
Coherent Control in Nanolithography: Rydberg Atoms†

Nam A. Nguyen, Bijoy K. Dey,‡ Moshe Shapiro,§ and Paul Brumer* ,|

Chemical Physics Theory Group, Department of Chemistry, UniVersity of Toronto,
Toronto, Ontario, M5S 3H6, Canada

ReceiVed: January 20, 2004; In Final Form: April 27, 2004

A technique based on coherent control for the optical manipulation of deposition patterns in nanofabrication
with neutral atomic beams is described. The theory, optical nanolithography with bichromatic fields, is then
applied to the deposition of rubidium Rydberg atoms on surfaces. Controllable nonperiodic patterns and
deposition lines are shown to be possible due to interference contributions to the induced polarizability.

I. Introduction

Traditional photolithography, the mainstream technique for
fabricating integral circuits in the microelectronics industry,
comprises two steps: patterning of a resist mask and etching
of the unmasked regions. During the past three decades the size
of integral circuits has decreased considerably, from the
micrometer regime to∼100 nm obtained routinely today. This
rate of miniaturization is, however, expected to slow when the
inherent physical limitations due to atomic size of the substrate
and the diffraction limits of the light sources are reached.

Currently, several alternative techniques are being proposed
and developed.1 One possible approach uses neutral atoms or
molecules as a material source and coherent light as a focusing
lens;2-10 i.e., the roles of the light source and the mask are
reversed with respect to the traditional photolithographic process.
This technique has been made possible by recent advances in
laser technology. In contrast with the traditional two-step
approach, it is direct write; that is, the need to remove the
unmasked region is eliminated, causing less damage to the
surface.

Manipulating matter beams with light relies on the fact that
light carries momentum, so that a slowly moving atom, in
collision with a photon, gets deflected and/or focused. This
makes possible the creation of various atom-optical elements,
such as lenses,11-13 lens arrays,14,15 mirrors,16-19 beam
splitters,20-22 and waveguides.23,24There are two types of forces
at work: radiation pressure and the optical dipole force. The
latter, acting as confining mechanism, was first considered by
Askar’yan26 in connection with plasmas and neutral atoms. The
possibility of trapping atoms with this force was then explored
by Letokhov27 who suggested that atoms might be one-
dimensionally confined at the nodes or antinodes of a standing
wave tuned above (blue-detuned) or below (red-detuned) the
atomic transition frequency. Ashkin28 demonstrated the trapping
of micron-sized particles in a laser light based on the action of
the dipole force and later suggested29 a scheme for three-

dimensional neutral atom traps. The dipole force on neutral
atoms was also demonstrated by Bjorkholm et al.11 by focusing
an atomic beam using laser light. Chu et al.30 exploited this
force to realize the first optical trap for neutral atoms. In the
early 1990s optical dipole forces began to attract increasing
interest (see refs 31 and 32), not only for atom trapping but
also in the emerging field of atom optics, including nanolithog-
raphy. Recently, efforts have been made to extend nanolithig-
raphy to include molecules.33-35

In atomic nanofabrication, the topic of this paper, one affects
the center of mass motion using the dipole interaction between
the atoms and a spatially nonuniform electric field, leading to
the confinement of the atoms in regions of space whose size is
only a fraction of the optical wavelength. A periodic array of
such dipole force causes an atomic beam to form a periodic
pattern on a substrate. The advantage of atomic nanofabrication
is that neutral atomic beams are simple and inexpensive sources
of particles with de Broglie wavelengths< 1 Å. The trajectories
of neutral atoms are unaffected by uniform electric or magnetic
fields, and the long-range interparticle forces between neutral
atoms are small. Also, neutral atoms have laser-accessible
internal structures that permit laser cooling,25 to enhance the
flux and collimation of atomic beams.

Almost all of the work done thus far in optically induced
atomic nanolithography has produced deposition patterns con-
sisting of periodically repeated parallel lines or an array of
ordered atomic dots on a substrate.2-10 Recently,41 we suggested
a way of overcoming this limitation in order to produce
controlled nonperiodic patterns by using the bichromatic coher-
ent control scenario. In general, coherent control affects the
outcome of a chemical and physical events by manipulating
quantum interferences between different excitation pathways that
lead to the same state (for reviews, see refs 37-39). In
particular, using such interferences has proven effective in
controlling molecular (and atomic) polarizabilities and, by
extension, refractive indices,40 resulting also in the control of
nanoscale deposition patterns obtained when molecules (such
as N2

41) traverse strong electromagnetic fields. In this paper we
further explore the ability to produce aperiodic patterns whose
structure can be manipulated by altering the parameters of the
incident electric fields. Further, we do so with Rydberg atoms,
whose large polarizability allows the use of relatively low
intensity fields.

The paper is organized as follows. Section II presents the
theory behind the coherent control of atomic and molecular
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dipolar light-induced potentials using bichromatic fields. Section
III provides the computational methodology used in calculating
the light-induced potential and the trajectories of atoms travers-
ing multicolored electromagnetic fields. Results of the deposition
patterns for rubidium atoms in intermediate and high Rydberg
states thus obtained are presented in section IV. Conclusions
are drawn in section V.

II. Atomic Deposition via Bichromatic Control

Consider an atomic system in a superposition state interacting
with a bichromatic electromagnetic field that runs parallel to a
surface upon which the atoms will be deposited. The entire
system is governed by the light-plus-matter Hamiltonian, given
in the dipole approximation by

wherer cm is the atomic center-of-mass coordinate with associ-
ated kinetic energy operator,K(rcm). The vectorrel is the internal
(for atoms this is the electronic) coordinate, withHel(rel)
denoting the matter Hamiltonian. We denoter ≡ {rel,r cm} with
- µ(r )‚E(r cm, t) as the light-matter interaction in the dipole
approximation. The termµ(r ) represents the electric-dipole
operator, andE(r cm, t) is the electric field at the atom center-
of-mass.

