinetic
function. = 0.01—0.99 were fitted to various models according to the

integral kinetic eq 2 to evaluate the model-independence and/
or model-dependence of the kinetic parametégsandA. For
" isothermal data, eq 2 becomes:

conversions under isothermal conditions and nonisothermal
conditions were calculated according to eqs 14 and 15

respectively.
x = vkt (14) 9(x) = Aexp(-E/RTg )t (16)
X = [(A/Q)‘[(‘)T exp(—E4/RT) dT]llZ (15) whereTig is the isothermal temperature. Under a linear heating

rate,q °C/min, eq 2 can be linearized using the Ced®edfern

A random number bounded hy0.001, corresponding to ~ aPproximatiorf, shown in eq 3.
noise at the level of-0.1% of the maximum value, = 1, was The differential kinetic eq 1 was also used to fit the first-
added to every simulated data point to simulate more closely order nonisothermal data to compare the differential and integral
the experimental data. All these kinetic data in the range of forms in model-fitting.
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TABLE 6: Activation Energy, E, and the Common TABLE 7: Activation Energy, E, and the Common
Logarithm of the Frequency Factor, log A, Obtained from Logarithm of the Frequency Factor, log A, Obtained from
Fitting of the Simulated One-Dimensional Diffusion Kinetic Fitting of the Simulated Nonisothermal (12°C/min)
Data (from x = 0.01 tox = 0.99) under Isothermal One-Dimensional Diffusion Kinetic Data (from x = 0.01 tox
Conditions (shown in Figure 3a) to a Range of Kinetic = 0.99) to Integral Kinetic Functions, g), Corresponding to
Functions, Corresponding to Various Models Various Models
model Ea (kJ/mol) log@*min) R? Ea=
A2 167.1+ 0.1 19.13+ 0.01 1.000 model  ES logirmin) R AES EM+AR
A3 167.1+ 0.1 18.95+ 0.01 1.000 A2 42.7+ 0.3 4.47+0.03 0.985 —124.3 42.9
A4 167.2+ 0.1 18.82+0.01 1.000 A3 26.1+ 0.2 241+0.02 0.982 —140.9 26.3
D12 167.2+ 0.0 19.00+ 0.00 1.000 A4 17.8+£0.1 1.37£0.02 0.979 —149.1 18.1
D2 167.2+ 0.0 18.964+ 0.00 1.000 D1° 167.0£0.1 18.97+0.02 1.000 0 167.2
D3 167.0+ 0.2 18.65+ 0.02 1.000 D2 174.0£ 0.3 19.61+0.04 0.999 7.1 174.3
D4 167.1£ 0.1 18.41+0.01 1.000 D3 182.5+ 0.7 20.08+ 0.08 0.995 15.5 182.7
F1 167.0+ 0.2 19.48+ 0.02 1.000 D4 176.8+£ 0.4 19.32+0.05 0.998 9.8 177.0
F2 166.1+1.2 20.28+ 0.14 1.000 F1 92.3+ 0.5 10.49+0.07 0.987 -—74.7 92.5
P1 167.1£ 0.1 19.66+ 0.01 1.000 F2 108.6+ 1.5 12.67+£0.18 0.935 -58.4 108.8
PL2 167.2+ 0.0 18.74+ 0.00 1.000 P1 17.7+0.1 2.24+0.17 0.979 —¢ —¢
PL3 167.2+ 0.0 18.614+ 0.00 1.000 PL2 36.5+-0.0 3.62+£0.00 1.000 —130.5 36.7
PL4 167.2+ 0.0 18.514+ 0.00 1.000 PL3 22.0+0.0 1.83+0.00 1.000 —145.0 22.2
R1 167.2+ 0.0 18.914+ 0.00 1.000 PL4 148+ 0.0 0.95+0.00 0.999 —152.2 15.0
R2 167.2+ 0.0 18.87+ 0.00 1.000 R1 80.0+0.1 8.83+£0.01 1.000 -87.0 80.2
R3 167.1+0.1 18.79+ 0.01 1.000 R2 85.7+0.2 9.29+0.03 0.997 -81.3 85.9

R3 87.8£0.3 9.40+0.04 0.995 -79.2 88.0
2 |n kilojoules per mole? This model corresponds exactly to the

@ This model corresponds exactly to the simulated data.

