Experimental Determination of the Anisotropic Electric Dipole Polarizabilities of Molecules of C_{s} Symmetry: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHC} \equiv \mathrm{N}$

Geoffrey L. D. Ritchie* and Jonathan N. Watson
Chemistry, University of New England, Armidale, NSW 2351 Australia

Received: January 8, 2004; In Final Form: March 3, 2004

Abstract

The present report describes the further development of a novel experimental route to the four independent components of the anisotropic electric dipole polarizabilities of molecules of C_{s} symmetry, originally applied to $\mathrm{CH}_{3} \mathrm{NH}_{2}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ [Ritchie, G. L. D.; Blanch, E. W. J. Phys. Chem. A 2003, 107, 2093-2099] and here extended to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$. Once again, the four equations required to evaluate the four components of the optical-frequency ($\lambda=632.8 \mathrm{~nm}$) polarizabilities are drawn from observations of (1) the temperature dependence of the electrooptical Kerr effect, (2) the Rayleigh depolarization ratio, and (3) the refractive index of the gas, together with (4) a simple bond-additivity model of the polarizability. Although the measurements are difficult and still much less than routine, the procedure is applicable to many other species of this symmetry, for which free-molecule anisotropic polarizabilities have not previously been experimentally accessible.

Introduction

The electric dipole polarizability, $\alpha_{\alpha \beta}$, is the basic descriptor of the interaction of the molecular charge distribution with an electric field. ${ }^{1-3}$ Although the free-molecule polarizability anisotropy of $\mathrm{CH}_{3} \mathrm{CN}$, a species of $C_{3 v}$ symmetry, is reliably known, ${ }^{4}$ those of its immediate homologues $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ (ethyl cyanide, propionitrile) and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$ (isopropyl cyanide, isobutyronitrile), both of which have C_{s} symmetry (and a single plane of symmetry), ${ }^{5,6}$ have remained unknown. The reason that this is so is primarily that, in relation to reference axes that are not coincident with the principal axes of the tensor, the polarizability of a species of this symmetry has four independent components $\left(\alpha_{x x} \neq \alpha_{y y} \neq \alpha_{z z} \neq \alpha_{x y}\right)$ and one of these $\left(\alpha_{x y}\right)$ is normally much smaller and, at least experimentally, much less accessible than the others. Moreover, the locations of the two in-plane principal axes are not obvious from the molecular structure and they will not necessarily coincide with the principal axes of the moment of inertia or any other molecular property that transforms as a second-order tensor. However, it was shown recently, ${ }^{7}$ with $\mathrm{CH}_{3} \mathrm{NH}_{2}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ as examples, that the four components of the polarizability of a species of C_{s} symmetry can be derived from measurements of (1) the temperature dependence of the electrooptical Kerr constant, (2) the Rayleigh depolarization ratio, and (3) the refractive index, together with (4) a simple bond-additivity model of the polarizability. The study that is reported here focused on the determination of the free-molecule polarizabilities of $\mathrm{CH}_{3} \mathrm{CH}_{2}$ CN and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$, for which the relevant experiments have been conducted. As well, it included, as a preliminary, an analysis of analogous data for $\mathrm{CH}_{3} \mathrm{CN}$ and verification that measurements of (1) and, alternatively, (2) yield the same value of the optical-frequency polarizability anisotropy of this species, but because this proved straightforward, from both experimental and theoretical viewpoints, it will not be described in detail here. It would have been of interest, too, to obtain experimental data for $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCN}$, to complete the sequence $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{CH}_{2}-$ $\mathrm{CN},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCN}$, as was done to advantage with

[^0]

(a)

Figure 1. Locations of axes (oop $=$ out-of-plane): $x, y, z=$ reference axes; $x^{\prime}, y^{\prime}, z^{\prime}=$ principal axes; x coincides with the $\mathrm{NC}-\mathrm{C}$ bond.
$\mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{NH}_{2},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$. Unfortunately, the diminished volatility and the diminished molecular anisotropy of this compound militated against such measurements. However, in relation to the main objective, reliable values of the anisotropic molecular polarizabilities of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$ have been obtained, and the usefulness of the general procedure for species of C_{s} symmetry has been further demonstrated.

