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The first-order post-adiabatic representations in the sense of Klar and Fano (Klar, H.; Fano, U.Phys. ReV.
Lett. 1976, 37, 1132-1134) are obtained for two-channel stationary Schro¨dinger equations describing the
interaction of the fluorine and chlorine (in the2P state) and oxygen and sulfur (in the3P state) atoms with a
number of closed-shell particles, in particular, with rare gases, hydrogen, deuterium, and methane. Information
on the adiabatic potentials and the nonadiabatic coupling comes mostly from scattering experiments, although
some input from ab initio quantum mechanical calculations is also exploited. Various trends in the behavior
of the first-order post-adiabatic coupling are analyzed, and the optimal ways to estimate the smallness of this
coupling are discussed. The best measure of the strength of the post-adiabatic coupling of orders is found to
be the differences between the respective post-adiabatic potentials of orderss ands + 1. A rigorous proof is
given of the fact that post-adiabatic representations exist only in the important case of a single “slow” degree
of freedom.

I. Introduction

A universal tool used to study microscopic properties of
matter is provided by the Schro¨dinger equation. One of the key
and frequently used points in the practical implementation of
this tool is the separation of all of the degrees of freedom
(generalized coordinates) in the system in question into “fast”
and “slow” degrees of freedom, depending, for example, on the
relative strength of quantum effects or the presence of a small
parameter in the problem. The motion associated with the fast
coordinates can then be examined at the fixed values of the
slow coordinates, and the evolution equations for the slow
degrees of freedom are obtained from the initial Schro¨dinger
equation for the whole system by averaging over the fast
variables. The prototypical example is the classic Born-
Oppenheimer separation1 of slow nuclear motions from fast
electronic degrees of freedom in atomic and molecular systems.
This operation takes into account the smallness of the electron
mass as compared to the averaged mass of the nuclei.

The separation of all of the generalized coordinates in the
system at hand into fast and slow components gives rise
naturally to the concepts of channels (adiabatic states), adiabatic
potentials (potential energy surfaces), and skew-Hermitian
operators of nonadiabatic coupling. The adiabatic potentials and
nonadiabatic coupling operators are functions of the slow
variables. There are two basic classes of representations of the
multichannel stationary Schro¨dinger equation (i.e., description
schemes for the corresponding quantum mechanical system).
These classes are (1)diabatic representationsreferring to the
values of the slow coordinates at a fixed instant of the evolution

of the system and (2) the uniqueadiabatic representationthat
relies upon the current values of the slow variables.2-7

Treating the nonadiabatic coupling operators as perturbations
may lead in some cases to new representations of the multi-
channel stationary Schro¨dinger equation. Klar and Fano8,9

noticed that in the case where the system is characterized by a
single slow coordinate and the Hamilton operator isreal the
following can be done. For each value of the slow coordinate
R, it is possible to include (using only algebraic operations) the
nonadiabatic coupling matrixP(R) in the adiabatic potential
energy curvesu1(R), . . ., un(R) and obtain new post-adiabatic
potentialsu1

(1)(R), . . .,un
(1)(R) and a new post-adiabatic coupling

Π1(R), which may be, in a certain sense, smaller than the initial
couplingP(R). Henceforth,n denotes the number of channels
to be taken into account. In turn, the residual couplingΠ1(R)
can be included for each value ofR, again using algebraic
operations only, in post-adiabatic potentialsuk

(1), 1 e k e n,
yielding the post-adiabatic potentialsu1

(2)(R), . . ., un
(2)(R) of

the second order and the post-adiabatic couplingΠ2(R) of the
second order, and so on. This iterative procedure of successively
constructing the post-adiabatic potentialsu1

(s)(R), . . ., un
(s)(R)

and couplingsΠs(R) of orderss ) 1, 2, . . . is formally infinite,
although it is generically divergent (see section II below). The
post-adiabatic potentials and post-adiabatic coupling of orders
g 1 enter thepost-adiabatic representationof the multichannel
stationary Schro¨dinger equation of orders. As in the case of
the conventional adiabatic representation, the post-adiabatic
representations of all of the orders are connected with the current
value of the slow coordinateR.

In the pioneering papers of the mid-1970s,8-10 only the first
step of the iterative procedure mentioned above, namely,
obtaining the post-adiabatic potentials and couplings of the first
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order, was considered through the example of the scattering of
an electron on a hydrogen atom. As the slow variable, the so-
called Fock mean-square radius of the two electrons was used.
In our previous publications on the subject,4,5 all of the steps
of this procedure were treated from a unified viewpoint, the
algebraic structures underlying the post-adiabatic representations
were clarified, and various special properties of these repre-
sentations were discussed in detail. We also performed a post-
adiabatic analysis of the van der Waals interactions of the
fluorine, chlorine, and oxygen atoms with some closed-shell
particles Z, namely, the rare-gas atoms and molecules of
deuterium, methane, and hydrogen halides HCl, HBr, and HI.
The theory founded by Klar et al.8-10 and developed further in
our work4 was used in recent papers11,12to study the interaction
between a Rydberg electron and an ionic core, the slow
coordinate being the distance between the electron and the
nucleus of the ion.

The aim of constructing post-adiabatic representations of
multichannel Schro¨dinger equations is threefold.13 First, in many
cases, post-adiabatic couplings of low orders do turn out to be
smaller than the initial nonadiabatic couplingP, which promises
more accurate and faster integration of the Schro¨dinger equation.
Second, comparing post-adiabatic couplings of different orders
may help one to estimate the strength of the nonadiabatic effects
in the system. For instance, one may conclude from the
smallness of the first-order post-adiabatic couplingΠ1 that the
nonadiabatic effects in the system in question (i.e., the prob-
abilities of nonadiabatic transitions) are weak, even if the
original nonadiabatic couplingP is not very small. Third, using
the post-adiabatic potentials in simulations of the process (with
the coupling neglected) in place of the adiabatic ones sometimes
leads to better agreement with the experimental data. This is
the case for the situations considered by Klar et al.8-10 and Clark
et al.11,12

The main goal of the present paper is to extend the post-
adiabatic analysis of the interactions of the F, Cl, and O atoms
with closed-shell particles presented in our previous articles4,5

to the van der Waals interaction of thesulfur atom with rare-
gas atoms. Such an analysis is of interest both from a practical
viewpoint, taking into account the great importance of sulfur-
containing compounds for combustion and atmospheric chem-
istry and their potential to damage the ecology of the earth’s
atmosphere,14 and from the point of view of exploring the trends
in the behavior of the post-adiabatic couplings, depending on
the properties of the adiabatic potentials and the nonadiabatic
couplings and the masses of the partners. Some preliminary
results of the post-adiabatic approach to the S-Ne,-Ar, -Kr,
and -Xe interactions have been reported.15 We also address
some more special questions such as the optimal way of
comparing post-adiabatic couplings of different orders and a
rigorous proof of the nonexistence of post-adiabatic representa-
tions for systems with several slow degrees of freedom.

The paper is organized as follows. In section II, we give a
sketch of the Klar-Fano iterative procedure for deriving post-
adiabatic representations of multichannel Schro¨dinger equations
and recall some properties of these representations discussed
in more detail previously.5 The theoretical background for
investigating the interactions of the F(2P), Cl(2P), O(3P), and
S(3P) atoms with closed-shell particles Z and the results of our
post-adiabatic analysis of the S-He,-Ne,-Ar, -Kr, and-Xe
systems are presented in section III. The features of the first-
order post-adiabatic coupling in all four series F-Z, Cl-Z,
O-Z, and S-Z are surveyed in section IV. Conclusions follow
in section V. Appendix A contains a proof of the impossibility

of post-adiabatic representations for systems with more than
one slow coordinate.