1.0 4 simulated data¢ The activation energy in the table is obtained by an
[ iterative process. Fitting of the kinetic function for P1 (Prout
0.8 - Tompkins) to nonisothermal kinetic data is more complicated, because
’ the model includes a ternty,, which depends on the fitte, itself.
c Hence, the correction term\E,, cannot be obtained for this kinetic
2 06 1 function.
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Figure 2. Simulated fourth-order AvramiErofeyev kinetic process
(A4) with Arrhenius parameters, = 167.2 kJ/mol and log{*min) 0.2 -
=19, under (a) isothermal conditions (170, 160, 150, and°CAflom
left to right) and (b) nonisothermal conditions (heating rates of 8, 12, (b)
16 °C/min from left to right). 0.0 1 . ’ .
100 125 150 175 200
Results and Discussion Temperature (°C)

Figure 1a shows the simulated first-order data under isother- Figure 3. Simulated one-dimensional diffusion kinetic process (D1)
mal conditions, while Figure 1b shows the simulated first-order Yjvr']tgefr{g;}?;gtshz?r;a;itggﬁigni%gok%g‘g' gﬂg ';’gf?(‘)';‘]) o ftlﬁﬂ
(éatz:1 r:gr lr:qozs(;)g?aei:]rggl ;?tg?nfli(t)t?r?g.; -l;zglesilm Sur:gz’;z tgfs\tlilrudeesr of right])‘ andl(?t) nor}isr(])t)hermal conditions (heating rates of 8, 12Cl6

a - min from left to rng t).
isothermal data to various models. Each model fits the data
almost perfectly, which leads to two conclusions. First, each the frequency factorgd, do not differ significantly among the

model gives the correct activation energy, 167.2 kJ/mol. Second,models. The exception is model F2, for which differences of 2
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TABLE 8: Temperature Dependence of Some Functions of Fractional Conversiorx, in the Kinetic Data (from x = 0.01 tox =
0.99) for Three Simulated Processes, First-Order (F1), Fourth-Order Avrami-Erofeyev (A4), and One-Dimensional Diffusion

(D1), under Nonisothermal Conditions (12°C/min)

F1 A4 D1
R(dINQX)/d(1/T)) R(dINQX)/d(1/T)) R(dINQX)/d(1/T))
QKX) (kJ/mol) R? (kJ/mol) R? (kJ/mol)
X —139.60 0.978 —560.84 0.979 —86.98 1.000
1-x 89.58 0.672 350.67 0.665 28.63 0.499
—In(1—x) —174.57 1.000 —698.81 1.000 —99.29 0.988
1-x"r-1 —190.67 0.996 —761.84 0.996 —104.29 0.977
(L—xIn(L—x) +x -297.19 0.988 -1194.22 0.988 -181.01 0.999
1-(1—xw —160.81 0.997 —644.85 0.997 —94.75 0.995
1—(1—xw" —154.78 0.993 —621.32 0.993 —92.65 0.997
1—2x/3—(1—x)%° —305.10 0.991 —1225.22 0.992 —183.80 0.998

TABLE 9: List of Reaction Models Commonly Used To Represent Solid-State Reaction Kineti¢g