Theory

It is necessary, first, to choose convenient reference axes (x, $y, z)$ and, as well, to specify the relationship of these to the principal axes $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ of the polarizability tensors of $\mathrm{CH}_{3}-$ $\mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$, as shown in Figure 1. The minimumenergy conformations of both molecules have C_{s} symmetry, ${ }^{5,6}$ so only the $z=z^{\prime}$ (out-of-plane) principal axis, which is perpendicular to the plane of symmetry, is immediately obvious; the locations of the x^{\prime} and y^{\prime} principal axes in this plane are not obvious. It is useful to recognize, too, that the reference axes in Figure 1 are judicious choices since, at least in the bondadditivity approximation, the dominant $\mathrm{N} \equiv \mathrm{C}-\mathrm{C}$ group does not
contribute to the single off-diagonal component, $\alpha_{x y}$, of the polarizability. The angles, θ, through which the reference axes x and y must be rotated to locate the principal axes x^{\prime} and y^{\prime} can therefore be expected to be small. Note, also, that the directions of action of the dipole moments ${ }^{5,6}$ of both $\mathrm{CH}_{3} \mathrm{CH}_{2}-$ CN and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$ are such that $\mu_{x} \neq \mu_{y} \neq 0$ and $\mu_{z}=0$.

In the reference axis system, the polarizabilities of $\mathrm{CH}_{3} \mathrm{CH}_{2}-$ CN and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$ have four nonzero components, $\alpha_{x x}, \alpha_{y y}$, $\alpha_{z z}$, and $\alpha_{x y}$, so that the tensors are completely specified by any four independent equations that connect these to physical observables. As recently demonstrated, ${ }^{7}$ these can be drawn from measurements of (1) the temperature dependence of the Kerr constant, A_{K}, (2) the Rayleigh depolarization ratio, ρ_{0}, and (3) the refractive index or mean polarizability, α, together with (4) a simple bond-additivity model of the polarizability, described in the next section. The model utilizes the known polarizability anisotropy of $\mathrm{CH}_{3} \mathrm{CH}_{3},{ }^{4}$ alone, to estimate the off-diagonal polarizabilities, $\alpha_{x y}$, of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$.

For the axis system defined in Figure 1, the zero-density Kerr constant, A_{K}, can be formulated as ${ }^{8}$

$$
\begin{align*}
& A_{\mathrm{K}}=\left(N_{\mathrm{A}} / 81 \epsilon_{0}\right)\left\{\gamma^{\mathrm{K}}+(k T)^{-1}\left[(2 / 3) \mu \beta^{\mathrm{K}}+(9 / 5) \alpha \alpha^{0} \kappa \kappa^{0}\right]+\right. \\
& \left.(3 / 10)(k T)^{-2}\left[\mu_{x}^{2}\left(\alpha_{x x}-\alpha\right)+\mu_{y}^{2}\left(\alpha_{y y}-\alpha\right)+2 \mu_{x} u_{y} \alpha_{x y}\right]\right\} \tag{1}
\end{align*}
$$

in which $\alpha \alpha^{0}\left(\approx \alpha^{2}\right)$ is the product of the mean opticalfrequency and static polarizabilities, $\kappa \kappa^{0}\left(\approx \kappa^{2}\right)$ is the product of the optical-frequency and static polarizability anisotropy parameters, ${ }^{9} \beta^{\mathrm{K}}$ and γ^{K} are the first and second Kerr hyperpolarizabilities, ${ }^{2}$ and SI units are implied. ${ }^{10}$ Equation 1 has the form

$$
\begin{equation*}
A_{\mathrm{K}}=P+Q T^{-1}+R T^{-2} \tag{2}
\end{equation*}
$$

or, more conveniently here

$$
\begin{equation*}
\left(A_{\mathrm{K}}-P\right) T=Q+R T^{-1} \tag{3}
\end{equation*}
$$

where

$$
\begin{gather*}
P=\left(N_{\mathrm{A}} / 81 \epsilon_{0}\right) \gamma^{\mathrm{K}} \tag{4}\\
Q=\left(N_{\mathrm{A}} / 81 \epsilon_{0} k\right)\left[(2 / 3) \mu \beta^{\mathrm{K}}+(9 / 5) \alpha \alpha^{0} \kappa \kappa^{0}\right] \tag{5}
\end{gather*}
$$

and

$$
\begin{array}{r}
R=\left(N_{\mathrm{A}} / 81 \epsilon_{0} k^{2}\right)(3 / 10)\left[\mu_{x}^{2}\left(\alpha_{x x}-\alpha\right)+\mu_{y}^{2}\left(\alpha_{y y}-\alpha\right)+\right. \\
\left.2 \mu_{x x} \mu_{y} \alpha_{x y}\right] \tag{6}
\end{array}
$$

so that, if the left-hand side of eq 3 is plotted against T^{-1} and all other quantities are known, Q gives β^{K} and R gives the desired equation in the components of the polarizability. The relationship between the Rayleigh depolarization ratio, ρ_{0}, and the polarizability is