II. Post-Adiabatic Iterative Procedure

As was observed a decade ago,4 the mathematical background
for post-adiabatic representations of multichannel Schro¨dinger
equations is the theory of Hamiltonian and symplectic matrices
over real or complex numbers. Recall that a 2n × 2n matrix K
with complex entries is said to beHamiltonian if

where

I denotes then × n identity matrix, and the superscript t
designates the matrix transposition. The Hamiltonian matrices
determine Hamiltonian linear differential equations. A 2n × 2n
matrix K is Hamiltonian if and only if it has the form

with symmetricn × n blocksB andC (Bt ) B, Ct ) C) and an
arbitrary n × n block A. A 2n × 2n matrix S with complex
entries is said to besymplecticif

The symplectic matrices determine canonical linear transforma-
tions.

In the rich literature on the theory of Hamiltonian and
symplectic matrices, we confine ourselves here to references
to the landmark paper by Williamson,16 where the so-called
normal forms of the Hamiltonian matrices were derived for the
first time, and to books by Arnold17 and Bruno.18 (The latter
book contains an extensive bibliography.)

The adiabaticn-channel stationary Schro¨dinger equation in
the case of asingleslow variableR has the form2-7

whereU(R) is the diagonal realn × n matrix whose diagonal
entriesu1(R), . . .,un(R) are the adiabatic potentials,P(R) is the
skew-Hermitiann × n matrix of the nonadiabatic coupling,µ
is the reduced mass (corresponding to the coordinateR), E
denotes the total energy of the system, andΦ(R) is an
n-dimensional vector of the coefficients at the adiabatic states.
Recall thatI is the n × n identity matrix. Equation 2 can be
rewritten as

where the coefficientm is

and

Suppose that the Hamilton operator of the system in question

KtJ + JK ) 0

J ) (0 -I
I 0 )

K ) (A B
C -At ) (1)

StJS) J

- p2

2µ(I d
dR

+ P)2
Φ + UΦ ) EΦ (2)

m
d

dR(Φ
¥ ) + [(0 I

U - EI 0) + m(P 0
0 P)](Φ

¥ ) ) 0 (3)

m ) p

(2µ)1/2
(4)

¥ ) -m(dΦ
dR

+ PΦ) (5)
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is real. (In the theory of atomic and molecular processes, this
is almost always the case if the spin-orbit interaction is
neglected, and often, although not always,19,20 it holds in the
presence of this interaction as well.) Then then × n matrix P
is real and skew-symmetric, the 2n × 2n matrix

is therefore Hamiltonian, and eq 3 can be used as the starting
point for the hierarchy of the post-adiabatic representations of
the stationary Schro¨dinger equation that we are studying. One
may call eq 3 the zeroth-order post-adiabatic equation.

Now an iterative step of the procedure is performed as
follows. The post-adiabaticn-channel stationary Schro¨dinger
equation of any orders g 0 has the form4,5

where Us(R) is a diagonaln × n matrix whose (generally
speaking, complex) diagonal entriesu1

(s)(R), . . .,un
(s)(R) are the

post-adiabatic potentials of orders (corresponding to the total
energyE), Πs(R) is a (generally speaking, complex) Hamiltonian
2n × 2n matrix of the post-adiabatic coupling of orders
(corresponding to the total energyE), and X(R) is a 2n-
dimensional vector. Fors ) 0, one sets

and the matrixΠ0 is defined by eq 6. It is obvious that the
eigenvalues of the Hamiltonian 2n × 2n matrix

are

Taking into account that the eigenvalues of any Hamiltonian
matrix come in pairs(λ,16-18 let us denote the eigenvalues
of the Hamiltonian 2n × 2n matrix Ks ) Qs + mΠs by
(λ1

(s), . . ., (λn
(s). The functions

are called4,5 the post-adiabatic potentials of orders + 1
(corresponding to the total energyE).

Denote byUs+1 the diagonaln × n matrix with diagonal
entriesu1

(s+1), . . ., un
(s+1). The Hamiltonian 2n × 2n matrices

Ks and

have the same spectrum

If this spectrum for any value ofR in a certain range is
simple; in other words, if all of then numbersu1

(s+1)(R), . . .,
un

(s+1)(R) are pairwise distinct and other thanE, then the matrices
Ks(R) andQs+1(R) are conjugated for eachR in this range, at

least over complex numbers, by a symplectic 2n × 2n matrix
Ss(R):16-18

The 2n × 2n matrix

is Hamiltonian4,5 for eachR and is called4,5 the matrix of the
post-adiabatic coupling of orders + 1 (corresponding to the
total energyE). In many cases, the calculation of this matrix is
facilitated greatly by the so-called symplectic Hellmann-
Feynman theorem.4 The coordinate transformationX ) SsYwith
a 2n-dimensional vectorY(R) casts eq 7 as the equation

which is called4,5 the post-adiabaticn-channel stationary
Schrödinger equation of orders + 1. Equation 10 has the
same form as eq 7, but withUs+1 in place ofUs andΠs+1 in
place ofΠs.

Simpler analogues of this construction were proposed (in
different setups) by A. I. Neishtadt (published by Arnold21)
and A. G. Chirkov22 for quantum systems with slowly varying
(i.e., depending on slow timeτ ) εt, 0 < ε , 1) Hamilton
operators. Instead of transforming the Schro¨dinger equation,
Chirkov22 considers successive approximations to its solutions.
Interestingly, one of the approximations in Chirkov’s theory is
referred to in his paper22 as the “postadiabatic approximation”.
Quantum23,24 and classical17,24,25systems with slowly varying
Hamilton operators or functions constitute the Ehrenfest frame-
work for the adiabaticity theories, which is probably more
familiar.17,23-25

In contrast to the conventional adiabatic representation (eq
2) of a multichannel stationary Schro¨dinger equation, the post-
adiabatic representation of any ordersg 1 obtained as explained
above is not unique because the symplectic 2n × 2n matrix Ss

conjugating the Hamiltonian 2n × 2n matricesKs (eq 7) and
Qs+1 (eq 8) is not determined uniquely. (In fact, for any fixed
value of the slow variableR, the matricesSs constitute a
manifold of complex dimensionn.) An unsuitable choice ofSs

could lead to very large post-adiabatic couplingΠs+1 (eq 9) of
orders + 1. We proposed4 a simple algorithm for choosingSs,
which ensures a small couplingΠs+1 provided that the coupling
Πs of the previous orders was already sufficiently small.
Moreover, as was proven in our subsequent paper,5 the matrix
Ss(R) yielded by this algorithm keeps smoothness (as a function
of R) at the so-called turning pointsR*,26 whereuk

(s+1)(R*) )
E for somek, 1 e k e n. In the sequel, the conjugating matrices
Ss at each step of the post-adiabatic iteration procedure and at
each value of the slow coordinate will always be assumed to
be chosen according to our algorithm.4 It is also important to
emphasize that the post-adiabatic potentials and couplings
depend on the reduced massµ and on the total energyE.

