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The quantum version of an axially nonadiabatic channel (ANC) approximation, introduced in an earlier article
for the calculation of complex-formation cross sections and rate constants-diatom collisions [Maergoiz,

A. I.; Nikitin, E. E.; Troe, J.; Ushakov, V. Gl. Chem. Phy2002 117, 4201-4213] is tested against accurate
quantum results. Cross sections and rate constants are determined for several representative systems with the
participation of a diatom in the stafe= 1, assuming various long-range potentials between the collision
partners, such as anisotropic ion-induced dipole, second-order charge-permanent dipole, and first-oreler charge
quadrupole interaction. The ANC approximation well reproduces accurate quantum results in the perturbed
rotor limit, while the standard quantum adiabatic channel (AC) approximation fails at low energy due to
neglect of Coriolis coupling. However, the low-energy extrapolation of classical adiabatic channel results
(ACCI) provides a reasonable approximation both to accurate and quantal ANC results down to collision
energies when only few partial cross sections determine the total capture cross section. This unexpected
feature of the ACCI approximation is due to two effects: (a) an artificial simulation of tunneling transmission
and overbarrier reflection at centrifugal barriers by introducing a continuous distribution over total angular
momenta and (b) a slight effective lowering of the centrifugal barriers compared to centrifugal barriers within
the AC model. Low-temperature quantum rate constants are also presented.

1. Introduction the treatment of complex formation in collisions of rotationally
The calculation of cross sections and rate constants for unpolarized partnersNonadiabatic transitions due to radial
complex formation in molecular collisions at low energies and coupling that occur in localized regions of avoided crossing have

temperatures represent an important problem of chemicalbeen incorporated into a general AC schémeand their
kinetics. The full quantum treatment of this problem requires generalizations for globally nonadiabatic situations were studied
the solution of the Schroedinger equation for several degreesin the so-called “post-adiabatic” frameworkRotationally

of freedom with absorbing boundary conditions for the relative induced nonadiabatic transitions in the asymptotic region were
motion. The main complication in accurate quantum calculations also studied in detail in connection with polarization aspécts,
is related to the coupling of internal molecular motion to the while the effects of rotationally nonadiabatic coupling in the
relative motion. In an attempt to simplify this part of the region of the barriers were taken into account within an axially
problem, the so-called adiabatic channel (AC) approximation nonadiabatic channel (ANC) approximation.

has been suggested (for a review see ref 1). It has been For low collision energies, the capture cross section is made
implemented mainly under the additional condition that the up of small numbers of partial contributions. Since the total

relative motion of partners can be regarded as clasdfcBhe  angular momenta of each partial cross section are not large,
next step beyond the AC approximation consists of a partial the region of the centrifugal barriers may be close to the region
account for nonadiabatic transitions. of the rotational coupling. In this situation, the transition through

For not too low collision energies, the capture cross section the potential barrier is essentially nonadiabatic. It may seem
is dominated by contributions from large values of the total that the adiabatic approximation performs better for decreasing
angular momentum quantum numbers. In this case, the notice-collision energy. This is indeed so for collision partners that do
able nonadiabatic effects fall into two main categories: one not possess intrinsic angular momenta: in this case the complex-
corresponds to rotational (Coriolis) coupling between AC states formation cross section can be calculated as a capture cross
converging to a common asymptotic limit, and the other, t0 section in a field of isotropic potenti&lsvhich permits a rather
radial coupling between AC states whose potential curves gimple approach of zero collision energies. However, if the
display narrow avoided crossings. The regions of asymptotic jntrinsic angular momenta are not zero, the rotational coupling
rotational coupling are located quite far from the regions where persists down to zero collision energies and may considerably
the system overcomes centrifugal barriers. The latter condition modify the AC capture cross section for low energies. The
is crucial for a good performance of the AC approximation in jnappjicability of the AC approximation to low collision energies

" Part of the “Gert D. Billing Memorial Issue” becomes apparent by the fa(_:t that the zero-energy behavio_r of

* Technion-Israel Institute of Technology. the AC capture cross contradicts the universal Bethe law, which
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Indeed, in the AC approximation, the centrifugal potential absorption at the complex surface, i.e., Rt= R.. The

C}@AC for an AC state with the quantum numbeké (J and asymptotics of the wave function furnishes complex-formation
@ are the quantum numbers of the total angular momentum and(capture) probabilitie§>fI labeled by the quantum numbers of
its projection onto the collision axis) &*AC = h2[IP(j;/2uR? the total angular momentut the relative angular momentum
wherel is the operator of the relative angular momentunis [, and intrinsic angular momentumThe state-specific complex-
the reduced mass of the fragments, ahis their center-of- formation cross section for a rotationally unpolarized molecule

mass separation. Because of the coupling of angular momentaijs given by the standard formula for inelastic cross sections (see,
the minimum of the expectation value Bfis positive, which e.g., ref 18) in which the absolute values of the squared matrix
signals a deviation from the inverse velocity law. This also elements of the scattering matrix are replaced by the capture
indicates that Coriolis coupling plays a decisive part in the low- probabilities:

energy capture event and raises the question whether the ANC

approximation can adequately describe the recoupling of angular x _2J+1 10

momenta in the collision event. If the answer is positive, it 0;(K) :;2 mpj,l () 1)
means a drastic reduction of computational efforts in the 7 4

calculation of capture cross sections. Indeed, the hierarchy of
these efforts, for different levels of approximation, is the
following: The AC approximation requires the diagonalization
of the block-diagonal interaction matrix with the collision axis
as the quantization axis at fixed interparticle distances, and the
ANC approximation requires the diagonalization of the interac-
tion matrix together with the Coriolis coupling at fixed
interparticle distances, while the full dynamical treatment
requires the solution of the scattering equations.