$$
\begin{gather*}
5 \rho_{0}\left(3-4 \rho_{0}\right)^{-1}=\kappa^{2} \\
=\left[\left(\alpha_{x x}-\alpha_{y y}\right)^{2}+\left(\alpha_{y y}-\alpha_{z z}\right)^{2}+\left(\alpha_{z z}-\alpha_{x x}\right)^{2}+6 \alpha_{x y}^{2}\right] / 18 \alpha^{2} \tag{7}
\end{gather*}
$$

where

$$
\begin{equation*}
\alpha=\left(\alpha_{x x}+\alpha_{y y}+\alpha_{z z}\right) / 3 \tag{8}
\end{equation*}
$$

is the mean polarizability. ${ }^{11}$ The procedure employed here to evaluate the four components of the polarizabilities of $\mathrm{CH}_{3}{ }^{-}$
$\mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$ therefore involves use of the bond additivity model to estimate $\alpha_{x y}$, followed by simultaneous solution of eq 6-8.

Bond-Additivity Model

The simple bond-additivity model that is invoked here serves two purposes. First, it provides estimates, with what will be seen to be acceptable accuracy, of the small and experimentally inaccessible off-diagonal component, $\alpha_{x y}$, of the polarizability. Second, it predicts the relative magnitudes of the much larger diagonal components, $\alpha_{x x}, \alpha_{y y}$, and $\alpha_{z z}$, and so enables an unambiguous choice to be made between the alternative solutions of the quadratic equation that is involved in the determination of these components from eq 6-8.

In what follows, it is convenient to introduce the irreducible bond-polarizability parameters Γ_{CC} and Γ_{CCN}, defined as

$$
\begin{equation*}
\Gamma_{\mathrm{CC}}=\left(\alpha_{\mathrm{L}}^{\mathrm{CC}}-\alpha_{\mathrm{T}}^{\mathrm{CC}}\right)-2\left(\alpha_{\mathrm{L}}^{\mathrm{CH}}-\alpha_{\mathrm{T}}^{\mathrm{CH}}\right)=\gamma^{\mathrm{CC}}-2 \gamma^{\mathrm{CH}} \tag{9}
\end{equation*}
$$

and
$\Gamma_{\mathrm{CCN}}=\left(\alpha_{\mathrm{L}}^{\mathrm{CCN}}-\alpha_{\mathrm{T}}^{\mathrm{CCN}}\right)-\left(\alpha_{\mathrm{L}}^{\mathrm{CH}}-\alpha_{\mathrm{T}}^{\mathrm{CH}}\right)=\gamma^{\mathrm{CCN}}-\gamma^{\mathrm{CH}}$
where α_{L} and α_{T} are the longitudinal and transverse polarizabilities of the specified pair or group of atoms. Numerical values of Γ_{CC} and Γ_{CCN} are available from the Rayleigh depolarization ratios and molecular polarizability anisotropies of $\mathrm{CH}_{3} \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CN},{ }^{4}$ respectively, since, for $\mathrm{CH}_{3} \mathrm{CH}_{3}, \alpha_{z z}$ $-\alpha_{x x}=\Gamma_{\mathrm{CC}}$ and, for $\mathrm{CH}_{3} \mathrm{CN}, \alpha_{z z}-\alpha_{x x}=\Gamma_{\mathrm{CCN}}$. It is also convenient, and does not compromise the purposes detailed above, to assume, in the context of the model, that $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$ have exactly tetrahedral bond angles, an approximation that greatly simplifies the relevant equations.

In relation to the first objective, and with reference to Figure 1, the off-diagonal polarizabilities of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ (a) and $\left(\mathrm{CH}_{3}\right)_{2}$ CHCN (b) emerge as

$$
\begin{align*}
\alpha_{x y}(\mathrm{a})=-\left\{\left(\alpha_{\mathrm{L}}^{\mathrm{CCH}_{3}}-\alpha_{\mathrm{T}}^{\mathrm{CCH}_{3}}\right)-\right. & 2\left(\alpha_{\mathrm{L}}^{\mathrm{CH}}-\right. \\
& \left.\left.\alpha_{\mathrm{T}}^{\mathrm{CH}}\right) \cos 60\right\} \cos \phi \sin \phi \tag{11}
\end{align*}
$$

and
$\alpha_{x y}(\mathrm{~b})=-\left\{2\left(\alpha_{\mathrm{L}}^{\mathrm{CCH}_{3}}-\alpha_{\mathrm{T}}^{\mathrm{CCH}_{3}}\right) \cos 60-\left(\alpha_{\mathrm{L}}^{\mathrm{CH}}-\right.\right.$

$$
\begin{equation*}
\left.\left.\alpha_{\mathrm{T}}^{\mathrm{CH}}\right)\right\} \cos \phi \sin \phi \tag{12}
\end{equation*}
$$