The sequence of the post-adiabatic representations of a generic
multichannel stationary Schro¨dinger equation of orderss ) 1,
2, . . . diverges ass f ∞.27 The reason is the operation of
differentiating the conjugating matrix with respect toR, which
enters eq 9: thesth derivative of a typical holomorphic function
grows likes! ass increases28 (the derivatives of nonholomorphic,
infinitely differentiable functions grow, as a rule, much faster29),
and this rapid growth becomes dominant for larges. In section

Π0 ) (P 0
0 P) (6)

m
dX
dR

+ KsX ) 0 Ks ) (0 I
Us - EI 0) + mΠs (7)

U0 ) U uk
(0) ) uk (1 e k e n)

Qs ) (0 I
Us - EI 0)

([uk
(s) - E]1/2 1 e k e n

u1
(s+1)(R) ) [λ1

(s)(R)]2 + E, . . .,un
(s+1)(R) ) [λn

(s)(R)]2 + E

Qs+1 ) (0 I
Us+1 - EI 0) (8)

([uk
(s+1) - E]1/2 1 e k e n

Ss
-1KsSs ) Qs+1

Πs+1(R) ) Ss
-1

dSs

dR
(9)

m
dY
dR

+ Ks+1Y ) 0 Ks+1 ) (0 I
Us+1 - EI 0) + mΠs+1 (10)
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V below, we present this argument in more detail. Moreover,
according to a recent paper by Kendrick et al.,30 multichannel
Schrödinger equations admit no representation for which the
nonadiabatic terms are systematically (i.e., for most of the
equations) smaller than the conventional nonadiabatic coupling.
However, as we will see in section IV below, the first-order
post-adiabatic couplingΠ1 is smaller than the usual nonadiabatic
couplingP for a number of systems.

Nevertheless, a comparison of the post-adiabatic couplings
of different orders is complicated greatly by the fact that then
× n blocksAs, Bs, Cs of the 2n × 2n matrix

(cf. eq 1) are ofdifferent physical dimensions:4,5

This circumstance makes it impossible to compareP (which is
of dimension length-1) andΠs, s) 1, 2, . . ., in astraightforward
manner. In our previous papers,4,5 we suggested multiplying the
entries of the symmetric blocksBs andCs of the matricesΠs

by functions of the adiabatic potentialsu1, . . ., un to achieve a
dimension of length-1. This “palliative”, despite its arbitrariness,
is utilized in the present work as well (cf. eq 14 below). As an
alternative remedy, one could deal with the dimensionless
Schrödinger equation, which is of course equivalent to multiply-
ing the blockBs in eq 11 by hartree1/2 and blockCs by hartree-1/2

(cf. eq 23 below). For the van der Waals interactions considered
in the present paper, this second method of “dimension
correction” always results in larger first-order post-adiabatic
couplings as compared with the first method. (See section IV
below.)

However, the most natural way to overcome the dimension
problem just indicated is perhaps to measure the smallness of
Πs by the differences between the post-adiabatic potentials
u1

(s+1), . . ., un
(s+1) of order s + 1 and the respective post-

adiabatic potentialsu1
(s), . . .,un

(s) of the previous orders. Indeed,
if Πs ) 0 thenKs ) Qs anduk

(s+1) ) uk
(s) for each 1e k e n,

and the stronger the couplingΠs, the larger the differences
|uk

(s+1) - uk
(s)|. This approach to estimating the coupling strength

can be equally applied to the conventional nonadiabatic coupling
P (which corresponds to the differences|uk

(1) - uk|) and the
post-adiabatic couplingsΠs of orderss g 1. Its usefulness will
be justified further in section IV below.

Another complication of the post-adiabatic analysis is that
the post-adiabatic potentials and coupling matrices can be
complex in certain ranges of the slow variableR.4,5 Nonetheless,
nonreal potentials are widely used in the modern theory of
elementary processes in, for example, the wave packet propaga-
tion techniques.31

We performed a detailed post-adiabatic analysis of the two-
state problem (n ) 2).4,5 For n ) 2, the matrix of the first-
order post-adiabatic coupling has the form

(cf. eqs 9 and 11). In particular, explicit expressions were
derived for the first-order post-adiabatic potentialsu1

(1) andu2
(1)

and for the elementsx, y, z, t of the first-order post-adiabatic
coupling matrixΠ1 (eq 13) in terms of the adiabatic potentials
u1 andu2, of the elementp of the nonadiabatic coupling matrix

of the reduced massµ of the system, and of the total energyE.
We also determined under which conditions the first-order “post-
adiabatic” potentialsu1

(1) andu2
(1) and the transformation matrix

S0 are real.
It is worthwhile to note that the meaning of the term “post-

adiabatic” used in some articles is quite different from the post-
adiabaticity discussed in Klar et al.,8-10 Aquilanti et al.,4,5 Clark
et al.,11,12and the present article. For instance, the post-adiabatic
potentials of Nikitin et al.32 are the eigenvalues of the matrixU
+ icP (in our notation), wherec is a certain real parameter.
Such potentials are always real (provided that the couplingP
is real) because the matrixU + icP is Hermitian. The post-
adiabatic potentials in the sense of Zhu et al.33 are just the usual
adiabatic potentials. In a number of papers by Berry et al.,34-36

a hierarchy of corrections to the adiabatic approximation is
studied in certain systems with classical slow variables and
classical or quantum fast variables, and some of those correc-
tions (e.g., the so-called geometric magnetism and deterministic
friction) are sometimes referred to as post-adiabatic correc-
tions.35,36 However, such corrections have nothing in common
with the post-adiabatic representations and potentials as intro-
duced by Klar and Fano.8

For two-state systems with any number of slow degrees of
freedom and real nonadiabatic coupling operators, Baer and
Englman37 proposed another construction of “including” non-
adiabatic couplings in the adiabatic potentials, which was
subsequently extended to a certain class of systems with an
arbitrary number of states.7,38 This construction is entirely
different from the Klar-Fano approach and admits no iterations.

Finally, one should distinguish between the hierarchy of post-
adiabatic representations of multichannel Schro¨dinger equations
outlined above and the hierarchy of adiabatic separations of the
variables.39 The latter hierarchy appears in the case where all
of the slow variables can be divided into moderately slow
variables and very slow ones; then a similar procedure is carried
out with respect to the very slow degrees of freedom and so
on. A typical example (one of the three examples pointed out
by Tolstikhin et al.39) is the Born-Oppenheimer1 separation of
fast electronic evolution from slow nuclear coordinates ac-
companied by a subsequent analysis of the nuclear motions by
the hyperspherical coordinate method3,39,40 and the separation
of, for example, the very slow hyperradius from the moderately
slow angular variables.

III. Post-Adiabatic Analysis of Rare-Gas Sulfides and
Some Other Open-Shell Systems

The long-range van der Waals interaction of the F(2P), Cl(2P),
O(3P), and S(3P) atoms with closed-shell (i.e.,1S) particles Z
has been extensively studied over the last 15 years from both
theoretical and experimental viewpoints;5,41-57 the appropriate
angular momentum coupling schemes and decoupling ap-
proximations were developed earlier.58-60 The nonadiabatic
transitions in these systems are induced mainly by the radial
relative motion of the partners; therefore, it makes sense to
examine the interactions F-, Cl-, O-, and S-Z neglecting
the rotations of the interparticle axis and treating the interparticle
distanceR as the only slow variable. In turn, this circumstance

Πs ) (As Bs

Cs -As
t ) s g 1 (11)

Πs ≈ (length-1 length-1 energy-1/2

length-1 energy1/2 length-1 ) (12)

Π1 ) S0
-1

dS0

dR
) (x 0 0 z

0 y z 0
0 t -x 0
t 0 0 -y

) (13)

P ) (0 p
-p 0)
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makes it possible to apply the post-adiabatic analysis to these
systems.

