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This paper constitutes an extension of our previous works on multicenter bondings and bond orders in order
to determine three-center indices at the correlated level. A new manipulation of our algorithms allows us to
establish suitable relationships between three-center bond indices, two-center bond ones, and the number of
effectively unpaired electrons, at any level of theory. Several numerical calculations of population analysis,
in selected molecules, are carried out, and the results are analyzed and discussed.

1. Introduction

During the past decades, new theoretical and computational
techniques have appeared in the literature providing a spectacular
advance of the quantum chemistry and other related areas. This
progress has allowed one to know much better the nature and
features of chemical bondings but quite often the used meth-
odologies have turned out to be too sophisticated for the ordinary
chemical language. Classical concepts as atomic charges, bond
indices, valences, free valence indices, etc. are still extremely
useful for chemists in the understanding and description of
molecular structures as well as in the study of reactivity of
molecules, radicals, and other species. Within the methods which
enable us to describe these quantities, avoiding the explicit use
of the cumbersomeN-electron wave functions, the studies of
electronic population analysis have revealed to be very useful
tools.

As is well-known, the techniques of population analysis carry
out partitionings of a determined molecular property into
different contributions which are usually expressed by the
elements of the reduced density matrices and the elements of
the overlap matrices.1-4 These partitionings are performed in
the Hilbert space spanned by the basis function set (Mulliken
scheme) or alternatively over the physical space (topological
scheme). In particular, bond indices related with the classical
two-center two-electron scheme of bonding have extensively
been studied, at any level of theory, through the partitioning of
the N electrons in the system.5-18 However, there are a
significant number of systems in which this model turns out to
be too simple to get an appropriate description of the molecular
features. Examples of such systems are the electron deficient
molecules such as boranes, carboranes, or hypervalent molecules
for which the existence of three-center two-electron or three-
center four-electron bondings has been proposed.19-25 In a
previous study, we have described the physical meaning and
mutual relationships between multicenter bond indices which

arise from various population analysis schemes, testing numeri-
cally our equations at the Hartree-Fock level of theory.24 The
first purpose of this paper is to go beyond reporting a rigorous
theoretical framework which is valid at any level of theory as
well as results of three-center bond indices obtained at correlated
level.

On the other hand, the effectively unpaired electron density
matrix has proved to be an appropriate tool to describe the
radical and diradical character in molecules of any spin
symmetry as well as other aspects related with valences.26-32

Recently, we have reported the connection between the elements
of this matrix and two-center two-electron bond indices at the
correlated level using population analysis techniques.33,34 An-
other aim of this report is to extend this study so that we can
describe a partitioning of theN electrons in the system which
allows to relate three-center indices, two-center ones, and the
matrix of effectively unpaired electrons.

We have organized this paper as follows. The second section
describes the basic theoretical concepts which will be used in
this work. The third section reports the algorithms and formulas
of population analysis proposed for describing three-center
indices. In the fourth section, some results for several systems
and the corresponding discussion are presented. Finally, some
remarks and conclusions are presented in the last section

2. Theoretical Background

Let us consider a set of orthonormal orbitals{i, j, k, l,...}
and the corresponding spin-orbital set{iR, iâ, jR, jâ, kR, kâ, lR,
lâ...}. As is well-known, the operator number of electrons isN̂
) ∑σ ∑i,j δij ciσ

† cjσ where ciσ
† , cjσ, etc. are the creation and

annihilation fermion operators used in the second quantized
formalism35 and σ is the spin coordinate (R or â). The spin-
free first-order replacement operators of partices and holes are,
respectively36

* To whom correspondence should be addressed. Fax:++34-944-
648500. E-mail: qfplapel@lg.ehu.es.

Ej
i ) ∑
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The expectation values of these operators for a determined
N-electron state|L 〉 define the matrix elements of the spin-free
first-order density matrix of particles and holes

Using the spin-free replacement operators one can expressN̂
as

and the substitution of the Kronecker delta by the well-known
relationδij ) 1/2(

1Dj
i + 1Dh j

i) allows us to write eq 5 as

or, alternatively

Closing both sides of eq 7 by theN-electron state|L〉, one
obtains the number of electrons of the system,N. In this way,
the second term of the right-hand side (rhs) in this eq, that is,
∑i,j

1Dh j
i Ej

i, produces

in which Nu is the number of effectively unpaired electrons,
which is the trace of the density matrix of effectively unpaired
electrons26-28