The objective of this paper is to study the performance of
the AC and ANC approximations for the calculation of low-
energy capture cross sections of a simple system which include
angular momentum recoupling. We thus consider a system
consisting of an ion interacting with a diatomic molecule in a
rotational state withj = 1, assuming various types of long-
range anisotropic interaction (anisotropic teinduced dipole, T 23+ 1
first-order ion-molecular quadrupole, and second-order-on o;(K) = —Qz _—Pig(k) (2)
molecular dipole interactions). In our treatment, we go beyond Kdpad t1
alternative adiabatic channel studies of rotationally selected ion
dipole collisions which all have neglected Coriolis coupling In our calculations of capture probabilities, we make some
effects such as refs 17 and, therefore, are not suitable for assumptions which are appropriate for low-energy collisions and
low-temperature applications. practically interesting cases: _

The plan of the presentation is as follows. In section 2, we @) An |n!t|al rotational statg is adiabatically isolated from
review some theoretical background for the calculation of cross Other rotational states. - ) .
sections and rate coefficients. In section 3, we consider adiabatic  (i}) The interaction anisotropy is not too weak, such that in
channel states and couplings for a system-#ABC(j = 1). In the region of the potential well the standard AC approximation
section 4, we discuss the classical limit of quantum rate ho'f,j_s- ) o ) ) )
coefficients. Section 5 is devoted to the Bethe limit for capture  (iii) The interaction in the region of the potential well is strong
cross sections and rate coefficients. Section 6 presents a bridging{%”OUgh’ such that the motion inside the well is quasiclassical
between AC and Bethe limits for four representative systems, (it may not be such in the region of the long-range part of the
i.e., Hp + Arf, N, + He", CO + He", and HCI+ Hs". A potential).

conclusion finally summarizes the results obtained. Within assumption i, the scattering problem is formulated in
terms of 2 + 1 coupled radial equations; assumption ii means

that in the region of strong interaction there exists a good
guantum numbed, the projection of onto the collision axis
We consider the collision of a structureless particle A (an R; finally, assumption iii permits a simple formulation of the

atomic ion in a closed electronic state) with a rigid rotor BC in  absorbing boundary condition. The above assumptions allow
a given rotational state with quantum numipea rigid rotor is one to get, besides numerical results, valuable analytical
a fair approximation to a real diatomic molecule in a closed formulas which shed light on general features of capture
electronic state if the vibrational motion is adiabatically dynamics in anisotropic situations.

separated from other degrees of freedom. We assume a long- If assumption i is not valid, we have to consider the quantum-
range anisotropic interactiod(R,y) whereR is the distance scattering problem in full by purely numerical means, or, at
between A and the center-of-mass of BGs the angle between  elevated collision energies, to resort to classical trajectory

Herek is the wave vector which is related to the collision energy
E and the relative velocity throughE = h2k%/2u = uv?/2 with
u being the reduced mass of the partners.

The wave function iflJ representation possesses a definite
parity p which is conserved; however, for a given #éf it is
redundant, and therefore, in eq 1 it appears in parentheses.
Instead of thélJ representation, one can use j&¥ representa-
tion with Q being the quantum number of the projection;j of
onto R at R — « (the so-calledr-helicity representation). A
wave function i QJ representation does not possess a definite

arity, but can be made so, if the signed quantit®sare
eplaced by their absolute val@ = |Q| and the parity. Since
the transformatiofld < jQpJis unitarian, eq 1 can be rewritten

2. Theoretical Background

the molecular axis and the collision axs calculations. The latter has been used extensively in ref 3. If
A complex ABC is assumed to be formed when the partners assumption ii is not valid, the situation is close to the capture
approach each other to a certain “capture” distaRgeThe in an isotropic potential which was elaborated recently.

dynamics of complex formation is described by a wave function assumption iii is not valid, this usually means such a weak
which is the solution of the Schroedinger equation with a attraction that the complex-formation cross section is so small
potential whose long-range part ¥(R,). The boundary that it is of no practical interest.

conditions for the wave function are an incoming plane wave  An AC version of capture theory assumes that the projection
and an outgoing spherical wave at larGeand complete quantum numbed of j onto the collision axis remains a good
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TABLE 1: Parameters of Several lon—Diatom Systems (Data from References 19 and 20)

system o, au Q, au Up, au R, au B, au a b B, au
H, + Art 5.437 0.474 0 138 2% 10 —0.052 4.81 1.50k 10°8
N, + Het 11.74 —1.09 0 274 9.1% 10°® —0.054 —10.20 2.087x 107°
CO+ He" 13.36 —1.86 0.048 292 8.7% 10°® 1.93 —16.25 1.827x 107°
HCI + Hs* 17.55 2.8 0.436 299 4.8810°° 225 19.1 2.204 10°°
guantum number for arbitrafg and considers one-dimensional The information contained in eq 6 is sufficient to calculate
radial motion across the effective AC potentialg”“*"(R). cross sections in AC approximation. However, for the ANC

As explained in ref 4, this assumption, if taken literally, is not approaches and accurate calculations, one has to know the
valid since the AC functiong,&undergo a strong nonadiabatic  interchannel coupling.

transformation (the so-called locking phenomenon) before, with  The state-specific capture cross sections lead to energy-
increase ofR, they reach the asymptotic region wheide dependent state specific rate coefficiefE) and temperature-
becomes identical t&. However, if the collisions are quasi- dependent state-specific rate constd€){3) which are related
classical, two regions, one for the barrier transmission and to the cross sections(k) in a standard way:

another for the locking, are well separated, and the AC version

of eq 2 can be rewritten as _ /2E C R —
. Ki(E) = «/IOJ(E). K; (M = K; (K3 ()
ACy — T T1 ipac
o (K=— Z : Pj,fE () ®) whereLl..[¥ denotes averaging over the Maxwell distribution in
kzw,p,J 2 +1 - P .
the relative kinetic energies.
where P'>A¢ are the transmission probabilities through the