The interaction between1S and2P particles gives rise to three
adiabatic states|jΩ〉 ) |3/21/2〉, |3/23/2〉, |1/21/2〉. (The state
|jΩ〉 correlates with the total angular momentumj of the
species2P asR f ∞ and is characterized by the projection
Ω of the total angular momentum along the interparticle
axis).42,44-49,51,53,54,58,59,61For the case of a (p5)(2P) atom
(e.g., a halogen atom), the ground state is|3/21/2〉. States
|3/21/2〉 and |1/21/2〉 with the same value ofΩ ) 1/2 are
coupled and therefore constitute a two-state problem.

Similarly, the interaction between1S and3P particles gives
rise to six adiabatic states|jΩ〉 ) |22〉, |21〉, |20〉, |11〉, |10〉,
|00〉.41,43,44,50,52,56-58,60 This collection of states turns out to
constitute two mutually uncoupled two-state problems|20〉, |00〉
(the problem withΩ ) 0) and|21〉, |11〉 (the problem withΩ
) 1), but the coupling between each of the states|22〉, |10〉 and
any of the remaining five states vanishes. For the case of a
(p4)(3P) atom (e.g., the oxygen, sulfur, selenium, or tellurium
atom), the ground state is|22〉.

The adiabatic potentialsV|jΩ〉(R) for all the three states|jΩ〉
and the matrix elementp1/2(R) of the nonadiabatic coupling
between the|3/21/2〉 and|1/21/2〉 states have been experimen-
tally determined for 10 systems F(2P)-Z, namely, F-He,-Ne,
-D2, -CH4,45 F-Ar, -Kr, -Xe,42 F-HCl, -HBr, and-HI,46

and 7 systems Cl(2P)-Z, namely, Cl-He, -Ne, -Ar, -Kr,48

-Xe,47 -D2, and-CH4.49 The adiabatic potentialsV|jΩ〉(R) for
all six states|jΩ〉, the matrix elementp0(R) of the nonadiabatic
coupling between the|20〉 and|00〉 states, and the matrix element
p1(R) of the nonadiabatic coupling between the|21〉 and |11〉
states have been experimentally determined for seven systems
O(3P)-Z, namely, O-He, -Ne, -Ar, -Kr, -Xe,41 -D2, and
-CH4,43 and four systems S(3P)-Z, namely, S-Ne,-Ar, -Kr,
and-Xe.52 In all of the cases, the indicated features of the long-
range intermolecular interaction were found by analyzing the
elastic differential and integral cross sections (first, the glory
structure in the integral cross sections) measured by molecular
beam techniques. The experiments were performed in the
Göttingen group for systems F-HCl, -HBr, and-HI46 and in
the Perugia group for all of the other systems. Molecules D2,
CH4, HCl, HBr, and HI were treated as spherically symmetric
1S particles, although this approximation is probably not very
good for such strongly anisotropic molecules as HCl and HBr.
Experimental data for the S-He system are absent. However,
accurate ab initio adiabatic potentialsV|jΩ〉(R) and the corre-
sponding nonadiabatic coupling matrix elementsp1/2(R), p0(R),
and p1(R) have recently become available for rare-gas fluo-
rides,53,55,62chlorides,51,53,54,62oxides,50,56,62and sulfides.50,57,62

In fact, for both types of systems (2P-Z and3P-Z), all of the
adiabatic potentials and nonadiabatic coupling matrix elements
mentioned above can be expressed in terms of the eigenvalues
VΣ(R) andVΠ(R) of the electrostatic Hamilton operator (diabatic
potentials) and the fine-splitting constant(s) of the open-shell
atom.

Around the ground-state potential minimum, the interaction
in the systems studied can be described by an atomic coupling
scheme (Hund’s case (c)) for light closed-shell species (weaker
interactions) and by a molecular coupling scheme [Hund’s case
(a)] for heavy closed-shell species (stronger interactions).44,58,63

We have performed a post-adiabatic analysis of 45 two-state
problems arising from interactions F(2P)-Z, with Z ) He, Ne,
Ar, Kr, Xe, H2, D2, CH4, HCl, HBr, HI; Cl(2P)-Z, with Z )
He, Ne, Ar, Kr, Xe, H2, D2, CH4; O(3P)-Z, Z ) He, Ne, Ar,
Kr, Xe, H2, D2, CH4; and S(3P)-Z, Z ) He, Ne, Ar, Kr, Xe.

To each of the 19 systems F-Z and Cl-Z, there corresponds
a single two-state problem with adiabatic potentials

and nonadiabatic coupling matrix elementp1/2. To each of the
13 systems O-Z and S-Z, there corresponds a pair of two-
state problems: the problem forΩ ) 0 and that forΩ ) 1.
The Ω ) 0 problem is characterized by adiabatic potentials

and nonadiabatic coupling matrix elementp0. The Ω ) 1
problem is characterized by adiabatic potentials

and nonadiabatic coupling matrix elementp1. In all cases,u1(R)
> u2(R) for all values ofR.

For each of these 45 two-state problems for 1.25e R e 7 Å
with a step of 0.001 Å, we have calculated first-order post-
adiabatic potentialsu1

(1)(R) and u2
(1)(R), elementsx(R), y(R),

z(R), andt(R) of the first-order post-adiabatic coupling matrix
Π1 (eq 13), and second-order post-adiabatic potentialsu1

(2)(R)
andu2

(2)(R) for four values of the total energyE ) -50, 25,
100, and 200 meV. For each problem, the zero value of the
total energy was fixed by the condition thatu2(R) f 0 asR f
∞, this condition being equivalent to requiring that the ground-
state potential of the system under consideration vanish atR )
∞. The valuesE ) 25, 100, and 200 meV lie in the
experimentally observable range of collision energies. The value
E ) -50 meV corresponds to a bound motion in the potential
well (if its depth exceeds 50 meV). For the adiabatic potentials
and nonadiabatic coupling matrix elements, we used ab initio
curves in the case of the S-He interaction57 and experimentally
derived functions for all of the other systems.41-43,45-49,52 For
the interactions of the F, Cl, and O atoms with the hydrogen
molecule H2, the same adiabatic potentials and nonadiabatic
coupling matrix elements were exploited as for the respective
interactions of these atoms with the deuterium molecule D2.
The post-adiabatic potentials and coupling matrices are nonethe-
less dependent on the reduced massµ of the two partners, and
these potentials and matrices were therefore different for the
H2 and D2 species.

The minimal value (1.25 Å) of the interparticle distanceR
that we probed was chosen by taking into account the observa-
tion that at smaller distancesR the potential models we used
for Cl-He48 and S-He57 become inadequate (concerning the
Cl-He case, cf. Table 3, theRz̃,t̃ column, and Figure 5 of our
previous publication5).

In all cases, we considered the “dimension-corrected” ele-
ments

of the first-order post-adiabatic coupling matrixΠ1 (eq 13). The
dimension of all four quantitiesx, y, z̃, t̃ and of the nonadiabatic
coupling matrix elementp is length-1 (eq 12).