With x denoting a coordinate parallel to the deposition surface,
we assume a bichromatic standing wave with electric field of
the form

where each term is the sum of two counter-propagating CW
fields:

whereη̂i denotes the polarization direction of theith field. Here
the two polarizations are taken to be parallel to one another
and perpendicular tox, and aligned, as depicted in Figure 1,
along the laboratory framez axis which is taken to be
perpendicular to the surface. We denote the spatial part of the
ith standing wave field byFi(x) ≡ cos(kix + φi), and the relative
phase between the two fields byφF ≡ φ2 - φ1.

We choose the initial atomic state to be a superposition state:

where Φi and pωi are, respectively, two eigenfunctions and
eigenvalues ofHel(rel),

Given eq 4, the frequencies of the CW fields are chosen such
that

Basically, the light field affects the trajectories of the atomic
center-of-mass motion throughVLIP, the “light-induced poten-
tial”, which results from the interaction of the electric field with
an atomic dipole moment〈µind〉 that it induces. That is,

Altering this potential (through interference or other means)
allows for the manipulation of the resultant deposition pattern.

A. Controlling the Light-Induced Dipole. We can separate
the center-of-mass motion from the much faster electronic
motion using the adiabatic Born-Oppenheimer approximation
to obtain a Schro¨dinger equation in the space of the electrons
that is parametrically dependent onr cm:

For weak fields, first-order time-dependent perturbation theory
can be used, according to which the solution of eq 8 is given
by

The subscript e,e > 2, refers to the excited states ofHel(rel)
with respect to the initial superposition stateΨs(t). Below, we
are concerned with center-of-mass motion along one direction.
Hence, we replacer cm by the coordinatex. The coefficients
ce(t) in eq 9 are given by

whereµe,i
(k) ) 〈Φe|η̂k‚µ|Φi〉 are the transition dipole moments.

To avoid divergences on resonance, i.e., whenωe,i ) ωk
F, we

Figure 1. Schematic representation of the lithographic experiment for
the Rb atom beam in a Rydberg state. The schematic on the left-hand
side shows periodic deposition from a single Rydberg state. The
schematic on the right-hand side shows controlled deposition from a
superposition of Rydberg states.
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add below to the denominators of the final expression factors
of - iΓe/2 whereΓe are experimentally determined line widths.

It follows from eq 10 that the probability|ce(t)|2 of excitation
from the initial superposition stateΨs(t) to a stateΦe arises
through three different terms: (1) the excitation ofΦe, having
started fromΦ1, with probability proportional to|b1|2; (2) the
excitation of Φe, having started fromΦ2, with probability
proportional to|b2|2; and (3) the interference between these two
pathways, which is proportional to 2Re{b1

/b2} ) 2|b1b2| cos-
(φM), where φM is the (experimentally controllable) relative
phase betweenb1 andb2. Note that this interference term owes
its existence to the presence of both a bichromatic field and a
coherent superposition state, to which the two colors of the field
are coupled.

Using eq 9 we can write an expression for the expectation
value of the dipole moment:

where “c.c.” denotes the complex conjugate of the term that
precedes it.

The dipole moment is seen to be a sum of a “field
independent” and a “field induced” terms

where the field independent term is given by

The field-induced term〈µind(x, t)〉 depends once(t) [eq 10] and,
after neglecting the quadratic terms in accord with the weak
field assumption, is given by

Thus, the induced dipole moment can be controlled by properly
choosing φF, φM, or |b1/b2|. Below we show that these
parameters are useful in controlling the deposition pattern on a
surface. In doing so we focus, as a specific example, on the
case of hydrogenic-like wave functions〈rel|n,l,m〉, wheren, l,
m denote the principal, angular momentum, and magnetic
quantum numbers, respectively. In particular, ifΦ1 is described
by then1, l1, m1 quantum numbers, then we choosen2, l2, m2 of
Φ2 asn2 ) n1, l2 ) l1 + 2, andm2 ) m1.

B. The Light-Induced Potential. The translational motion
of the center-of-mass of the atoms is governed by the spatially
inhomogeneous induced dipole which gives rise to a “light-
induced” potentialVLIP(x, t). This potential, given by

has two components,

whereV(1)(x, t) is linear in the electric field and arises from the
field-independent dipole of eq 13, andV(2)(x, t) is quadratic in
the field and arises from the field-induced dipole of eq 14. That
is,

Inserting eq 14 into eq 17 gives the quadratic part of the light-
induced potential as

The potentialV(2)(x, t) can be written as a sum of two terms

whereVnon(x, t), the non-interference term, is obtained from the
i ) i′ part of V(2)(x, t) of eq 19 andVint(x, t), the interference
term, is a result of thei * i′ contribution toV(2)(x, t).

Consider then these two contributions. The first is given by
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Because the time of passage of the atoms through the fields’
region is much larger than the optical periods of the fields, we
can, in thin samples, ignore the highly oscillatory terms in the
above equations and retain only the slowly oscillating terms.
Hence, with the largest contribution coming from thek ) l
terms, we have

ForVint(x, t), the interference-induced term, derived from the
i * i′ terms, we obtain that

Eliminating the most rapidly oscillating terms we obtain

Retaining only the least oscillatory terms, satisfying theω1,2
F

≈ ω2,1 condition of eq 6, we finally have that

The results of eqs 21 and 24 for the non-interference and
interference-induced LIP can be expressed in terms of two
polarizability tensorsø

whereøk
non(x) andøint(x) are defined as

and

whereX signifies the outer product between two vectors (e.g.,
(a X b)x,y ≡ axby), and where phenomenological widthsΓe have
been added to the levels to account for spontaneous emission
and other line-broadening mechanisms.

