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This work intends to explain mathematically the model dependence of the activation energy,Ea, derived
from fitting nonisothermal kinetic data to a kinetic model. Artificial data following single reaction mechanisms,
both isothermal and nonisothermal, were generated to fit exactly the following simulated kinetic models:
first-order reaction, fourth-order Avrami-Erofeyev process, and one-dimensional diffusion. To simulate more
closely experimental data, random errors, corresponding to(0.1% of the maximum conversion value, were
embedded in the data by adding a random number bounded by(0.001 to each data point. For isothermal
data, any kinetic model leads to the correct value ofEa. However, for nonisothermal data, the calculatedEa

deviates from the correct value by an amount,∆Ea, that depends strongly on the kinetic model to which the
data are fit. In addition, the apparent frequency factor depends slightly on the kinetic model for isothermal
data, but depends strongly on the model for nonisothermal data. The results highlight the severe limitations
of fitting nonisothermal data to kinetic models.

Introduction

Kinetic analyses of solid-state reactions are usually performed
by the model-fitting approach, in which the kinetic data are fitted
to a variety of kinetic equations in the following form:

wherex is the fraction of reactant converted (0e x e 1), t is
the time, andk(T) is the rate constant that depends only on the
absolute temperature,T, the activation energy,Ea, and the
frequency factor,A. The term f(x) represents the specific reaction
model (Table 9), and is sometimes also called the differential
conversion function or the differential kinetic function.1,2 The
three kinetic parameters,Ea, A, and f(x), are considered to be
crucial to kinetic studies and are sometimes referred to as the
“kinetic triplet”, and are usually not separable. The aim of kinetic
studies is to extrapolate this kinetic triplet, which can be useful
for mechanistic interpretation and kinetic prediction. In the
model-fitting approach, this goal is achieved by fitting various
reaction models to the kinetic data and determining the model
of best fit, on the basis of statistical arguments, namely, the
determination coefficient,R2, and the randomness of the
residuals. After the model of best fit has been determined, the
activation energy and frequency factor can then be calculated.
More often, the integral version of eq 1 is used to reduce the
noise of the differential data:3

where g(x) is termed the integral kinetic function that represents
various reaction models (Table 9). In nonisothermal studies,
approximations have been applied to the integral in various
forms4-9 to linearize eq 2. For example, the Coats-Redfern5

approximation has the following form:

whereq is the linear heating rate in degrees Celsius per minute.
However, in isothermal studies, the activation energies

obtained by fitting the data to different models are often found
to be identical.2,10 In other words, model-fitting of isothermal
data will always afford a consistent activation energy regardless
of the reaction model fitted. On the other hand, in nonisothermal
studies, the activation energy differs significantly among dif-
ferent fitted models, such that the kinetic parameters of the
reaction appear ambiguous.3,11,12The nonisothermal Arrhenius
parameters often disagree with the isothermal values, even when
only a single reaction mechanism is involved. Possible reasons
are that Arrhenius parameters are highly model-dependent and
that the reaction model may not have been determined correctly.
Application of the model-fitting approach to nonisothermal
kinetic data has raised concerns. Generally, the agreement
between the results obtained from isothermal and nonisothermal
data is poor unless the correct model is used. This disagreement
has led some authors to conclude that nonisothermal data are
not meaningful.13 However, this point of view has been seriously
challenged.6

The model independence of the isothermal activation energy
and the model dependence of the nonisothermal activation
energy have not yet been explained.2 In this article, we wish to
present our understanding of, and hence to explain, these
phenomena in model-fitting. First, a general mathematical
treatment to model-fitting analysis is presented. Second, the
mathematically derived conclusions are scrutinized by analyzing
the simulated data. Real experimental data were not used
because the inherent experimental errors might lead to spurious
conclusions. Furthermore, the true mechanistic conclusions
cannot be guaranteed for real experimental data.

Mathematical Analysis of Model-Fitting. The following
provides a general analysis to the activation energy,Ea, and
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dx/dt ) k(T) f(x) ) A exp(-Ea/RT) f(x) (1)

g(x) ) ∫0

x dx
f(x)

) ∫0

t
k(T) dt ) ∫0

t
A exp(-Ea/RT) dt (2)

ln[g(x)/T2] ) ln[(AR/qEa)(1 - 2RT/Ea)] - Ea/RT (3)
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the frequency factor,A, obtained from fitting various reaction
models to solid-state kinetic data. Because no particular
mechanistic or mathematical kinetic model is assumed, the
conclusion should be generally valid.

Activation Energy. According to eq 1, the activation energy
for an arbitrary reaction model, f(x), fitted to the differential
data, can be obtained from:

where f0(x) is the exact reaction model, which can be ascertained
only with simulated data, while f′(x) ) f(x)/f0(x) is the
“correction term” of the fitted model with respect to the exact
model by assuming f(x) ) f 0(x) f′(x). Therefore, the apparent
activation energy for any fitted model consists of two terms,
the true activation energy,Ea

0, and the activation energy
correction,∆Ea, where∆Ea ) Rdln[f′(x)]/d(1/T), which depends
only on the above correction term of the fitted model.

Alternatively, model fitting can be performed on the integral
kinetic data utilizing eq 2. Under a linear heating rate and
applying the Coats-Redfern approximation,5 eq 2 can be
simplified. The fitted apparentEa can be calculated as:

where g0(x) is the exact model, while g′(x) ) g(x)/g0(x) is the
correction term of the fitted integral model with respect to the
exact model and∆Ea ) -R dln[g′(x)]/d(1/T) is the correction
term. When the integral model is fitted to isothermal data,
exactly the same∆Ea term is obtained, and therefore eq 5 is
valid for fitting of both isothermal and nonisothermal data to
the integral models.