The experimental data on the scattering of S on D2 obtained
recently in the Perugia group64 are rather preliminary and have
therefore not been used in the present post-adiabatic analysis.
We do not discuss various 2D and 3D potential energy surfaces
(PESs) that are available for the interactions between the F, Cl,
O, and S atoms and the H2, HCl, HBr, and HI molecules and
multidimensional (at most 12-dimensional) PESs for the interac-

u1 ) V|1/21/2〉 u2 ) V|3/21/2〉

u1 ) V|00〉 u2 ) V|20〉

u1 ) V|11〉 u2 ) V|21〉

x, y, z̃ ) [12(u1 - u2)]1/2
z, t̃ ) [12(u1 - u2)]-1/2

t (14)
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tions between these atoms and the methane molecule because
such potentials cannot be used straightforwardly within the post-
adiabatic iteration scheme. As an example, we mention the 3D
ab initio Alexander-Stark-Werner PESs20 for the F + H2

system, the subsequent 2D65 and 3D66 PESs for this system with
the improved long-range region, and very recent 3D ab initio
diabatic PESs for the F+ H2 van der Waals complex.67

The results of the post-adiabatic analysis of the interactions
of the fluorine, chlorine, and oxygen atoms with closed-shell
particles (without the valueE ) 200 meV of the total energy
and without computing the second-order post-adiabatic poten-
tials) were reported in our previous article5 for all of the closed-
shell species except H2. The most important results of the post-
adiabatic analysis of the interactions of thesulfur atom with
rare-gas atoms are presented in Table 1 (for theΩ ) 0 two-
state problems) and Table 2 (for theΩ ) 1 two-state problems).
For rare-gas sulfides, the maximal values

of the dimension-corrected elements of the first-order post-
adiabatic coupling matrixΠ1 in all cases (i.e., for the five closed-
shell atoms, each of the two values ofΩ, and each of the four
values of the total energyE sampled) satisfy the inequalities

In Tables 1 and 2, we list (i) the maximal value

of the corresponding nonadiabatic coupling matrix elementp,
(ii) the maximal value

of the differences

between the first-order post-adiabatic potentials and the adiabatic
potentials, (iii) the maximal valuet̃* of the dimension-corrected
elementt̃ of the first-order post-adiabatic coupling matrixΠ1

(according to eq 15, this is also the maximal value ofall four
dimension-corrected elements ofΠ1), and (iv) the maximal value

of the differences

between the second-order post-adiabatic potentials and the first-
order post-adiabatic potentials. The notation maxR here means
the maximum over the range 1.25e Re 7 Å of the internuclear
distanceR.

The behavior of the nonadiabatic and first-order post-adiabatic
coupling matrix elements and the differences given by eqs 16
and 17 as functions ofR for rare-gas sulfides is shown in Figures
1-3. The nonadiabatic coupling matrix elementp(R) possesses
a single maximum in all cases. However, there are three behavior
patterns for the differencesδk(R) between the first-order post-
adiabatic potentials and the adiabatic potentials: each function
δ1 and δ2 has a single extremum (Figure 1), each of these
functions exhibits two extrema (Figure 2), one of these functions
has a single extremum, and the other one has two extrema
(Figure 3). Here we take into account well-pronounced extrema
only. The first pattern is typical forE ) 200 meV and especially
for E ) -50 meV; the second and third patterns, forE ) 25
and 100 meV. The behavior of the first-order post-adiabatic
coupling matrix elementsx, y, z̃, t̃ is usually more complicated
than that of p, and the behavior of the differences∆k is
more complicated than that ofδk. An interesting topic for further
work would be to compare the vibrational levels corresponding
to the adiabatic potentials and the first-order post-adiabatic
potentials.

TABLE 1: Results of the Post-Adiabatic Analysis of the
Two-State Problems Constituted by States|00〉 and |20〉 of
Rare-Gas Sulfidesa

p*, Å -1 E, meV
max{δ*1, δ*2},

meV t̃*, Å -1
max{∆*1, ∆*2},

meV

He -50 δ*1 ) 6.37 1.39 ∆*1 ) 2.54
25 δ*1 ) 3.61 0.839 ∆*1 ) 0.651

1.09 100 δ*1 ) 1.58 0.832 ∆*2 ) 0.274
200 δ*2 ) 4.40 1.34 ∆*2 ) 1.16

Ne -50 δ*1 ) 2.04 0.832 ∆*1 ) 0.235
25 δ*1 ) 1.40 0.679 ∆*1 ) 0.109

1.05 100 δ*1 ) 0.878 0.698 ∆*1 ) 0.0462
200 δ*2 ) 1.01 0.927 ∆*2 ) 0.110

Ar -50 δ*1 ) 0.942 0.392 ∆*1 ) 0.0428
25 δ*1 ) 0.481 0.266 ∆*1 ) 0.00925

1.07 100 δ*2 ) 0.428 0.397 ∆*2 ) 0.0168
200 δ*2 ) 1.08 0.693 ∆*2 ) 0.0739

Kr -50 δ*1 ) 0.695 0.326 ∆*1 ) 0.0228
25 δ*1 ) 0.344 0.233 ∆*1 ) 0.00466

1.08 100 δ*2 ) 0.365 0.366 ∆*2 ) 0.0115
200 δ*2 ) 0.874 0.634 ∆*2 ) 0.0484

Xe -50 δ*1 ) 0.610 0.297 ∆*1 ) 0.0172
25 δ*1 ) 0.285 0.205 ∆*1 ) 0.00294

1.09 100 δ*2 ) 0.357 0.343 ∆*2 ) 0.00985
200 δ*2 ) 0.829 0.608 ∆*2 ) 0.0423

a Functionsδk(R), ∆k(R), and t̃(R) are defined by eqs 16, 17, and
14, respectively, andp(R) is the non-adiabatic coupling matrix element.
The asterisk means the maximum of the absolute value over the range
1.25 e R e 7 Å.

TABLE 2: Results of the Post-Adiabatic Analysis of the
Two-State Problems Constituted by States|11〉 and |21〉 of
Rare-Gas Sulfidesa

p*, Å -1 E, meV
max{δ*1, δ*2},

meV t̃*, Å -1
max{∆*1, ∆*2},

meV

He -50 δ*1 ) 2.89 0.730 ∆*1 ) 0.738
25 δ*1 ) 1.33 0.409 ∆*1 ) 0.120

0.779 100 δ*2 ) 1.35 0.660 ∆*2 ) 0.249
200 δ*2 ) 3.37 1.16 ∆*2 ) 1.06

Ne -50 δ*1 ) 0.863 0.401 ∆*1 ) 0.0632
25 δ*1 ) 0.505 0.341 ∆*1 ) 0.0225

0.749 100 δ*2 ) 0.328 0.475 ∆*2 ) 0.0269
200 δ*2 ) 0.865 0.737 ∆*2 ) 0.0960

Ar -50 δ*1 ) 0.420 0.200 ∆*1 ) 0.0125
25 δ*1 ) 0.158 0.154 ∆*1 ) 0.00226

0.764 100 δ*2 ) 0.367 0.329 ∆*2 ) 0.0158
200 δ*2 ) 0.778 0.586 ∆*2 ) 0.0618

Kr -50 δ*1 ) 0.307 0.161 ∆*1 ) 0.00643
25 δ*1 ) 0.110 0.144 ∆*1 ) 0.00144

0.770 100 δ*2 ) 0.306 0.306 ∆*2 ) 0.0108
200 δ*2 ) 0.628 0.536 ∆*2 ) 0.0403

Xe -50 δ*1 ) 0.273 0.149 ∆*1 ) 0.00499
25 δ*1 ) 0.0898 0.133 ∆*2 ) 0.00118

0.781 100 δ*2 ) 0.294 0.294 ∆*2 ) 0.00946
200 δ*2 ) 0.593 0.520 ∆*2 ) 0.0353

a The notation is the same as in Table 1.