so that, with $\phi=\arccos (1 / 3)\left(=70.5^{\circ}\right)$

$$
\begin{equation*}
\alpha_{x y}(\mathrm{a})=\alpha_{x y}(\mathrm{~b})=-(2 \sqrt{2} / 9) \Gamma_{\mathrm{CC}} \tag{13}
\end{equation*}
$$

a result that is consistent with the symmetry of these species.
In relation to the second objective, it is sufficient to formulate the three polarizability anisotropies of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ and of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$ in terms of Γ_{CC} and Γ_{CCN}, in the knowledge that these quantities are positive in sign and of magnitudes such that $\Gamma_{\mathrm{CC}} \approx \Gamma_{\mathrm{CCN}} / 3$. Now it is straightforward to establish that, for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$

$$
\begin{gather*}
\alpha_{x x}-\alpha_{y y}=-(7 / 9) \Gamma_{\mathrm{CC}}+\Gamma_{\mathrm{CCN}} \tag{14}\\
\alpha_{y y}-\alpha_{z z}=(8 / 9) \Gamma_{\mathrm{CC}} \tag{15}\\
\alpha_{z z}-\alpha_{x x}=-(1 / 9) \Gamma_{\mathrm{CC}}-\Gamma_{\mathrm{CCN}} \tag{16}
\end{gather*}
$$

so that $\alpha_{x x}>\alpha_{y y}, \alpha_{y y}>\alpha_{z z}$ and $\alpha_{x x}>\alpha_{y y}>\alpha_{z z}$. For $\left(\mathrm{CH}_{3}\right)_{2-}$ CHCN

$$
\begin{gather*}
\alpha_{x x}-\alpha_{y y}=-(2 / 9) \Gamma_{\mathrm{CC}}+\Gamma_{\mathrm{CCN}} \tag{17}\\
\alpha_{y y}-\alpha_{z z}=-(8 / 9) \Gamma_{\mathrm{CC}} \tag{18}\\
\alpha_{z z}-\alpha_{x x}=(10 / 9) \Gamma_{\mathrm{CC}}-\Gamma_{\mathrm{CCN}} \tag{19}
\end{gather*}
$$

so that $\alpha_{x x}>\alpha_{y y}, \alpha_{y y}<\alpha_{z z}, \alpha_{z z}<\alpha_{x x}$, and $\alpha_{x x}>\alpha_{z z}>\alpha_{y y}$. Of course, the relative magnitudes of $\alpha_{x x}, \alpha_{y y}$, and $\alpha_{z z}$ could have been predicted simply by inspection of Figure 1, but the bondadditivity model places these results on a firmer basis.

Finally, it must be emphasized that it is not to be expected, and certainly is not claimed here, that the anisotropic polarizabilities (as opposed to the isotropic polarizabilities) of $\mathrm{CH}_{3}{ }^{-}$ $\mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$ are rigorously additive and therefore accurately predictable from the model. It is, however, claimed that for both molecules $\alpha_{x y}$ is adequately predictable, and that $\alpha_{x x}, \alpha_{y y}$, and $\alpha_{z z}$ can be reliably placed in order of magnitude, which is all that the procedure requires.

Experimental Section

Samples of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}\left(\right.$ bp $97.2{ }^{\circ} \mathrm{C}$) and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$ (bp $103.6^{\circ} \mathrm{C}$) were purified by standard methods ${ }^{12}$ and subjected to repeated freeze-pump-thaw cycles immediately before use. Because of the relatively high boiling points of these liquids, the experiments were necessarily performed at high temperatures and low pressures.

Apparatus for measurements of the Rayleigh depolarization ratio, $\rho_{0}=\left(I_{\mathrm{h}}^{v}-I_{\mathrm{h}, \mathrm{b}}^{v}\right) /\left(I_{\mathrm{v}}^{v}-I_{\mathrm{v}, \mathrm{b}}^{v}\right)$, of gases and vapors has been described. ${ }^{13}$ Observations on $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$ were made at 352 K and $\approx 15-25 \mathrm{kPa}$. The results are the averages of repeated determinations with inclusion and, indistinguishably, with exclusion by means of an interference filter of vibrational Raman contributions: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}, \rho_{0}=(1.040$ $\pm 0.012) \times 10^{-2} ;\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}, \rho_{0}=(0.602 \pm 0.013) \times 10^{-2}$.