Combining the above considerations, no matter whether the
differential form or the integral form is used, the fitted activation
energy,Ea, is equal to the true activation energy,Ea

0, plus the
correction term,∆Ea.

The derived correction terms of the various models in Table
9, with respect to the first-order model (F1), the fourth-order
Avrami-Erofeyev model (A4), and the one-dimensional dif-
fusion model (D1), are shown in Tables 10-12, respectively.
Because f′(x) and g′(x) are mathematical functions that have a
unique form for a given model, or more exactly, because f′(x)
and g′(x) have a different temperature dependence, fitting of
data to the differential form of a given model generally will
not give the sameEa as fitting to the integral form of the same
model.

Equations 4 and 5 show how different situations arise from
model-fitting of isothermal and nonisothermal data. BecauseEa

) Ea
0 + ∆Ea, model-fitting will give the correct activation

energy only when∆Ea ) 0; otherwise model-dependent
activation energy is expected.

In isothermal studies, because each experiment is performed
at the same temperature, the kinetic data,x, will not show
temperature dependence other than that predicted by the
Arrhenius equation. Therefore, f′(x) and g′(x) have no apparent
additional temperature dependence, and thus∆Ea ) 0. In other
words, no matter which model is used to fit the isothermal
kinetic data, the correctEa is always obtained. A similar
conclusion is not reached for the frequency factor,A, as will
be shown later. However, this conclusion is valid only for
reactions with a single mechanism. For reactions that have
complicated mechanisms, the conclusion does not hold. Unfor-
tunately, many solid-state reactions are complicated, usually
involving multiple steps. The complexity of a solid-state reaction
can be readily detected by the model-free (or isoconversional)
method,14 an alternative kinetic approach to the model-fitting
method. The purpose of this article, however, is not to explain
how to determine the correct kinetic parameters, especially for
those complicated solid-state reactions, but rather to explain
certain published kinetic data.

On the other hand, in nonisothermal studies, the temperature
is arranged to change appreciably. The fractional conversion,
x, depends on the reaction mechanism (usually represented by
a kinetic model, as in Table 9), the time,t, and the temperature,
T. As a result, the kinetic information is convoluted with the
temperature regime so thatx is forced to depend on the
temperature regime besides that determined by the Arrhenius
equation. Therefore, unless the correct model is used,∆Ea * 0
for model-fitting of nonisothermal data, and thus different
models of fitting lead to different apparent activation energies.
The trueEa will not be obtained for nonisothermal data unless
the correct model is selected. The condition, f(x) ) constant‚
f0(x), leads to the sameEa value.

Frequency Factor.The frequency term, lnA, is also obtained
from model fitting. Rearranging eq 1, lnA can be obtained from
fitting to the differential kinetic data. Thus:

whereA0 is the true frequency factor. Similarly, when fitting
to the integral data:

By analogy with the final line of eq 5, lnA also consists of
two components: the true lnA0 and the correction term,∆ln
A.

In isothermal studies,∆Ea ) 0. However, lnA ) ln A0 -
ln[f ′(x)] for fitting of the isothermal kinetic data to the
differential form, or lnA ) ln A0 + ln[g′(x)] for fitting the
same data to the integral form. Therefore, although the correct
Ea is obtained from isothermal data regardless of the model
fitted, the fitted frequency factor, lnA, is slightly model-
dependent. In nonisothermal studies,∆Ea * 0, and therefore,
ln A depends not only on ln[f′(x)] or ln[g′(x)], but especially on
the correction term,∆Ea. Because∆Ea is strongly model-
dependent, lnA will also be strongly dependent on the fitted
model. As a consequence, both the apparentEa and ln A are
model-dependent for nonisothermal data.

Ea ) -R
dln[(dx/dt)/f(x)]

d(1/T)

) -R
dln[(dx/dt)/f0(x)]

d(1/T)
+ R

dln[f′(x)]

d(1/T)

) Ea
0 + ∆Ea (4)

Ea ) -R
dln[g(x)/T2]

d(1/T)

) -R
dln[g0(x)/T2]

d(1/T)
- R

dln[g′(x)]

d(1/T)

) Ea
0 + ∆Ea (5)

ln A ) ln[(dx/dt)/f(x)] + Ea/RT

) {ln[(dx/dt)/f0(x)] + Ea
0/RT} +

{-ln[f ′(x)] + ∆Ea/RT}

) ln A0 + ∆ln A (6)

ln A ) ln A0 + {ln[g′(x)] + ∆Ea/RT}

) ln A0 + ∆ln A (7)
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The results of the above analysis do not depend on the origin
of the simulated data. Hence, the results should be generally
applicable to kinetic data from all sources, corresponding to
any mechanistic or mathematical kinetic model.

Data Simulation and Analysis.Three solid-state processes,
a first-order process (F1), a fourth-order Avrami-Erofeyev
process (A4), and a one-dimensional diffusion process (D1),
were simulated under isothermal and nonisothermal conditions.
The kinetic parameters were assumed to be the same in all three
cases:Ea ) 167.2 kJ/mol andA ) 1019 min-1. These models
were chosen because they are frequently encountered in many
solid-state reactions. The first-order reaction is a simple model
that approximates many degradation processes.15,16The Avrami-
Erofeyev17-21 model usually describes the crystallization kinetics
from amorphous phases,10,22,23as well as that of many processes
involving nucleation and growth of nuclei. The so-called square-
root time relationship is an example of one-dimensional
diffusion.24 However, a similar relationship can be derived from
the KWW equation that describes the molecular dynamics of
amorphous materials,25 whose chemical and physical stabilities,
including protein aggregation and crystallization,26 proceed
according to the time raised to the power ofâ, which is a
constant that describes the dynamics of the amorphous material.