δk(R) ) uk
(1)(R) - uk(R) k ) 1, 2 (16)

max{∆*1, ∆*2} ∆* k ) max
R

|∆k(R)|

∆k(R) ) uk
(2)(R) - uk

(1)(R) k ) 1, 2 (17)

x* ) max
R

|x(R)| y* ) max
R

| y(R)|
z̃* ) max

R
|z̃(R)| t̃* ) max

R
| t̃(R)|

x* < y* < z̃* < t̃* (15)

p* ) max
R

|p(R)|

max{δ*1, δ*2} δ* k ) max
R

|δk(R)|
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IV. Trends in the Post-Adiabatic Potentials and
Couplings

In this section, we report general trends in the properties of
the post-adiabatic potentials and couplings observed while
examining all four series F-Z, Cl-Z, O-Z, and S-Z of open-
shell systems that we have considered. Some of these trends
were briefly discussed in our previous paper5 for the first three
series F-Z, Cl-Z, and O-Z.

In 42 two-state problems of the total number of 45 that we
dealt with, the first-order post-adiabatic potentialsuk

(1), the first-
order post-adiabatic coupling matrixΠ1, and the second-order
post-adiabatic potentialsuk

(2) were real for all values ofR in
the range 1.25e R e 7 Å for all four valuesE ) -50, 25,
100, and 200 meV of the total energyE. The only exceptions
were the interactions O-He for Ω ) 0, O-H2 for Ω ) 0, and
O-H2 for Ω ) 1 at E ) -50 meV. For these three two-state
problems at the lowest value,-50 meV, of the total energy,
the potentialsuk

(1) are complex for 2.451e R e 2.704 Å, 2.739
e R e 3.113 Å, and 3.021e R e 3.146 Å, respectively.

For each of the six series of two-state problems that we have
studied, F-Z, Cl-Z, O-Z (Ω ) 0), O-Z (Ω ) 1), S-Z (Ω
) 0), and S-Z (Ω ) 1), the first-order post-adiabatic coupling
Π1 (eq 13) and the differencesδk (eq 16) and∆k (eq 17)
decrease in general as the mass of the closed-shell species
increases. This is caused by the growth of the reduced mass of
the partners and partially by an increase in the potential well
depth for the adiabatic potentialu2.41-43,45,46,48,49,51-54,56,57,60

In general, the first-order post-adiabatic couplingΠ1 and the
differencesδk and ∆k for the O-Z systems are much larger
than those for the S-Z systems (for both values ofΩ), those
for the S-Z systems are slightly larger than those for the F-Z

systems, and those for the F-Z systems are larger than those
for the Cl-Z systems. The main reason is that the first-order
post-adiabatic couplingΠ1 for a two-state problem is very
sensitive to the differenceu1 - u2 between the adiabatic
potentials, and the larger this difference, the weaker the
coupling.4,5 For the systems that we have explored, the differ-
ence u1 - u2 is determined primarily by the fine-splitting
constants of the open-shell partner (and coincides with the
corresponding constant atR ) ∞). These constants are68

where the brackets denote the energy of the corresponding
atomic term. For the oxygen and sulfur atoms, the3P0 - 3P2

and the 3P1 - 3P2 splittings are relevant for the two-state
problems withΩ ) 0 and 1, respectively.

More precisely, consider the four closed-shell species Ne,
Ar, Kr, and Xe for which the adiabatic potentials and the
nonadiabatic coupling matrix elements have been determined
experimentally for the four open-shell atoms F, Cl, O, and
S.41,42,45,47,48,52Let f be any of the eight functionsx, y, z̃, t̃ (eq
14), δ1, δ2 (eq 16),∆1, and ∆2 (eq 17). For each of the 24
two-state problems F-Z, Cl-Z, O-Z (Ω ) 0), O-Z (Ω ) 1),

Figure 1. (Upper panel) nonadiabatic (p) and first-order post-adiabatic
(x, y, z̃, t̃; eq 14) coupling matrix elements for the S-He interaction
(theΩ ) 0 two-state problem) at a total energyE of -50 meV. (Lower
panel) differences between the first-order post-adiabatic potentials and
the adiabatic potentials (δ1,2; eq 16) and differences between the second-
order and first-order post-adiabatic potentials (∆1,2; eq 17) for the same
two-state problem at the same value ofE.

Figure 2. Nonadiabatic and first-order post-adiabatic coupling matrix
elements (upper panel), the differences between the first-order post-
adiabatic potentials and the adiabatic potentials, and the differences
between the second-order and first-order post-adiabatic potentials (lower
panel) for the S-Ne interaction (theΩ ) 1 two-state problem) at a
total energy of 100 meV. The notation is the same as in Figure 1.

[F(2P1/2)] - [F(2P3/2)] ) 50.1 meV

[Cl(2P1/2)] - [Cl(2P3/2)] ) 109.4 meV

[O(3P0)] - [O(3P2)] ) 28.14 meV

[O(3P1)] - [O(3P2)] ) 19.62 meV (18)

[S(3P0)] - [S(3P2)] ) 71.12 meV

[S(3P1)] - [S(3P2)] ) 49.1 meV
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S-Z (Ω ) 0), S-Z (Ω ) 1) with Z ) Ne, Ar, Kr, or Xe,
consider the quantityfmean to be equal to the geometric mean
of the maximal valuesf* ) maxR|f(R)| of |f| over the four total
energiesE sampled:

It turns out that if for each of the 4 atoms Ne, Ar, Kr, and Xe
and for each of the 8 functionsf one arranges the corresponding
6 two-state problems in ascending order offmean, then as a rule
(in 23 cases), one would obtain the sequence

The exceptions are six functionsf ≡ x, y, t̃, δ1, ∆1, ∆2 for Z )
Ne and two functionsf ≡ z̃, ∆1 for Z ) Xe, where the
corresponding sequence is

as well as the functionf ≡ x for Z ) Xe, where the sequence
is

Note that although the3P0 - 3P2 fine-splitting constant for the
oxygen and sulfur atoms is larger than the3P1 - 3P2 fine-
splitting constant (see eq 18), theΩ ) 0 first-order post-
adiabatic coupling for these open-shell species turns out to be
larger than theΩ ) 1 first-order post-adiabatic coupling for
each closed-shell partner Z. The reason is that theΩ ) 0
nonadiabatic couplingp0 for these systems is larger than theΩ
) 1 nonadiabatic couplingp1;41,52 cf. Tables 1 and 2 for the

case of the S-Z interactions. If for a fixed rare-gas atom Ne,
Ar, Kr, or Xe one arranges the corresponding six two-state
problems in ascending order ofp* ) maxR|p(R)|, then one would
obtain the sequence given by eq 19 for Ne and Ar and the
sequence

for Kr and Xe.
The dependence of the first-order post-adiabatic couplingΠ1

and the differencesδk and∆k on the total energyE of the system
(in the range-50 e E e 200 meV) is much stronger for the
O-Z systems (for both values ofΩ) than for the F-Z, Cl-Z,
and S-Z systems.