model differential kinetic function, &) integral kinetic function, g( corresponding mechanism
A2 2(1— X)[—In(1 — x)]¥2 [~In(1 — x)]¥2 Avrami—Erofeyev,n = 2
A3 3(1—x)[—In(1 — x)]%° [—In(1 — x)]** Avrami—Erofeyev,n = 3
A4 4(1—X)[—In(1 — x)]%* [~In(1 — x)]*4 Avrami—Erofeyev,n =4
D1 1/ *2 one-dimensional diffusion
D2 [~In(1—x)]* @A—=xIn(1l—x)+x two-dimensional diffusion
D3 B2)(1— YA —x) B —-1]1 [1—(@1—x3? three-dimensional diffusion (Jander)
D4 BRIAL—x) B —1]1 1—-2x3—(1—x)% three-dimensional diffusion (GinstlingBrounshtein)
F1 1-x —In(1 —x) first-order reaction
F2 1-x)7? 1/1—-x—1 second-order reaction
P1 x(1—x) In[}/(1 — X)] + ktz2 Prout-Tompkins
PL2 X2 X2 power law (= 1/2)
PL3 @3 X113 power law (= 1/3)
PL4 4304 x4 power law (= 1/4)
R1 1 X one-dimensional phase boundary
R2 2(1— x)12 1—(1—x)" two-dimensional phase boundary
R3 3(1— x)?3 1—-(1—x)Ww three-dimensional phase boundary

orders of magnitude are apparent. When the added noise isintegral forms appear to eliminate some models. However,
removed from the simulated data, the conclusions are un-because of the influence of the experimental error on the values

changed.

Table 2 lists the values d&, and InA obtained from fitting
the simulated first-order data at a heating rate ofC2nin to
the various kinetic models in their differential forms (eq 1).

of E; and A, this recommendation may not eliminate all the
false models.

Tables 4 and 5 show the results of fitting the simulated fourth-
order Avrami-Erofeyev kinetic data under isothermal conditions

Several models, including the first-order reaction and the (Figure 2a) and nonisothermal conditions (Figure 2b), while

Avrami—Erofeyev equations with different orders, give an
excellent fit (2 > 0.999) and are statistically indistinguishable.
Contrary to fitting of the simulated isothermal data, fitting of

Tables 6 and 7 show the results of fitting the simulated one-
dimensional diffusion data under isothermal conditions (Figure
3a) and nonisothermal conditions (Figure 3b). The conclusions

the simulated nonisothermal data to different models results in are essentially the same as those above, namely, isothermal data
very different values of the activation energy and frequency give model-independeri, whereas nonisothermal data give

factor. For example, for three-dimensional diffusion (model D3)
Ea is relatively large (298 kJ/mol), while for the power law
models, PL3 and PL4, tH&, values are so low as to be negative.
The frequency factorA, also depends strongly on models to
which the simulated first-order data are fitted.

Table 3 lists the values &, and InA obtained by fitting the

model-dependert,.

In the previous mathematical analysis, we showed that the
fitted activation energy is equal to the true activation energy,
EXL, plus the correction term\E, We also argued thakE, is
zero for isothermal kinetic data but not zero for nonisothermal
kinetic data. To demonstrate this concept, the simulated noniso-

same simulated first-order data as in Table 2, but using the thermal data conforming exactly to a first-order process by

integral kinetic function (eq 2). As expected, the value&pf
and InA still depend on the model. However, with the exception
of a few models, including AvramiErofeyev models A2, A3,
A4, and the exact model, F1, fitting to>g(and f) leads to
different values ok, andA for the same model, which agrees
with previous mathematical analysis. It is noted that the
coefficient of determinationR?, is much closer to 1.0 when
the simulated data are fitted togy¢ather than to ). Therefore,

heating at 12C/min was applied to show the nonzero values
of the correction terms for various models with respect to the
exact model, the first-order reaction. Careful examination of
the correction terms in Table 10 shows that all 'l and
In[g'(X)] functions are composed of relatively few elementary
terms, such as I, In(1 — x), In[—In(1 — X)]. It would be
relatively simple to ascertain the temperature dependence of
In[f'(x)] or In[g'(X)] if we knew the temperature dependence

the integral form is less able to discriminate between the reactionof each component, In[Q)], such as Inx, In(1 — Xx),

models than the differential form. In other wordsx)deads to
greater ambiguity thanxj in the selection of a reaction model.
Therefore, it is recommended thax)fpe used in model-fitting
when the number of data points is sufficient to allow for