The first-order process (F1) was simulated isothermally at
140, 150, 160, and 170°C and nonisothermally at heating rates
of 8, 12, 16°C/min, using eq 2. Under isothermal conditions,
eq 2, when applied to the first-order model, is relatively simple,
and the fractional conversion can be calculated as:

Under a linear heating rate ofq °C/min, eq 2 can be
transformed as:

The integral in the exponential can be accurately evaluated
using the Senum-Yang approximation,27 as follows, wherez
) Ea/RT:

In all cases, the data are generated in equal intervals of time.
Differentiation of the kinetic data was performed employing
the centered difference approximation:28

where the subscripti denotes theith data point and∆t is the
time interval between the adjacent data points. Because a large
number of data points (2000-4000) are generated, differentia-
tion does not lead to significant noise, as can be seen from the
small standard deviations of the fitted parameters to the
simulated data.

The fourth-order Avrami-Erofeyev kinetics (A4) were
simulated under the same conditions as in the simulated first-
order process. The fractional conversions under isothermal
conditions and nonisothermal conditions were calculated ac-
cording to eqs 12 and 13, respectively. Again, the integral in the exponential was evaluated using

the Senum-Yang approximation.27

The one-dimensional diffusion kinetics (D1) were simulated
under isothermal conditions (140, 150, and 160°C) and
nonisothermal (8, 12, and 16°C/min) conditions. The fractional

Figure 1. Simulated first-order process (F1) with Arrhenius parameters,
Ea ) 167.2 kJ/mol and log(A*min) ) 19, under (a) isothermal
conditions (170, 160, 150, and 140°C from left to right) and (b)
nonisothermal conditions (heating rates of 8, 12, 16°C/min from left
to right).

TABLE 1: Activation Energy, Ea, and the Common
Logarithm of the Frequency Factor, log A, Obtained from
Fitting of the Simulated First-Order Kinetic Data (from x )
0.01 tox ) 0.99) under Isothermal Conditions (shown in
Figure 1a) to a Range of Kinetic Functions, Corresponding
to Various Models

model Ea (kJ/mol) log (A*min) R2

A2 167.2( 0.1 18.57( 0.01 1.000
A3 167.2( 0.2 18.37( 0.02 1.000
A4 167.2( 0.2 18.23( 0.02 1.000
D1 167.3( 0.2 18.35( 0.02 1.000
D2 167.3( 0.1 18.36( 0.01 1.000
D3 167.2( 0.0 18.17( 0.00 1.000
D4 167.3( 0.1 17.86( 0.01 1.000
F1a 167.2( 0.0 19.00( 0.00 1.000
F2 167.1( 0.3 20.20( 0.04 1.000
P1 167.2( 0.1 19.12( 0.02 1.000
PL2 167.3( 0.3 18.04( 0.04 1.000
PL3 167.2( 0.4 17.91( 0.05 1.000
PL4 167.2( 0.4 17.81( 0.05 1.000
R1 167.3( 0.2 18.22( 0.03 1.000
R2 167.3( 0.1 18.26( 0.02 1.000
R3 167.3( 0.1 18.22( 0.01 1.000

a This model corresponds exactly to the simulated data.

x ) 1 - exp[-k(T)t] (8)

x ) 1 - exp[-(A/q)∫0

T
exp(-Ea/RT) dT] (9)

∫0

z
z2 exp(-z) dz )

exp(-z)
z

z2 + 10z + 18

z3 + 12z2 + 36z + 24
(10)

(dx/dt)i ) (xi+1 - xi-1)/2∆t (11)

x ) 1 - exp[-(kt)4] (12)

x ) 1 - exp{-[(A/q)∫0

T
exp(-Ea/RT) dT]4} (13)
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conversions under isothermal conditions and nonisothermal
conditions were calculated according to eqs 14 and 15,
respectively.

A random number bounded by(0.001, corresponding to
noise at the level of(0.1% of the maximum value,R ) 1, was
added to every simulated data point to simulate more closely
the experimental data. All these kinetic data in the range ofx

) 0.01-0.99 were fitted to various models according to the
integral kinetic eq 2 to evaluate the model-independence and/
or model-dependence of the kinetic parameters,Ea, andA. For
isothermal data, eq 2 becomes:

whereTiso is the isothermal temperature. Under a linear heating
rate,q °C/min, eq 2 can be linearized using the Coats-Redfern
approximation,5 shown in eq 3.

The differential kinetic eq 1 was also used to fit the first-
order nonisothermal data to compare the differential and integral
forms in model-fitting.

TABLE 2: Activation Energy, Ea, and the Common
Logarithm of the Frequency Factor, log A, Obtained from
Fitting of the Simulated First-Order Nonisothermal
(12 °C/min) Kinetic Data (from x ) 0.01 tox ) 0.99) to
Differential Kinetic Functions, f( x), Corresponding to
Various Models

model Ea
a log(A*min) R2 ∆Ea

a
Ea )

Ea
0 + ∆Ea

A2 79.8( 0.2 8.80( 0.02 0.999 -87.3 79.9
A3 50.7( 0.2 5.33( 0.02 0.996 -116.4 50.8
A4 36.1( 0.2 3.56( 0.02 0.992 -130.9 36.3
D1 217.1( 4.9 24.01( 0.57 0.872 50.0 217.2
D2 252.0( 3.7 27.94( 0.43 0.942 85.0 252.2
D3 298.0( 1.8 32.83( 0.21 0.990 131.0 298.2
D4 268.1( 3.0 29.23( 0.35 0.965 101.1 268.3
F1b 167.0( 0.2 18.98( 0.02 1.000 0 167.2
F2 256.6( 3.7 29.79( 0.43 0.943 89.6 256.8
P1 27.4( 1.2 3.45( 0.15 0.627 -139.6 27.6
PL2 7.7( 3.1 0.11( 0.36 0.021 -159.4 7.6
PL3 -15.6( 2.9 -2.66( 0.34 0.092 -182.7 -15.5
PL4 -27.2( 2.8 -4.08( 0.32 0.250 -194.3 -27.1
R1 77.5( 3.7 8.18( 0.43 0.605 -89.6 77.6
R2 122.3( 1.8 13.28( 0.22 0.938 -44.8 122.4
R3 137.2( 1.2 14.90( 0.14 0.977 -29.9 137.3

a In kilojoules per mole.b This model corresponds exactly to the
simulated data.