Of the 45 two-state problems that we have studied, consider
42 problems for which the first-order post-adiabatic potentials
are real for allR at each of the 4 values ofE. (As was pointed
out above, the three problems that do not satisfy this condition
are O-He with Ω ) 0, O-H2 with Ω ) 0, and O-H2 with Ω
) 1.) For each of the 8 functionsf t x, y, z̃, t̃ (eq 14),δ1, δ2

(eq 16),∆1, and ∆2 (eq 17) and any of these 42 problems,
arrange those 4 values ofE ) -50, 25, 100, 200 meV in
ascending order of the maximumf* ) maxR|f (R)|. It turns out
that for the functionsx, y, andz̃ one would obtain the sequence

in all 42 problems (the lowerE, the largerf*). For each of the
functions t̃, δ2, and∆2, in most of the problems (to be more
precise, in 31, 24, and 22 problems, respectively), one obtains
the sequence

Finally, for the functionsδ1 and∆1, the most frequent sequence
of the values ofE (obtained in 19 and 15 problems, respectively)
is

Return now to the question of comparing the nonadiabatic
couplings and the first-order post-adiabatic couplings. Recall
that we have examined 45 two-state problems for 4 values of
the total energyE each (i.e., altogether 180 cases, of which in
3 cases the first-order post-adiabatic potentials are complex for
some distancesR). These three exceptional cases are O-He
for Ω ) 0, O-H2 for Ω ) 0, and O-H2 for Ω ) 1 at E )
-50 meV. Of the remaining 177 cases, in 97 cases the
inequalities

hold (Figures 2 and 3), where, as before, the asterisk means the
maximum of the absolute value over the interval 1.25e R e 7
Å. The minimal value of the ratio

(equal in these cases top*/ t̃*) over the whole collection of 97
cases in question is 1.017, the maximal value is 12.577 (for
Cl-Kr at E ) -50 meV), and the mean value is 3.023. The
minimal value of the ratio

over this collection is 2.491, the maximal value is 180.439 (for

Figure 3. Nonadiabatic and first-order post-adiabatic coupling matrix
elements (upper panel), the differences between the first-order post-
adiabatic potentials and the adiabatic potentials, and the differences
between the second-order and first-order post-adiabatic potentials (lower
panel) for the S-Kr interaction (theΩ ) 1 two-state problem) at a
total energy of 25 meV. The notation is the same as in Figure 1.

fmean) (f* |E)-50 meV‚f* |E)25 meV·f* |E)100 meV·f* |E)200 meV)
1/4

Cl f F f S(Ω ) 1) f S(Ω ) 0) f O(Ω ) 1) f O(Ω ) 0)

Cl f S(Ω ) 1) f F f S(Ω ) 0) f O(Ω ) 1) f O(Ω ) 0)

Cl f F f S(Ω ) 1) f O(Ω ) 1) f S(Ω ) 0) f O(Ω ) 0)
(19)

Cl f F f O(Ω ) 1) f S(Ω ) 1) f O(Ω ) 0) f S(Ω ) 0)

200f 100f 25 f -50 meV (20)

25 f -50 f 100f 200 meV

25 f 100f -50 f 200 meV

x* < y* < z̃* < t̃* < p*
max{∆*1, ∆*2} < min{δ*1, δ*2}

G1 ) p*

max{x*, y*, z̃*, t̃*}
(21)

G2 )
min{δ*1, δ*2}

max{∆*1, ∆*2}
(22)
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Cl-Kr at E ) 100 meV), and the mean value is 23.472. There
is a well-pronounced trend of an increase in the ratioG2 as the
ratio G1 increases. The correlation coefficient69 between these
two ratios over all 97 cases in question is equal to 0.880.

In 16 cases (including only interactions F-Z and Cl-Z) of
the 177 ones pointed out above, the inequalities

hold. The minimal value of the ratioG1 (eq 21) over these cases
is 2.014 (note that this ratio is equal top*/ z̃* in the cases in
question), the maximal value is 12.913 (for Cl-Kr at E ) 25
meV), and the mean value is 7.718. The minimal value of the
ratioG2 (eq 22) over these 16 cases is 3.611, the maximal value
is 174.301 (again for Cl-Kr at E ) 25 meV), and the mean
value is 63.241. The trend of an increase in the ratioG2 as the
ratio G1 increases is pronounced for these 16 cases, even better
than for the 97 cases discussed before: the corresponding
correlation coefficient69 is equal to 0.916.

Thus, in 113 cases of the total number of 177 cases, ratios
G1 and G2 both exceed 1. In these 113 cases, the first-order
post-adiabatic coupling is indeed smaller (sometimes an order
of magnitude smaller) than the conventional nonadiabatic
coupling, within the framework of the dimension correction of
eq 14. The differences between the post-adiabatic potentials of
the second and first orders in these cases are also smaller than
the differences between the first-order post-adiabatic potentials
and the adiabatic potentials (sometimes more than 2 orders of
magnitude smaller and more than an order of magnitude smaller
on average).

In 47 cases of 177, the inequalities

hold (Figure 1); consequently, the ratioG1 (eq 21), equal to
p*/ t̃* in these cases, is less than 1. This means that the first-
order post-adiabatic coupling (dimension corrected according
to eq 14) exceeds the nonadiabatic coupling. The minimal value
of the ratioG1 over the collection of the 47 cases in question is
0.275, the maximal value is 0.992, and the mean value is 0.576.
However, the ratioG2 (eq 22) for these cases is still greater
than 1 (i.e., the differences between the post-adiabatic potentials
of the second and first orders are still smaller than the differences
between the first-order post-adiabatic potentials and the adiabatic
potentials). This means that using the first-order post-adiabatic
two-channel Schro¨dinger equation instead of the adiabatic
Schrödinger equation still makes sense in the cases in question.
The minimal value of the ratioG2 over these 47 cases is 1.001,
the maximal value is 4.796 (for F-Ne atE ) 200 meV), and
the mean value is 2.266. The correlation coefficient69 between
the ratiosG1 andG2 for these cases is equal to 0.431.

Finally, in 17 cases (including only interactions of the F and
O atoms with closed-shell species He, Ne, H2, and D2) of the
total number of 177, the ratiosG1 (eq 21) andG2 (eq 22)
both turn out to be smaller than 1; in particular, the inequality
min{δ1

/, δ2
/} < max{∆1

/, ∆2
/} holds. In these cases, using the

first-order post-adiabatic representation of the corresponding
two-channel Schro¨dinger equation makes no sense. However,
the trend of an increase in the ratioG2 as the ratioG1 increases
takes place in these cases as well: the corresponding correlation
coefficient69 is equal to 0.709. In 10 cases of these 17, the
inequalitiesx* < y* < z̃* < p* < t̃* hold; in 4 cases, the
inequalitiesz̃* < x* < y* < p* < t̃* (for the interaction F-He

at each of the four values ofE) hold; in 2 cases, the inequalities
x* < y* < p* < z̃* < t̃* hold; and in 1 case, the inequalitiesp*
< x* < y* < z̃* < t̃* (for the interaction O-D2 with Ω ) 0 at
E ) -50 meV) hold.

In all 177 cases examined, the ratioG2 (eq 22) is greater
than the ratioG1 (eq 21), and as we saw, the inequalitiesG1 <
1 < G2 are valid in 47 cases. A comparison of the differences
uk

(1) - uk anduk
(2) - uk

(1) is a more sensitive indicator of the
applicability of the post-adiabatic analysis than a straightforward
comparison of the nonadiabatic coupling matrixP and the first-
order post-adiabatic coupling matrixΠ1 using the dimension
correction of eq 14.

We have also considered another dimension correction for
the elementsz and t of the first-order post-adiabatic coupling
matrix Π1 (eq 13), namely,

However, such a correction usually yields a very large element
ẑ and a rather small elementt̂. The maximal values

of these elements satisfy the inequalities

in all 177 cases discussed above. Moreover, inall cases,ẑ* has
been found to be larger (often more than an order of magnitude
larger) than max{z̃*, t̃*}.