3. Adiabatic Channel Potentials, Adiabatic States, and

centrifugal barriers of the effective radial potentis}“'(R) Nonadiabatic Coupling for Perturbed Rotor States with

(note thatU »*“*(R) do not depend omp). j=1

An ANC version of capture theory assumes that the radial .
motion is adiabatic in the field of the ANC effective potentials /N What follows, we consider perturbed rotor states that
U.r]{ANC,eff(R)' The latter are obtained as eigenvalues (subscript originate from the rotational staje= 1 of a diatom. Sinc¢ is

fixed, we suppress super/subscripits all expressions. We also
introduce scaled interparticle distangess R/R_, scaled wave
vectorsk = kR, and scaled energies = E/E with R, =

Vfouh and E. = h?/uR?. With this convention, the scaled

n numbers these eigenvalues for fixddndj) of the matrix
composed ofJ2*“*(R) and the Coriolis interaction. In ANC
approximation, eq 2 assumes the form

oMNC(1q) = T 23+ 1P_J,ANc(k) 4) AC potentialsvC(p) read as followg?20
J eZar ac
/.\C_Vj,(u|j:l_ 1 1/a b 2 2
Here theP;»" are calculated as transmission probabilities Yo =T F T T 2_P4+§(E+P_3)( —%) @)

through the centrifugal barriers &f>*N“*(R).
In what follows, we assume a generic type of an attractive Here the first term on the rhs represents the scaled ion-induced
anisotropic interaction, an anisotropic ion-induced dipole in- dipole isotropic interaction. The rest, originating from the
teraction, ion-molecular quadrupole interaction, or iemo- anisotropic part, contains two interaction parameters: parameter
lecular dipole interaction of the form a encompasses the scaled ion-induced dipole anisotropic
interaction and the second-order iemolecular dipole interac-

2 2 : : ;
__gqoa_ % _ Ao, 9Q tion whereas the parameter b results from the first-orderion
V(Ry) = R R cosy + ( 3R * R? Py(cosy) molecular quadrupole interaction. The explicit expressions of
(5) a,b in terms of the parameters entering in eq 8 are
whereq is the charge of the iony is the mean polarizability, a= 2Aa/150 + u2D/100LB, b= Zqu/5RLh2 9)

o = (oy + 2a0)/3, Aot = oy — o, 1p IS the permanent dipole

moment, and) is the quadrupole moment of the molecule.  Tapje 1 presents values of the dimensionless parametand
Inthe perturbed rotor approximation, eq 5 yields the following |, for several ior-diatom systems together with the relevant

AC potentials (see refs 19 and 20) for second-order-wipole molecular parameters.
interaction, for first-order ionrquadrupole, and anisotropic ion- The AC potentials lead to the effective AC potentials that
induced dipole interaction: include the centrifugal energy:
2 2
VA,,C(R) = — @ + |- qzﬂ + @-’- M X UJ,AC,eff( ) — J(‘] + l) - 2(02 + 2 + UAC( ) (10)
o 2R 3R R 4BR o P 207 o P

0.@|Py(cosy)lj,@l(6) _ _ _

Note that all effective AC potentials are repulsive at lapge
whereB is the rotational constant of the diatomic molecule (in  The weakest centrifugal repulsion occurs faﬁ"AC’eﬁ(p) ~
energy units). The perturbed-rotor approximation for the capture v1“(5) ~ 1/p2. The nonadiabatic coupling between the
event is valid provided that two dimensionless parametgiis three AC states under discussioL,) |10) |—10for w = 0, +1,
= 3qQIZBR§mX and Agp = quD/BRznax, which measure the  —1, is of the Coriolis type. The description of this coupling is
relative strength of the interaction at the maximum of the simplified when one uses a basis with definite parity. Let the
innermost centrifugal barrier (R = Ryay, are noticeably latter states b¢O[] |1[] |100where the statefl] |100belong to
smaller than unity. the same parity while the stgtEcorresponds to opposite parity.
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In the parity-adopted basis, the AC potentials are the same, while

the coupling occurs between the statisand|1only, and the
coupling off-diagonal interaction 3§

VIO + 1)

J,AC,COI‘(p) — 5

V10 (11)
The general wave functiod'?, that describes the perturbed
rotation of the diatom and the relative radial motion of the-ion
diatom, is of the form

W= |00 + 107 + 1101 (12)
where the components;, 1, y3 satisfy the following equa-
tions

d2wJ
T R = 2o
dz’(/)J
ST Ryl Pyl = 2y (19
dy?
_ d,l/)zl + ZU%AC’eﬁ 1/)% _ KZ'(/)% =0
for J > 0 and
d2 0
_ o | 20040y, 0 20— 0 (14)

dp?

for J=0.

By a rotation of the AC basis one can diagonalize the matrix
composed of the effective AC potentials and the Coriolis
coupling. The new states, called axially nonadiabatic channel
(ANC) states|al] |bl] |c[] are related to the AC states by

|all= cosf-|0H- sin6-|10
|bC= —sin §-|0H cosé-|10

|cC= |10
J,AC,Cor
1 o1 (15)
0=0%p) = Sarctan—-o—
Vo1
ApSACET — JACEH _ IACel _ 12 4 g(% 4 %)
po 2\t p

This change of the basis transforms the effective AC potentials
into the effective ANC potentials

Uiﬁ‘NC’eﬁ — (1/2)(U3,Ac,eff + U:JL,AC,eff) T
IV (ALY + 403 (16)
vi,ANC,eﬁz vi,AC,eff
forJ > 0 and
POANCeff —  0AC e (17)

for J = 0. Note that all effective ANC potentials are repulsive

at largep savev>""N*(p).