The density matrix of effectively unpaired electrons is a one-
electron matrix initially proposed by Takatsuka et al.26 and
Takatsuka and Fueno27 to characterize the occupancy of different
portions of space by spin-up and spin-down electrons. According
to these authors, the density of effectively unpaired electrons
represents the spatial distribution of odd electrons in open shell
molecules but it also accounts for the partial split of electron
pairs that appears, even in closed shell systems, when the
electronic correlation is taken into account. More recently
Staroverov and Davidson have studied the properties of this
matrix in connection with the extent of the radical and diradical
character in molecules and transition states of any spin
multiplicity.29,30Likewise, we have described the relationships
between cumulant matrices31,37 and the effectively unpaired
electron density matrix carrying out preliminary studies of
topological population analyses33 with this tool. Other alterna-
tives to describe the effectively unpaired electron density have
also been proposed;38 however, in this paper, the most “classical”
formulation of this matrix will be used since it appears in this
form in the quantum framework.

The matrix elements1Dh j
i and 1/2(

1Dj
i - 1Dh j

i) are the coef-
ficients of the first-order operatorEj

i of the rhs in eq 7. Hence,
these quantities can be regarded as the one-electron integrals

used in the second quantized formalism. The unpaired electron
number integrals are just the1Dh j

i matrix elements since they
provide the calculation of the “unpaired electron number”,Nu

) tr(1Dh 1D) (see eq 8). Similarly, according to this approach,
the matrix elements1/2(

1Dj
i - 1Dh j

i), that is the first term of the
rhs in eq 7 are the paired electron number integrals and
consequently the number of paired electrons,Np, must be
calculated asNp ) ∑i,j

1/2(
1Dj

i - 1Dh j
i)1Di

j which is equivalent to

The substitution in eq 10 of the Kronecker delta byδki )
1/2(

1Di
k + 1Dh i

k) taking into account eq 9, allows us to express

Consequently, the total number of electrons of the system is

which can also be expressed only in terms of the first-order
reduced density matrix elements as

Equation 13 accounts for the total number of electrons (paired
and unpaired) of the system at any level of theory. A similar
equation, in terms of the trace of the square of the1D matrix
that is,N ) 1/2[tr(1D)2 - Nu] + Nu, has recently been reported
in ref 33 providing a suitable determination of classical two-
center bond indices through studies of population analysis. As
eq 13 is expressed in terms of the cube of the1D matrix, it
provides the appropriate tools to detect and evaluate three-center
bond indices, which is performed in the next sections.

3. Population Analysis

A partitioning ofN electrons in eq 13 according to Mulliken1,2

scheme leads to

where

Np ) ∑
i,j,k

1

2
(1Dj

i - 1Dh j
i) 1Dk

j δki (10)

Np )
1

4
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i 1Dk

j 1Di
k -

1

4
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uj
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N )
1

4
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uj
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j] + Nu (12)

N ) 1
4
[tr(1D)3 + tr(u 1D) - 2 Nu] + Nu (13)
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A, B, C, etc. stand for different nuclei of the system, the
superscript (3) means that the corresponding quantities∆(3)

derive from the partitioning of a cubic equation andP(ABC)
are the permutationsABC, ACB, etc. The last term in eq 14
constitutes the partitioning of the unpaired electrons; the
populationsuA coincide with Mayer’s free valence on the
nucleusA for singlet wave functions.8 The three first terms in
eq 14 represent the partitioning of the paired electrons according
to they belong to one, two or three nuclei so that∆ABC

(3) is an
appropriate quantity to describe a three-center bonding.

Heuristic exchange type two-center bond indices,IAB, and
three-center bond indices,IABC, have been defined as8,19-22

A simple algebra allows us to establish the relationships between
the above bond indices and the quantities resulting from the
partitioning ofN electrons expressed by formula 14

A rigorous derivation of eq 19 has recently been proposed and
tested, at the correlated level, in systems with conventional
bonding patterns.33 However, eq 21 shows that in systems
possessing three-center bondings the three-center contribution
is hidden in an average way in theIAB indices. Moreover, as
the products1Dj

i ui
j only produce exchange type terms, the

“exchange type” representation of bond indices is kept in this
scheme.

