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The quantum version of an axially nonadiabatic channel (ANC) approximation, introduced in an earlier article
for the calculation of complex-formation cross sections and rate constants in ion-diatom collisions [Maergoiz,
A. I.; Nikitin, E. E.; Troe, J.; Ushakov, V. G.J. Chem. Phys. 2002, 117, 4201-4213] is tested against accurate
quantum results. Cross sections and rate constants are determined for several representative systems with the
participation of a diatom in the statej ) 1, assuming various long-range potentials between the collision
partners, such as anisotropic ion-induced dipole, second-order charge-permanent dipole, and first-order charge-
quadrupole interaction. The ANC approximation well reproduces accurate quantum results in the perturbed
rotor limit, while the standard quantum adiabatic channel (AC) approximation fails at low energy due to
neglect of Coriolis coupling. However, the low-energy extrapolation of classical adiabatic channel results
(ACCl) provides a reasonable approximation both to accurate and quantal ANC results down to collision
energies when only few partial cross sections determine the total capture cross section. This unexpected
feature of the ACCl approximation is due to two effects: (a) an artificial simulation of tunneling transmission
and overbarrier reflection at centrifugal barriers by introducing a continuous distribution over total angular
momenta and (b) a slight effective lowering of the centrifugal barriers compared to centrifugal barriers within
the AC model. Low-temperature quantum rate constants are also presented.

1. Introduction
The calculation of cross sections and rate constants for

complex formation in molecular collisions at low energies and
temperatures represent an important problem of chemical
kinetics. The full quantum treatment of this problem requires
the solution of the Schroedinger equation for several degrees
of freedom with absorbing boundary conditions for the relative
motion. The main complication in accurate quantum calculations
is related to the coupling of internal molecular motion to the
relative motion. In an attempt to simplify this part of the
problem, the so-called adiabatic channel (AC) approximation
has been suggested (for a review see ref 1). It has been
implemented mainly under the additional condition that the
relative motion of partners can be regarded as classical.2,3 The
next step beyond the AC approximation consists of a partial
account for nonadiabatic transitions.

For not too low collision energies, the capture cross section
is dominated by contributions from large values of the total
angular momentum quantum numbers. In this case, the notice-
able nonadiabatic effects fall into two main categories: one
corresponds to rotational (Coriolis) coupling between AC states
converging to a common asymptotic limit, and the other, to
radial coupling between AC states whose potential curves
display narrow avoided crossings. The regions of asymptotic
rotational coupling are located quite far from the regions where
the system overcomes centrifugal barriers. The latter condition
is crucial for a good performance of the AC approximation in

the treatment of complex formation in collisions of rotationally
unpolarized partners.4 Nonadiabatic transitions due to radial
coupling that occur in localized regions of avoided crossing have
been incorporated into a general AC scheme,2,3 and their
generalizations for globally nonadiabatic situations were studied
in the so-called “post-adiabatic” framework.5 Rotationally
induced nonadiabatic transitions in the asymptotic region were
also studied in detail in connection with polarization aspects,6

while the effects of rotationally nonadiabatic coupling in the
region of the barriers were taken into account within an axially
nonadiabatic channel (ANC) approximation.7

For low collision energies, the capture cross section is made
up of small numbers of partial contributions. Since the total
angular momenta of each partial cross section are not large,
the region of the centrifugal barriers may be close to the region
of the rotational coupling. In this situation, the transition through
the potential barrier is essentially nonadiabatic. It may seem
that the adiabatic approximation performs better for decreasing
collision energy. This is indeed so for collision partners that do
not possess intrinsic angular momenta: in this case the complex-
formation cross section can be calculated as a capture cross
section in a field of isotropic potentials8 which permits a rather
simple approach of zero collision energies. However, if the
intrinsic angular momenta are not zero, the rotational coupling
persists down to zero collision energies and may considerably
modify the AC capture cross section for low energies. The
inapplicability of the AC approximation to low collision energies
becomes apparent by the fact that the zero-energy behavior of
the AC capture cross contradicts the universal Bethe law, which
predicts an inverse velocity dependence of the cross section.9
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Indeed, in the AC approximation, the centrifugal potential
CJ,ω̃,AC for an AC state with the quantum numbersJ,ω̃ (J and
ω̃ are the quantum numbers of the total angular momentum and
its projection onto the collision axis) isCJ,ω̃,AC ) p2〈l̂2〉J,ω̃/2µR2

wherel̂ is the operator of the relative angular momentum,µ is
the reduced mass of the fragments, andR is their center-of-
mass separation. Because of the coupling of angular momenta,
the minimum of the expectation value ofl̂2 is positive, which
signals a deviation from the inverse velocity law. This also
indicates that Coriolis coupling plays a decisive part in the low-
energy capture event and raises the question whether the ANC
approximation can adequately describe the recoupling of angular
momenta in the collision event. If the answer is positive, it
means a drastic reduction of computational efforts in the
calculation of capture cross sections. Indeed, the hierarchy of
these efforts, for different levels of approximation, is the
following: The AC approximation requires the diagonalization
of the block-diagonal interaction matrix with the collision axis
as the quantization axis at fixed interparticle distances, and the
ANC approximation requires the diagonalization of the interac-
tion matrix together with the Coriolis coupling at fixed
interparticle distances, while the full dynamical treatment
requires the solution of the scattering equations.

The objective of this paper is to study the performance of
the AC and ANC approximations for the calculation of low-
energy capture cross sections of a simple system which includes
angular momentum recoupling. We thus consider a system
consisting of an ion interacting with a diatomic molecule in a
rotational state withj ) 1, assuming various types of long-
range anisotropic interaction (anisotropic ion-induced dipole,
first-order ion-molecular quadrupole, and second-order ion-
molecular dipole interactions). In our treatment, we go beyond
alternative adiabatic channel studies of rotationally selected ion-
dipole collisions which all have neglected Coriolis coupling
effects such as refs 10-17 and, therefore, are not suitable for
low-temperature applications.

The plan of the presentation is as follows. In section 2, we
review some theoretical background for the calculation of cross
sections and rate coefficients. In section 3, we consider adiabatic
channel states and couplings for a system A+ + BC(j ) 1). In
section 4, we discuss the classical limit of quantum rate
coefficients. Section 5 is devoted to the Bethe limit for capture
cross sections and rate coefficients. Section 6 presents a bridging
between AC and Bethe limits for four representative systems,
i.e., H2 + Ar+, N2 + He+, CO + He+, and HCl + H3

+. A
conclusion finally summarizes the results obtained.

