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This paper constitutes an extension of our previous works on multicenter bondings and bond orders in order
to determine three-center indices at the correlated level. A new manipulation of our algorithms allows us to
establish suitable relationships between three-center bond indices, two-center bond ones, and the number of
effectively unpaired electrons, at any level of theory. Several numerical calculations of population analysis,
in selected molecules, are carried out, and the results are analyzed and discussed.

1. Introduction arise from various population analysis schemes, testing numeri-
IcaIIy our equations at the HartreEock level of theory* The

. - . - irst purpose of this paper is to go beyond reporting a rigorous
techniques have appeared in the literature providing a SpeCtaCUIaiheoretical framework which is valid at any level of theory as

advance of the quantum chemistry and other related areas. Thi well as results of three-center bond indices obtained at correlated
progress has allowed one to know much better the nature andIeVeI

features of chemical bondings but quite often the used meth- he other h he effectivel . | .
odologies have turned out to be too sophisticated for the ordinary On the other hand, the effectively qnpalred electron ‘.’ens'ty
ghatrix has proved to be an appropriate tool to describe the

chemical language. Classical concepts as atomic charges, bon dical and diradical ch . lecul ¢ .
indices, valences, free valence indices, etc. are still extremelyra Ical an |ra” Ica Ch aracter in ”lm egu esh 0 | a;gcé%spln
useful for chemists in the understanding and description of symmetry as well as other aspects related with vale :
molecular structures as well as in the study of reactivity of Recently, we have reported the connection between the elements

molecules, radicals, and other species. Within the methods which®f th'ls mf;t?x alnd t_wo-centelr t_wo-elecltro_n bonhd ]ndg:ée; at the
enable us to describe these quantities, avoiding the explicit usecorrelated level using population analysis tec niciés An-
of the cumbersom@-electron wave functions, the studies of other aim of this report is to extend this study so that we can

electronic population analysis have revealed to be very useful d€SCribe a partitioning of th electrons in the system which
tools. allows to relate three-center indices, two-center ones, and the

As is well-known, the techniques of population analysis carry Matrix of effectively unpaired electrons. ,
out partitionings of a determined molecular property into We have organized this paper as follows. The second section

different contributions which are usually expressed by the dgscribes the ba_lsic the_oretical concepts which will be used in

elements of the reduced density matrices and the elements ofiS Work. The third section reports the algorithms and formulas

the overlap matrices: These partitionings are performed in pf populatlon analysis proposed for describing three-center

the Hilbert space spanned by the basis function set (Mulliken indices. In the fourth section, some results for seve_ral systems

scheme) or alternatively over the physical space (topological and the correspondln_g discussion are prc_asented. Fmally, some

scheme). In particular, bond indices related with the classical 'emarks and conclusions are presented in the last section

two-center two-electron scheme of bonding have extensively .

been studied, at any level of theory, through the partitioning of 2. Theoretical Background

the N electrons in the systefni® However, there are a Let us consider a set of orthonormal orbitdis j, k, I,..}

S|gn|f|cqnt number of systems in which th.ls.model turns outto 54 the corresponding spirbital set{ic, i, j, j#, ke, kb, |2,

be too simple to get an appropriate description of the molecular |5 1 “as is well-known, the operator number of electronlis

fealturels. Exarr]rllplesb of such syts)tems are tr:]e electlron de?mellnt: So i 0i C.Go wherec', G, etc. are the creation and

o e o et o e Biaton ferion operatrs Lsed in he second gz
. formalisn®® and o is the spin coordinateo(or ). The spin-

center four-electron bondings _has been prc_’pégéé' In_a free first-order replacement operators of partices and holes are,

previous study, we have described the physical meaning andrespectivel96

mutual relationships between multicenter bond indices which

During the past decades, new theoretical and computationa
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E=3cc (2)
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used in the second quantized formalism. The unpaired electron
number integrals are just thlé)} matrix elements since they
provide the calculation of the “unpaired electron numbé\},

The expectation values of these operators for a determined= r(1p 1D) (see eq 8). Similarly, according to this approach,

N-electron stat¢/Tidefine the matrix elements of the spin-free
first-order density matrix of particles and holes

1N o= o
D = g0 3)

(4)

Using the spin-free replacement operators one can express
as

1[5} 8% E} Van!