In[—In(1 — x)], where Q) is a convenient symbol representing
each simple term. Using the simulated nonisothermal first-order
data at 12C/min, we obtained the temperature dependence of
each QX) term by linear regression. Columns 2 and 3 of Table

differentiation without causing too much noise. The differences 8 list the results of the regression expressedRafin[Q(X)]/

among the values dE, and A after fitting to differential and

d(1/T) andR?, respectively. Most of the regressions give high
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TABLE 10: Correction Term of the Models Listed in Table 9 with Respect to the First-Order Kinetic Model (F1)

model In[f (x)]2 In[g’'(x)]°

A2 In 2+ (1/2) In[=In(1 — x)] —(1/2) In[—In(1 — X)]

A3 In 3+ (2/3) In[—In(1 — x)] —(2/3) In[~In(1 — x)]

A4 In 4 + (3/4) In[=In(1 — x)] —(3/4) In[—In(1 — )]

D1 —In2—Inx—1In(1—x) 2Inx—In[—In(1 — X)]

D2 =In[=In(1 = x)] — In(1 —x) IN[(1 —x) In(1 —x) +x] — In[—In(1 — X)]
D3 IN(3/2)— (2/3) In(1— x) — In[(1 — x)"¥3 — 1] 2In[1— (1 — XY = In[—In(1 — X)]

D4 IN(3/2)— In[(1 = x)" 3= 1] — In(1 — X) In[1 — 2x/3 — (1 — X% — In[—In(1 — X)]
F1c 0 0

F2 In(1—x) Inx—=1In(1 —x) — In[—In(1 — X)]

P1 Inx In[In x—1In(1 — x)] — In[—In(1 — X)]

PL2 In2+ (1/2) Inx — In(1 — x) (2/2) Inx = In[—=In(1 — X)]

PL3 In 3+ (2/3) Inx — In(1 — x) (2/3) Inx — In[—In(1 — )]

PL4 In 4+ (3/4) Inx — In(1 — X) (1/4) Inx = In[=In(1 — X)]

R1 =In(1 —x) In X — In[—In(1 — X)]

R2 In2—(1/2) In(1— x) In[1 — (1 — x4 — In[—In(1 — X)]

R3 In3— (1/3) In(1—x) IN[1 — (12 — XY = In[—In(1 — x)]

a f(x) = f(X)/f °(x) is the correction term of the differential kinetic function with respect to the exact differential kinetic funcfipq. f
b g'(X) = g(¥)/g°(x) is the correction term of the integral kinetic function with respect to the exact integral kinetic funéign°gExact model

is F1

TABLE 11: Correction Term of the Models Listed in Table 9 with Respect to the Fourth-Order Avrami —Erofeyev Kinetic

Model (A4)

model In[f (x)]2 In[g'(¥)]°

A2 =In2 = (1/4) In[~In(1 — X)] (2/4) In[—In(1 — X)]

A3 In(3/4) — (1/12) In[-In(1 — x)] (1/22) In[—In(1 — )]

A4 0 0

D1 —In8—Inx—1In(1—x) — (3/4) In[-In(1 — x)] 2 In x— (1/4) In[=In(1 — x)]

D2 —In4—1In(1—x) — (7/4) In[-In(1 — X)] IN[(1 —x) In(1 — x) +x] — (1/4) In[-In(1 — x)]
D3 IN(3/8)— (2/3) In(1— x) — In[(1 — x)~*° — 1] — (3/4) In[~In(1 — X)] 21n[1 — (1 — XY — (1/4) In[~In(1 — X)]

D4 IN(3/8)— In[(1 — X3 = 1] — In(1 — x) — (3/4) In[—=In(1 — x)] IN[1 — 2x/3 —(1 — )] — (1/4) In[—In(1 — X)]
F1 —=In 4 — (3/4) In[-In(1 — X)] (3/4) In[—In(1 — X)]

F2 =In4+ In(1 — x) — (3/4) In[-In(1 — x)] Inx—1In(1—x) — (1/4) In[—In(1 — x)]

P1 —In 4+ In x — (3/4) In[-In(1 — x)] In[in x — In(1 — x)] — (1/4) In[=In(1 — X)]
PL2 —In2+ (1/2) Inx — In(1 — X) — (3/4) In[—In(1 — X)] (2/2) Inx — (1/4) In[—In(1 — x)]