2. Theoretical Background

We consider the collision of a structureless particle A (an
atomic ion in a closed electronic state) with a rigid rotor BC in
a given rotational state with quantum numberj; a rigid rotor is
a fair approximation to a real diatomic molecule in a closed
electronic state if the vibrational motion is adiabatically
separated from other degrees of freedom. We assume a long-
range anisotropic interactionV(R,γ) where R is the distance
between A and the center-of-mass of BC,γ is the angle between
the molecular axis and the collision axisR.

A complex ABC is assumed to be formed when the partners
approach each other to a certain “capture” distanceRc. The
dynamics of complex formation is described by a wave function
which is the solution of the Schroedinger equation with a
potential whose long-range part isV(R,γ). The boundary
conditions for the wave function are an incoming plane wave
and an outgoing spherical wave at largeR and complete

absorption at the complex surface, i.e., atR ) Rc. The
asymptotics of the wave function furnishes complex-formation
(capture) probabilitiesPjl

J labeled by the quantum numbers of
the total angular momentumJ, the relative angular momentum
l, and intrinsic angular momentumj. The state-specific complex-
formation cross section for a rotationally unpolarized molecule
is given by the standard formula for inelastic cross sections (see,
e.g., ref 18) in which the absolute values of the squared matrix
elements of the scattering matrix are replaced by the capture
probabilities:

Herek is the wave vector which is related to the collision energy
E and the relative velocityV throughE ) p2k2/2µ ) µV2/2 with
µ being the reduced mass of the partners.

The wave function injlJ representation possesses a definite
parity p which is conserved; however, for a given setjlJ, it is
redundant, and therefore, in eq 1 it appears in parentheses.
Instead of thejlJ representation, one can use thejΩ̃J representa-
tion with Ω̃ being the quantum number of the projection ofj
onto R at R f ∞ (the so-calledR-helicity representation). A
wave function injΩ̃J representation does not possess a definite
parity, but can be made so, if the signed quantitiesΩ̃ are
replaced by their absolute valueΩ ) |Ω̃| and the parity. Since
the transformationjlJ T jΩpJ is unitarian, eq 1 can be rewritten
as

In our calculations of capture probabilities, we make some
assumptions which are appropriate for low-energy collisions and
practically interesting cases:

(i) An initial rotational statej is adiabatically isolated from
other rotational states.

(ii) The interaction anisotropy is not too weak, such that in
the region of the potential well the standard AC approximation
holds.

(iii) The interaction in the region of the potential well is strong
enough, such that the motion inside the well is quasiclassical
(it may not be such in the region of the long-range part of the
potential).

Within assumption i, the scattering problem is formulated in
terms of 2j + 1 coupled radial equations; assumption ii means
that in the region of strong interaction there exists a good
quantum numberω̃, the projection ofj onto the collision axis
R; finally, assumption iii permits a simple formulation of the
absorbing boundary condition. The above assumptions allow
one to get, besides numerical results, valuable analytical
formulas which shed light on general features of capture
dynamics in anisotropic situations.

If assumption i is not valid, we have to consider the quantum-
scattering problem in full by purely numerical means, or, at
elevated collision energies, to resort to classical trajectory
calculations. The latter has been used extensively in ref 3. If
assumption ii is not valid, the situation is close to the capture
in an isotropic potential which was elaborated recently.7 If
assumption iii is not valid, this usually means such a weak
attraction that the complex-formation cross section is so small
that it is of no practical interest.

An AC version of capture theory assumes that the projection
quantum numberω̃ of j onto the collision axis remains a good

σj (k) )
π

k2
∑
l,J

2J + 1

2j + 1
Pj,l

J,(p)(k) (1)

σj (k) )
π

k2
∑

Ω,p,J

2J + 1

2j + 1
Pj,Ω

J,p(k) (2)
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quantum number for arbitraryRand considers one-dimensional
radial motion across the effective AC potentialsUω̃

J,AC,eff(R).
As explained in ref 4, this assumption, if taken literally, is not
valid since the AC functions| j,ω̃〉 undergo a strong nonadiabatic
transformation (the so-called locking phenomenon) before, with
increase ofR, they reach the asymptotic region whereω̃
becomes identical toΩ̃. However, if the collisions are quasi-
classical, two regions, one for the barrier transmission and
another for the locking, are well separated, and the AC version
of eq 2 can be rewritten as

where Pj,ω
J,p,AC are the transmission probabilities through the

centrifugal barriers of the effective radial potentialUω
J,AC,eff(R)

(note thatUω
J,AC,eff(R) do not depend onp).

An ANC version of capture theory assumes that the radial
motion is adiabatic in the field of the ANC effective potentials
Un

J,ANC,eff(R). The latter are obtained as eigenvalues (subscript
n numbers these eigenvalues for fixedJ and j) of the matrix
composed ofU ω̃

J,AC,eff(R) and the Coriolis interaction. In ANC
approximation, eq 2 assumes the form

Here thePj,n
J,ANC are calculated as transmission probabilities

through the centrifugal barriers ofUn
J,ANC,eff(R).

In what follows, we assume a generic type of an attractive
anisotropic interaction, an anisotropic ion-induced dipole in-
teraction, ion-molecular quadrupole interaction, or ion-mo-
lecular dipole interaction of the form

whereq is the charge of the ion,R is the mean polarizability,
R ) (R| + 2R⊥)/3, ∆R ) R| - R⊥, µD is the permanent dipole
moment, andQ is the quadrupole moment of the molecule.

In the perturbed rotor approximation, eq 5 yields the following
AC potentials (see refs 19 and 20) for second-order ion-dipole
interaction, for first-order ion-quadrupole, and anisotropic ion-
induced dipole interaction:

whereB is the rotational constant of the diatomic molecule (in
energy units). The perturbed-rotor approximation for the capture
event is valid provided that two dimensionless parameters,λquad

) 3qQ/2BRmax
3 and λdip ) qµD/BRmax

2 , which measure the
relative strength of the interaction at the maximum of the
innermost centrifugal barrier (atR ) Rmax), are noticeably
smaller than unity.

The information contained in eq 6 is sufficient to calculate
cross sections in AC approximation. However, for the ANC
approaches and accurate calculations, one has to know the
interchannel coupling.