®)

N= Zaij =
]

and the substitution of the Kronecker delta by the well-known
relationd; = (‘D] + D)) allows us to write eq 5 as

N S R
N=-y'D/E+-Y'D E
2; i 2; i i

or, alternatively

(6)

1. o
N =S (D — D) E 15 g
N—Ez( D] DJ)EJ+§IJ D E @)

0
Closing both sides of eq 7 by thé-electron statg /7] one
obtains the number of electrons of the syst&mni|n this way,

the second term of the right-hand side (rhs) in this eq, that is,
Sii 15} Ej, produces

N,=3'B'Di=Yi=Y @D~ T'0'D) (@)
[ [ J

[N}

in which N, is the number of effectively unpaired electrons,
which is the trace of the density matrix of effectively unpaired
electrongs—28

U= Zlbik 'Df=2'D| - ZDL 'Df 9)

The density matrix of effectively unpaired electrons is a one-
electron matrix initially proposed by Takatsuka et@alnd
Takatsuka and Fuefo characterize the occupancy of different

portions of space by spin-up and spin-down electrons. According
to these authors, the density of effectively unpaired electrons
represents the spatial distribution of odd electrons in open shell

molecules but it also accounts for the partial split of electron
pairs that appears, even in closed shell systems, when th
electronic correlation is taken into account. More recently

Staroverov and Davidson have studied the properties of this AQ® =

matrix in connection with the extent of the radical and diradical

character in molecules and transition states of any spin

multiplicity.230 Likewise, we have described the relationships
between cumulant matricés” and the effectively unpaired
electron density matrix carrying out preliminary studies of
topological population analys&swith this tool. Other alterna-

tives to describe the effectively unpaired electron density have 4

also been proposédhowever, in this paper, the most “classical”
formulation of this matrix will be used since it appears in this
form in the quantum framework.

The matrix elementsD; and ¥/,('D] — 'Dj) are the coef-
ficients of the first-order operatcE’j of the rhs in eq 7. Hence,

these quantities can be regarded as the one-electron integrals

the matrix elementélz(lD} — lII_)J!), that is the first term of the
rhs in eq 7 are the paired electron number integrals and
consequently the number of paired electrohg, must be
calculated a®, = 3i; %/2('D} — 'D})'D} which is equivalent to

1.
N, = ZE(lD} —'D)) "D} 8y (10)
L],

The substitution in eq 10 of the Kronecker delta by =
1,(*D¥ + DY taking into account eq 9, allows us to express

1 .-
S up
4Zuj D!

Consequently, the total number of electrons of the system is

I
N =ZE;DJ! D] DX — (11)

p
1)

T i1 -
N= Z[ZlDJ! DLDF = Y u DI N, (12)
bk I

which can also be expressed only in terms of the first-order
reduced density matrix elements as

N= %[tr(lD)S +tr(u'D) - 2NJ+N,  (13)

Equation 13 accounts for the total number of electrons (paired
and unpaired) of the system at any level of theory. A similar
equation, in terms of the trace of the square of fhematrix

that is,N = Y[tr(*D)2 — Ny + N,, has recently been reported

in ref 33 providing a suitable determination of classical two-
center bond indices through studies of population analysis. As
eq 13 is expressed in terms of the cube of {Bematrix, it
provides the appropriate tools to detect and evaluate three-center
bond indices, which is performed in the next sections.

3. Population Analysis

A partitioning ofN electrons in eq 13 according to Mullikeh
scheme leads to

N=ZA§S’+§BA§\3§+ Z ASS,;CJrZuA (14)
< A<B<C

where

e

A

A A ) ) 1 A ]
Dy ubi-oy
T ] [

(15)

N

1 A A A ) )
ZZ Z ZID} D) Dk +
!

3) _
A=

13!

A A B ) ) A B B ) )
— E(z z Z 1D; 1D1k lDik+ z Z Z 1DJ! 1Djk lDik)
[ [

+

N

A B
Z z u'Dl (A<B) (16)
]

A B C ) )
(Z zzzloj!lDJleik (A<B<C) (17)
P(ABO) | ]