PL3 In(3/4)+ (2/3) Inx — In(1 — x) — (3/4) In[~In(1 — x)] (1/3) Inx — (1/4) In[-In(1 — x)]

PL4 (3/4) Inx — In(1 — x) — (3/4) In[—In(1 — x)] (2/4) Inx — (1/4) In[=In(1 — x)]

R1 —In4 —In(1 — x) — (3/4) In[-In(1 — x)] In x — (1/4) In[—In(1 — X)]

R2 —In2—(1/2) In(1— x) — (3/4) In[-In(1 — x)] IN[1—(1 — x)¥7 — (1/4) In[~In(1 — X)]

R3 In(3/4)— (1/3) In(1— x) — (3/4) In[=In(1 — x)] IN[1—(1 — x)] — (1/4) In[~In(1 — X)]

a f'(x) = f(x)/f °(x) is the correction term of the differential kinetic function with respect to the exact differential kinetic funéfion f
b g'(x) = g(X)/g°(x) is the correction term of the integral kinetic function with respect to the exact integral kinetic funégign°gExact model

is A4.

TABLE 12: Correction Term of the Models Listed in Table 9 with Respect to the One-Dimensional Diffusion Model (D1)

model In[f (x)]2 In[g’(X)]°

A2 In(1 —x) — Inx+ (1/2) In[~In(1 — x)] 2/2) In[—=In(1 — x)] — 2 Inx
A3 In (3/2)+ In(1 — X) — In x + (2/3) In[=In(1 — X)] (1/3) In[—=In(1 = x)] — 2 Inx
A4 IN2+1In(1—x) — Inx+ (3/4) In[~In(1 — x)] (1/4) In[—=In(1 — X)] — 2 InX
D1¢ 0 0

D2 =In2—In[=In(1 —x)] —Inx N[ —=x)INL—x)+x] —2Inx
D3 IN(3/4)+ (1/3) In(1— x) — In x — In[(1 — x)"¥3 — 1] 2In[1— 12 -xY] —2Inx

D4 IN(3/4)— In[(1 —x)"#—1] —Inx IN[1 —2x/3 — (1 —x)?¥-21Inx
F1 —In24+In(1—x) —Inx In[—In(1 —x)] —2Inx

F2 —=In2+2In(1—x)—Inx —In(1—x) —Inx

P1 —In24+2In(1—x) Infin x—1In(1 —x)] —2Inx
PL2 —(2/2) Inx —(3/2) Inx

PL3 In(3/2)— (1/3) Inx —(5/3) Inx

PL4 In2— (1/4) Inx —(7/4) Inx

R1 —In2—1Inx —Inx

R2 (1/2) In(1— x) — In x IN[1 —(1—x%Y] —2Inx

R3 In(3/2)+ (2/3) In(1—x) — Inx In[1 — (1 —x)Y] —2Inx

a f/(x) = f(x)/f(x) is the correction term of the differential kinetic function with respect to the exact differential kinetic funedrPfg'(x) =
g(X)/g°(x) is the correction term of the integral kinetic function with respect to the exact integral kinetic funéfign°gExact model is D1.

R?, except when Q) = (1 — x). However, the extent of the  activation energyAE,, for each model (Tables 2 and 3). When
correlation is not important here, because we wish to obtain this AE, is added to the true activation enerds’ = 167.2

the contribution of each term to the activation energy in the kJ/mol, the fitted apparertf, is then obtained and is placed in
overall model-fitting. By adding the contribution of each term the last column of Table 2 or Table 3. The appafentalues

in In[f'(x)] or In[g’'(xX)], we obtain the correction term of the in Tables 2 and 3 are in good agreement. This treatment
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demonstrates how the model-dependent appdtgmatrises in (2) Byrn, S. R.; Pfeiffer, R. R.; Stowell, J. Golid-State Chemistry of
fitting of nonisothermal data. As before, the conclusions are D“‘gé 2\;“’ ed-'k,ssg'_-v‘\’l\_’est 'gf’i{e“;’ 'N'P;999-Ch 1008 17 407
unchanged when the added noise is removed from the simulated433F ) Vyazovkin, S.; Wight, C. Alnt. Re. Phys. Cheml998 17,