The state-specific capture cross sections lead to energy-
dependent state specific rate coefficientsKj(E) and temperature-
dependent state-specific rate constantsKh j(T) which are related
to the cross sectionsσj(k) in a standard way:

where〈...〉T denotes averaging over the Maxwell distribution in
the relative kinetic energies.

3. Adiabatic Channel Potentials, Adiabatic States, and
Nonadiabatic Coupling for Perturbed Rotor States with
j ) 1

In what follows, we consider perturbed rotor states that
originate from the rotational statej ) 1 of a diatom. Sincej is
fixed, we suppress super/subscriptsj in all expressions. We also
introduce scaled interparticle distancesF ) R/RL, scaled wave
vectors κ ) kRL, and scaled energiesε ) E/ELwith RL )
xq2Rµ/p and EL ) p2/µRL

2. With this convention, the scaled
AC potentialsυ ω

AC(F) read as follows:19,20

Here the first term on the rhs represents the scaled ion-induced
dipole isotropic interaction. The rest, originating from the
anisotropic part, contains two interaction parameters: parameter
a encompasses the scaled ion-induced dipole anisotropic
interaction and the second-order ion-molecular dipole interac-
tion whereas the parameter b results from the first-order ion-
molecular quadrupole interaction. The explicit expressions of
a,b in terms of the parameters entering in eq 8 are

Table 1 presents values of the dimensionless parametersa and
b for several ion-diatom systems together with the relevant
molecular parameters.

The AC potentials lead to the effective AC potentials that
include the centrifugal energy:21

Note that all effective AC potentials are repulsive at largeF.
The weakest centrifugal repulsion occurs forυ0

0,AC,eff(F) ≈
υ1

1,AC,eff(F) ≈ 1/F2. The nonadiabatic coupling between the
three AC states under discussion,|0〉, |1〉, |-1〉 for ω ) 0, +1,
-1, is of the Coriolis type. The description of this coupling is
simplified when one uses a basis with definite parity. Let the
latter states be|0〉, |1〉, |1h〉 where the states|0〉, |1〉 belong to
the same parity while the state|1h〉 corresponds to opposite parity.

TABLE 1: Parameters of Several Ion-Diatom Systems (Data from References 19 and 20)

system R, au Q, au µD, au RL, au B, au a b EL, au

H2 + Ar+ 5.437 0.474 0 138 2.7× 10-4 -0.052 4.81 1.501× 10-8

N2 + He+ 11.74 -1.09 0 274 9.12× 10-6 -0.054 -10.20 2.087× 10-9

CO + He+ 13.36 -1.86 0.048 292 8.75× 10-6 1.93 -16.25 1.827× 10-9

HCl + H3
+ 17.55 2.8 0.436 299 4.83× 10-5 22.5 19.1 2.204× 10-9

σ j
AC(k) )

π

k2
∑

ω,p,J

2J + 1

2j + 1
Pj,ω

J,p,AC(k) (3)

σ j
ANC(k) )

π

k2
∑
n,J

2J + 1

2j + 1
Pj,n

J,ANC(k) (4)

V(R,γ) ) - q2R
2R4

-
qµD

R2
cosγ + (- q2∆R

3R4
+ qQ

R3)P2(cosγ)

(5)

Vj,ω̃
AC(R) ) - q2R

2R4
+ (- q2∆R

3R4
+ qQ

R3
+

q2µD
2

4BR4) ×
〈 j,ω̃|P2(cosγ)| j,ω̃〉 (6)

Kj (E) ) x2E
µ

σj (E); Kh j (T) ) 〈Kj (k)〉T (7)

υω
AC )

Vj,ω
AC|j)1

EL
) - 1

2F4
+ 1

2( a

F4
+ b

F3)(2 - 3ω2) (8)

a ) 2∆R/15R + µD
2 /10RB, b ) 2µqQ/5RLp2 (9)

υω
J,AC,eff(F) )

J(J + 1) - 2ω2 + 2

2F2
+ υω

AC(F) (10)
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In the parity-adopted basis, the AC potentials are the same, while
the coupling occurs between the states|0〉 and|1〉 only, and the
coupling off-diagonal interaction is21

The general wave functionΨ J, that describes the perturbed
rotation of the diatom and the relative radial motion of the ion-
diatom, is of the form

where the componentsψ0
J, ψ1

J, ψ1h
J satisfy the following equa-

tions

for J > 0 and

for J ) 0.
By a rotation of the AC basis one can diagonalize the matrix

composed of the effective AC potentials and the Coriolis
coupling. The new states, called axially nonadiabatic channel
(ANC) states|a〉, |b〉, |c〉, are related to the AC states by

This change of the basis transforms the effective AC potentials
into the effective ANC potentials

for J > 0 and

for J ) 0. Note that all effective ANC potentials are repulsive
at largeF saveυa

1,ANC,eff(F).
The change in the basis functions in eq 15 changes the

coupling between the new states. The wave functionΨJ now
is written as

where the componentsψa
J, ψb

J, ψc
J satisfy the following equa-

tions:

Here, the coupling between the ANC states|a〉 and |b〉 is
described by a single functiongJ(F) which is determined by
the rotation angleθJ(F) in eq 15 (see ref 18):

Equations 13 and 19, when solved accurately, yield the same
nonadiabatic wave function. The difference between these
equations is that eq 13 describes the rotational coupling between
AC states, while eq 19 describes the radial coupling between
ANC states. On the other hand, an approximate solution to eqs
13 and 19 will yield different results.

Within the AC approximation, the rotational coupling in eq
13 is neglected, so that the asymptotic quantum numbers 0, 1,
1h become exact quantum numbers. Then the approximate
function ΨJ,AC is represented as follows:

Here the components satisfy the equations

Equation 22 differs from eq 13 in that the coupling is omitted;
i.e., the rhs in the latter is set to zero.