TABLE 3: Activation Energy, Ea, and the Common
Logarithm of the Frequency Factor, log A, Obtained from
Fitting of the Simulated First-Order Nonisothermal
(12 °C/min) Kinetic Data (from x ) 0.01 tox ) 0.99) to
Integral Kinetic Functions, g(x), Corresponding to Various
Models

model Ea
a log(A*min) R2 ∆Ea

a
Ea )

Ea
0 + ∆Ea

A2 79.8( 0.0 8.81( 0.01 1.000 -87.3 79.9
A3 50.8( 0.0 5.35( 0.00 1.000 -116.4 50.8
A4 36.2( 0.0 3.59( 0.00 1.000 -130.9 36.3
D1 271.8( 2.5 30.51( 0.29 0.977 104.6 271.8
D2 289.7( 2.0 32.41( 0.23 0.987 122.6 289.8
D3 314.2( 1.1 34.74( 0.13 0.996 147.1 314.3
D4 297.7( 1.7 32.73( 0.20 0.991 130.5 297.7
F1b 167.1( 0.1 18.99( 0.01 1.000 0 167.2
F2 221.7( 2.5 25.69( 0.29 0.965 54.6 221.8
P1c 24.1( 0.1 3.06( 0.01 0.993 -c -c

PL2 62.4( 0.6 6.61( 0.07 0.972 -104.8 62.4
PL3 39.1( 0.4 3.85( 0.05 0.968 -128.0 39.2
PL4 27.5( 0.3 2.45( 0.04 0.964 -139.7 27.5
R1 132.2( 1.2 14.67( 0.14 0.975 -35.0 132.2
R2 147.3( 0.8 16.25( 0.09 0.992 -19.8 147.4
R3 153.4( 0.6 16.82( 0.06 0.996 -13.8 153.4

a In kilojoules per mole.b This model corresponds exactly to the
simulated data.c The activation energy in the table is obtained by an
iterative process. Fitting of the kinetic function for P1 (Prout-
Tompkins) to nonisothermal kinetic data is more complicated, because
the model includes a term,t1/2, which depends on the fittedEa itself.
Hence, the correction term,∆Ea, cannot be obtained for this kinetic
function.

x ) xkt (14)

x ) [(A/q)∫0

T
exp(-Ea/RT) dT]1/2 (15)

TABLE 4: Activation Energy, Ea, and the Common
Logarithm of the Frequency Factor, log A, Obtained from
Fitting of the Simulated Fourth-Order Avrami -Erofeyev
Kinetic Data (from x ) 0.01 tox ) 0.99) under Isothermal
Conditions (shown in Figure 2a) to a Range of Kinetic
Functions, Corresponding to Various Models

model Ea (kJ/mol) log(A*min) R2

A2 167.3( 0.1 19.26( 0.01 1.000
A3 167.2( 0.0 19.11( 0.00 1.000
A4a 167.2( 0.0 19.00( 0.00 1.000
D1 167.3( 0.0 19.03( 0.00 1.000
D2 167.3( 0.1 18.98( 0.01 1.000
D3 167.5( 0.3 18.71( 0.04 1.000
D4 167.4( 0.1 18.45( 0.02 1.000
F1 167.5( 0.3 19.58( 0.03 1.000
F2 168.3( 1.4 20.67( 0.17 1.000
P1 167.2( 0.1 19.86( 0.01 1.000
PL2 167.1( 0.1 18.94( 0.01 1.000
PL3 167.1( 0.1 18.85( 0.02 1.000
PL4 167.1( 0.1 18.77( 0.02 1.000
R1 167.2( 0.1 19.02( 0.01 1.000
R2 167.3( 0.0 18.95( 0.00 1.000
R3 167.3( 0.1 19.26( 0.01 1.000

a This model corresponds exactly to the simulated data.

TABLE 5: Activation Energy, Ea, and the Common
Logarithm of the Frequency Factor, log A, Obtained from
Fitting of the Simulated Fourth-Order Nonisothermal
(12 °C/min) Avrami -Erofeyev Kinetic Data (from x ) 0.01
to x ) 0.99) to Integral Kinetic Functions, g(x),
Corresponding to Various Models

model Ea
a log(A*min) R2 ∆Ea

a
Ea )

Ea
0 + ∆Ea

A2 341.8( 0.2 39.07( 0.02 1.000 174.7 341.9
A3 225.3( 0.1 25.71( 0.01 1.000 58.2 225.4
A4b 167.1( 0.1 18.99( 0.01 1.000 0 167.2
D1 1116.1( 9.7 126.69( 1.11 0.979 947.0 1114.2
D2 1186.6( 7.7 134.54( 0.88 0.988 1019.5 1186.7
D3 1282.3( 4.3 144.93( 0.49 0.997 1115.0 1282.2
D4 1217.6( 6.7 137.47( 0.76 0.991 1050.5 1217.7
F1 691.2( 0.4 78.92( 0.04 1.000 524.1 691.3
F2 904.9( 9.9 103.62( 1.13 0.967 736.8 904.0
P1c 115.2( 0.5 13.94( 0.05 0.995 -c -c