The change in the basis functions in eq 15 changes the

coupling between the new states. The wave funci&mow
is written as

Dashevskaya et al.

W = |ap) + by + e} (18)

where the componentg?, v}, y? satisfy the following equa-
tions:

dz’/)J 23
- 2a + ZU‘;ANC’eﬁ 1/}; _ KZw.; +g wa —
I
d, dg) ;
295, * 20
dZ J
- dw7b+ 20"y — Py + Y= (19)
I
_ d ﬂ J
295, * 200"
v

J
- 2(: + 2U\(]:,ANC,eff 1/)\(]: _ szg =0
0

Here, the coupling between the ANC stat@sland |b(lis
described by a single functiog’(o) which is determined by
the rotation anglé’(p) in eq 15 (see ref 18):

(20)

Equations 13 and 19, when solved accurately, yield the same
nonadiabatic wave function. The difference between these
equations is that eq 13 describes the rotational coupling between
AC states, while eq 19 describes the radial coupling between
ANC states. On the other hand, an approximate solution to eqs
13 and 19 will yield different results.

Within the AC approximation, the rotational coupling in eq
13 is neglected, so that the asymptotic quantum numbers 0, 1,
1 become exact quantum numbers. Then the approximate
function WIAC is represented as follows:

IIIJ'AC — |O|3108'AC + |1miAC + ﬁ_@%AC (21)
Here the components satisfy the equations
_ dz;ﬂj’:c + QupACE IAC _ 23R _ g
_ dz;lﬂj’:c + DyMACE YIAC _ 2, 3AC_ (90
_ dz;lﬂj’:c + QuIACEf IAC _ 2 3AC _ g

Equation 22 differs from eq 13 in that the coupling is omitted,;
i.e., the rhs in the latter is set to zero.

Within the ANC approach, the approximate functi®dANC
is represented as

WJ,ANC — |aEng'ANC + |b@)g,ANC + |C@2'ANC (23)

where the components satisfy the equations
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dZvaANC integration, the quantum capture probabilities are replaced by
— o 2upNCET JANC 2y JANC = g the classical capture probabiliti€s,(J). The latter are given
dp by the step functions
2., J,ANC
dyy JANCeff  JANC _ 2 JANC _ P,(k,J) = O0(A,,(x) — J) (29)
— P QAN IANC 2 BANC — o (04) o

d
fANC where A, (k) is the maximum angular momentum for which

3 dzl/Jc L+ o JANCEl  JIANC _ 2, JANC _ o classical capture in the field of the pot_entigl(_p) is poss_ible
—dpz Ve c KYe - for the collision energy?/2. The quantityA,, is determined

from the classical capture condition:
Equation 24 differs from eq 19 in that both the coupling (the
rhs in the latter) and the diagonal nonadiabatic correction are A? AC
set to zero. max 2,2 + v, ()

Equations 13 and 19 describe the quantal coupled propagation P

of the waves to the absorbing boundary. Equations 22 and 24 ) ) ) - )
describe the uncoupled propagation of the waves, accompaniedf €d 30 does not yield a solution with positive,?, this means
by the simplest quantal effects, i.e., tunneling through the that capture does not occur. Finally, the properties expressed
potential barriers and overbarrier reflection. The equations BY €ds 27 and 28 allow one to write the following formulas:
should be solved with the absorbing boundary conditions on

= k%2 (30)

A:AIU(K)

. .. _ . AC _ .,ANC __ .ACCI
the surface of the complex. Under assumptions ii and iii, these X1 =X W1 =1 W1 =2 (k) A
conditions correspond to incoming quasiclassical waves in the accl, » 1 2 2 31
potential well, with the presence of a single asymptotic incoming 2 = 6ic [(Ao(ie))” + 2(A4(k))’]
wave in the state witlw,p = Q,p. In this way, we get three
sets of three probabilitieB), P3, P31, and P2, P3AC, P7A¢ 5. Bethe Limit for Capture Cross Sections and Capture

and PJANC pANC pIANC for the accurate, the AC, and the Rate Coefficients

ANC approaches. In turn, these probabilities determine the |y the Bethe limit,x — 0, according to Wigner's argu-

capture cross sectiongo”c and 0N, ments?22the threshold behavior of the transmission probabilities
In what follows, instead of the capture cross sections, we for a given channel is determined by the asymptotics of the

use the energy-dependent rate coefficients defined by eq 7. The:entrifugal repulsion in this channel. In general, for lowthe

scaled version oK(E), x(«), is defined as transmission probabilities are proportionaldd® with ¢ > 0.
A In the limit « — 0, only those terms in eq 26 survive for which
KK = [27,R )20 25 o=o.
H Within the accurate quantum treatment, this can happen only
wherey(k) assumes the form for the coupled state$g andwi so that the nonzero contribu-

tions to the rate coefficient can only come frdpg and P}.