Within the ANC approach, the approximate functionΨJ,ANC

is represented as

where the components satisfy the equations

υ10
J,AC,Cor(F) )

xJ(J + 1)

F2
(11)

ΨJ ) |0〉ψ0
J + |1〉ψ1

J + |1h〉ψ1h
J (12)

-
d2ψ0

J

dF2
+ 2υ0

J,AC,eff ψ0
J - κ

2ψ0
J ) 2υ01

J,AC,Cor ψ1
J

-
d2ψ1

J

dF2
+ 2υ1

J,AC,eff ψ1
J - κ

2ψ1
J ) 2υ10

J,AC,Cor ψ0
J (13)

-
d2ψ1h

J

dF2
+ 2υ1h

J,AC,eff ψ1h
J - κ

2ψ1h
J ) 0

-
d2ψ0

0

dF2
+ 2υ0

0,AC,effψ0
0 - κ

2ψ0
0 ) 0 (14)

|a〉 ) cosθ‚|0〉 + sin θ‚|1〉
|b〉 ) -sin θ‚|0〉 + cosθ‚|1〉
|c〉 ) |1h〉

θ ≡ θ J(F) ) 1
2

arctan
2υ01

J,AC,Cor

∆υ01
J,AC,eff

∆υ01
J,AC,eff ) υ0

J,AC,eff - υ1
J,AC,eff ) 1

F2
+ 3

2( a

F4
+ b

F3)

(15)

υa,b
J,ANC,eff ) (1/2)(υ0

J,AC,eff + υ1
J,AC,eff) -

(1/2)x(∆υ01
J,AC,eff)2 + 4(υ01

J,AC,Cor)2

υc
J,ANC,eff ) υ1

J,AC,eff

(16)

υ0,ANC,eff ) υ0
0,AC,eff (17)

ΨJ ) |a〉ψa
J + |b〉ψb

J + |c〉ψc
J (18)

-
d2ψa

J

dF2
+ 2υa

J,ANC,eff ψa
J - κ

2ψa
J + g2ψa

J )

2(g d
dF

+ dg
2dF)ψb

J

-
d2ψb

J

dF2
+ 2υb

J,ANC,eff ψb
J - κ

2ψb
J + g2ψb

J )

-2(g d
dF

+ dg
2dF)ψa

J

-
d2ψc

J

dF2
+ 2υc

J,ANC,eff ψc
J - κ

2ψc
J ) 0

(19)

gJ(F) ) -
dθJ(F)

dF
(20)

ΨJ,AC ) |0〉ψ0
J,AC + |1〉ψ1

J,AC + |1h〉ψ1h
J,AC (21)

-
d2ψ0

J,AC

dF2
+ 2υ0

J,AC,eff ψ0
J,AC - κ

2ψ0
J,AC ) 0

-
d2ψ1

J,AC

dF2
+ 2υ1

J,AC,eff ψ1
J,AC - κ

2ψ1
J,AC ) 0 (22)

-
d2ψ1h

J,AC

dF2
+ 2υ1

J,AC,eff ψ1h
J,AC - κ

2ψ1h
J,AC ) 0

ΨJ,ANC ) |a〉ψa
J,ANC + |b〉ψb

J,ANC + |c〉ψc
J,ANC (23)
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Equation 24 differs from eq 19 in that both the coupling (the
rhs in the latter) and the diagonal nonadiabatic correction are
set to zero.

Equations 13 and 19 describe the quantal coupled propagation
of the waves to the absorbing boundary. Equations 22 and 24
describe the uncoupled propagation of the waves, accompanied
by the simplest quantal effects, i.e., tunneling through the
potential barriers and overbarrier reflection. The equations
should be solved with the absorbing boundary conditions on
the surface of the complex. Under assumptions ii and iii, these
conditions correspond to incoming quasiclassical waves in the
potential well, with the presence of a single asymptotic incoming
wave in the state withω,p ) Ω,p. In this way, we get three
sets of three probabilitiesP0

J, P1
J, P1h

J, andP0
J,AC, P1

J,AC, P1h
J,AC

and Pa
J,ANC,Pb

J,ANC,Pc
J,ANC for the accurate, the AC, and the

ANC approaches. In turn, these probabilities determine the
capture cross sectionsσ,σAC andσANC.

In what follows, instead of the capture cross sections, we
use the energy-dependent rate coefficients defined by eq 7. The
scaled version ofK(E), ø(κ), is defined as

whereø(κ) assumes the form

Similar expressions hold forøAC(κ) or øANC(κ) if the setP0
J,P1

J,
P1h

J is replaced by its AC or ANC counterparts.
The following properties of the probabilities are worth

mentioning:
(a) Since the state|1h〉 is not coupled, we have

(b) The states|0〉 and |1〉 are coupled, and this coupling
persists even for largeJ and κ, i.e., in the classical limit.
Therefore, there is no simple relation between the pairs (P0

J,
P1

J), (P0
J,AC, P1

J,AC), and (Pa
J,ANC, Pb

J,ANC). However, in the
classical limit, when the locking of the diatom angular momen-
tum to the collision axis occurs at distances much larger than
the location of centrifugal maxima, the following relation holds:

Finally we mention that the normalization ofø(κ) is chosen such
that, in the case of pure isotropic interaction, i.e.,a ) b ) 0,
the high-energy limit ofø(κ) is unity, and that ofK(k) is the
Langevin capture rate coefficientKL ) 2πpRL/µ.

4. Classical Limit of the Accurate, AC and ANC Rate
Coefficients

The classical limit ofø(κ), øAC(κ), andøACCl(κ) is obtained
from eq 26 when the summation overJ is replaced by

integration, the quantum capture probabilities are replaced by
the classical capture probabilitiesPω(J). The latter are given
by the step functions

whereΛω(κ) is the maximum angular momentum for which
classical capture in the field of the potentialυω(F) is possible
for the collision energyκ2/2. The quantityΛω is determined
from the classical capture condition:

If eq 30 does not yield a solution with positiveΛω
2, this means

that capture does not occur. Finally, the properties expressed
by eqs 27 and 28 allow one to write the following formulas:

5. Bethe Limit for Capture Cross Sections and Capture
Rate Coefficients

In the Bethe limit,κ f 0, according to Wigner’s argu-
ments,9,22the threshold behavior of the transmission probabilities
for a given channel is determined by the asymptotics of the
centrifugal repulsion in this channel. In general, for lowκ, the
transmission probabilities are proportional toκ1+δ with δ g 0.
In the limit κ f 0, only those terms in eq 26 survive for which
δ ) 0.