Equipment for investigation of the temperature and pressure dependence of the electrooptical Kerr effect in gases and vapors has also been described. ${ }^{14}$ Measurements of the electric fieldinduced birefringences of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$ at 632.8 nm were made at 10 temperatures $(\approx 340-500 \mathrm{~K})$ within the available span and, at each temperature, over a range of pressures $(\approx 10-30 \mathrm{kPa})$. The definition of the molar Kerr constant, ${ }_{\mathrm{m}} K$, is ${ }^{8,15}$
${ }_{\mathrm{m}} K=6 n V_{\mathrm{m}}\left[\left(n^{2}+2\right)^{2}\left(\epsilon_{\mathrm{r}}+2\right)^{2}\right]^{-1}\left[\left(n_{X}-n_{Y}\right) F_{X}{ }^{-2}\right]_{F_{X=0}}$
where n and ϵ_{r} are the refractive index and relative permittivity of the vapor in the absence of the field, $n_{X}-n_{Y}$ is the birefringence for $X Z$ - and $Y Z$-polarized light that is induced by the uniform electric field, F_{X}, and V_{m} is the molar volume. To take account of molecular interactions, ${ }_{\mathrm{m}} K$ is expressed in terms of V_{m} as

$$
\begin{equation*}
{ }_{\mathrm{m}} K=A_{\mathrm{K}}+B_{\mathrm{K}} V_{\mathrm{m}}^{-1} \tag{21}
\end{equation*}
$$

in which A_{K} and B_{K} are the Kerr first and second virial coefficients. In practice, the observed birefringences were used to establish values of

$$
\begin{equation*}
{ }_{\mathrm{m}} K_{0}=(2 / 27) V_{\mathrm{m}}\left(n_{X}-n_{Y}\right) F_{X}^{-2} \tag{22}
\end{equation*}
$$

and these were fitted to the relation ${ }^{16}$

$$
\begin{equation*}
{ }_{\mathrm{m}} K_{0}=A_{\mathrm{K}}+\left[B_{\mathrm{K}}+A_{\mathrm{K}}\left(2 A_{\epsilon}+(1 / 2) A_{\mathrm{R}}\right)\right] V_{\mathrm{m}}^{-1} \tag{23}
\end{equation*}
$$

TABLE 1: Temperature Dependence of the Vapor-State Kerr Effects of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$ at 632.8 nm

$T(\mathrm{~K})$	no. of pressures	$p(\mathrm{kPa})$	$A_{\mathrm{K}}\left(10^{-27} \mathrm{~m}^{5} \mathrm{~V}^{-2} \mathrm{~mol}^{-1}\right)$
		$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$	
496.7	6	$14-22$	175.1 ± 1.2
480.3	8	$16-27$	189.1 ± 0.3
460.1	8	$11-26$	203.9 ± 0.7
438.9	8	$14-26$	224.1 ± 1.1
420.6	7	$14-27$	244.8 ± 0.3
400.6	7	$17-26$	269.5 ± 0.5
384.5	8	$16-29$	291.8 ± 1.0
369.4	9	$16-31$	317.1 ± 0.6
354.5	8	$11-25$	345.4 ± 0.7
340.5	7	$10-20$	377.6 ± 0.9
		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$	
496.6	5	$13-27$	165.7 ± 0.5
480.3	7	$16-29$	175.2 ± 0.6
461.0	8	$11-29$	189.8 ± 0.6
440.7	8	$11-28$	207.7 ± 0.8
420.5	8	$12-27$	226.5 ± 0.7
400.7	6	$11-26$	245.4 ± 0.7
384.5	8	$12-25$	272.7 ± 0.9
369.4	7	$14-27$	289.9 ± 0.7
354.5	7	$12-24$	312.6 ± 0.8
340.6	7	$10-17$	338.4 ± 1.8

in which A_{ϵ} and A_{R} are the low-density molar dielectric polarization and refraction, calculated from the static and opticalfrequency molecular polarizabilities. In the absence of density virial coefficients, departures from ideal-gas behavior were assumed to be negligible under the high-temperature/lowpressure conditions of the measurements. The required values of V_{m} were therefore slightly overestimated, typically by $<1 \%$ and at worst by $<2 \%$. The results are summarized in Table 1, where the errors attributed to the values of A_{K} are standard deviations from the least-squares fitting of straight lines to the pressure-dependence data; with calibration and other systematic errors the overall accuracy is estimated as $\pm 3 \%$. Values of B_{K} were poorly determined, because of the limited vapor pressures that were accessible, and are not reported here. Dilute-solution Kerr constants for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$ at 298 K have previously been recorded, ${ }^{17}$ but local-field effects preclude a direct comparison of gas- and solution-phase data. ${ }^{18}$