(P} +PI+P)) (26) The probabilities; andP7 are expected to be linear i and
depend on the two interaction parametarandb. Thus, the
low-« limit of capture probabilities are:

© L (2+1)
x(<) = Zox (k); (k) =

Similar expressions hold fgi*C(«) or yANC(«) if the setP;,Ps,

P} is replaced by its AC or ANC counterparts. P;=Cy@ab; Pi=Ciabx; Pi=0 (32
The following properties of the probabilities are worth
mentioning: o where P = 0 means thaP? tends to zero faster tham.
(a) Since the statflllis not coupled, we have Therefore, the Bethe limit of eq 26 reads as follows:
J _ pJAC _ pJANC
Pi=Pi =P (27) lim 7 (;a.0) = xP@b) = x'(k,ab)| =

(b) The state§Oand |10are coupled, and this coupling
persists even for largd and «, i.e., in the classical limit.
Therefore, there is no simple relation between the pais ( _ _ )
PY), (P, P, and PINC, PIANY). However, in the By the same reason, we arrive at the f_o_II_owlmg expression for
classical limit, when the locking of the diatom angular momen- the Bethe limit of ANC capture probabilities:
tum to the collision axis occurs at distances much larger than LANC 1 U LANG AL S LANC
the location of centrifugal maxima, the following relation holds: Py =Cy@ab)y Py =0;P =0 (34)

5(Ciab) +Citab) (33)

P+ Pl =PAC + PIAC=pIANC 4 ppANC - (28)  Thus

Finally we mention that the normalization gic) is chosen such  lim 5 *N(k;a,b) = x®*N(ab) = ¥**(«;ab)|,_o =

that, in the case of pure isotropic interaction, i@ b = 0, 0

the high-energy limit ofy(x) is unity, and that oK(K) is the 1Ci(a,b) (35)
Langevin capture rate coefficieKi = 27hR /u. 2

4. Classical Limit of the Accurate, AC and ANC Rate Finally, for the AC approximation, we get

Coefficients Pé,AC =0 Pi'AC =0 P%,AC =0 (36)

The classical limit ofy(k), (), andx (k) is obtained
from eq 26 when the summation ovér is replaced by and
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lim %" (ic;a,b) = x®*(a,b) = 0 (37)

Numerically, the coefficient<C;, Ci, and C1*" can be
found by integration of Schroedinger equations for the particular
caseJ = 1 in the limit of smallx and subsequent linear
extrapolation toc = 0. This procedure is simply a special case
of what we report in section 6. However, in the present section
we discuss an approximate analytical estimatio@ }6"“(a,b),

i.e., C2NCab), based on the asymptotic representation of

1,ANC gffas
v ().

For an uncoupled wave equation, such as for the ANC poten-

tial v2ANM(p), the coefficientC*N(a,b) can be found from

solution of this equation for zero ener@ynfortunately, the
potentialv:“"“*(o) is too complicated and does not permit to
get a solution in terms of known higher transcendental func-

tions. We, therefore, adopt an approximationutf™<<()

Dashevskaya et al.

Equation 41a applies to the capture processgs-Hr+ and
N, + He'*, and eq 41b to CO- He' (vide infra).

6. Bridging between the Bethe and Classical AC Limits

For the calculation of accurate rate coefficients, we have de-
termined transmission probabiliti@i(;c) by explicitly solving
coupled wave equations including the Coriolis interaction for
several values of the parametesisand b. In parallel, we
calculated ANC and AC transmission probabilities by integrating
uncoupled wave equations with ANC and AC effective poten-
tials. The calculations were accomplished for a range of the
wave vectors within which we get converged results for
probabilities up toJ = 6. For higherJ values, the accurate
guantum results for the rate coefficients are already close to
the classical AC limit. In what follows, we present the results
for four systems listed in Table 1.

To show more clearly the partial contributions to the total

which consists of expanding eq 16 up to second order in the rate coefficients with increasing wave vector (or collision

anisotropic part of the interaction. The result reads as follows:

1,ANC,eff
a © (p) |p4>oo

LANC.eff \ _
- “(p)

v va, as

The potential in eq 38 contains three different terms, being
proportional top™*, p~°, andp~%. If a single term is present

only, the zero-energy wave equation can be solved in terms of

Bessel function? If there are two terms, the zero-energy wave
equation can be solved in terms of confluent hypergeometric
functions?* Presumably, an equation with three terms can be
solved in terms of hypergeometric functions. However, instead
of trying to get this kind of the solution, we consider a simplified
approach which is sufficient for the discussion in the next
section.
To this end, we first consider the case wher= 0. The

potential from eq 38 becomes
1 b 1+Db3

1,ANC,eﬁ( ) —— _~ =
2,04 6/04 2,04

Vaas (39)

which is a renormalized ion-induced dipole interaction. This
simple result is due to the fact that, in the ANC lowest capture
channel, the iorrquadrupole interaction (proportional too3y

is transformed into an ion-induced dipole interaction, being
proportional to 14* The physics of this transformation is
explained in our recent articf8. Referring to our previous
results®2° we find

CaadOb) = 4V1+ b3 (40)
We see that wheh is large enoughh > 1, the expression for
C.,{0)b) become<C,(0b) ~ 4b/v/3. This is a manifestation
of the prevailing effect of the long-range iequadrupole
interaction over the shorter range ion-induced dipole interaction
in the limit of zero energy. Physically, this means that the
approximationC?,(0,b) ~ 4b/v/3 for C%,(0,b) can be gener-
alized forCj ,{a,b) providedb > 1a.

We therefore adopt the following approximation for
Caadab):

Clfap)=4/1+1b%3, ifa=0  (41a)

Cin{ab)=40/V3, ifb>1a (41b)

energy), following our recent artickewe present the rate
coefficientsy vs the continuous “threshold” angular momentum
A = Au(k). The reason for changing the variable frano 1 is
that the plotgy = y(4) better illustrate the threshold behavior
of partial rate coefficients than the plgts= x(x). The function
Ao(k) is formally defined for an attractive AC potent're@c(p)

by the following equation:

ma>{W + 1)