Within the accurate quantum treatment, this can happen only
for the coupled statesψ0

J andψ1
J so that the nonzero contribu-

tions to the rate coefficient can only come fromP0
1 and P1

1.
The probabilitiesP0

1 andP1
1 are expected to be linear inκ, and

depend on the two interaction parametersa and b. Thus, the
low-κ limit of capture probabilities are:

where P1h
1 ) 0 means thatP1h

1 tends to zero faster thanκ.
Therefore, the Bethe limit of eq 26 reads as follows:

By the same reason, we arrive at the following expression for
the Bethe limit of ANC capture probabilities:

Thus

Finally, for the AC approximation, we get

and

Pω(κ,J) ) θ(Λω(κ) - J) (29)

max{Λ2

2F2
+ υω

AC(F)}||||Λ)Λω(κ)

) κ
2/2 (30)

ø(κ)|κ.1 ) øAC(κ)|κ.1 ) øANC(κ)|κ.1 ) øACCl(κ)

øACCl(κ) ) 1
6κ

[(Λ0(κ))2 + 2(Λ1(κ))2]
(31)

P0
1 ) C0

1(a,b)κ; P1
1 ) C1

1(a,b)κ; P1h
1 ) 0 (32)

lim
κf0

ø (κ;a,b) ) øB(a,b) ) ø1(κ,a,b)|κ)0 )

1
2

(C0
1(a,b) + C1

1(a,b)) (33)

Pa
1,ANC ) Ca

1(a,b)κ; Pb
1,ANC ) 0; Pc

1,ANC ) 0 (34)

lim
κf0

ø ANC(κ;a,b) ) øB,ANC(a,b) ) ø1,ANC(κ;a,b)|κ)0 )

1
2

Ca
1(a,b) (35)

P0
1,AC ) 0; P1

1,AC ) 0; P1h
1,AC ) 0 (36)

-
d2ψa

J,ANC

dF2
+ 2υa

J,ANC,eff ψa
J,ANC - κ

2ψa
J,ANC ) 0

-
d2ψb

J,ANC

dF2
+ 2υb

J,ANC,eff ψb
J,ANC - κ

2ψb
J,ANC ) 0 (24)

-
d2ψc

J,ANC

dF2
+ 2υc

J,ANC,eff ψc
J,ANC - κ

2ψc
J,ANC ) 0

K(k) ) (2π p
µ

RL) ø(κ) (25)

ø(κ) ) ∑
J)0

∞

øJ(κ); øJ(κ) )
(2J + 1)

6κ
(P0

J + P1
J + P1h

J) (26)

P1h
J ) P1h

J,AC ) Pc
J,ANC (27)

P0
J + P1

J ) P0
J,AC + P1

J,AC ) Pa
J,ANC + Pb

J,ANC (28)
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Numerically, the coefficientsC0
1, C1

1, and C1
1,ANC can be

found by integration of Schroedinger equations for the particular
caseJ ) 1 in the limit of small κ and subsequent linear
extrapolation toκ ) 0. This procedure is simply a special case
of what we report in section 6. However, in the present section
we discuss an approximate analytical estimation toCa

1,ANC(a,b),
i.e., Ca,as

1,ANC(a,b), based on the asymptotic representation of
υa

1,ANC,eff(F).
For an uncoupled wave equation, such as for the ANC poten-

tial υa
1,ANC,eff(F), the coefficientCa

1,ANC(a,b) can be found from
solution of this equation for zero energy.9 Unfortunately, the
potentialυa

1,ANC,eff(F) is too complicated and does not permit to
get a solution in terms of known higher transcendental func-
tions. We, therefore, adopt an approximation toυa

1,ANC,eff(F)
which consists of expanding eq 16 up to second order in the
anisotropic part of the interaction. The result reads as follows:

The potential in eq 38 contains three different terms, being
proportional toF-4, F-5, and F-6. If a single term is present
only, the zero-energy wave equation can be solved in terms of
Bessel functions.23 If there are two terms, the zero-energy wave
equation can be solved in terms of confluent hypergeometric
functions.24 Presumably, an equation with three terms can be
solved in terms of hypergeometric functions. However, instead
of trying to get this kind of the solution, we consider a simplified
approach which is sufficient for the discussion in the next
section.

To this end, we first consider the case whena ) 0. The
potential from eq 38 becomes

which is a renormalized ion-induced dipole interaction. This
simple result is due to the fact that, in the ANC lowest capture
channel, the ion-quadrupole interaction (proportional to 1/F3)
is transformed into an ion-induced dipole interaction, being
proportional to 1/F4. The physics of this transformation is
explained in our recent article.25 Referring to our previous
results,8,20 we find

We see that whenb is large enough,b . 1, the expression for
Ca,as

1 (0,b) becomesCa,as
1 (0,b) ≈ 4b/x3. This is a manifestation

of the prevailing effect of the long-range ion-quadrupole
interaction over the shorter range ion-induced dipole interaction
in the limit of zero energy. Physically, this means that the
approximationCa,as

1 (0,b) ≈ 4b/x3 for Ca,as
1 (0,b) can be gener-

alized forCa,as
1 (a,b) providedb . 1,a.

We therefore adopt the following approximation for
Ca,as

1 (a,b):

Equation 41a applies to the capture processes H2 + Ar+ and
N2 + He+, and eq 41b to CO+ He+ (vide infra).

6. Bridging between the Bethe and Classical AC Limits

For the calculation of accurate rate coefficients, we have de-
termined transmission probabilitiesPω

J (κ) by explicitly solving
coupled wave equations including the Coriolis interaction for
several values of the parametersa and b. In parallel, we
calculated ANC and AC transmission probabilities by integrating
uncoupled wave equations with ANC and AC effective poten-
tials. The calculations were accomplished for a range of the
wave vectors within which we get converged results for
probabilities up toJ ) 6. For higherJ values, the accurate
quantum results for the rate coefficients are already close to
the classical AC limit. In what follows, we present the results
for four systems listed in Table 1.