@) —
Apgc=

N
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A which is the counterpart of eq 14 in the topological approach
Uy = z u (18) and where
I
A, B, C, etc. stand for different nuclei of the system, the QA [ lDJ! lDIk lDrT Sn(20) Sq'(QA) Sn(€2n) +
superscript (3) means that the corresponding quantiti€s L khmn e .
derive from the partitioning of a cubic equation aR(ABC) Z U Df §(Qn) Si(R) — 2 z U §(Qu] (24)
are the permutationABC, ACB, etc. The last term in eq 14 ikl 1
constitutes the partitioning of the unpaired electrons; the 1
populationsus coincide with Mayer's free valence on the A ( l|;)]! 1D|k 1Dnm Sn(Qp) S4(Qp) Sn(RQe) +
nucleusA for singlet wave function&.The three first terms in a% ij£n
eq 14 represent the partitioning of the paired electrons according k1
to they belong to one, two or three nuclei so th&}). is an g Dj "Dy Dy Sn(L2a) S4(Rs) Sn(Re))| +
appropriate quantity to describe a three-center bonding. Lkhmn 1
Heuristic exchange type two-center bond indicges, and - i ~1k
three-center bond indicekysc, have been defined &&-22 ”2' U D" §(24) S4(Qw) (24 < Qp) (25)

A B @) 1
NN
=5 > DD (19)  AQee.=- ; x
J

! 4 P(Qa0sRQ0) i,j.kTmn
ABC "D} 'DI "Dy Sh(R4) S(Qe) S R0)
lhec=Y Y Z 'D; 'D} 'Df (20) Q)< Q< Q) (26)
T
= Q 27
A simple algebra allows us to establish the relationships between U Z 4 Sl( a) (27)

the above bond indices and the quantities resulting from the

partitioning of N electrons expressed by formula 14 in which §;(Q24), Sa(£2g), etc. are the elements of the overlap
matrices calculated over the regidg, Qg, etc. andP(QaL2s2¢)

A B o are the permutation®,QpQc, LaRcRp, etc. Equations 24

z z 1DJ! U (21) 27 are the counterparts of eqs-1B3, respectively, in the

] topological version.

@ Two-center indices in a topological sheme have been

(Z lasc = 4 Apec (22) calculated for a number of systems at uncorrelated and correlated

P(ABC) level #12.1533However, only uncorrelated topological exchange

type three-center indices have been reported so far for a few

number of system® Topological exchange type two-center

indiceslq,q, and three-center indicés o0 have been defined

2 1
I == A+ = AR+
AB 3 AB 3 o ABC

[N

A rigorous derivation of eq 19 has recently been proposed and

tested, at the correlated level, in systems with conventional

bonding pattern® However, eq 21 shows that in systems

possessing three-center bondings the three-center contribution

is hidden in an average way in thgs indices. Moreover, as lo,0,= 1D' DFS,(QL Si(Qw) (28)

the productleJ! u only produce exchange type terms, the a2 if;

“exchange type” representation of bond indices is kept in this )

scheme. o00.= > D) 1D.k 'Dff S(Qp) S((Qe) Snl(Q0) (29)
Other definitions of bond indicé$2? are based on the ijkTmn

covariance or correlation of fluctuations of the charge operators

Ga, Gs, andqc, that is—2 [([Ga — [Ga0)(Ge — [@eD(two centers)

and 2;ﬂqA [@a0(0s — @sD(Gc — @McOO(three centers) where

Obviously, the above proposaglgggc indices are equivalent

Oa = Z, EI and similarly for@g and ¢c. Both definitions of 1

bond |nd|ces exchange, and fluctuation, are coincident at the AS)Q o = z lo oo (30)
. . A==B' C 4 A==B==C

Hartree-Fock level but lead to different numerical values when P(QAT500)

correlated wave functions are used. A determination of fluctua- ) )
tion type bond indices requires to handle second-order and third-4- Results and Discussion
order reduced density matrices, which arise from the products The quantities reported in the previous section have been
0a0s and ga0efc, respectively. However, the exchange type tested on numerical determinations in order to check their
definitions only need the elements of the first-order reduced possibilities to describe and to detect simultaneously three-center
density matrix which provides a simpler procedure in a bondings, two-center ones, and unpaired electrons at correlated
computational point of view. Within the topological approach, |evel. The calculations were carried out using a modified
the whole real space is partitioned according to the Bader's Gaussian 9% program, which generated the first-order reduced
atomic regions, Qa. Taking into account that this partitioning  density matrix elements as well as the elements of the overlap
holdsQ = UaQaandQaN Qs = O (UA B; A= B), eq13can  matricesS;(Q2a) which appear in the topological approach. In a
be written in the form subsequent step, these matrices were subject to population
analysis by our own computational implementation. The reported
N= Z A® + /ZQ A®, + A, + Z Ug results have been obtained with the basis sets 6-31G. For all
" v onfmeoc 0 ¢ o systems, the geometries were optimized for these basis sets
(23) within configuration interaction (Cl) wave functions with single
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TABLE 1: Calculated Values of Bond Indices| g and Populations A&, AS)., ua (Mulliken-Type) and Bond Indices | g,0, and
Populations AS, , AS)g o . Ue, (Topological) for Systems with Three-Center Bondings in the SDCI Approximation