Note that V(2)(x) is the only potential included in the
calculations below sinceµ1,2, and henceV(1)(x, t) is zero for
the choice ofl2 ) l1 + 2, sinceΦ1 and Φ2 are of the same
parity. Note that forΦ1 andΦ2 of opposite parity (e.g.,l2 ) l1
+ 1), Vint ) 0, and hence the desired interference term vanishes.
The potentialV(2)(x) calculated using eqs 21 and 24 consists of
a series of wells aligned along thex direction, of varying depths
and periodicity. The structure of the potential can be experi-
mentally controlled by varying any or all of the following: (a)
the frequencies of the two standing wave fields,ω1

F andω2
F, (b)

the field strengths ratio,E1
(0)/E2

(0), (c) the relative phase between
the two standing waves,φF, (d) the relative phase of the initial
coefficients of the superposition state,φM, and/or (e) the ratio
|b1/b2|.

III. Computational Methodology

The treatment above provides a general theory for the
coherent control of atomic and molecular trajectories using two
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standing wave fields. In this section we apply the approach
to Rydberg atoms, whose polarizabilities are, conveniently,
very large. Additional studies on non-Rydberg atoms are
underway.43

Rydberg atoms, such as those studied in this paper, can be
treated as quasi-hydrogenic, with each Rydberg state ap-
proximated as a one-electron orbital. Specific details of the
polarizability contributions are given in this section. Rubidium
has been chosen as a prototype, but the calculations can be
generalized to other alkali metals. We also present details on
the numerical calculation of the deposition patterns.

A. Polarizability Calculation. The Rydberg state of the Rb
atom described by principal quantum numbern and angular
momentum quantum numberl has an energy approximated by

whereRy(∞) is the Rydberg constant for the Rb atom calculated
from the Rydberg constant assuming infinite mass of the nucleus
and me and Mnu are the mass of electron and the Rubidium
nucleus respectively.44,45 Hereδl is the quantum defect which
describes deviations of the Rydberg series from atomic hydrogen
for the state with quantum numberl. For Rb, δs ) 3.135,
δp ) 2.65, δd ) 1.34 δf ) 0.033;46 states of higherl have
negligible quantum defect and behave like pure hydrogenic
states.

To evaluate the polarizability contributions we first calculate
the transition dipole moments. Applying quantum defect theory
gives analytic expressions for the transition dipole moments:44

whereeel is the electronic charge. (Recall that the subscripte
indexes the states.) The radial matrix elements〈nele| r |nl〉 were
evaluated analytically using the method developed by Kos-
telecky and Nieto.47 Note that in evaluating〈nele| r |nl〉 the
physical quantum numbersn, l, ne, and le are replaced by the
corresponding effective quantum numbersn*, l*, ne

/, and le
/,

which incorporate the proper quantum defect. The quantum
defectsδl andδle in n* ) n - δl andne

/ ) ne - δle represent
the effective charge created by the core electrons and the nucleus
phenomenologically by shifting the eigenvalues away from
the hydrogenic values. The effective angular quantum
numbers,l* ) l - δl + I(l) and le

/ ) le - δle + I(le) (I(l), I(le)
) 0, 1, 2), on the other hand, do not have physical meaning.
They were introduced artificially in ref 47 in order to make the
expression for the evaluation of transition probabilities analyti-
cal.

The angular integral〈leme| cosθ |lm〉 is simplified by using
the spherical harmonics

To test the reliability of these expressions we computed the
polarizabilities of an eigenstate|Φi〉 of Rb:

where i refers ton, l, m and thee sum is overne, le, andme.
Specifically, we computed thezzcomponent of the polarizability
tensor, given by

The computed static polarizabilities (ωF ) 0) for different
Rydberg states of Rb are shown in Table 1 along with the
experimental values;48 satisfactory agreement for our purposes
is seen. The high polarizability values (both static and dynamic)
obtained are useful for lithography insofar as one can use
relatively weak electric fields for the controlled deposition. Also,
Rydberg atoms can be deflected more easily than their ground
state counterparts. As a result, we can concentrate the atomic
Rydberg beam by deflecting the Rydberg atoms before the
deposition process, thus reducing the background noise caused
by ground state atoms. To this end we note that controlled
deflection of Rydberg molecules, for example, was recently
demonstrated experimentally by Softley et al.49

Figure 2 depicts the interference contribution to the polariz-
ability at parameters given in the figure caption, and Table 2
gives, as examples, the real parts of the non-interference and
interference polarizability contributions for several parameter
sets. The non-interference contribution,øk

non(x), is found to be
1 order of magnitude smaller than the interference contribution.
Note that the non-interference contribution does not change with
φM, and the range of control over the magnitude of the
polarizability is vast.

B. Atomic Density Distribution. Consider, then, a beam of
atoms to be deposited on a surface. The motion of the center-

TABLE 1: Static Polarizabilities (atomic units, i.e., a0
3) of ns

States of Rb

results

n calcd. exptl.48

8 0.1126696× 106 0.1314194× 106

9 0.3572713× 106 0.4114472× 106

10 0.9496947× 106 0.1078768× 107

11 0.2217497× 107 0.2485978× 107

12 0.4690786× 107 0.5193317× 107

13 0.9180168× 107 0.1004327× 108

14 0.1687154× 108 0.1824944× 108

15 0.2943914× 108 0.3150063× 108

16 0.4918174× 108 0.5208120× 108

17 0.7921468× 108 0.8300864× 108

18 0.1241597× 109 0.1281894× 109

19 0.1954441× 109 0.1925937× 109

øi(ω
F) )

1

p
∑

e

µi,e X

µe,i[ 1

ωe,i + ωF - iΓe/2
+

1

ωe,i - ωF - iΓe/2] (31)

ønlm
(zz)(ωF) )

eel
2

p
∑

neleme

|〈nele| r |nl〉|2 4π

3

3(2l + 1)(2le + 1)

4π
(-1)2me(1 l le

0 m -me)2 (1 l le
0 0 0)2

[ 1

ωe,i + ωF - iΓe/2
+

1

ωe,i - ωF - iΓe/2] (32)

En,l ) -
Ry(∞)(1 + me/Mnu)

-1

(n - δl)
2

(28)

µe,i
(z) ) eel〈nele| r |nl〉〈leme| cosθ |lm〉 (29)

〈leme| cosθ |lm〉 ) x4π
3

〈leme| Y10 |lm〉

) x4π
3 (3(2l + 1)(2le + 1)

4π )1/2

(-1)me(1 l le
0 m -me

)(1 l le
0 0 0) (30)
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of-mass of each atom is governed by Hamilton’s equation of
motion:

and

wherexi, pi, andM are the position, momentum, and mass of
the ith atom, respectively. The above equations must be solved
for the ensemble{xi(t)} of the atomic trajectories, wherexi(t)
is thex projection of the position of theith atom, to obtain the

atomic densityF(x, t). Results are determined from a uniform
initial distribution of atoms at timet ) tinter + (Lff /V|), where
tinter is the actual atom-field interaction time andLff is the free-
flight distance of the atomic beam.