To show more clearly the partial contributions to the total
rate coefficients with increasing wave vector (or collision
energy), following our recent article,8 we present the rate
coefficientsø vs the continuous “threshold” angular momentum
λ ) λω(κ). The reason for changing the variable fromκ to λ is
that the plotsø ) ø(λ) better illustrate the threshold behavior
of partial rate coefficients than the plotsø ) ø(κ). The function
λω(κ) is formally defined for an attractive AC potentialυω

AC(F)
by the following equation:

The meaning of the functionλω(κ) becomes clear when one
compares eqs 42 and 30 and identifiesλω(κ)[λω(κ) + 1] with
Λω

2(κ). For an isotropic interaction, which was the case in ref
8, the centrifugal energy is proportional tol(l + 1); then the
continuous functionλω(κ) smoothly interpolates between discrete
values of l, such that the effective potentiall(l + 1)/2F2 +
υω

AC(F) becomes classically open for capture at the wave vector
κ that satisfies the relationλω(κ) ) l. For an anisotropic
interaction, the centrifugal barrier, within the AC basis, is of
more complicated form, see eq 10. In this case, the function
λω(κ) represents the classical counterpart of the effective angular
momentum quantum number that enters into the expression for
the effective AC potentialυω

J,AC,eff(F) written in the form in eq
42. This potential becomes classically open at the wave vector
κ ) κth that satisfies the relation

Plots of four functionsλ1
H2+Ar+

, λ0
N3+He+

, λ0
CO+He+

, λ1
HCl+H3

+
vs κ

are shown in Figure 1 forλω e 6. These plots can be used to
translate theκ dependence of the rate coefficients into theirλ
dependence (or vice verse) and also for determination of
classical threshold values of wave vectors for different AC
channels, provided the respective “threshold” values ofλω, are
calculated first from eq 43. Note that for an isotropic interaction,
the “threshold” values ofλ are integer numbers, whereas for
an anisotropic interaction they may not be integer. Figure 1 is
also useful for estimation of number of AC open channels as a
function of the wave vector (see the caption to Figure 1).

For the maximum values ofλω treated in our calculations
(λω ) 6), we have determined perturbation parametersλdip and
λquad(see text after eq 6) and found them to be noticeably smaller
than 0.1. We, therefore, conclude that the perturbed-rotor
approximation is well applicable. Note that the collision energies
for λω ) 6 areEλ1)6

H2+Ar+
) 0.4 K, Eλ0)6

N2+He+
) 0.008 K,Eλ0)6

CO+He+

lim
κf0

ø AC(κ;a,b) ) øB,AC(a,b) ) 0 (37)

υa
1,ANC,eff(F)|Ff∞ f υa,as

1,ANC,eff(F) ) - 1

2F4
- 1

6( a

F3
+ b

F2)2

(38)

υa,as
1,ANC,eff(F) ) - 1

2F4
- b2

6F4
) - 1 + b2/3

2F4
(39)

Ca,as
1 (0,b) ) 4x1 + b2/3 (40)

Ca,as
1 (a,b) ) 4x1 + b2/3, if a ) 0 (41a)

Ca,as
1 (a,b) ) 4b/x3, if b . 1,a (41b)

max{λ(λ + 1)

2F2
+ υω

AC(F)}|||| λ)λω(κ)

) κ
2/2 (42)

λω(κth)[λω(κth) + 1] ) J(J + 1) - 2ω2 + 2 (43)
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) 0.004 K, Eλ1)6
HCl+He+

) 0.003 K. The much higher value of
Eλ1)6 for H2 + Ar+ capture compared to that of the other
systems is the cumulative effect of smaller reduced mass of the
colliding partners and small quadrupole moment of the diatom.

We now consider the above systems in more detail.
Case 1: H2 + Ar+ capture, eVen case, low anisotropic1/R3

interaction,Very small anisotropic1/R4 interaction, and collision
energy noticeably below the maximum ofυ0

AC.
For this system, the AC potentialυ0

AC(F) is repulsive while
υ1,1h

AC(F) are attractive; therefore, the summation overJ in eq 3
begins with J ) 1. The potentialsυ1

AC(F) and υ1h
AC(F) are

identical; they generate two identical effective potentials,
υ1,1h

J,AC,eff(F). All the effective potentials are repulsive at largeF,
and therefore, the AC rate coefficient vanishes in the limit of
small κ or smallλ1(κ) ) λ1h(κ).

Within the ANC description, the two effective potentials,
υ0

J,AC,eff(F) and υ1
J,AC,eff(F) generate two different effective

potentials, υa
J,ANC,eff(F) and υb

J,ANC,eff(F). The third effective
ANC potential, υc

J,ANC,eff(F), coincides withυ1h
J,AC,eff(F). The

effective potentialsυa
J,ANC,eff(F) and υc

J,ANC,eff(F) are attractive,
andυb

J,ANC,eff(F) is repulsive. All the ANC effective potentials,
saveυa

1,ANC,eff(F), are repulsive at largeF; the latter is attrac-
tive. Therefore, the contributions to the ANC rate coefficient,
øx

J,ANC (x ) a, b, c), vanish in the limit of smallκ, saveøa
J,ANC.

Figure 2 shows the comparison of the accurate,ø, and
approximate,øAC and øANC, rate coefficients vsλ1(κ). Also
shown, on theλ1(κ) axes, are the classical capture thresholds
for the effective AC (lower axis) and ANC (upper axis); the
thresholds are marked asJ(1 for the AC potentials, and asJa,
Jc for ANC potentials. We see thatøANC, for λ1(κ) > 1,
reasonably well approximates the accurate rate coefficientø.
Also, for smallerλ1(κ) (e.g., 0.5< λ1(κ) < 1), where the
overwhelming contribution to the capture rate comes from the
statej, l, J ) 1, 0, 1, the ANC approximation is reasonable.
The small difference between the accurate and ANC rate
coefficients can be ascribed to the neglected radial nonadiabatic
coupling between ANC states. Note also that the ANC rate
coefficient extrapolates nicely to the theoretical prediction of
the Bethe limit which is based on the asymptotic form of

øa
J,ANC (see section 5):øas

B,ANC ) 2x1+b2/3. On the other hand,
øAC breaks down completely forλ1(κ) < 1 and deviates
noticeably from the accurate rate already atλ1(κ) ) 3. At large
λ, the accurate and approximate rate coefficients all converge
to the classical limit,øACCl. For high values ofλ1, the latter is
determined mainly by the isotropic ion-induced dipole interac-
tion (very small value ofa), and, therefore, converges to2/3.
We see that the rate coefficients atλ1 ) 6 are about twice as
large as their asymptotes which is the manifestation of the ion-
quadrupole interaction.

Case 2: N2 + He+ capture, an odd case, high anisotropic
1/R3 interaction,Very small anisotropic1/R4 interaction, and
collision energy noticeably below the maximum ofυ1

AC.
Here the AC potentialsυ1,1h

AC(F) are repulsive whileυ0
AC(F) is

attractive; therefore, the summation overJ in eq 3 begins with
J ) 0. All the effective potentials are repulsive at largeF, and
therefore, the AC rate coefficient vanishes in the limit of
small κ.