Results

In earlier analyses of data for dipolar and anisotropically polarizable species (e.g., $\mathrm{CH}_{3} \mathrm{X}, \mathrm{CH}_{2} \mathrm{X}_{2}$, and $\mathrm{CHX}_{3}, \mathrm{X}=\mathrm{F}$, $\mathrm{Cl}^{10,19}$), a quadratic equation (eq 2) was reduced to a linear equation (eq 3) by means of an approximation for γ^{K}, which could be seen to make only a small contribution to A_{K} under normal conditions. The species of interest here are all the more strongly dipolar, and on the basis of the known value of $\gamma(\approx$ $\left.\gamma^{\mathrm{K}}\right)$ for $\mathrm{CH}_{3} \mathrm{CN},{ }^{20}$ estimated values of γ^{K} for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}\left(\gamma^{\mathrm{K}}\right.$ $\approx 2 \gamma$) and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}\left(\gamma^{\mathrm{K}} \approx 3 \gamma\right)$ contribute only 0.3% and 0.4%, respectively, to the values of A_{K} at the highest temperatures, so that the same simplification can be made. Figure 2 displays the experimental data and the linear plots of $\left[A_{\mathrm{K}}-\right.$ $\left.\left(N_{\mathrm{A}} / 81 \epsilon_{0}\right) \gamma^{\mathrm{K}}\right] T$ against T^{-1}, whereas Table 2 contains the leastsquares coefficients Q and R and their interpretation in terms of molecular properties. Although the temperature ranges of the measurements were limited by the involatility of the liquids, values of R, and therefore the derived polarizabilities, were adequately determined.

Other data in Table 2 are values of the depolarization ratio, ρ_{0}, and the square of the optical-frequency polarizability anisotropy parameter, $\kappa^{2}=5 \rho_{0}\left(3-4 \rho_{0}\right)^{-1}$ (eq 7); the mean optical-frequency polarizability, α (eq 8); ${ }^{21}$ and the components

Figure 2. Temperature dependence of A_{K} of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2}-$ CHCN.

TABLE 2: Analysis of the Temperature Dependence of A_{K} of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$ at $632.8 \mathbf{~ n m}^{a}$

property	value	
	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$
$P\left(10^{-27} \mathrm{~m}^{5} \mathrm{~V}^{-2} \mathrm{~mol}^{-1}\right)^{b}$	(0.5 ± 0.2)	(0.7 ± 0.4)
$Q\left(10^{-24} \mathrm{~m}^{5} \mathrm{~V}^{-2} \mathrm{~mol}^{-1} \mathrm{~K}\right)^{c}$	-0.6 ± 1.5	8.8 ± 1.9
$R\left(10^{-21} \mathrm{~m}^{5} \mathrm{~V}^{-2} \mathrm{~mol}^{-1} \mathrm{~K}^{2}\right)^{d}$	43.5 ± 0.6	36.2 ± 0.8
$\rho_{0}\left(10^{-2}\right)$	1.040 ± 0.012	0.602 ± 0.013
$\kappa^{2}\left(10^{-2}\right)$	1.758 ± 0.020	1.012 ± 0.022
$\alpha\left(10^{-40} \mathrm{C} \mathrm{m}^{2} \mathrm{~V}^{-1}\right)^{e}$	6.93 ± 0.03	8.96 ± 0.04
$\mu\left(10^{-30} \mathrm{C} \mathrm{m}\right)$	13.51 ± 0.10^{f}	14.31 ± 0.33^{g}
μ_{x}	13.47 ± 0.10	14.19 ± 0.33
μ_{y}	-1.006 ± 0.007	-1.843 ± 0.043
$\alpha_{x y}\left(10^{-40} \mathrm{C} \mathrm{m}^{2} \mathrm{~V}^{-1}\right)^{h}$	-0.25 ± 0.05	-0.25 ± 0.05
$\alpha_{x x}$	8.71 ± 0.03^{i}	10.29 ± 0.04^{i}
$\alpha_{y y}$	6.33 ± 0.20^{i}	7.27 ± 0.04^{i}
$\alpha_{z z}$	5.74 ± 0.18^{i}	9.33 ± 0.07^{i}
$\theta\left({ }^{\circ}\right)^{j}$	6 ± 1	5 ± 1
$\beta^{\mathrm{K}}\left(10^{-50} \mathrm{C} \mathrm{m}^{3} \mathrm{~V}^{-2}\right)$	-0.3 ± 0.3	1.4 ± 0.3