data. ) ) (4) Doyle, C. D.J. Appl. Polym. Sci1962 6, 639-642.
An analogous study was carried out for the simulated fourth- (5) Coats, A. W.; Redfern, J. Nature 1964 201, 68—69.
order Avrami-Erofeyev kinetic data at 12C/min (Tables 4, (6) Sestak, JThermophysical Properties of SolidSlsevier: Amster-

5, and 8) and the simulated one-dimensional diffusion processdam, 1984; Vol. 12D.

at 12°C/min (Tables 6-8). These results can be interpreted in (7) Agrawal, R. K.J. Therm. Anal1987 32, 149-156.

the same way as for the simulated first-order data shown above. Eg; ég;ar‘]"vagj El.;K\}\iéllT,hf "X: J/.\n;éls??\laatslfl’Blu‘:?zt;ﬁg?'(U'Slpea

Therefore, it appears that the above treatment and interpretationyoa 487-523.

should be generally valid. (10) Zhou, D.; Schmitt, E. A.; Zhang, G. G. Z.; Law, D.; Vyazovkin,
It should be mentioned that nonisothermal kinetic data are S.; Wight, C. A;; Grant, D. J. WJ. Pharm. Sci2003 92, 1779-1792.

equally as informative as isothermal kinetic data, although the __(11) Vyazovkin, S.; Wight, C. AAnnu. Re. Phys. Chem1997 48,

s.tron.g mOdeI_qependenC.e .Of the kinetic parameters makes the (12) \/yazovkin, S. V.; Lesnikovich, A. Thermochim. Actd99Q 165,

kinetic analysis more difficult and challenging. Other ap- 11-15.

proaches, such as Kissinger anal§s# and model-free (13) McCallum, J. R.; Tanner, Nature 197Q 225, 1127-1128.

analysis?143%734 can be successfully applied to extract the 68(14) Vyazovkin, S.; Wight, C. AThermochim. Actd999 340/341 53~

correct kinetic information from nonisothermal data. i )
(15) Guo, Y.; Byrn, S. R.; Zografi, GI. Pharm. Sci200Q 89, 128—

143.
(16) Pikal, M. J.; Lukes, A. L.; Lang, J. BJ. Pharm. Sci.1977, 66,
The following conclusions can be drawn from mathematical 1312-1316.
ana_ll_ysis (_)f mode_l-fitting to solid-state kinetic data and are 88 2&22: m; 2222 E%igig ; 312_3_2312
verified with the simulated data. o (19) Avrami, M.J. Chem. Physl941 9, 177-184.
(1) The activation energy obtained from fitting of isothermal (20) Erofeev, B. V.Compt. Rend. Acad. Sci. US3R46 52, 511—
kinetic data is independent of the model to which the data are 514.
fitted. (2) The frequency factor obtained from fitting of 19%1)13??11860_14%“ A.; Mehl, R. Flrans. Am. Inst. Min. Metall. Eng.
|soj[hermal klne_tlc data depends not stronglly on the model to (22) Schmitt, E. A.: Law, D.: Zhang, G. G. 2. Pharm. Sci1999 88,
which the kinetic data are fitted. (3) The activation energy and 591_5g¢.
frequency factor obtained by fitting nonisothermal kinetic data  (23) Leung, S. S.; Grant, D. J. W. Pharm. Sci1997, 86, 64—71.
depend strongly on the model to which the data are fitted. (4)  (24) Sharp, J. H.; Brindley, G. W.; Achar, B. N. B. Am. Ceram. Soc.
The conclusions are unchanged when noise at the level of1966 49, 379-382. )
+0.1% of the maximum valuex = 1, was added to every 26(()25) Yoshioka, S.; Aso, Y.; Kojima, S?harm. Res2001, 18, 256—
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