Other definitions of bond indices14,22 are based on the
covariance or correlation of fluctuations of the charge operators
q̂A, q̂B, andq̂C, that is-2 〈(q̂A - 〈q̂A〉)(q̂B - 〈q̂B〉)〉 (two centers)
and 2〈(q̂A - 〈q̂A〉)(q̂B - 〈q̂B〉)(q̂C - 〈q̂C〉)〉 (three centers) where
q̂A ) ∑i

A Ei
i and similarly for q̂B and q̂C. Both definitions of

bond indices, exchange, and fluctuation, are coincident at the
Hartree-Fock level but lead to different numerical values when
correlated wave functions are used. A determination of fluctua-
tion type bond indices requires to handle second-order and third-
order reduced density matrices, which arise from the products
q̂Aq̂B and q̂Aq̂Bq̂C, respectively. However, the exchange type
definitions only need the elements of the first-order reduced
density matrix which provides a simpler procedure in a
computational point of view. Within the topological approach,
the whole real space is partitioned according to the Bader’s
atomic regions,3 ΩA. Taking into account that this partitioning
holdsΩ ) ∪AΩA andΩA ∩ ΩB ) i (∀A, B; A * B), eq 13 can
be written in the form

which is the counterpart of eq 14 in the topological approach
and where

in which Sij(ΩA), Skl(ΩB), etc. are the elements of the overlap
matrices calculated over the regionsΩA, ΩB, etc. andP(ΩAΩBΩC)
are the permutationsΩAΩBΩC, ΩAΩCΩB, etc. Equations 24-
27 are the counterparts of eqs 15-18, respectively, in the
topological version.

Two-center indices in a topological sheme have been
calculated for a number of systems at uncorrelated and correlated
level.4,12,15,33However, only uncorrelated topological exchange
type three-center indices have been reported so far for a few
number of systems.39 Topological exchange type two-center
indicesIΩAΩB and three-center indicesIΩAΩBΩC have been defined
as

Obviously, the above proposed∆ΩAΩBΩC

(3) indices are equivalent
to

4. Results and Discussion

The quantities reported in the previous section have been
tested on numerical determinations in order to check their
possibilities to describe and to detect simultaneously three-center
bondings, two-center ones, and unpaired electrons at correlated
level. The calculations were carried out using a modified
Gaussian 9440 program, which generated the first-order reduced
density matrix elements as well as the elements of the overlap
matricesSij(ΩA) which appear in the topological approach. In a
subsequent step, these matrices were subject to population
analysis by our own computational implementation. The reported
results have been obtained with the basis sets 6-31G. For all
systems, the geometries were optimized for these basis sets
within configuration interaction (CI) wave functions with single
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and double excitations (SDCI). As is well-known, these basis
sets are nonorthogonal and consequently, in the Mulliken-type
calculations, the matrix elements1Dj

i have systematically been
replaced by (1PS)j

i where1P andSare the usual charge density
and overlap matrices, respectively.

Table 1 reports the results obtained in the SDCI approxima-
tion for systems in which the existence of three-center bondings
is commonly accepted (H3

+, B2H6, CO2, allyl cation, allyl anion)
as well as in hypervalent molecules (Li4O and SO3) whose
description needs nonclassical patterns. This table provides the
possibility to perform a direct comparison between the results
arising from the two population analysis procedures which have
been described in the previous section according to the
partitionings (14) and (23). The unpaired electron populations
found for these systems are due to the partial splitting which
arise from the dispersal of the occupation numbers of the orbitals
in the expansion on several Slater determinants. Apart from the
B2H6 molecule which possesses special features, the first
conclusion that can be drawn is that the monatomic populations
of unpaired electrons are similar in the Mulliken (uA) and the
topological (uΩA) versions except in the case of the CO2 molecule
(uO ) 0.253,uΩO ) 0.277,uC ) 0.216,uΩC ) 0.168) and in
the Li4O one (uO ) 0.296,uΩO ) 0.475,uLi ) 0.111,uΩLi )
0.066). Our interpretation is that these large differences are due

to the stronger electronegative character of the oxigen atom
which is better described in the topological method than in the
Mulliken-type one.41 A wider discussion ofuA and uΩA

populations and their relationships with atomic valences has
recently been reported in ref 42. Except in the Li4O case, the
values found for the three-center populations are nonnegligible
and the corresponding fragments coincide with the regions where
the three-center bondings are expected. The positive values for
these populations have been interpreted as three-center two-
electron bonds, whereas the negatives ones describe three-center
four-electron bonds.19,21,43The two above proposed partitionings
provide identical sign for the three-center populations in all
studied systems but the topological method produces lower
values except in the case of allyl cation which has already been
pointed out in previous works.39 The major differences between
the shared electron populations arising from both methods are
found in the B2H6 molecule where the topological approach
clearly predicts lower values. Although these differences are in
agreement with the results reported by other authors,4,13the value
found for∆ΩBΩHΩB

(3) ) 0.136 allows us to confirm that even the
topological method predicts the existence of the three-center
bonding.