system fragment ab A8 A8 Ua loas ARq. N Ua,

Hs™ H 0.039 0.039
HH 0.425 0.428 0.427 0.429
HHH 0.416 0.418

B2Hs B 0.162 0.095
Hterminal 0.044 0.065
Horidging 0.048 0.071
BB 0.465 0.418 0.146 0.064
(BH)serminal 0.947 1.441 0.673 0.936
(BH)bridging 0.434 0.519 0.383 0.426
BHB 0.303 0.136

CO, C 0.216 0.168
O 0.253 0.277
CcO 1.784 2.947 1.518 2.387
(0]e} 0.254 0.650 0.370 0.666
OCO —0.537 —0.224

allyl cation G 0.205 0.194
C, 0.212 0.198
Ha 0.033 0.039
Ha 0.032 0.040
CiC 1.351 1.929 1.395 1.851
CiHy 0.894 1.369 0.909 1.321
CoH2 0.882 1.339 0.903 1.307
CCC 0.291 0.342

allyl anion G 0.213 0.201
C, 0.199 0.192
Ha 0.040 0.046
Ha 0.042 0.049
CiC 1.430 2.358 1.430 2.132
CiH: 0.928 1.427 0.980 1.409
CoH, 0.933 1.429 0.926 1.326
CCC —0.352 —0.141

Li,O Li 0.111 0.066
O 0.296 0.475
LiO 0.366 0.500 0.373 0.409
LiLi 0.251 0.184 0.091 0.046
LiOLi 0.031 0.097
LiLiLi 0.171 0.040

SG; S 0.232 0.210
O 0.260 0.268
SO 1.199 2.080 1.311 2111
(0]e} 0.189 0.453 0.266 0.501
OSO —0.277 —0.143
000 —0.062 —0.060

and double excitations (SDCI). As is well-known, these basis to the stronger electronegative character of the oxigen atom
sets are nonorthogonal and consequently, in the Mulliken-type which is better described in the topological method than in the
calculations, the matrix element] have systematically been ~ Mulliken-type onet* A wider discussion ofua and uoa
replaced byl(pS} wherelP andSare the usual charge density populations and their rglatlonshlps with atomic yalences has
and overlap matrices, respectively. recently been reported in ref 42. Except_m theQLicase, th_e_
Table 1 reports the results obtained in the SDCI approxima- Values found for the three-center populations are nonnegligible
tion for systems in which the existence of three-center bondings @nd the corresponding fragments coincide with the regions where
is commonly accepteddg*, B;Hs, COy, allyl cation, allyl anion) the three-centgr bondings are gxpected. The positive values for
as well as in hypervalent moleculekifO and SQ) whose these populations have been |nt§rpreted as thrge-center two-
description needs nonclassical patterns. This table provides theelectron bonds, whereas the negatives ones describe three-center
possibility to perform a direct comparison between the results four-electron bond$224*The two above proposed partitionings
arising from the two population analysis procedures which have Provide identical sign for the three-center populations in all
been described in the previous section according to the Studied systems but the topological method produces lower
partitionings (14) and (23). The unpaired electron populations Values except in the case of allyl cation which has already been
found for these systems are due to the partial splitting which Pointed outin previous work¥.The major differences between
arise from the dispersal of the occupation numbers of the orbitals the shared electron populations arising from both methods are
in the expansion on several Slater determinants. Apart from thefound in the BHes molecule where the topological approach
B,Hs molecule which possesses special features, the first clearly predu;ts lower values. Although these differences are in
conclusion that can be drawn is that the monatomic populations @greement with the results reported by other authbithe value
of unpaired electrons are similar in the Mullikem) and the found fOfAS’;QHQB = 0.136 allows us to confirm that even the
topological (Ip,) versions except in the case of the £I@olecule topological method predicts the existence of the three-center
(Uo = 0.253,uq, = 0.277,uc = 0.216,ug. = 0.168) and in  bonding.
the Li,O one (lo = 0.296,uq, = 0.475,u;; = 0.111,uq, = Table 2 shows the results corresponding to identical systems
0.066). Our interpretation is that these large differences are duecalculated in the closed-shell HF approach in order to carry out
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TABLE 2: Calculated Values of Bond Indices| s and Populations A&}, AS). (Mulliken-Type) and Bond Indices | g0, and
Populations AS, , AS) g o (Topological) for Systems with Three-Center Bondings in the HF Approximation