2p2
The meaning of the functioi,(x) becomes clear when one
compares eqs 42 and 30 and identifig$«)[1,(x) + 1] with
A,%(k). For an isotropic interaction, which was the case in ref
8, the centrifugal energy is proportional g + 1); then the
continuous functior,(x) smoothly interpolates between discrete
values ofl, such that the effective potenti&ll + 1)/20% +
vf)c(p) becomes classically open for capture at the wave vector
k that satisfies the relatiod,(x) = |. For an anisotropic
interaction, the centrifugal barrier, within the AC basis, is of
more complicated form, see eq 10. In this case, the function
Ao(K) represents the classical counterpart of the effective angular
momentum quantum number that enters into the expression for
the effective AC potential?“"(o) written in the form in eq
42. This potential becomes classically open at the wave vector
k = Kk, that satisfies the relation

=2
A=1, (k)

+ vf,%p)} (42)

Ay (kA (k) + 1] =30+ 1) — 20°+2  (43)
Plots of four functionstiz", JNstHe" ;COtHe" aHCIHST g

are shown in Figure 1 fok, < 6. These plots can be used to
translate thec dependence of the rate coefficients into their
dependence (or vice verse) and also for determination of
classical threshold values of wave vectors for different AC
channels, provided the respective “threshold” values,pfare
calculated first from eq 43. Note that for an isotropic interaction,
the “threshold” values ofl are integer numbers, whereas for
an anisotropic interaction they may not be integer. Figure 1 is
also useful for estimation of number of AC open channels as a
function of the wave vector (see the caption to Figure 1).

For the maximum values of,, treated in our calculations
(A = 6), we have determined perturbation parametgpsand
Aquad(see text after eq 6) and found them to be noticeably smaller
than 0.1. We, therefore, conclude that the perturbed-rotor
approximation is well applicable. Note that the collision energies

for A, = 6 areE;Z¢" = 0.4 K, E\7' = 0.008 K,ES24"
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HCl+H; —

Figure 1. Plots of the functiongizA™", ANztHe™ ;COrHeT JHCHHT /g

wave vectorkc. Each symbol on a particular curves, marked with the
guantum numbed, locates the classical AC threshold values k-

(J) andi = An(J) that correspond to thifor respective collision. For
any given value ok, the number of AC channels, classically open for
capture for a particular collision, is equal to the number of symbols on
the appropriate curve in the region boundedcsom above. For large
enoughJ, An(J) for all collision pairs cluster around (AC classical
limit).

= 0.004 K, E'fl‘i'g'w = 0.003 K. The much higher value of
Ei—e for Hy + Ar™ capture compared to that of the other

systems is the cumulative effect of smaller reduced mass of the
colliding partners and small quadrupole moment of the diatom.

We now consider the above systems in more detail.

Case 1: H+ Ar™ capture, een case, low anisotropit/R®
interaction,very small anisotropid/R* interaction, and collision
energy noticeably below the maximumvéf.

For this system, the AC potentiaf“(p) is repulsive while
v’f{(p) are attractive; therefore, the summation o¥en eq 3
begins withJ = 1. The potentialsv}(p) and v{(p) are
identical; they generate two identical effective potentials,
v159*(0). All the effective potentials are repulsive at large
and therefore, the AC rate coefficient vanishes in the limit of
small« or smallii(«) = A5(«).

Within the ANC description, the two effective potentials,
va“M(p) and v}"°*M(p) generate two different effective
potentials, v2AN*(p) and vp"N“*(p). The third effective
ANC potential, v2*N“*(0), coincides withv3*“*(p). The
effective potentiala)}*N“(o) and v2*N“*"(p) are attractive,
andvy™N“*"(0) is repulsive. All the ANC effective potentials,
savev®N(p), are repulsive at largg; the latter is attrac-
tive. Therefore, the contributions to the ANC rate coefficient,
1™ (x=a, b, ©), vanish in the limit of smalk, savey""°.

Figure 2 shows the comparison of the accurateand
approximateyA¢ and yANC, rate coefficients vsli(«). Also
shown, on thel,(«x) axes, are the classical capture thresholds
for the effective AC (lower axis) and ANC (upper axis); the
thresholds are marked ds; for the AC potentials, and a,

Je for ANC potentials. We see thgt"NC, for 1:(k) > 1,
reasonably well approximates the accurate rate coeffigient
Also, for smallerii(x) (e.g., 0.5< Ai(x) < 1), where the
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Figure 2. Reduced rate coefficients for,H Art capture. Shown are
accurate, ANC, AC, and ACCl rate coefficientg, £ANC, xA°, andyAc®
respectively) vsli. The diamond on the ordinate axis corresponds to
the approximate analytical Bethe limit of the rate coefficient. The
symbolsd;, J =1, 2, ..., on the lowe#; axis indicate the classical
opening of the capture channels fols“*" potentials, while the
symbolsJ,,Jc on the uppeﬂﬁc axis indicate the classical opening of

the capture channels for thd"N®ey,2ANCeT potentials. The ratid/

indicated at the right ordinate axis shows the ion-induced dipole
asymptote ofAcC!.

%™ (see section 5)y5AN¢ = 2¢/1+b%3. On the other hand,

¥AC breaks down completely foli(x) < 1 and deviates
noticeably from the accurate rate alreadylgk) = 3. At large

A, the accurate and approximate rate coefficients all converge
to the classical limityACC!. For high values ofiy, the latter is
determined mainly by the isotropic ion-induced dipole interac-
tion (very small value ofa), and, therefore, converges 4.

We see that the rate coefficients/at= 6 are about twice as
large as their asymptotes which is the manifestation of the ion
guadrupole interaction.

Case 2: N+ He' capture, an odd case, high anisotropic
1/R? interaction, very small anisotropicl/R* interaction, and
collision energy noticeably below the maximumvgf.

Here the AC potentials;$(p) are repulsive whilesy(p) is
attractive; therefore, the summation ovan eq 3 begins with
J = 0. All the effective potentials are repulsive at largeand
therefore, the AC rate coefficient vanishes in the limit of
small k.