${ }^{a}$ SI units. Conversion factors for α are $1 \times 10^{-40} \mathrm{C} \mathrm{m}^{2} \mathrm{~V}^{-1}=6.0651$ $\mathrm{au}=0.89867 \times 10^{-24}$ esu. ${ }^{b}$ Equation 4 ; values estimated from $\gamma(\approx$ γ^{K}) for $\mathrm{CH}_{3} \mathrm{CN}$ (ref 20). ${ }^{c}$ Equation 5. ${ }^{d}$ Equation 6. ${ }^{e} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$: Reference 21a. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$: Calculated as $\alpha=\left(3 \epsilon_{0} / N_{A}\right)_{\mathrm{m}} R$ from molar refraction $\left({ }_{\mathrm{m}} R / 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}\right)$, interpolated to 632.8 nm (20.32), obtained from data for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ and atomic, group and structural refractions in Table 22 of ref 21b. Uncertainties estimated as $\pm 0.5 \%$. ${ }^{f}$ Reference 5. ${ }^{g}$ Reference 6. ${ }^{h}$ Bond-additivity model (see text); $\alpha_{x y}=$ $-(2 \sqrt{ } 2 / 9) \Gamma_{\mathrm{CC}} .{ }^{i}$ Uncertainty is the sum of the contributions that arise form the uncertainties in R and κ^{2} (measured standard deviations, given above) and $\alpha_{x y}$ (assumed uncertainty of $\pm 20 \%$). ${ }^{j}$ Figure 1. $\theta=(1 / 2)$ $\arctan \left[2 \alpha_{x y}\left(\alpha_{y y}-\alpha_{x x}\right)^{-1}\right]$ (see text).
μ_{x} and μ_{y} of the electric dipole moment, μ. In relation to the moments of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}{ }^{5}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN},{ }^{6}$ Stark-effect measurements have provided the magnitudes but not the signs of the components, so the directions (- to +) of the overall moments have remained speculative. However, the ambiguity was easily removed by recourse to a simple bond-additivity model ${ }^{17}$ in which the large moment of the $\mathrm{N} \equiv \mathrm{C}-\mathrm{C}$ group, taken as the moment of $\mathrm{CH}_{3} \mathrm{CN},{ }^{22}$ was augmented by one, or two, small induced moments, taken to act along the axis of each polarizable $\mathrm{C}-\mathrm{CH}_{3}$ group. The molecular moments of $\mathrm{CH}_{3}-$ $\mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$ are, in fact, inclined at angles of $4.3^{\circ 5}$ and $7.4^{\circ},{ }^{6}$ respectively, to the $\mathrm{N} \equiv \mathrm{C}-\mathrm{C}(x)$ axis (Figure 1) such that, in both cases, μ_{x} is positive and μ_{y} is negative in sign. As well, Table 2 includes the value of $\alpha_{x y}=-(2 \sqrt{ } 2 / 9) \Gamma_{\mathrm{CC}}$,
calculated from data for $\mathrm{CH}_{3} \mathrm{CH}_{3}$ in the manner described above; the values of $\alpha_{x x}, \alpha_{y y}$, and $\alpha_{z z}$, derived by simultaneous solution of eq $6-8$; the angles $\theta=(1 / 2) \arctan \left[2 \alpha_{x y}\left(\alpha_{y y}-\alpha_{x x}\right)^{-1}\right]$, ${ }^{23}$ through which the x and y reference axes must be rotated to locate the x^{\prime} and y^{\prime} principal axes; and imprecise (and possibly inaccurate) values of the hyperpolarizability, β^{K}. Note, too, that the analyses in Table 2 confirm that, for both $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}, A_{\mathrm{K}}$ is overwhelmingly dominated by the $R T^{-2}$ term. Moreover, for both species the coefficient R is itself similarly dominated by the $\mu_{x}^{2}\left(\alpha_{x x}-\alpha\right)$ term, with only a small contribution from the $\mu_{x} \mu_{y} \alpha_{x y}$ term. Of course, the fact that $\alpha_{x y}$ makes only a small contribution to $R(2.0 \%, 4.7 \%)$, and also to $\kappa^{2}(2.4 \%, 2.5 \%)$, is the reason that the polarizabilities that emerge for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$ are relatively insensitive to the value that is adopted for this parameter.

Discussion

The present report describes the further development of a novel experimental route to the four independent components of the anisotropic electric dipole polarizabilities of molecules of C_{s} symmetry, originally applied to $\mathrm{CH}_{3} \mathrm{NH}_{2}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ ${ }^{7}$ and here extended to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCN}$. Unfortunately, the optical (Kerr effect, Rayleigh depolarization, refractive index) and spectroscopic (Stark effect) measurements that are required are still much less than routine but, to date, no other purely experimental procedure has been identified. Nevertheless, the method is clearly applicable to many other simple molecules of this symmetry, for example $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{X}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHX}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}), \mathrm{CH}_{3} \mathrm{XH}(\mathrm{X}=\mathrm{O}, \mathrm{S})$ and $\mathrm{CH}_{3}-$ COX ($\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$), for which reliable free-molecule polarizabilities are not available. Such studies can be expected to provide valuable information as to the interaction of the molecular charge distributions with electric fields and, eventually, intermolecular forces. As well, the experimental polarizabilities are of much interest in relation to the predictive capability of state-of-the-art computational quantum chemistry.