Table 2 shows the results corresponding to identical systems
calculated in the closed-shell HF approach in order to carry out

TABLE 1: Calculated Values of Bond Indices I AB and Populations∆AB
(3), ∆ABC

(3) , uA (Mulliken-Type) and Bond Indices I ΩAΩB and
Populations ∆ΩAΩB

(3) , ∆ΩAΩBΩC

(3) , uΩA (Topological) for Systems with Three-Center Bondings in the SDCI Approximation

system fragment IAB ∆AB
(3) ∆ABC

(3) uA IΩAΩB ∆ΩAΩB

(3) ∆ΩAΩBΩC

(3) uΩA

H3
+ H 0.039 0.039

HH 0.425 0.428 0.427 0.429
HHH 0.416 0.418

B2H6 B 0.162 0.095
Hterminal 0.044 0.065
Hbridging 0.048 0.071
BB 0.465 0.418 0.146 0.064
(BH)terminal 0.947 1.441 0.673 0.936
(BH)bridging 0.434 0.519 0.383 0.426
BHB 0.303 0.136

CO2 C 0.216 0.168
O 0.253 0.277
CO 1.784 2.947 1.518 2.387
OO 0.254 0.650 0.370 0.666
OCO -0.537 -0.224

allyl cation C1 0.205 0.194
C2 0.212 0.198
H1 0.033 0.039
H2 0.032 0.040
C1C2 1.351 1.929 1.395 1.851
C1H1 0.894 1.369 0.909 1.321
C2H2 0.882 1.339 0.903 1.307
CCC 0.291 0.342

allyl anion C1 0.213 0.201
C2 0.199 0.192
H1 0.040 0.046
H2 0.042 0.049
C1C2 1.430 2.358 1.430 2.132
C1H1 0.928 1.427 0.980 1.409
C2H2 0.933 1.429 0.926 1.326
CCC -0.352 -0.141

Li4O Li 0.111 0.066
O 0.296 0.475
LiO 0.366 0.500 0.373 0.409
LiLi 0.251 0.184 0.091 0.046
LiOLi 0.031 0.097
LiLiLi 0.171 0.040

SO3 S 0.232 0.210
O 0.260 0.268
SO 1.199 2.080 1.311 2.111
OO 0.189 0.453 0.266 0.501
OSO -0.277 -0.143
OOO -0.062 -0.060

Population Analysis at Correlated Level J. Phys. Chem. A, Vol. 108, No. 18, 20044135



a checkup over the influence of the correlation. Within this
model, all matrix elementsuj

i, described in eq 9, are zero,30,31

and consequently, this kind of wave funtions cannot predict
unpaired electron populations (they have not been included in
this table). This fact shows itself the inadequacy of this model
for which the partitionings described in eqs 14 and 23 turn out
to be identical to those obtained from the idempotency of
the HF first-order reduced density matrix, that isN )
1/4 ∑i,j,k

1Dj
i 1Dk

j 1Di
k. In other words, the HF treatment provides

a simplified picture of perfect pairing which only corresponds
to the well-known Lewis model. Apart from the impossibility
for describing monatomic populations of unpaired electrons the
results of the two-center and three-center populations are not
too different from those reported in Table 1. The sign of the
three-center populations is identical to the correlated case for
all of the systems and the differences between the Mulliken

and topological procedures for the B2H6 molecule are similar.
It is worthwhile to point out that in systems reported in Tables
1 and 2 the second term of the right-hand side in eq 21 is
nonnegligible, due to the presence of three-center bondings
(some ∆ABC

(3) indices have significant values). Positive∆ABC
(3)

indices (like in H3
+ and B2H6 systems) make that the corre-

spondingIAB and ∆AB
(3) values are close or even∆AB

(3) < IAB.
However, negative∆ABC

(3) indices increase the differences be-
tween ∆AB

(3) and IAB (like in CO2, allylanion and SO3 mol-
ecules). A similar behavior can be observed for the∆ΩAΩB

(3) and
IΩAΩB indices in the topological treatment.

Tables 3 and 4 describe the results for systems which present
conventional patterns of bondings (H2O, NH3, CH4, and C2H6),
that is, with absence of three-center bondings. As can be seen
in the correlated calculations as well as in the HF ones, very

TABLE 2: Calculated Values of Bond Indices I AB and Populations∆AB
(3), ∆ABC

(3) (Mulliken-Type) and Bond Indices I ΩAΩB and
Populations ∆ΩAΩB

(3) , ∆ΩAΩBΩC

(3) (Topological) for Systems with Three-Center Bondings in the HF Approximation

system fragment IAB ∆AB
(3) ∆ABC

(3) IΩAΩB ∆ΩAΩB

(3) ∆ΩAΩBΩC

(3)