system fragment Ab A8 A8 loa0s AR, N

Hs* HH 0.444 0.444 0.444 0.444

HHH 0.444 0.444
B:oHg BB 0.443 0.384 0.125 0.049

(BH)terminal 0.992 1.513 0.662 0.920

(BH)bridging 0.445 0.538 0.371 0.413

BHB 0.313 0.123
CO; coO 1.810 2.972 1.515 2.378

0]6} 0.233 0.606 0.362 0.648

OCO —0.515 —0.211
allyl cation GGC; 1.408 2.025 1.454 1.932

CiH1 0.917 1.406 0.937 1.365

CoH, 0.903 1.373 0.934 1.350

CCC 0.291 0.363
allyl anion GG, 1.469 2.433 1.482 2.205

CiH1 0.976 1.504 1.017 1.460

CoH2 0.975 1.496 0.958 1.374

CCC —0.361 —0.143
Li,O LiO 0.332 0.454 0.381 0.402

LiLi 0.274 0.195 0.110 0.055

LiOLi 0.029 0.112

LiLiLi 0.202 0.054
SG; SO 1.243 2.112 1.375 2.190

0]6} 0.162 0.390 0.234 0.437

OSO —0.247 —0.126

000 —0.046 —0.046

TABLE 3: Calculated Values of Bond Indices| g and Populations A&}, AS)., ua (Mulliken-Type) and Bond Indices | g,0, and
Populations AS/)&R, AS/{QRQH ue, (Topological) for Systems Not Containing Three-Center Bondings in the SDCI Approximation

system fragment b A8 A8 Ua lox0s N N Ua,

H0 O 0.234 0.242
H 0.040 0.036
OH 0.777 1.167 0.748 1.107
HH 0.004 0.009 0.013 0.008
HOH —0.006 0.024

NH3 N 0.231 0.230
H 0.039 0.039
NH 0.845 1.285 0.878 1.282
HH —0.002 0.005 0.020 0.015
HNH —0.018 0.032

CH, C 0.213 0.189
H 0.044 0.050
CH 0.927 1.420 0.946 1.350
HH —0.009 —0.004 0.036 0.028
HCH —0.021 0.044

C:Hs C 0.197 0.177
H 0.040 0.047
CH 0.932 1.435 0.937 1.335
CcC 0.885 1.410 0.953 1.308
CCH —0.028 0.040
HCH —0.024 0.045

a checkup over the influence of the correlation. Within this and topological procedures for theHg molecule are similar.
model, all matrix elements}, described in eq 9, are ze#®3! It is worthwhile to point out that in systems reported in Tables
and consequently, this kind of wave funtions cannot predict 1 and 2 the second term of the right-hand side in eq 21 is
unpaired electron populations (they have not been included in nonnegligible, due to the presence of three-center bondings

this table). This fact shows itself the inadequacy of this model (some Aféc indices have significant values). Positi\mféc

for which the partitionings described in eqs 14 and 23 turn out jndices (like in H; and B,Hg systems) make that the corre-
to be identical to those obtained from the idempotency of spondinglas and Afg); values are close or eveﬂf& < .

the HF first-order reduced density matrix, that i = H ver@ indi . he diff b
1, 5k D! 'DL *D. In other words, the HF treatment provides owever, negathEAA.BC indices mcreasgt e diierences be-