PL2 273.3( 2.4 31.09( 0.28 0.977 105.7 272.9
PL3 179.7( 1.6 20.35( 0.18 0.976 12.2 179.4
PL4 132.8( 1.2 14.95( 0.14 0.978 -34.5 132.7
R1 554.2( 4.9 63.05( 0.55 0.993 386.1 553.3
R2 613.7( 3.0 69.65( 0.34 0.997 446.6 613.8
R3 637.3( 2.2 72.21( 0.25 1.000 470.1 637.3

a In kilojoules per mole.b This model corresponds exactly to the
simulated data.c The activation energy in the table is obtained by an
iterative process. Fitting of the kinetic function for P1 (Prout-
Tompkins) to nonisothermal kinetic data is more complicated, because
the model includes a term,t1/2, which depends on the fittedEa itself.
Hence, the correction term,∆Ea, cannot be obtained for this kinetic
function.

g(x) ) A exp(-Ea/RTiso)t (16)
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Results and Discussion

Figure 1a shows the simulated first-order data under isother-
mal conditions, while Figure 1b shows the simulated first-order
data for nonisothermal conditions. Table 1 shows the values of
Ea and ln A obtained after fitting the simulated first-order
isothermal data to various models. Each model fits the data
almost perfectly, which leads to two conclusions. First, each
model gives the correct activation energy, 167.2 kJ/mol. Second,

the frequency factors,A, do not differ significantly among the
models. The exception is model F2, for which differences of 2

TABLE 6: Activation Energy, Ea, and the Common
Logarithm of the Frequency Factor, log A, Obtained from
Fitting of the Simulated One-Dimensional Diffusion Kinetic
Data (from x ) 0.01 tox ) 0.99) under Isothermal
Conditions (shown in Figure 3a) to a Range of Kinetic
Functions, Corresponding to Various Models

model Ea (kJ/mol) log(A*min) R2

A2 167.1( 0.1 19.13( 0.01 1.000
A3 167.1( 0.1 18.95( 0.01 1.000
A4 167.2( 0.1 18.82( 0.01 1.000
D1a 167.2( 0.0 19.00( 0.00 1.000
D2 167.2( 0.0 18.96( 0.00 1.000
D3 167.0( 0.2 18.65( 0.02 1.000
D4 167.1( 0.1 18.41( 0.01 1.000
F1 167.0( 0.2 19.48( 0.02 1.000
F2 166.1( 1.2 20.28( 0.14 1.000
P1 167.1( 0.1 19.66( 0.01 1.000
PL2 167.2( 0.0 18.74( 0.00 1.000
PL3 167.2( 0.0 18.61( 0.00 1.000
PL4 167.2( 0.0 18.51( 0.00 1.000
R1 167.2( 0.0 18.91( 0.00 1.000
R2 167.2( 0.0 18.87( 0.00 1.000
R3 167.1( 0.1 18.79( 0.01 1.000

a This model corresponds exactly to the simulated data.

Figure 2. Simulated fourth-order Avrami-Erofeyev kinetic process
(A4) with Arrhenius parameters,Ea ) 167.2 kJ/mol and log(A*min)
) 19, under (a) isothermal conditions (170, 160, 150, and 140°C from
left to right) and (b) nonisothermal conditions (heating rates of 8, 12,
16 °C/min from left to right).

TABLE 7: Activation Energy, Ea, and the Common
Logarithm of the Frequency Factor, log A, Obtained from
Fitting of the Simulated Nonisothermal (12°C/min)
One-Dimensional Diffusion Kinetic Data (from x ) 0.01 tox
) 0.99) to Integral Kinetic Functions, g(x), Corresponding to
Various Models

model Ea
a log(A*min) R2 ∆Ea

a
Ea )

Ea
0 + ∆Ea

A2 42.7( 0.3 4.47( 0.03 0.985 -124.3 42.9
A3 26.1( 0.2 2.41( 0.02 0.982 -140.9 26.3
A4 17.8( 0.1 1.37( 0.02 0.979 -149.1 18.1
D1b 167.0( 0.1 18.97( 0.02 1.000 0 167.2
D2 174.0( 0.3 19.61( 0.04 0.999 7.1 174.3
D3 182.5( 0.7 20.08( 0.08 0.995 15.5 182.7
D4 176.8( 0.4 19.32( 0.05 0.998 9.8 177.0
F1 92.3( 0.5 10.49( 0.07 0.987 -74.7 92.5
F2 108.6( 1.5 12.67( 0.18 0.935 -58.4 108.8
P1c 17.7( 0.1 2.24( 0.17 0.979 -c -c

PL2 36.5( 0.0 3.62( 0.00 1.000 -130.5 36.7
PL3 22.0( 0.0 1.83( 0.00 1.000 -145.0 22.2
PL4 14.8( 0.0 0.95( 0.00 0.999 -152.2 15.0
R1 80.0( 0.1 8.83( 0.01 1.000 -87.0 80.2
R2 85.7( 0.2 9.29( 0.03 0.997 -81.3 85.9
R3 87.8( 0.3 9.40( 0.04 0.995 -79.2 88.0

a In kilojoules per mole.b This model corresponds exactly to the
simulated data.c The activation energy in the table is obtained by an
iterative process. Fitting of the kinetic function for P1 (Prout-
Tompkins) to nonisothermal kinetic data is more complicated, because
the model includes a term,t1/2, which depends on the fittedEa itself.
Hence, the correction term,∆Ea, cannot be obtained for this kinetic
function.