The computation of the deposition pattern involves the
following steps. (1) Att ) 0, a fixed number of atoms is
uniformly distributed over a small nozzle segment-aλ2 e x e
aλ2, wherea is a constant andλ2 is the longest wavelength of
the two standing wave fields. This nozzle segment is subdivided
into N - 1 cells of size∆x ) 2aλ2/(N - 1), where∆x is chosen
sufficiently small so that the force atxi, which is the gradient
of the LIP, remains constant over the cell. (2) Given a timet0,
the LIP is calculated at every pointxi ) -aλ2 + (i - 1)∆x,
(i ) 1,2,....,N). Hamilton’s equations are solved to obtainVi

x )
pi

x/M at time t ) t0 + ∆t. The ∆t time step is chosen small
enough to maintain energy conservation. Since there are no
forces in the y and z directions, theVi

y and Vi
z velocity

components are constant. Supplementing these values with the
Vi

x information obtained from Hamilton’s equations gives the
atomic positions (xi, yi, andzi) for each atom in the ensemble
at time t ) t0 + ∆t. The procedure is repeated until the atom
hits the surface (atzi ) 0). (3) After all the trajectories have
terminated, the density of the atoms on the surface is analyzed
by considering a segment of size-bλ2 e x e bλ2, whereb >
a. The constantb is chosen large enough to include all deposited
trajectories. Histograms of the data provide the deposited
density.

IV. Numerical Results and Discussion

The general configuration of the nanofabrication experiment
is illustrated in Figure 1. We envision using Rb atoms in
Rydberg states prepared by an optical excitation from the (52S)
ground state.44 After excitation, the Rydberg atoms are mixed
with an inert buffer gas and the mixture is supersonically
expanded through a nozzle to narrow down the translational
velocity distribution.

The average longitudinal velocity of a supersonic source is
V| ) x2kγT0/(Mb(γ-1)), wherek is the Boltzmann constant,
Mb is the mass of the buffer gas atom,γ ) Cp/Cv is the specific
heat ratio of the buffer gas, andT0 is the initial temperature.
After exiting the nozzle, the supersonic Rb Rydberg atom beam
can be collimated by letting it pass through a series of slits.50

Alternatively, or additionally, the beam can be collimated by
cooling the transverse velocity with a transverse laser field51 to
a temperature low enough to ensure no escape from the light-
induced potential well. Preparation of the Rb atoms in asingle
Rydberg level can be done by combining optical pumping and
“locking”.52

The LIP experienced by an atom in a single Rydberg state
subjected to a single frequency is periodic, leading to deposition
patterns consisting of equally spaced peaks. A sample is shown
in Figure 3, which displays the trajectories and associated
deposition for Rb in the 16s state. As described above, to control
the deposition pattern we can prepare an initial superposition
of two states using an additional laser pulse.

Coherent modification of the polarizabilities and of the
refractive index of atoms and molecules40 can be achieved with
either off-resonant or near-resonant fields. Here, however,
because the LIP is governed by a combination of the natural
and altered polarizabilityand the external electric fields, a
number of conditions must be satisfied to make the control
possible.

Figure 2. Interference contribution to the polarizability (in a.u.) atx
) 0, plotted againstφM andφF for thex0.8|16, 0, 0〉 + x0.2|16, 2, 0〉
superposition state. Two SW fields are of intensityI1 ) 13.3 W/cm2

and I2 ) 132537 W/cm2 at wavelengths ofλ1 ) 41876 nm andλ2 )
115781 nm. Upper panel is the real part oføint(x) and the lower one is
the imaginary part.

TABLE 2: Contribution of the Non-interference and
Interference Dynamic Polarizabilities (atomic units)a

φF Re(øk
non) Re(øk

int)b

0.1282 0.8469× 107 4.6735× 107

2.9380× 107

-0.4525× 107

0.8976 0.5324× 107 2.9380× 107

1.8471× 107

-0.2845× 107

1.6669 -0.8199× 106 -0.4525× 107

-0.2845× 107

0.4381× 106

a Parameters given in the caption of Figure 2.b Results correspond
to φM ) 0.1282, 0.8976, 1.6669, respectively.

M
∂

∂t
xi ) pi

x (33)

∂

∂t
pi

x ) - ∂

∂x
VLIP(x, t)|xi

(34)
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Note first, as shown in eq 24, thatVint(x) is proportional to
the product of the field amplitudes,E1

(0) E2
(0). By contrast, the

non-interference contribution,Vnon(x), [eq 21] is a sum of terms
that depends on eitherE1

(0)2 or on E2
(0)2. Thus, whenE1

(0) , E2
(0)

or E1
(0) . E2

(0), the periodicity ofVnon(x) dominates, leading to
a periodic LIP and to the suppression of coherence effects. The
resulting deposition pattern will thus be periodic. To break this
periodicity and provide control requires thatE1

(0) ≈ E2
(0).

Second, the frequencies of the electric fields have to be near-
resonant with an atomic transition. This follows from eqs 26
and 27, according to which if the fields are far off-resonance
then we can approximate all theωej - ω2

F, (j ) 1, 2), terms by
a common denominator and factor it out of the sums. Further,
since in eq 26µje

(k) µej
(k), (j ) 1, 2)> 0, whereas in eq 27µ1e

(1) µe2
(2)

may take any (complex) value depending onφe, we have that
∑neleme µje

(k) µej
(k) > ∑neleme µ1e

(1) µe2
(2). Consequently, in this case, the

non-interference polarizability contribution would be far bigger
than its interference-induced counterpart, resulting in a periodic
LIP and a periodic deposition pattern.