Within the ANC description, two effective potentials,
υ0

J,AC,eff(F) and υ1
J,AC,eff(F), generate two different effective

potentials, υa
J,ANC,eff(F) and υb

J,ANC,eff(F). The third effective
ANC potential,υc

J,ANC,eff(F), coincides withυ1h
J,AC,eff(F) and is

repulsive. All the ANC effective potentials, saveυa
1,ANC,eff(F),

are repulsive at largeF; the latter is attractive. Therefore, the
contributions to the ANC rate coefficient,øx

J,ANC (x ) a, b, c),
vanish in the limit of smallκ, saveøa

J,ANC.
Figure 3 shows the comparison of the accurate,ø, and

approximate,øAC and øANC, rate coefficients vsλ0(κ). Also
shown, on theλ0(κ) axis, are the classical capture thresholds
for the effective AC (lower axis) and ANC (upper axis)
potentials; the thresholds are marked asJ0 for the AC potentials,
and asJa for ANC potentials. We see thatøANC approximates
reasonably well the accurate rate coefficientø if λ0(κ) is large
enough (e.g., forλ0(κ) > 2). Note also that ANC rate coefficient
extrapolates reasonably well to the theoretical prediction based
on the asymptotic form oføa

J,ANC. The AC approximation again

Figure 1. Plots of the functionsλ1
H2+Ar+

, λ0
N2+He+

, λ0
CO+He+

, λ1
HCl+H3

+
vs

wave vectorκ. Each symbol on a particular curves, marked with the
quantum numberJ, locates the classical AC threshold valuesκ ) κth-
(J) andλ ) λth(J) that correspond to thisJ for respective collision. For
any given value ofκ, the number of AC channels, classically open for
capture for a particular collision, is equal to the number of symbols on
the appropriate curve in the region bounded byκ from above. For large
enoughJ, λth(J) for all collision pairs cluster aroundJ (AC classical
limit).

Figure 2. Reduced rate coefficients for H2 + Ar+ capture. Shown are
accurate, ANC, AC, and ACCl rate coefficients, (ø, øANC, øAC, andøACCl

respectively) vsλ1. The diamond on the ordinate axis corresponds to
the approximate analytical Bethe limit of the rate coefficient. The
symbolsJ(1, J ) 1, 2, ..., on the lowerλ1 axis indicate the classical
opening of the capture channels forυ(1

J,AC,eff potentials, while the
symbolsJa,Jc on the upperλ1

AC axis indicate the classical opening of
the capture channels for theυa

J,ANC,eff,υc
J,ANC,eff potentials. The ratio2/3

indicated at the right ordinate axis shows the ion-induced dipole
asymptote oføACCl.
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breaks down completely forøa
J,ANC < 3 and deviates noticeably

from the accurate rate already atλ0(κ) ) 4. For higher values
of λ0, the latter is determined mainly by the isotropic ion-induced
dipole interaction (very small value ofa) and, therefore,
converges to1/3. We see that the rate coefficients atλ0 ) 6 are
noticeably higher than their asymptotes. The difference between
this case and the one presented in Figure 2 is due to a larger
quadrupole moment of N2 compared to that for H2.

Case 3: CO+ He+ capture, odd case, high anisotropic1/R3

interaction, medium anisotropic1/R4 interaction, and collision
energy below and aboVe the maximum ofυ1

AC.
For this system, the AC potentials at large distances resemble

those for N2 + He+ system: attraction in theω ) 0 state and
repulsion in theω ) 1 state as a result of the ion-quadrupole
interaction. The pattern of curves for the CO+ He+ capture is
similar to that for the N2 + He+ capture, except that the rate
coefficients are higher in the former case, see Figure 4. This is
undoubtedly due to the larger quadrupole moment of CO
compared to that of N2. This difference persists also in the Bethe
limit. For large values ofb and small enougha, the rate
coefficient scales proportional tob (see section 5). Therefore,
we haveøCO+He

B /øN2+He
B ≈ bCO+He/bN2+He ) 1.6 which agrees

with the data from Figure 3 and 4. It is not possible to indicate
the high-energy limit oføACCl, since it is attained beyond the
range of applicability of the perturbed-rotor approximation; even
if the latter is adopted, it yields a meaningless result since, at
smaller separations (that are important for high energies), the
potentialυ0 becomes repulsive, and a new capture channel opens
for the potentialυ1.

Case 4: HCl+ H3
+ capture, eVen case, high anisotropic

1/R3 interaction, Very high anisotropic1/R4 interaction, and
collision energy noticeably below the maximum ofυ0

AC.
Qualitatively, the pattern of curves, presented in Figure 5,

resembles that in Figure 2 for H2 + Ar+. Quantitatively, the
differences are as follows.

(i) The zero-energy rate coefficients for HCl+ H3
+ capture

are substantially higher than for H2 + Ar+ capture. We were
unable to derive an analytical Bethe limit for the rate coefficient

using the asymptotic form of the ANC potential, because the
latter contains three terms of the formF-4, F-5, F-6 with
comparable coefficients. However, if in the asymptotic expan-
sion one retains the leading term only (proportional toF-4),
the rough estimate for the ratio readsøHCl

B /øH2

B ≈ bHCl/bH2 ≈ 4.
This is consistent with the zero-energy limits of the rate
coefficients presented in Figures 2 and 5.

(ii) The capture rate for the HCl+ H3
+ encounter is effected

by the anisotropic ion-induced dipole-like interaction to a larger
degree than the H2 + Ar+ encounter. The interplay between
anisotropic F-3 and F-4 interactions can be qualitatively
characterized by the ratioøλ)0/øλ)6 in which the numerator is
mainly determined by theF-3 term while the denominator is
determined by theF-4 term. An increase in the ion-induced
dipole-type interaction would decrease this ratio. Indeed, we

Figure 3. Reduced rate coefficients for N2 + Ar+ capture. Shown are
accurate, ANC, AC, and ACCl rate coefficients, (ø, øANC, øAC, andøACCl

respectively) vsλ0. The diamond on the ordinate axis corresponds to
the approximate analytical Bethe limit of the rate coefficient. The
symbolsJ0, J ) 1, 2, ..., on the lowerλ0 axis indicate the classical
opening of the capture channels for theυ0

J,AC,eff potential, while the
symbolsJa on the upperλ0 axis indicate the classical opening of the
capture channels for theυa

J,ANC,eff potential. The ratio1/3 indicated at
the right ordinate axis shows the ion-induced dipole asymptote oføACCl.