Figure 3. Simulated one-dimensional diffusion kinetic process (D1)
with Arrhenius parameters,Ea ) 167.2 kJ/mol and log(A*min) ) 19,
under (a) isothermal conditions (160, 150, and 140°C from left to
right) and (b) nonisothermal conditions (heating rates of 8, 12, 16°C/
min from left to right).
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orders of magnitude are apparent. When the added noise is
removed from the simulated data, the conclusions are un-
changed.

Table 2 lists the values ofEa and lnA obtained from fitting
the simulated first-order data at a heating rate of 12°C/min to
the various kinetic models in their differential forms (eq 1).
Several models, including the first-order reaction and the
Avrami-Erofeyev equations with different orders, give an
excellent fit (R2 > 0.999) and are statistically indistinguishable.
Contrary to fitting of the simulated isothermal data, fitting of
the simulated nonisothermal data to different models results in
very different values of the activation energy and frequency
factor. For example, for three-dimensional diffusion (model D3)
Ea is relatively large (298 kJ/mol), while for the power law
models, PL3 and PL4, theEa values are so low as to be negative.
The frequency factor,A, also depends strongly on models to
which the simulated first-order data are fitted.

Table 3 lists the values ofEa and lnA obtained by fitting the
same simulated first-order data as in Table 2, but using the
integral kinetic function (eq 2). As expected, the values ofEa

and lnA still depend on the model. However, with the exception
of a few models, including Avrami-Erofeyev models A2, A3,
A4, and the exact model, F1, fitting to g(x) and f(x) leads to
different values ofEa andA for the same model, which agrees
with previous mathematical analysis. It is noted that the
coefficient of determination,R2, is much closer to 1.0 when
the simulated data are fitted to g(x) rather than to f(x). Therefore,
the integral form is less able to discriminate between the reaction
models than the differential form. In other words, g(x) leads to
greater ambiguity than f(x) in the selection of a reaction model.
Therefore, it is recommended that f(x) be used in model-fitting
when the number of data points is sufficient to allow for
differentiation without causing too much noise. The differences
among the values ofEa and A after fitting to differential and

integral forms appear to eliminate some models. However,
because of the influence of the experimental error on the values
of Ea and A, this recommendation may not eliminate all the
false models.

Tables 4 and 5 show the results of fitting the simulated fourth-
order Avrami-Erofeyev kinetic data under isothermal conditions
(Figure 2a) and nonisothermal conditions (Figure 2b), while
Tables 6 and 7 show the results of fitting the simulated one-
dimensional diffusion data under isothermal conditions (Figure
3a) and nonisothermal conditions (Figure 3b). The conclusions
are essentially the same as those above, namely, isothermal data
give model-independentEa, whereas nonisothermal data give
model-dependentEa.

In the previous mathematical analysis, we showed that the
fitted activation energy is equal to the true activation energy,
Ea

0, plus the correction term,∆Ea. We also argued that∆Ea is
zero for isothermal kinetic data but not zero for nonisothermal
kinetic data. To demonstrate this concept, the simulated noniso-
thermal data conforming exactly to a first-order process by
heating at 12°C/min was applied to show the nonzero values
of the correction terms for various models with respect to the
exact model, the first-order reaction. Careful examination of
the correction terms in Table 10 shows that all ln[f′(x)] and
ln[g′(x)] functions are composed of relatively few elementary
terms, such as lnx, ln(1 - x), ln[-ln(1 - x)]. It would be
relatively simple to ascertain the temperature dependence of
ln[f ′(x)] or ln[g′(x)] if we knew the temperature dependence
of each component, ln[Q(x)], such as ln x, ln(1 - x),
ln[-ln(1 - x)], where Q(x) is a convenient symbol representing
each simple term. Using the simulated nonisothermal first-order
data at 12°C/min, we obtained the temperature dependence of
each Q(x) term by linear regression. Columns 2 and 3 of Table
8 list the results of the regression expressed asR dln[Q(x)]/
d(1/T) andR2, respectively. Most of the regressions give high

TABLE 8: Temperature Dependence of Some Functions of Fractional Conversion,x, in the Kinetic Data (from x ) 0.01 tox )
0.99) for Three Simulated Processes, First-Order (F1), Fourth-Order Avrami-Erofeyev (A4), and One-Dimensional Diffusion
(D1), under Nonisothermal Conditions (12°C/min)

F1 A4 D1

Q(x)
R(dlnQ(x)/d(1/T))

(kJ/mol) R2
R(dlnQ(x)/d(1/T))

(kJ/mol) R2
R(dlnQ(x)/d(1/T))

(kJ/mol) R2

x -139.60 0.978 -560.84 0.979 -86.98 1.000
1 - x 89.58 0.672 350.67 0.665 28.63 0.499
-ln(1 - x) -174.57 1.000 -698.81 1.000 -99.29 0.988
(1 - x)-1/3 - 1 -190.67 0.996 -761.84 0.996 -104.29 0.977
(1 - x) ln(1 - x) + x -297.19 0.988 -1194.22 0.988 -181.01 0.999
1 - (1 - x)1/3 -160.81 0.997 -644.85 0.997 -94.75 0.995
1 - (1 - x)1/2 -154.78 0.993 -621.32 0.993 -92.65 0.997
1 - 2x/3 - (1 - x)2/3 -305.10 0.991 -1225.22 0.992 -183.80 0.998

TABLE 9: List of Reaction Models Commonly Used To Represent Solid-State Reaction Kinetics1,2

model differential kinetic function, f(x) integral kinetic function, g(x) corresponding mechanism