By contrast, if the fields are near-resonant then there exists
a Φe which, due to the 1/(ωej - ω2

F) term, dominates the entire
sum, which then reduces to one term. In this case the
polarizability depends strongly on the products of transition
dipole matrix elements in the numerators. It is then possible to
find initial states Φ1 and Φ2 such that the interference
contribution is large enough to significantly alter the deposition
pattern.

This qualitative argument has been confirmed by extensive
numerical studies. Among the states studied, we found that the
7s+ 7d superposition state is the most suitable, and deposition
results for this superposition state are presented below. In all
cases, the field intensities were chosen to beE1

(0) ) E2
(0) ) 3.16

W/cm2 and the detuning from the 10p level to be 1 MHz. The
wavelengths of the two fields wereλ1 ) 1.88 µm andλ2 )
7.17 µm.

The size of the Rb beam is 15µm, chosen in accord with the
requirement-aλ2 e x e aλ2 with a ) 1. The size of the
segment of the substrate where the deposited density is
calculated is 2.5 times larger than the atomic beam size, large
enough to encompass the entire deposition region. Note that
conventional experiments produce atomic beams whose diameter
ranges from 5 to 100µm. If we were to use a Rb beam that is
bigger than 15µm, then the entire deposition pattern would be
a periodic repetition of the sub-region pattern formed by the
15 µm beam.

Both the system and initial state are chosen to avoid a number
of loss mechanisms. Consider first the issue of spontaneous
emission. Rydberg atoms have relatively long radiative lifetimes
τ due to their small dipole coupling to the ground state and
other low-lying states. For example, in the 7s stateτ ≈ 90 ns.42,53

To minimize spontaneous emission losses, the interaction time
is chosen so thattinter < τ, with the former being controlled by
changing the laser’s waist or the atoms’ longitudinal velocity.
Typically (except for the results in Figures 3 and 9),tinter ) 25
ns.

A second loss mechanism of concern is ionization, since
Rydberg atoms are easily ionized. Ionization may present a
problem during laser focusing because it alters the optical
potential felt by the atom, degrading the resolution of the
deposition pattern. Hence, we employ relatively weak focusing
fields to avoid ionization. The field necessary to ionize a given
Rydberg state isEion ) 1/(16n*4) (a.u.).44 For the superposition
state considered in this papern* ) 5.67 so that the maximum
field intensity we can allow is 3× 107 V/m. The electric fields
used below are of maximum intensity 106 V/m, well below this
limit.

Also of concern are stray electric fields. In our coherent
control simulations, the smallest electric field is 5× 103 V/m.
A typical stray electric field of 10 mV/cm would induce a
potential that is 2.5× 107 times smaller than the LIP and would
not affect the formation of the deposition patterns. It can,
however, modify the composition of the initial 7s+ 7d
superposition state if weak fields are used to prepare that state.
Such a change in the amplitude ratio|b1/b2| will affect the
brightness of the deposition patterns (see the discussion regard-
ing Figure 8).

Note that in our coherent control scenario the Rydberg atoms
are in a state of relatively low principal quantum number (n )
7). In case of high principal quantun numbers (n > 20), the
lower limit on the field strength imposed by the ionization will
make the deposition patterns much more sensitive to the stray
fields.

Figure 4 shows the total light-induced potential and the
interference-induced and non-interference contributions, as well
as the resultant deposition pattern. As in the periodic case of
Figure 3, the minima of the LIP serve as focusing centers and
the maxima as defocusing centers. Figure 3a shows that the
potential wells associated withVnon(x) are separated by≈ λ2/2.
The Vint(x) contribution is, however, aperiodic, containing
minima of variable depth and position. In addition, these
potential wells are steeper that those ofVnon(x), resulting in a
larger dipole force. Due to the aperiodic characteristic of the
interference-induced potential, the total LIP is also aperiodic,
leading to an aperiodic deposition pattern. Further note that,
although the interference-induced contribution contains repulsive
parts, the total LIP is attractive. (Note that the captions provide
the parameters used for the computations shown in the figures.)

To more clearly assess the role of the atomic coherence we
show, in Figure 5, the LIP and deposition pattern associated

Figure 3. (Left) Atomic trajectories, with time inµs. Note the dark
focusing regions. (Right) Number of atoms distributed periodically
alongx (in µm) at tinter ) 0.0012µs. The results correspond to the 16S
state of Rb atom whereI ) 1.9 × 1013 W/cm2, λ ) 188.5 nm.
Deposition plate size) 1319.5 nm and the nozzle width is 565.5 nm.
The plate is 0.6µm away from the nozzle.
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with the Vnon(x) contribution to the potential shown in Figure
4. The results show a pattern composed of much weaker and
broader peaks, spaced≈ λ2/2 apart, superimposed on a
significant background. Note that the average potential depth
of Vnon(x) is ≈ 0.75 meV, which is of the same order of
magnitude as the total LIP (≈1.0 meV). Thus the broadening
of the deposited peaks is not caused by the small decrease in
the depth of the minima, but rather due to a change in the shape
of the LIP. Thus, in addition to introducing aperiodicities in
the deposition patterns,Vint plays an important role in sharpening
the deposition pattern. Specifically, a comparison of the peaks
in Figures 5 and 4 show that the introduction of the interference
contribution narrows the peaks by a factor of 3 and increases
the contrast with the background by a factor of 5.