Within the ANC description, two effective potentials,

v3"M(o) and vI"“*(p), generate two different effective
potentials, vA"“*(p) and vp"N*(p). The third effective

ANC potential, v2*N“*(0), coincides withv3*“*"(o) and is

repulsive. All the ANC effective potentials, sawg”N“"(p),
are repulsive at large; the latter is attractive. Therefore, the
contributions to the ANC rate coefficient;""° (x = a, b, c),
vanish in the limit of smalk, savey,""®.

Figure 3 shows the comparison of the accurate,and
approximate ¢ and yANC, rate coefficients vslo(k). Also

shown, on thelg(k) axis, are the classical capture thresholds

overwhelming contribution to the capture rate comes from the for the effective AC (lower axis) and ANC (upper axis)

statej, I, J = 1, 0, 1, the ANC approximation is reasonable.

potentials; the thresholds are markedgfr the AC potentials,

The small difference between the accurate and ANC rate and asl, for ANC potentials. We see that'NC approximates
coefficients can be ascribed to the neglected radial nonadiabatioeasonably well the accurate rate coefficignt 1o(«) is large

coupling between ANC states. Note also that the ANC rate
coefficient extrapolates nicely to the theoretical prediction of
the Bethe limit which is based on the asymptotic form of

enough (e.g., foko(x) > 2). Note also that ANC rate coefficient
extrapolates reasonably well to the theoretical prediction based
on the asymptotic form gf*"°. The AC approximation again
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Figure 3. Reduced rate coefficients for,N- Ar* capture. Shown are ~ Figure 4. Reduced rate coefficients for C® Ar* capture. Shown
accurate, ANC, AC, and ACCI rate coefficientg, #2NC, A<, andyAc® are accurate ANC, AC, and ACCI rate coefficientg, ANC, A€, and

respectively) vslo. The diamond on the ordinate axis corresponds to %", respectively) vslo. The symbolsl, J=1, 2, ..., on the loweko

the approximate analytical Bethe limit of the rate coefficient. The aﬂ% ;lecate _the C|E_lSSICa| opening of the capture chaqne!s for the
symbolsJy, J = 1, 2, ..., on the lowef, axis indicate the classical vy~ potential, while the symbold, on the uppeti, axis indicate
opening of the capture channels for th#**" potential, while the the classical opening of the capture channels foru}f&'“*" poten-
symbolsJ, on the uppetl, axis indicate the classical opening of the tial.
capture channels for thel“N“*" potential. The ratid/s indicated at

the right ordinate axis shows the ion-induced dipole asymptoté6f.

breaks down completely for,"N < 3 and deviates noticeably
from the accurate rate already/a{x) = 4. For higher values

of 1o, the latter is determined mainly by the isotropic ion-induced
dipole interaction (very small value of) and, therefore,
converges td/s. We see that the rate coefficientsigt= 6 are
noticeably higher than their asymptotes. The difference between
this case and the one presented in Figure 2 is due to a larger
quadrupole moment of Ncompared to that for &

Case 3: CCF He' capture, odd case, high anisotroiéR®
interaction, medium anisotropit/R* interaction, and collision
energy below and ahe the maximum of;°.

For this system, the AC potentials at large distances resemble
those for N + He™ system: attraction in the = 0 state and
repulsion in thew = 1 state as a result of the iemuadrupole
interaction. The pattern of curves for the GOHe™ capture is
similar to that for the N+ He" capture, except that the rate  Eigyre 5. 5. Reduced rate coefficients for the HEl Hy* capture.
coefficients are higher in the former case, see Figure 4. This is shown are accurate, ANC, AC, and ACCI rate coefficientsyNC,
undoubtedly due to the larger quadrupole moment of CO yxA%, yAcC! respectively) vsl;. The symbolsl.y, J =1, 2, ..., on the
compared to that of N This difference persists also in the Bethe lower 4, axis indicate the classical opening of the capture channels for
limit. For large values ofb and small enougha, the rate the v34*" potentials, while the symbold, Jc on the uppetis aXfifS
coefficient scales proportional to (see section 5). Therefore, ifﬂiﬁggﬁ the classical opening of the capture channels for 3",
we haverSo, i dx2 he & beordbnyine = 1.6 which agrees Ve potentials.
with the data froszigure 3 and 4. It is not possible to indicate
the high-energy limit ofyA°!, since it is attained beyond the  using the asymptotic form of the ANC potential, because the
range of applicability of the perturbed-rotor approximation; even |atter contains three terms of the forpt4, p=5, p~6 with
if the latter is adopted, it yields a meaningless result since, at comparable coefficients. However, if in the asymptotic expan-
smaller separations (that are important for high energies), thesion one retains the leading term only (proportionaltd),
potentialvo becomes repulsive, and a new capture channel opensthe rough estimate for the ratio re@%/xﬁz ~ bucilby, ~ 4.

Total Capture Rate Coefficients
(reduced units)

for the potentialv;. This is consistent with the zero-energy limits of the rate
Case 4: HCIH Hs™ capture, een case, high anisotropic  coefficients presented in Figures 2 and 5.