H3
+ HH 0.444 0.444 0.444 0.444

HHH 0.444 0.444
B2H6 BB 0.443 0.384 0.125 0.049

(BH)terminal 0.992 1.513 0.662 0.920
(BH)bridging 0.445 0.538 0.371 0.413
BHB 0.313 0.123

CO2 CO 1.810 2.972 1.515 2.378
OO 0.233 0.606 0.362 0.648
OCO -0.515 -0.211

allyl cation C1C2 1.408 2.025 1.454 1.932
C1H1 0.917 1.406 0.937 1.365
C2H2 0.903 1.373 0.934 1.350
CCC 0.291 0.363

allyl anion C1C2 1.469 2.433 1.482 2.205
C1H1 0.976 1.504 1.017 1.460
C2H2 0.975 1.496 0.958 1.374
CCC -0.361 -0.143

Li4O LiO 0.332 0.454 0.381 0.402
LiLi 0.274 0.195 0.110 0.055
LiOLi 0.029 0.112
LiLiLi 0.202 0.054

SO3 SO 1.243 2.112 1.375 2.190
OO 0.162 0.390 0.234 0.437
OSO -0.247 -0.126
OOO -0.046 -0.046

TABLE 3: Calculated Values of Bond Indices I AB and Populations∆AB
(3), ∆ABC

(3) , uA (Mulliken-Type) and Bond Indices I ΩAΩB and
Populations ∆ΩAΩB

(3) , ∆ΩAΩBΩC

(3) , uΩA (Topological) for Systems Not Containing Three-Center Bondings in the SDCI Approximation

system fragment IAB ∆AB
(3) ∆ABC

(3) uA IΩAΩB ∆ΩAΩB

(3) ∆ΩAΩBΩC

(3) uΩA

H2O O 0.234 0.242
H 0.040 0.036
OH 0.777 1.167 0.748 1.107
HH 0.004 0.009 0.013 0.008
HOH -0.006 0.024

NH3 N 0.231 0.230
H 0.039 0.039
NH 0.845 1.285 0.878 1.282
HH -0.002 0.005 0.020 0.015
HNH -0.018 0.032

CH4 C 0.213 0.189
H 0.044 0.050
CH 0.927 1.420 0.946 1.350
HH -0.009 -0.004 0.036 0.028
HCH -0.021 0.044

C2H6 C 0.197 0.177
H 0.040 0.047
CH 0.932 1.435 0.937 1.335
CC 0.885 1.410 0.953 1.308
CCH -0.028 0.040
HCH -0.024 0.045
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small values have been obtained for the quantities related with
multicenter bondings and nonnegligible values have only been
observed for two-center contributions corresponding to pairs
of classically bonded atoms. According to eq 21, these small
values justify the approximation

which also holds for the topological procedure

as were proposed by us24,39 at Hartree-Fock level for systems
which lack three-center bondings.

5. Concluding Remarks

In conclusion, in this paper, we have proposed a partitioning
of N electrons in molecules and ions which provides the
numerical determination of unpaired electron populations as well
as electron populations related with three-center and two-center
bondings within the same framework. Our algorithms, which
yield reasonable results, constitute the extension at correlated
level of our previous studies on three-center bondings and on
the relationships between bond indices and the unpaired electron
density matrix. The reported calculations have been obtained
with first-order reduced density matrices and overlap matrices
which require a low computational cost. We are currently
studying in our laboratories the basis dependence of our results
which will also be compared with results obtained from higher-
order reduced density matrices.
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TABLE 4: Calculated Values of Bond Indices I AB and
Populations ∆AB

(3), ∆ABC
(3) (Mulliken-Type) and Bond Indices

IΩAΩB and Populations∆ΩAΩB

(3) , ∆ΩAΩBΩC

(3) (Topological) for
Systems Not Containing Three-Center Bondings in the HF
Approximation

system fragment IAB ∆AB
(3) ∆ABC

(3) IΩAΩB ∆ΩAΩB

(3) ∆ΩAΩBΩC

(3)

H2O OH 0.794 1.192 0.748 1.109
HH 0.006 0.010 0.013 0.007
HOH -0.003 0.024

NH3 NH 0.865 1.314 0.890 1.313
HH 0.001 0.006 0.021 0.014
HNH -0.015 0.033

CH4 CH 0.960 1.472 0.983 1.402
HH -0.008 -0.003 0.038 0.031
HCH -0.021 0.048

C2H6 CH 0.964 1.486 0.970 1.381
CC 0.904 1.451 0.989 1.356
CCH -0.032 0.042
HCH -0.024 0.049

IAB ≈ 2
3

∆AB
(3) (31)

IΩAΩB
≈ 2

3
∆ΩAΩB

(3) (32)
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