The coherent control approach provides for control through
a wide variety of experimentally adjustable control parameters.
Consider firstφM, the relative phase betweenb1 and b2. This
term affectsVint(x), which depends onφM through b1b2

/ and
b1
/b2 [eq 27]. The phaseφM alters relative contributions of the

interference-induced and non-interference contributions, result-
ing in different total LIPs and different deposition patterns. This
is demonstrated numerically in Figure 6, where the deposition
patterns for a fixedφF ) (π/3), and variableφM ) 0 in (b),
(π/3) in (d), andπ in (f) are shown. The number of deposited
peaks varies from six in panel (b) to four in panel (d) and nine
in (f). It is evident that the positions, number, and the heights
of the peaks are very sensitive to changes inφM. For example
in panel (b), in the central region of the plate (from-3 to 3
µm) the deposition peaks are separated by≈ λ1, whereas they
are separated byλ2/2 in the same region in panel (d). Because

φF is fixed, the Vnon(x) contribution to LIP is unchanged.
Therefore, the variation in the total LIPs shown in (a), (c), and
(e) results from the changes inVint(x).

A second control parameter isφF, the relative phase between
the two laser fields. Figure 7 shows the deposition patterns for
a fixedφM ) 0, atφF ) 0 in (b), (π/3) in (d), andπ in (f). We
observe from the figure that there are five significant peaks in
(b), six in (d), and six in (f). As compared toφM, the number of
the peaks depends less sensitively onφF, but changingφF allows
one to manipulate the location of the minima and maxima, i.e.,
the focusing and defocusing centers, of the total LIP, as shown
in panels (a), (c), and (e).

In addition toφM, the initial superposition state depends on
the amplitude ratio|b1/b2| which can be altered experimentally
by changing the pulse parameters in the preparation step of the
superposition state. Figure 8 shows the dependence of the

Figure 4. (a) Contributions to the light-induced potential:Vnon(x)
(dotted line) andVint(x) (full line); (b) the total light-induced potential
V(x) ) Vnon(x) + Vint(x); and (c) the deposition pattern for the
x0.8| 7, 0, 0〉 + x0.2|7, 2, 0〉 superposition state. The size of the
beam and plate is 15µm. A total of 1000 atomic trajectories have been
used, with the transverse velocity taken as zero. The field intensity is
3.16 W/cm2. Other parameters are:φM ) 0, φF ) (π/3), tinter ) 0.025
µs, λ1 ) 1.88µm, andλ2 ) 7.17µm. Here and below all angles are in
radians.

Figure 5. Same as in Figure 4. (a) The noninterference potential,
Vnon(x), and (b) the resulting deposition pattern.

Figure 6. Panels (a), (c), and (e): LIP and deposition patterns (panels
b, d, f) associated with thex0.8| 7, 0, 0〉 + x0.2|7, 2, 0〉 superposi-
tion state.φF ) (π/3) andφM ) 0 in (a,b), (π/3) in (c,d), andπ in (e,f).
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deposition on|b2|, where|b2|2 < 0.2, consistent with preparation
via perturbation theory. Note that changing|b2| does not affect
the location of the peaks. It does, however, modify the height
of the peaks, altering the brightness of the deposited pattern.

In addition to these control parameters arising from the
coherent control scenario, there are other traditional control
parameters that originate from the particular experimental setup
in nanolithography. Specifically one can altertinter, the time of
interaction of the atoms with the light source, andLff , the free-
flight distance during which the atoms travel after having
interacted with the laser and before colliding with the surface.
Because of the deleterious effects of the transverse velocity,
increasing the free-flight distance generally degrades the sharp-
ness of the deposition pattern; in our caseLff ) 0. Similarly,
tinter, the interaction time (which must be less than the lifetime
of the Rydberg state), has a direct effect on the resolution of
the deposition pattern. Figure 9 shows the result for different
interaction times. Note that whentinter is small (e.g., Figure 9a),
the atoms do not have enough time to be influenced by the LIP,

and focusing cannot be achieved. On the other hand iftinter is
too long, the optical force deflects the atoms more than it should,
causing broadening and splitting of the peaks (Figure 9c and
d). Among the examples shown, the best interaction time is
0.025 µs (Figure 9b). Note that in case of atoms in a single
state interacting with one laser field, it is possible to derive an
analytic expression giving the optimaltinter that gives the best
focusing.54 In our case, however, the atoms are prepared in a
superposition state, and the total LIP consists of potential wells
of various depth with aperiodic spacing. One cannot therefore
determine the optimaltinter analytically. However, it can be
obtained by using an optimal control scenario.

Our coherent control results have assumed a perfectly
collimated atomic beam. To account for a less-than-ideal
situation requires that we include the transverse velocity
distribution. Theoretically, the transverse kinetic energy of the
atom must be smaller than the depth of the potential well in
order to ensure no escape from the well. This condition gives

the maximum allowed transverse velocityV⊥
max ) x2|VLIP

max|/M.
This V⊥

max is a function of the atom eigenstate, the light
intensity, and frequency. In our examples, the average depth of
the potential is∼ 0.5 meV, from which a maximum allowed
transverse velocity of 34 m/s can be derived. However, computer
simulation has shown that even a small transverse velocity of
about 5 m/s can broaden the peaks considerably. The broadening
is due to the fact that atoms with transverse velocities can gain
bigger transverse momentum and hence leave the focus. One
way to counter this problem is to optimize the control parameters
so as to reduce the damage caused by the transverse velocity.57

Chromatic aberration resulting from the longitudinal velocity
spread has less degrading effect on the line width. Indeed,
including a velocity spread as large asδV|/V| ≈ 1 would broaden
the line width by 36% with respect to that obtained with a
monochromatic beam.58

In our numerical simulations, the atoms were treated as point-
like particles and their center-of-mass motion calculated ac-
cording to the laws of classical mechanics. In reality, the size

Figure 7. LIP (panels a,c,e) and deposition patterns (panels b,d,f)
associated with thex0.8| 7, 0, 0〉 + x0.2|7, 2, 0〉 superposition state.
φM ) 0 andφF ) 0 in (a,b), (π/3) in (c,d), andπ in (e,f).