Figure 4. Reduced rate coefficients for CO+ Ar+ capture. Shown
are accurate ANC, AC, and ACCl rate coefficients, (ø, øANC, øAC, and
øACCl, respectively) vsλ0. The symbolsJ0, J ) 1, 2, ..., on the lowerλ0

axis indicate the classical opening of the capture channels for the
υ0

J,AC,eff potential, while the symbolsJa on the upperλ0 axis indicate
the classical opening of the capture channels for theυa

J,ANC,eff poten-
tial.

Figure 5. 5. Reduced rate coefficients for the HCl+ H3
+ capture.

Shown are accurate, ANC, AC, and ACCl rate coefficients, (ø, øANC,
øAC, øACCl, respectively) vsλ1. The symbolsJ(1, J ) 1, 2, ..., on the
lower λ1 axis indicate the classical opening of the capture channels for
the υ(1

J,AC,eff potentials, while the symbolsJa, Jc on the upperλ1 axis
indicate the classical opening of the capture channels for theυa

J,ANC,eff,
υc

J,ANC,eff potentials.
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see that this ratio for H2 + Ar+ is about 6, while for HCl+
H3

+ it is about 4.5.
(iii) The ANC approximation for the HCl+ H3

+ event
performs better than for the H2 + Ar+ event. This can be
ascribed to lower radial nonadiabatic coupling in the former
case because of the larger spacing between ANC potentials
compared to those in the latter case (higher values ofa andb
for HCl + H3

+ system compared to that for H2 + Ar+ system).
It is difficult to indicate the high-energy limit oføACCl, since

it is attained beyond the applicability of the perturbed-rotor
approximation; however, if the latter is adopted it yields the
meaningful resultøACCl f (2/3)x1+a.

We now consider the temperature-dependent capture rate
constantsøj. They are obtained fromø by averaging over a
Maxwell-Boltzmann velocity distribution. This distribution
function F, written in terms of the variableκ, reads

where the reduced temperatureθ is given by

The reduced rate constant assumes the form:

with similar definitions forøjANC(θ), øjAC(θ), andøjACCl(θ). The
results of calculations for H2 + Ar+ and N2 + He+ were
presented in our recent paper25 while those for CO+ He+ and
HCl + H3

+ are given in Figures 6 and 7. We see that the ACCl
approximation performs well down to, e.g.,T ≈ 0.01 K and
that the ANC approximation is quite good for HCl+ H3

+

capture down extremely low temperatures, while it does not
work that well for CO+ He+ capture.

Summarizing, we can say that the accurate quantum capture
rate coefficients, above the first centrifugal threshold, are
adequately represented by the quantum ANC approximation;
the latter is reasonably well simulated by the classical AC
approximation (convergence of ANCJ-thresholds to ACJ-
thresholds).

The reason, why the classical AC approach performs well at
energies where the capture rate coefficients are still determined
by partial contributions with low angular momenta quantum
numbers, is 2-fold. First, the classical approximation well
simulates the compensation of two quantum effects, tunneling
through and reflection above centrifugal barriers. Second, the
classical approximation, which identifies (erroneously) the
expectation value of the square of the total angular momentum
with the square of the relative angular momentum, suppresses
somewhat too high centrifugal barriers within the quantum AC
approach. The additional smoothing of undulations, compared
to the capture in the field of an isotropic potential as found in
ref 8, is due to the contribution of more partial rate coefficients
to the total rate coefficient because of angular momentum
recoupling.

Conclusion

On the basis of earlier work on the theory of complex
formation or capture processes, we now can characterize the
following approaches which are expected to perform progres-
sively better with decrease in the collision energy or temperature.

(i) Fully classical calculations. These are based on classical
trajectories in the field of anisotropic potentials, selecting those
that lead to complex-formation.

(ii) Classical AC calculations. These are based on the
calculation of the AC potentials, and the calculation of classical
capture cross sections for isotropic long-range AC potentials.

(iii) Quantum AC calculations. These are based on the
calculation of the AC potentials, and the calculation of quantum
capture cross sections for isotropic long-range AC potentials.

(iv) Quantum ANC calculations. These are based on the
calculation of the ANC potentials, and the calculation of
quantum capture cross sections for isotropic long-range ANC
potentials.

(v) Fully quantum calculations. These are based on the
solution of the coupled scattering Schroedinger equations with
absorbing boundary conditions at the complex boundary.

Using four representative systems as examples, we have
shown that quantum ANC calculations reproduce quite well the
results of accurate quantum calculations in the low-energy
collision regime where the perturbed rotor approximation is
adequate. This is due to a very weak radial nonadiabatic
coupling between the ANC states. Besides, both ANC and

Figure 6. Thermal reduced rate constants for CO+ Ar+ capture vs
reduced temperatureθ (lower axis) and temperature in kelvin (upper
axis). The open circles at the right-hand part of the graphs correspond
to the region where the perturbed-rotor approximation may be incorrect.
Shown are the accurate, ANC, AC, and ACCl thermal rate constants
(øj, øjANC, øjAC, andøjACCl respectively).

F(κ,θ) dκ ) 2θ-3/2

x2π
κ

2exp(- κ
2

2θ) dκ (44)

θ ) kBT/EL (45)

øj(θ) ) ∫0

∞
ø(κ)F(κ,θ) dκ (46)

Figure 7. Thermal reduced rate constants for HCl+ H3
+ capture vs

reduced temperatureθ (lower axis) and temperature in Kelvin (upper
axis). Shown are the accurate, ANC, AC, and ACCl thermal rate
constants (øj, øjANC, øjAC, andøjACCl respectively).
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accurate quantum results are reasonably well reproduced by the
classical AC calculations provided that several (not too many)
partial contributions make up the total rate coefficient. This is
due to the artificial simulation of the quantum transmission
through the centrifugal barriers by the classical smoothing of
individual contributions (replacing the summation over angular
momenta by an integration), and the classical suppression of
barrier heights (replacing the expectation value of the square
of the orbital momentum by its unperturbed classical counter-
part).
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