A2 2(1 - x)[-ln(1 - x)]1/2 [-ln(1 - x)]1/2 Avrami-Erofeyev,n ) 2
A3 3(1 - x)[-ln(1 - x)]2/3 [-ln(1 - x)]1/3 Avrami-Erofeyev,n ) 3
A4 4(1 - x)[-ln(1 - x)]3/4 [-ln(1 - x)]1/4 Avrami-Erofeyev,n ) 4
D1 1/2x x2 one-dimensional diffusion
D2 [-ln(1 - x)]-1 (1 - x) ln(1 - x) + x two-dimensional diffusion
D3 (3/2)(1- x)1/3[(1 - x)-1/3 - 1]-1 [1 - (1 - x)1/3]2 three-dimensional diffusion (Jander)
D4 (3/2)[(1- x)-1/3 - 1]-1 1 - 2x/3 - (1 - x)2/3 three-dimensional diffusion (Ginstling-Brounshtein)
F1 1- x -ln(1 - x) first-order reaction
F2 (1- x)2 1/(1 - x) - 1 second-order reaction
P1 x(1 - x) ln[x/(1 - x)] + kt1/2 Prout-Tompkins
PL2 2x1/2 x1/2 power law (n ) 1/2)
PL3 3x2/3 x1/3 power law (n ) 1/3)
PL4 4x3/4 x1/4 power law (n ) 1/4)
R1 1 x one-dimensional phase boundary
R2 2(1- x)1/2 1 - (1 - x)1/2 two-dimensional phase boundary
R3 3(1- x)2/3 1 - (1 - x)1/3 three-dimensional phase boundary
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R2, except when Q(x) ) (1 - x). However, the extent of the
correlation is not important here, because we wish to obtain
the contribution of each term to the activation energy in the
overall model-fitting. By adding the contribution of each term
in ln[f ′(x)] or ln[g′(x)], we obtain the correction term of the

activation energy,∆Ea, for each model (Tables 2 and 3). When
this ∆Ea is added to the true activation energy,Ea

0 ) 167.2
kJ/mol, the fitted apparentEa is then obtained and is placed in
the last column of Table 2 or Table 3. The apparentEa values
in Tables 2 and 3 are in good agreement. This treatment

TABLE 10: Correction Term of the Models Listed in Table 9 with Respect to the First-Order Kinetic Model (F1)

model ln[f′(x)]a ln[g′(x)]b

A2 ln 2 + (1/2) ln[-ln(1 - x)] -(1/2) ln[-ln(1 - x)]
A3 ln 3 + (2/3) ln[-ln(1 - x)] -(2/3) ln[-ln(1 - x)]
A4 ln 4 + (3/4) ln[-ln(1 - x)] -(3/4) ln[-ln(1 - x)]
D1 -ln 2 - ln x - ln(1 - x) 2 ln x - ln[-ln(1 - x)]
D2 -ln[-ln(1 - x)] - ln(1 - x) ln[(1 - x) ln(1 - x) + x] - ln[-ln(1 - x)]
D3 ln(3/2)- (2/3) ln(1- x) - ln[(1 - x)-1/3 - 1] 2 ln[1 - (1 - x)1/3] - ln[-ln(1 - x)]
D4 ln(3/2)- ln[(1 - x)-1/3 - 1] - ln(1 - x) ln[1 - 2x/3 - (1 - x)2/3] - ln[-ln(1 - x)]
F1c 0 0
F2 ln(1- x) ln x - ln(1 - x) - ln[-ln(1 - x)]
P1 lnx ln[ln x - ln(1 - x)] - ln[-ln(1 - x)]
PL2 ln 2+ (1/2) lnx - ln(1 - x) (1/2) lnx - ln[-ln(1 - x)]
PL3 ln 3+ (2/3) lnx - ln(1 - x) (1/3) lnx - ln[-ln(1 - x)]
PL4 ln 4+ (3/4) lnx - ln(1 - x) (1/4) lnx - ln[-ln(1 - x)]
R1 -ln(1 - x) ln x - ln[-ln(1 - x)]
R2 ln 2- (1/2) ln(1- x) ln[1 - (1 - x)1/2] - ln[-ln(1 - x)]
R3 ln 3- (1/3) ln(1- x) ln[1 - (1 - x)1/3] - ln[-ln(1 - x)]

a f ′(x) ) f(x)/f 0(x) is the correction term of the differential kinetic function with respect to the exact differential kinetic function f0(x).
b g′(x) ) g(x)/g0(x) is the correction term of the integral kinetic function with respect to the exact integral kinetic function g0(x). c Exact model
is F1.

TABLE 11: Correction Term of the Models Listed in Table 9 with Respect to the Fourth-Order Avrami -Erofeyev Kinetic
Model (A4)