Figure 8. Deposition patterns associated with theb1|7, 0, 0〉 + b2|7,
2, 0〉 superposition state.|b2|2 ) 0.05 in panel (a), 0.1 in (b), 0.15 in
(c), and 0.2 in (d). Other parameters areφM ) 0, φF ) (π/3).

Figure 9. Deposition patterns associated with thex0.8|7, 0, 0〉 +
x0.2|7, 2, 0〉 superposition state.tinter ) 0.015µs in (a), 0.025µs in
(b), 0.035µs in (c), and 0.045µs in (d). Other parameters areφM ) 0,
φF ) (π/3).
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of the Rydberg atom, which is equal ton2a0, must be taken
into account. Thus, the 10s state is 5.9 nm, whereas that of a
100s state atom is 5900 nm. The atom’s unusually large size
would decrease the resolution of the deposition were it to remain
in the Rydberg state after striking the surface. Fortunately, the
weakly bound Rydberg electron undergoes tunneling ioniza-
tion55,56 as the atom approaches to within≈3.7n2a0 of the
surface. The remaining ion is then neutralized on the surface
by an Auger process. Hence we expect that the ionization
process will reduce the size of the Rydberg atom to that of the
ground-state atom, preventing the degradation of the resolution
of the deposited line. In our model the distance between the
nozzle and the plate is 12.5µm, and the distance at which the
ionization occurs is≈0.04µm. Hence tunneling ionization does
not degrade the deposition pattern. However, once the atoms
are deposited on the surface, growth and diffusion phenomena
can broaden the line width by 20-30 nm and reduce the contrast
to ≈1:1.59 One solution is to optimize the experimental
parameters in the standing wave fields and the atomic beam. A
control scenario for surface diffusion would also be useful.

Finally, we note that despite the improvement in line width
due to the introduction of the interference contribution, the
resultant lines are still relatively broad, with widths on the order
of 50 nm. This width results from the fact that we have chosen
to focus on producing aperiodic sets of lines via a scenario that
allows for control over the line pattern by manipulating the laser
parameters, and to do so with Rydberg atoms that allow for
weak fields, using a fixed distance between the source and the
surface. No explicit focus was placed on narrowing the
deposition lines. However, as the discussion in this paper made
clear, there are a wide variety of system parameters that can be
varied in order to target alternative features, such as narrow
deposition lines. Under these circumstances, given the large
number of possible system parameters, the best approach is to
design an optimization scheme to reach specific targets. This
is discussed in a future paper,57 where we demonstrate that, for
example, one can optimize to produce a single Rb peak as
narrow as one nanometer in width.

V. Summary

In this paper we have shown that bichromatic control of
Rydberg atoms in superposition states provides a means of
producing controllable aperiodic deposition patterns on surfaces
that can be manipulated by changing the constitution of the
initial superposition state and the phase between the two incident
light fields. Other control parameters, such as the interaction
time, were also shown to modify the resulting pattern. Although
the creation of a completely arbitrary pattern is still in the future,
it is clear that coherent control offers useful flexibility in
fabricating nanoscale patterns. Explorations of producing arbi-
trary patterns using multicolored optimal and coherent control
methodologies are underway.57

Acknowledgment. PB and MS acknowledge the longstand-
ing personal support, interest, and contributions of Professor
Richard Bersohn to their lives. Richard was a shining example
of personal integrity and scientific commitment. He will be
sorely missed. We thank the U.S. Office of Naval Research for
support and H. R. Sadeghpour (Harvard) for suggesting that
we treat Rydberg atoms.

References and Notes

(1) For a review see, Ito, T.; Okazaki, S.Nature2000, 406, 1027.
(2) Bell, A. S.; Pfau, T.; Drodofsky, U.; Stuhler, J.; Schulze, T.;

Brezger, B.; Nowak, S.; Mlynek, J.Microelectron. Eng.1998, 42, 587.

(3) Lison, F.; Adams, H. J.; Haubrich, D.; Kreis, M.; Nowak, S.;
Meschede, D.Appl. Phys. B1997, 65, 419.

(4) Berggren, K. K.; Younkin, R.; Cheung, E.; Prentiss, M.; Black, A.
J.; Whitesides, G. M.; Ralph, D. C.; Black, C. T.; Tinkham, M.AdV. Mater.
1997, 9, 52.

(5) Thywissen, J. H.; Johnson, K. S.; Younkin, R.; Dekker, N. H.;
Berggren, K. K.; Chu, A. P.; Prentiss, M.; Lee, S. A.J. Vac. Sci. Technol.
1997, B15, 2093.

(6) Bell, A. S.; Brezger, B.; Drodofsky, U.; Nowak, S.; Pfau, T.;
Stuhler, J.; Schulze, T.; Mlynek, J.Surf. Sci.1999, 435, 40.

(7) Bradley, C. C.; Anderson, W. R.; McClelland, J. J.; Celotta, R. J.
Appl. Surf. Sci.1999, 141, 210.

(8) McClelland, J. J.; Celotta, R. J.Thin Solid Films2000, 367, 25.
(9) Timp, G.; Behringer, R. E.; Tennant, D. M.; Cunningham, J. E.;

Prentiss, M.; Berggren, K. K.Phys. ReV. Lett. 1992, 69, 1636.
(10) Drodofsky, U.; Drewsen, M.; Pfau, T.; Nowak, S.; Mlynek, J.

Microelectron. Eng.1996, 30, 383.
(11) Bjorkholm, J. E.; Freeman, R. R.; Ashkin, A.; Pearson, D. B.Phys.

ReV. Lett. 1978, 41, 1361.
(12) Sleator, T.; Pfau, T.; Balykin, V.; Mlynek, J.Appl. Phys.1992,

B54, 375.
(13) Prentiss, M.; Timp, G.; Bigelow, N.; Behringer, R. E.; Cunningham,

J. E.Appl. Phys. Lett.1992, 60, 1027.
(14) McClelland, J. J.; Scholten, R. E.; Palm, E. C.; Celotta, R. J.Science

1993, 262, 877.
(15) McGowan, R. W.; Giltner, D. M.; Lee, S. A.Opt. Lett.1995, 20,

2535.
(16) Cook, R. J.; Hill, R. K.Opt. Commun.1982, 43, 258.
(17) Balykin, V. I.; Letokhov, V. S.; Ovchinnikov, B. Yu.; Sidorov, A.