1/R® interaction, very high anisotropicl/R* interaction, and (i) The capture rate for the HGF Hs™ encounter is effected

collision energy noticeably below the maximumvgf. by the anisotropic ion-induced dipole-like interaction to a larger

Qualitatively, the pattern of curves, presented in Figure 5, degree than the H+ Ar™ encounter. The interplay between
resembles that in Figure 2 for,H+ Ar™. Quantitatively, the anisotropic p=2 and p~* interactions can be qualitatively
differences are as follows. characterized by the ratig—o/y;=¢ in which the numerator is

(i) The zero-energy rate coefficients for HEIH3™ capture mainly determined by the—2 term while the denominator is
are substantially higher than for,H- Ar™ capture. We were  determined by the™* term. An increase in the ion-induced
unable to derive an analytical Bethe limit for the rate coefficient dipole-type interaction would decrease this ratio. Indeed, we
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Figure 6. Thermal reduced rate constants for GOAr* capture vs
reduced temperatum@ (lower axis) and temperature in kelvin (upper
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Figure 7. Thermal reduced rate constants for HEIHs" capture vs
reduced temperaturg (lower axis) and temperature in Kelvin (upper

axis). The open circles at the right-hand part of the graphs correspondaxis). Shown are the accurate, ANC, AC, and ACCI thermal rate

to the region where the perturbed-rotor approximation may be incorrect

- constants ¥, ¥"NC, ¥AC, and¥”°® respectively).

Shown are the accurate, ANC, AC, and ACCI thermal rate constants

(7, ¥™NC, ¥C, andx~cC' respectively).

see that this ratio for -+ Art is about 6, while for HCH-
Hs™ it is about 4.5.

(i) The ANC approximation for the HCH- Hs™ event
performs better than for the -+ Art event. This can be
ascribed to lower radial nonadiabatic coupling in the former
case because of the larger spacing between ANC potential
compared to those in the latter case (higher values afid b
for HCI + H3™ system compared to that fonLH- Ar* system).

It is difficult to indicate the high-energy limit ofACC!, since
it is attained beyond the applicability of the perturbed-rotor
approximation; however, if the latter is adopted it yields the
meaningful resulyAc® — (3/3)v/1+a.

We now consider the temperature-dependent capture rat
constantsy. They are obtained fromy by averaging over a
Maxwell—Boltzmann velocity distribution. This distribution
function F, written in terms of the variable, reads

2072 p:
F(x,0) dx = N K ex;{— 2—9) dx (44)
where the reduced temperatwas given by
0 = kg T/E, (45)
The reduced rate constant assumes the form:
20) = [ % ()F(k,0) di (46)

with similar definitions foryANC(6), ¥A¢(0), andx”cC(0). The
results of calculations for H+ Art and N + He' were
presented in our recent pafgewhile those for CO+ Het and
HCI + Hs™ are given in Figures 6 and 7. We see that the ACCI
approximation performs well down to, e.g.,~ 0.01 K and
that the ANC approximation is quite good for HG Hz*
capture down extremely low temperatures, while it does not
work that well for CO+ He" capture.

Summarizing, we can say that the accurate quantum captur

The reason, why the classical AC approach performs well at
energies where the capture rate coefficients are still determined
by partial contributions with low angular momenta quantum
numbers, is 2-fold. First, the classical approximation well
simulates the compensation of two quantum effects, tunneling
through and reflection above centrifugal barriers. Second, the

Classical approximation, which identifies (erroneously) the
expectation value of the square of the total angular momentum
with the square of the relative angular momentum, suppresses
somewhat too high centrifugal barriers within the quantum AC
approach. The additional smoothing of undulations, compared
to the capture in the field of an isotropic potential as found in
ref 8, is due to the contribution of more partial rate coefficients

o the total rate coefficient because of angular momentum
recoupling.

Conclusion

On the basis of earlier work on the theory of complex
formation or capture processes, we now can characterize the
following approaches which are expected to perform progres-
sively better with decrease in the collision energy or temperature.

(i) Fully classical calculations. These are based on classical
trajectories in the field of anisotropic potentials, selecting those
that lead to complex-formation.

(i) Classical AC calculations. These are based on the
calculation of the AC potentials, and the calculation of classical
capture cross sections for isotropic long-range AC potentials.

(i) Quantum AC calculations. These are based on the
calculation of the AC potentials, and the calculation of quantum
capture cross sections for isotropic long-range AC potentials.

(iv) Quantum ANC calculations. These are based on the
calculation of the ANC potentials, and the calculation of
guantum capture cross sections for isotropic long-range ANC
potentials.

(v) Fully quantum calculations. These are based on the
solution of the coupled scattering Schroedinger equations with
absorbing boundary conditions at the complex boundary.

e Using four representative systems as examples, we have

rate coefficients, above the first centrifugal threshold, are shown that quantum ANC calculations reproduce quite well the
adequately represented by the quantum ANC approximation; results of accurate quantum calculations in the low-energy
the latter is reasonably well simulated by the classical AC collision regime where the perturbed rotor approximation is
approximation (convergence of ANGthresholds to ACJ- adequate. This is due to a very weak radial nonadiabatic
thresholds). coupling between the ANC states. Besides, both ANC and
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accurate quantum results are reasonably well reproduced by the
classical AC calculations provided that several (not too many) 93

Dashevskaya et al.

(4) Dashevskaya, E. I.; Nikitin, E. E.; Troe, J. Chem. Phys199Q
7803-7807.
(5) Nikitin, E. E.; Troe, J.; Ushakov, V. Gl. Chem. Physl1995 102,

partial contributions make up the total rate coefficient. This is 4101-4111.

due to the artificial simulation of the quantum transmission

(6) Berengolts, A.; Dashevskaya, E. I.; Nikitin, E. E.; TroeChem.

through the centrifugal barriers by the classical smoothing of Phys.1995 195 271-281;1995 195 283-289.

(7) Maergoiz, A. I.; Nikitin, E. E.; Troe, J.; Ushakov, V. G. Chem.

individual contributions (replacing the summation over angular pp, ¢ 5002 117, 4201-4213.

momenta by an integration), and the classical suppression of

(8) Dashevskaya, E. I.; Litvin, I.; Maergoiz, A. |.; Nikitin, E. E.; Troe,

barrier heights (replacing the expectation value of the squareJ.J. Chem. Phys2003 118 7313-7320.

of the orbital momentum by its unperturbed classical counter-

part).
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