References and Notes

(1) Buckingham, A. D. Adv. Chem. Phys. 1967, 12, 107-142.
(2) Bogaard, M. P.; Orr, B. J. MTP Int. Rev. Sci.: Phys. Chem., Ser. 2 1975, 2, 149-194.
(3) Buckingham, A. D. Basic Theory of Intermolecular Forces: Applications to Small Molecules. In Perspectives in Quantum Chemistry and Biochemistry; Pullman, B., Ed.; Wiley-Interscience: Chichester, U.K., 1978; Vol. 2, pp 1-67.
(4) Bogaard, M. P.; Buckingham, A. D.; Pierens, R. K.; White, A. H. J. Chem. Soc., Faraday Trans. 1 1978, 74, 3008-3015.
(5) Heise, H. M.; Lutz, H.; Dreizler, H. Z. Naturforsch. 1974, 29a, 1345-1355.
(6) Durig, J. R.; Li, Y. S. J. Mol. Struct. 1974, 21, 289-297.
(7) Ritchie, G. L. D.; Blanch, E. W. J. Phys. Chem. A 2003, 107, 20932099.
(8) (a) Buckingham, A. D.; Pople, J. A. Proc. Phys. Soc. A 1955, 68, 905-909. (b) Buckingham, A. D. Proc. Phys. Soc. A 1955, 68, 910-919. (9) Gentle, I. R.; Laver, D. R.; Ritchie, G. L. D. J. Phys. Chem. 1990, 94, 3434-3437.
(10) Buckingham, A. D.; Orr, B. J. Trans. Faraday Soc. 1969, 65, 673681.
(11) Bridge, N. J.; Buckingham, A. D. Proc. R. Soc. London, Ser. A 1966, 295, 334-349.
(12) Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon: Oxford, U.K., 1988.
(13) (a) Craven, I. E.; Hesling, M. R.; Laver, D. R.; Lukins, P. B.; Ritchie, G. L. D.; Vrbancich, J. J. Phys. Chem. 1989, 93, 627-631. (b) Craven, I. E.; Hesling, M. R.; Ritchie, G. L. D. Chem. Phys. Lett. 1991, 185, 371-374. (c) Keir, R. I.; Ritchie, G. L. D. Chem. Phys. Lett. 1998, 290, 409-414.
(14) (a) Gentle, I. R.; Laver, D. R.; Ritchie, G. L. D. J. Phys. Chem. 1989, 93, 3035-3038. (b) Gentle, I. R.; Ritchie, G. L. D. J. Phys. Chem. 1989, 93, 7740-7744. (c) Blanch, E. W.; Keir, R. I.; Ritchie, G. L. D. J. Phys. Chem. A 2002, 106, 4257-4262.
(15) Otterbein, G. Phys. Z. 1934, 35, 249-265.
(16) Buckingham, A. D.; Orr, B. J. Proc. R. Soc. London, Ser. A 1968, 305, 259-269.
(17) Le Fèvre, R. J. W.; Orr, B. J.; Ritchie, G. L. D. J. Chem. Soc. 1965, 2499-2505.
(18) Buckingham, A. D.; Stiles, P. J.; Ritchie, G. L. D. Trans. Faraday Soc. 1971, 67, 577-582.
(19) Bogaard, M. P.; Orr, B. J.; Buckingham, A. D.; Ritchie, G. L. D. J. Chem. Soc., Faraday Trans. 2 1978, 74, 1573-1578.
(20) Shelton, D. P.; Rice, J. E. Chem. Rev. 1994, 94, 3-29.
(21) (a) Jeffery, G. H.; Vogel, A. I. J. Chem. Soc. 1948, 674-683. (b) Vogel, A. I. J. Chem. Soc. 1948, 1833-1855.
(22) Steiner, P. A.; Gordy, W. J. Mol. Spectrosc. 1966, 21, 291-301.
(23) For a symmetric second-order tensor such as the polarizability, $\alpha_{\alpha \beta}$, the transformation law is $\alpha_{\alpha^{\prime} \beta^{\prime}}=\alpha_{\alpha \beta} a_{\alpha \alpha^{\prime}} a_{\beta \beta^{\prime}}$ so that, from Figure 1, $\alpha_{x^{\prime} y^{\prime}}=$ $\alpha_{\alpha \beta} a_{\alpha x^{\prime}} a_{\beta y^{\prime}}=(1 / 2)\left(\alpha_{x x}-\alpha_{y y}\right) \sin 2 \theta+\alpha_{x y} \cos 2 \theta=0$ and $\theta=(1 / 2)$ $\arctan \left[2 \alpha_{x y}\left(\alpha_{y y}-\alpha_{x x}\right)^{-1}\right]$, as required.

[^0]: * To whom correspondence should be addressed. Fax: +6126773 3268. E-mail: gritchi2@metz.une.edu.au.