4 2ijk Y Y Y ) 3)
a simplified picture of perfect pairing which only corresponds tween Ayg 6}“‘?' lag (like .|n CQ,, allylanion and S© mol-
to the well-known Lewis model. Apart from the impossibility ~€cules). A similar behavior can be observed forzttg‘%ga and
for describing monatomic populations of unpaired electrons the !2xs indices in the topological treatment.
results of the two-center and three-center populations are not Tables 3 and 4 describe the results for systems which present
too different from those reported in Table 1. The sign of the conventional patterns of bondingsjBl, NHs, CHs4, and GHe),
three-center populations is identical to the correlated case forthat is, with absence of three-center bondings. As can be seen
all of the systems and the differences between the Mulliken in the correlated calculations as well as in the HF ones, very
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TABLE 4: Calculated Values of Bond Indicesl g and 5 (3) (B)a?erd RL.JIE V\/lAgtg?s in Mc|>|ecu|fes. A Qua?‘tum_Thep@aredon
: (B) A : ; ress: Oxford, U.K.,, ; see also references therein.
Populations Az, AABC (l?él)ulllker(ls)Type) and Bor.1d Indices (4) Fradera, X.; Austen, M. A.; Bader, R. F. W. Phys. Chem. A
lo.0, and PopulationsAg o , Ag o o_ (Topological) for 1999 103 304.
Systems Not Containing Three-Center Bondings in the HF (5) Wiberg, K. B.Tetrahedron196§ 24, 1083.
Approximation (6) Giambiagi, M.; Giambiagi, M. S.; Grempel, D. R.; Heymann C.
D. J. Chim. Phys1975 72, 15.
system fragment b AR AR lage ADo. ARga 7 Mayer,);. Cheﬁﬁ. Phys. Lettl983 97, 270.
H.O OH 0.794 1.192 0.748 1.109 (8) Mayer, I.Int. J. Quantum Chent986 29, 73
HH 0.006 0.010 0.013 0.007 (9) Reed, A. E.; Schleyer, P. R. Am. Chem. Sod.99Q 112 1434,
HOH —0.003 0.024 (10) Cioslowski, J.; Mixon, S. TJ. Am. Chem. S0d.991, 113 4142.
NH3 NH 0.865 1.314 0.890 1.313 (11) Sannigrahi, A. B.Adv. Quantum Chem1992 23, 302 and
HH 0.001 0.006 0.021 0.014 references therein.
HNH —0.015 0.033 (12) Angyan, J. G.; Loos, M.; Mayer, J. Phys. Chenil994 98, 5244.
CHs CH 0.960 1.472 0.983 1.402 (13) Ponec, R.; Uhlik, FJ. Mol. Struct. (THEOCHEM})997, 391, 159.
HH —0.008 —0.003 0.038 0.031 (14) Yamasaki, T.; Goddard, W. A., l1. Phys. Chem. A998 102
HCH —0.021 0.048 2919. ,
CHs CH 0.964 1.486 0.970 1.381 (15) Angyan, J. G.; Rosta, E.; Surjan, P. ®iem. Phys. Lett1999
¢ 0.904 1451 0.989 1.356 29%1(]3-). Yamasaki, T.; Mainz, D. T.; Goddard, W. A., 1. Phys. Chem
et “o024 00z  A72000 104 2221,

. . . (17) Bochicchio, R.; Ponec, R.; Lain, L.; Torre, A. Phys. Chem. A
small values have been obtained for the quantities related with 200q 104 9130.

multicenter bondings and nonnegligible values have only been (18) Karafiloglou, P.J. Phys. Chem. 2001, 105 4524.
observed for two-center contributions corresponding to pairs  (19) Mayer, I.J. Mol. Struct. (THEOCHEM)L989 186, 43.

of classically bonded atoms. According to eq 21, these small  (20) Sannigrahi, A. B.; Kar, TChem. Phys. Lett199Q 173 569.
y 9 q (21) Kar, T.; Sanchez-Marcos, Ehem. Phys. Lettl992 192, 14.

values justify the approximation (22) Mundim, K. C.; Giambiagi, M. Giambiagi, M. S. Phys. Chem.
2 ® 1994 98, 6118.
(P 3 AN (312) (23) Ponec, R.; Mayer, U. Phys. Chem. A997, 101, 1738.
(24) Bochicchio, R. C.; Ponec, R,; Lain, L.; Torre, A.Phys. Chem. A

1998 102 7176.

which also holds for the topological procedure
polog P (25) Sannigrahi, A. B.; Kar, TChem. Phys. Lettl999 299 518.

Ny 2 ©) (26) Takatsuka, K.; Fueno, T.; Yamaguchi, Kheor. Chim. Actd 978
lQAQB ~3 AQAQB (32) 48, 175.
(27) Takatsuka, K.; Fueno, T. Chem. Physl978 69, 661.

as were proposed by #s9at Hartree-Fock level for systems (28) Bochicchio, R. CJ. Mol. Struct. (THEOCHEM}199§ 429, 229.
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