However, if one considers the 42 two-state problems for
which the first-order post-adiabatic potentials are real for allR
at each of the 4 values ofE and arranges those 4 values ofE )
-50, 25, 100, 200 meV in ascending order of the ratio

then for 33 problems out of 42, one would obtain the sequence

Moreover, this ratio is minimal atE ) 200 meV for all 42
problems. If one arranges the values ofE in ascending order of
ẑ*, one will obtain the sequence given by eq 20 (the higherE,
the smaller ẑ*) in all 42 problems. This suggests that the
dimension correction of eq 23 could be useful at total energies
higher than 200 meV.

In all 177 cases we discussed, all 10 functionsx, y, z, t (and,
consequently,ẑ and t̂, eq 23),z̃, t̃ (eq 14),δ1, δ2 (eq 16),∆1,
and∆2 (eq 17) attain the maxima of their absolute values inside
the interval 1.25e R e 7 Å and, as a rule, near the maximum
of |p|, as expected. (See Figures 1-3 for an example.) Moreover,
all 10 functions are small outside the interval of a strong enough
nonadiabatic coupling. Thus, speaking of the relative magnitude
of these functions, it does suffice to compare just the maxima
of their absolute values, the approach utilized in the present
paper.

V. Conclusions

As we saw in the previous section, even the first step of the
post-adiabatic iteration scheme is an effective tool for reducing
the coupling in many open-shell systems. However, the price
for that is a more complicated structure of the coupling. The

x* < y* < t̃* < z̃* < p*
max{∆*1, ∆*2} < min{δ*1, δ*2}

x* < y* < z̃* < p* < t̃*
max{∆*1, ∆*2} < min{δ*1, δ*2}

ẑ ) hartree1/2z t̂ ) hartree-1/2t (23)

ẑ* ) max
R

|ẑ(R)| ) hartree1/2 max
R

|z(R)|
t̂* ) max

R
| t̂(R)| ) hartree-1/2|t(R)|

t̂* < p* < ẑ*

ẑ*

max{z̃* , t̃*}

200f 100f -50 f 25 meV
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conventional nonadiabatic coupling in ann-state problem with
the real Hamilton operator and a single slow variable is
described by a skew-symmetricn × n matrix, whereas the post-
adiabatic coupling of any orders ) 1, 2, . . . is described by a
Hamiltonian 2n × 2n matrix. Therefore, an effective integration
of multichannel stationary Schro¨dinger equations in the post-
adiabatic representations would perhaps require the development
of special methods. However, no new techniques are needed if
one simulates the process under study on a collection of
potentials and does not take the coupling into account (the
decoupling approximation). As we already pointed out in the
Introduction, using the first-order post-adiabatic potentials within
such an approach may result in a better agreement with the
experiment than using the usual adiabatic potentials. The
examples are the scattering of an electron on a H atom8-10 and
the interaction between a Rydberg electron and an ionic core.11,12

It would be interesting to carry out the post-adiabatic analysis
of the interactions of the Br, I, Se, and Te atoms with closed-
shell particles. For these systems, one expects much smaller
post-adiabatic couplings than for the respective interactions of
the F, Cl, O, and S atoms because of the much larger fine-
splitting constants of the open-shell partners.68 The correspond-
ing adiabatic potentials and nonadiabatic coupling matrix
elements are exemplified by ab initio functions for the Br-He
interaction.61

From a theoretical viewpoint, the most intriguing question
of the theory of the post-adiabatic Schro¨dinger equations
probably concerns the determination of the ordersmin of the
post-adiabatic representation corresponding to the minimal
coupling for the given value of the slow coordinate. In the case
where the adiabatic potentials and the nonadiabatic couplingP
are holomorphic andP varies slowly (i.e., depends on “slow
distance”F ) εR, 0 < ε , 1), the asymptotics ofsmin are c/ε
with a certain constantc.27 Indeed, each step of the post-
adiabatic iterative procedure in this case involves differentiation
with respect toF and multiplication byε (eq 9). Typically, the
sth derivative of a holomorphic function grows likes! as s
increases or, to be more precise, likec-ss! for a certain constant
c > 0.28 Consequently, the magnitude of the post-adiabatic
coupling of orders can be very roughly estimated in the case
in question as (ε/c)ss! ≈ [εs/ce]s. (We neglect the factor (2πs)1/2

in Stirling’s equation fors!.) The minimum of the function [εs/ce]s

is attained ats ) c/ε and is equal to e-c/ε. Such exponentially
small estimates are well known, for example, in averaging
theory.25,70
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Appendix A. On the Nonexistence of Post-Adiabatic
Representations with Several Slow Variables

As was already emphasized in the Introduction, one can
construct post-adiabatic representations of multichannel station-
ary Schro¨dinger equations only for systems with a single slow
degree of freedom. The physical consequences of this restriction
were discussed in detail in our previous paper,5 and here we
explain why in the case ofN g 2 slow coordinates even the
first-order post-adiabatic potential energy surfaces cannot be
defined.

The adiabaticn-channel stationary Schro¨dinger equation in
the case ofN slow variablesR1, . . ., RN has the form2,3,6,7

whereΦ(R) ) Φ(R1,. . . , RN), U(R), E, and I have the same
meaning as for theN ) 1 (eq 2) case,P1(R), . . .,PN(R) are the
skew-Hermitiann × n matrices of the nonadiabatic couplings,
and µ1, . . ., µN are the reduced masses corresponding to
coordinatesR1, . . ., RN. Let the matricesP1(R), . . ., PN(R) be
real and skew-symmetric.

Introduce the notation

(cf. eq 4). Now eq 24 can be rewritten as

whereD is the operator

K0 is the (N + 1)n × (N + 1)n matrix

and

(cf. eq 5). In fact,D is the analogue of the operatorm(d/dR) in
eq 3, andK0 is the analogue of the matrix

in eq 3.
It is not hard to verify that the spectrum of the (N + 1)n ×

(N + 1)n matrix

is always the collection of all of the (N + 1)-th complex roots
of n numbersu1 - E, . . ., un - E. (Recall thatu1, . . ., un are
the diagonal entries of the diagonal matrixU.)

One would be able to include the nonadiabatic coupling
matricesPR in the adiabatic potentialsuk and obtain new (first-
order post-adiabatic) potentialsuk

(1) if the spectrum of the matrix
K0 (eq 25) were the collection of all of the (N + 1)-th complex

-∑
R)1

N p2

2µR
(I ∂

∂RR

+ PR)2

Φ + UΦ ) EΦ (24)

mR ) p

(2µR)1/2
1 e R e N

(D + K0)(Φ
¥[1]

l
¥[N]

) ) 0

¥[R] ) -mR(∂Φ
∂RR

+ PRΦ) 1 e R e N

K0 ) (0 I
U - EI 0) + m(P 0

0 P)
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roots of certain numbersú1, . . .,ún for any diagonaln × n matrix
U and any skew-symmetricn × n matricesP1, . . ., PN. In this
case, the potentialsu1

(1), . . ., un
(1) would be just the numbers

ú1 + E, . . ., ún + E. For N ) 1, the spectrum ofK0 is
indeed the collection of all of the (N + 1)-th complex roots
of some numbersú1, . . ., ún because forN ) 1 the matrix
K0 is Hamiltonian and its spectrum therefore has the form
(λ1, . . .,(λn,16-18 so one can setúk ) λk

2 (1 e k e n). But this
is no longer true forN g 2 (provided that, of course,n g 2).

For instance, letN ) n ) 2 andU ) EI,

wherep1 * 0. Then the 6× 6 matrix K0 is

It is easy to see that the eigenvalues of this matrix are

(the square roots of-m1
2 p1

2 and the fourth roots of-m1
2 p1

2)
and have the form

(the cubic roots ofλ1
3 andλ2

3) for no complexλ1 andλ2.
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