I. Phys. ReV. Lett. 1988, 60, 2137.
(18) Aminoff, C. G.; Steane, A. M.; Bouyer, P.; Desbiolles, P.; Dalibard,

J.; Cohen-Tannoudji, C.Phys. ReV. Lett. 1993, 71, 3083.
(19) Kasevich, M. A.; Weiss, D. S.; Chu, S.Opt. Lett.1990, 15, 607.
(20) Kasevich, M. A.; Chu, S.Phys. ReV. Lett. 1991, 67, 181.
(21) Gould, P. L.; Ruff, G. A.; Pritchard, D. E.Phys. ReV. Lett. 1986,

56, 827.
(22) Lawall, J.; Prentiss, M.Phys. ReV. Lett. 1994, 72, 993.
(23) Renn, M. J.; Montgomery, D.; Vdovin, O.; Anderson, D. Z.;

Wieman, C. E.; Cornell, E. A.Phys. ReV. Lett. 1995, 75, 3253.
(24) Ito, H.; Nakata, T.; Sakaki, K.; Ohtsu, M.; Lee, K. I.; Jhe, W.

Phys. ReV. Lett. 1996, 76, 4500.
(25) Metcalf, H.; van der Straten, P.Phys. Rep.1994, 244, 203.
(26) Askar’yan, G. A.SoV. Phys. JETP1962, 15, 1088.
(27) Letokhov, V. S.JETP Lett.1968, 7, 272.
(28) Ashkin, A.Phys. ReV. Lett. 1970, 24, 156.
(29) Ashkin, A.Phys. ReV. Lett. 1978, 40, 729.
(30) Chu, S.; Bjorkholm, J. E.; Ashkin, A.; Cable, A.Phys. ReV. Lett.

1986, 57, 314.
(31) Adams, C. S.; Sigel, M.; Mlynek, J.Phys. Rep.1994, 240, 143.
(32) Chu, S.ReV. Mod. Phys.1998, 70, 686.
(33) Seideman, T.J. Chem. Phys.1997, 106, 2881.
(34) Seideman, T.Phys. ReV. A 1997, 56, R17.
(35) Gordon, R. J.; Zhu, L.; Schroeder, W. A.; Seideman, T.J. Appl.

Phys.2003, 94, 669.
(36) DeMarco, B.; Jin, D. S.Phys. ReV. A 1998, 58, R4267.
(37) Brumer, P.; Shapiro, M.Faraday Discuss. Chem. Soc.1986, 82,

177. Shapiro, M.; Brumer, P.AdV. Atom. Mol. Opt. Phys.2000, 42, 287.
(38) Rice, S. A.; Zhao, M.Optical Control of Molecular Dynamics;

John Wiley & Sons: New York, 2000.
(39) Shapiro, M.; Brumer, P.Principles of the Quantum Control of

Molecular Processes; John Wiley & Sons: New York, 2003.
(40) McCullough, E.; Shapiro, M.; Brumer, P.Phys. ReV. A 2000, 61,

041801(R).
(41) Dey, B.; Shapiro, M.; Brumer, P.Phys. ReV. Lett.2000, 85, 3125.
(42) Gounand, F.J. Phys. (Paris)1979, 40, 457.
(43) Nguyen, N. A.; Shapiro, M.; Brumer, P., work in progress.
(44) Gallagher, T. F.Rydberg Atoms; Cambridge University Press:

Cambridge, 1994.
(45) Nez, F.; Plimmer, M. D.; Bourzeix, S.; Julien, L.; Biraben, F.;

Felder, R.; Acef, O.; Jondy, J. J.; Laurent, P.; Clairon, A.; Abed, M.;
Millerioux, Y.; Juncar, P.Phys. ReV. Lett. 1992, 69, 2326.

(46) Lebedev, V. S.Physics of Highly Excited Atoms and Ions; Springer-
Verlag: New York, 1998.

(47) Kostelecky, V. A.; Nieto, M. M.Phys. ReV. A 1985, 32, 3243.
(48) O’Sullivan, M. S.; Stoicheff, B. P.Phys. ReV. A 1985, 31, 2718.
(49) Procter, S. R.; Yamakita, Y.; Merkt, F.; Softley, T. P.Chem. Phys.

Lett. 2003, 374, 667.
(50) Ramsey, N.Molecular Beams; Clarendon: Oxford, 1956.
(51) Sheehy, B.; Shang, S.-Q.; van der Straten, P.; Metcalf, H.Chem.

Phys.1990, 145, 317.

Coherent Control in Nanolithography J. Phys. Chem. A, Vol. 108, No. 39, 20047887



(52) Gould, P. L.; Ruff, G. A.; Martin, P. J.; Pritchard, D. E.Phys. ReV.
A 1987, 36, 1478.

(53) Theodosiou, C. E.Phys. ReV. A 1984, 30, 2881.
(54) Berggren, K. K.; Prentiss, M.; Timp, G. L.; Behringer, R. E.J.

Opt. Soc. Am. B1994, 11, 1166.
(55) Burgdörfer, J.; Lerner, P.; Meyer, F. W.Phys. ReV. A 1991, 44, 5674.

(56) Hill, S. B.; Haich, C. B.; Zhou, Z.; Nordlander, P.; Dunning, F. B.
Phys. ReV. Lett. 2000, 85, 5444.

(57) Nguyen, N. A.; Shapiro, M.; Brumer, P., submitted.
(58) McClelland, J. J.J. Opt. Soc. Am. B1995, 12, 1761.
(59) Behringer, R. E.; Natarajan, V.; Timp, G.Appl. Surf. Sci.1996,

104, 291.

7888 J. Phys. Chem. A, Vol. 108, No. 39, 2004 Nguyen et al.