model ln[f′(x)]a ln[g′(x)]b

A2 -ln 2 - (1/4) ln[-ln(1 - x)] (1/4) ln[-ln(1 - x)]
A3 ln(3/4) - (1/12) ln[-ln(1 - x)] (1/12) ln[-ln(1 - x)]
A4c 0 0
D1 -ln 8 - ln x - ln(1 - x) - (3/4) ln[-ln(1 - x)] 2 ln x - (1/4) ln[-ln(1 - x)]
D2 -ln 4 - ln(1 - x) - (7/4) ln[-ln(1 - x)] ln[(1 - x) ln(1 - x) + x] - (1/4) ln[-ln(1 - x)]
D3 ln(3/8)- (2/3) ln(1- x) - ln[(1 - x)-1/3 - 1] - (3/4) ln[-ln(1 - x)] 2 ln[1 - (1 - x)1/3] - (1/4) ln[-ln(1 - x)]
D4 ln(3/8)- ln[(1 - x)-1/3 - 1] - ln(1 - x) - (3/4) ln[-ln(1 - x)] ln[1 - 2x/3 -(1 - x)2/3] - (1/4) ln[-ln(1 - x)]
F1 -ln 4 - (3/4) ln[-ln(1 - x)] (3/4) ln[-ln(1 - x)]
F2 -ln 4 + ln(1 - x) - (3/4) ln[-ln(1 - x)] ln x - ln(1 - x) - (1/4) ln[-ln(1 - x)]
P1 -ln 4 + ln x - (3/4) ln[-ln(1 - x)] ln[ln x - ln(1 - x)] - (1/4) ln[-ln(1 - x)]
PL2 -ln 2 + (1/2) lnx - ln(1 - x) - (3/4) ln[-ln(1 - x)] (1/2) ln x - (1/4) ln[-ln(1 - x)]
PL3 ln(3/4)+ (2/3) lnx - ln(1 - x) - (3/4) ln[-ln(1 - x)] (1/3) ln x - (1/4) ln[-ln(1 - x)]
PL4 (3/4) lnx - ln(1 - x) - (3/4) ln[-ln(1 - x)] (1/4) ln x - (1/4) ln[-ln(1 - x)]
R1 -ln 4 - ln(1 - x) - (3/4) ln[-ln(1 - x)] ln x - (1/4) ln[-ln(1 - x)]
R2 -ln 2 - (1/2) ln(1- x) - (3/4) ln[-ln(1 - x)] ln[1-(1 - x)1/2] - (1/4) ln[-ln(1 - x)]
R3 ln(3/4)- (1/3) ln(1- x) - (3/4) ln[-ln(1 - x)] ln[1-(1 - x)1/3] - (1/4) ln[-ln(1 - x)]

a f ′(x) ) f(x)/f 0(x) is the correction term of the differential kinetic function with respect to the exact differential kinetic function f0(x).
b g′(x) ) g(x)/g0(x) is the correction term of the integral kinetic function with respect to the exact integral kinetic function g0(x). c Exact model
is A4.

TABLE 12: Correction Term of the Models Listed in Table 9 with Respect to the One-Dimensional Diffusion Model (D1)

model ln[f′(x)]a ln[g′(x)]b

A2 ln(1 - x) - ln x + (1/2) ln[-ln(1 - x)] (1/2) ln[-ln(1 - x)] - 2 ln x
A3 ln (3/2) + ln(1 - x) - ln x + (2/3) ln[-ln(1 - x)] (1/3) ln[-ln(1 - x)] - 2 ln x
A4 ln 2 + ln(1 - x) - ln x + (3/4) ln[-ln(1 - x)] (1/4) ln[-ln(1 - x)] - 2 ln x
D1c 0 0
D2 -ln 2 - ln[-ln(1 - x)] - ln x ln[(1 - x) ln(1 - x) + x] - 2 ln x
D3 ln(3/4)+ (1/3) ln(1- x) - ln x - ln[(1 - x)-1/3 - 1] 2 ln[1 - (1 - x)1/3] - 2 ln x
D4 ln(3/4)- ln[(1 - x)-1/3 - 1] - ln x ln[1 - 2x/3 - (1 - x)2/3]-2 ln x
F1 -ln 2 + ln(1 - x) - ln x ln[-ln(1 - x)] - 2 ln x
F2 -ln 2 + 2 ln(1 - x)-ln x -ln(1 - x) - ln x
P1 -ln 2 + 2 ln(1 - x) ln[ln x - ln(1 - x)] - 2 ln x
PL2 -(1/2) lnx -(3/2) lnx
PL3 ln(3/2)- (1/3) lnx -(5/3) lnx
PL4 ln 2- (1/4) lnx -(7/4) lnx
R1 -ln 2 - ln x -ln x
R2 (1/2) ln(1- x) - ln x ln[1 - (1 - x)1/2] - 2 ln x
R3 ln(3/2)+ (2/3) ln(1- x) - ln x ln[1 - (1 - x)1/3] - 2 ln x

a f′(x) ) f(x)/f0(x) is the correction term of the differential kinetic function with respect to the exact differential kinetic function f0(x). b g′(x) )
g(x)/g0(x) is the correction term of the integral kinetic function with respect to the exact integral kinetic function g0(x). c Exact model is D1.
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demonstrates how the model-dependent apparentEa arises in
fitting of nonisothermal data. As before, the conclusions are
unchanged when the added noise is removed from the simulated
data.

An analogous study was carried out for the simulated fourth-
order Avrami-Erofeyev kinetic data at 12°C/min (Tables 4,
5, and 8) and the simulated one-dimensional diffusion process
at 12°C/min (Tables 6-8). These results can be interpreted in
the same way as for the simulated first-order data shown above.
Therefore, it appears that the above treatment and interpretation
should be generally valid.

It should be mentioned that nonisothermal kinetic data are
equally as informative as isothermal kinetic data, although the
strong model-dependence of the kinetic parameters makes the
kinetic analysis more difficult and challenging. Other ap-
proaches, such as Kissinger analysis29,30 and model-free
analysis,9,14,31-34 can be successfully applied to extract the
correct kinetic information from nonisothermal data.

Conclusions

The following conclusions can be drawn from mathematical
analysis of model-fitting to solid-state kinetic data and are
verified with the simulated data.

(1) The activation energy obtained from fitting of isothermal
kinetic data is independent of the model to which the data are
fitted. (2) The frequency factor obtained from fitting of
isothermal kinetic data depends not strongly on the model to
which the kinetic data are fitted. (3) The activation energy and
frequency factor obtained by fitting nonisothermal kinetic data
depend strongly on the model to which the data are fitted. (4)
The conclusions are unchanged when noise at the level of
(0.1% of the maximum value,R ) 1, was added to every
simulated data point.
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