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The first-order post-adiabatic representations in the sense of Klar and Fano (Klar, H.; Fatto/sURe.

Lett. 1976 37, 1132-1134) are obtained for two-channel stationary Sdhrger equations describing the
interaction of the fluorine and chlorine (in tRE state) and oxygen and sulfur (in tffe state) atoms with a
number of closed-shell particles, in particular, with rare gases, hydrogen, deuterium, and methane. Information
on the adiabatic potentials and the nonadiabatic coupling comes mostly from scattering experiments, although
some input from ab initio quantum mechanical calculations is also exploited. Various trends in the behavior
of the first-order post-adiabatic coupling are analyzed, and the optimal ways to estimate the smallness of this
coupling are discussed. The best measure of the strength of the post-adiabatic coupling ®isdialard to

be the differences between the respective post-adiabatic potentials of @edets + 1. A rigorous proof is

given of the fact that post-adiabatic representations exist only in the important case of a single “slow” degree

of freedom.
I. Introduction of the system and (2) the unigaeliabatic representatiothat
A universal tool used to study microscopic properties of relies u!:)on the curre_nt va_Iues of .the slow variaBfes. )
matter is provided by the Schitmger equation. One of the key Treating the nonadiabatic coupling operators as perturbations

and frequently used points in the practical implementation of may lead in some cases to new representations of the multi-
this tool is the separation of all of the degrees of freedom channel stationary Schuinger equation. Klar and Fahd
(genera]ized Coordinates) in the System in question into “fast” noticed that in the case where the SyStem is characterized by a
and “slow” degrees of freedom, depending, for example, on the Single slow coordinate and the Hamilton operatorréal the
relative strength of quantum effects or the presence of a smallfollowing can be done. For each value of the slow coordinate
parameter in the problem. The motion associated with the fastR, it is possible to include (using only algebraic operations) the
coordinates can then be examined at the fixed values of thenonadiabatic coupling matriR(R) in the adiabatic potential
slow coordinates, and the evolution equations for the slow energy curvesi(R), .. ., u(R) and obtain new post-adiabatic
degrees of freedom are obtained from the initial Sdimger potentials(R), . . .,u(R) and a new post-adiabatic coupling
equation for the whole system by averaging over the fast IT:(R), which may be, in a certain sense, smaller than the initial
variables. The prototypical example is the classic Born coupling P(R). Henceforth,n denotes the number of channels
Oppenheimer separatibf slow nuclear motions from fast  to be taken into account. In turn, the residual couplibgR)
electronic degrees of freedom in atomic and molecular systems.can be included for each value & again using algebraic
This operation takes into account the smallness of the electronoperations only, in post-adiabatic potentiak”, 1 < k < n,
mass as compared to the averaged mass of the nuclei. yielding the post-adiabatic potentials®(R), . . ., u,®(R) of

The separation of all of the generalized coordinates in the the second order and the post-adiabatic coudiin¢R) of the
system at hand into fast and slow components gives rise second order, and so on. This iterative procedure of successively
naturally to the concepts of channels (adiabatic states), adiabaticconstructing the post-adiabatic potential$(R), . . ., u,\9(R)
potentials (potential energy surfaces), and skew-Hermitian and couplingdIg(R) of orderss=1, 2, . . . is formally infinite,
operators of nonadiabatic coupling. The adiabatic potentials andalthough it is generically divergent (see section Il below). The
nonadiabatic coupling operators are functions of the slow post-adiabatic potentials and post-adiabatic coupling of a¥der
variables. There are two basic classes of representations of the= 1 enter thepost-adiabatic representatiasf the multichannel
multichannel stationary Schdnger equation (i.e., description  stationary Schidinger equation of ordes. As in the case of
schemes for the corresponding quantum mechanical system)the conventional adiabatic representation, the post-adiabatic
These classes are (@ljabatic representationgeferring to the  representations of all of the orders are connected with the current
values of the slow coordinates at a fixed instant of the evolution value of the slow coordinat®.

" Part of the “Gert D. Billing Memorial Issue” In the pioneering papers of the mid-1970%? only the first

* To whom correspondence should be sent. E-mail: rusin@chph.ras.ru, Step_Of the iterative procedure mentioned above, namely,
sevryuk@mccme.ru. obtaining the post-adiabatic potentials and couplings of the first
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order, was considered through the example of the scattering ofof post-adiabatic representations for systems with more than
an electron on a hydrogen atom. As the slow variable, the so- one slow coordinate.

called Fock mean-square radius of the two electrons was used.

In our previous publications on the subjéétall of the steps  |l. Post-Adiabatic Iterative Procedure

of this procedure were treated from a unified viewpoint, the A \was observed a decade dgbe mathematical background
algebraic structures underlying the post-adiabatic representationg,, post-adiabatic representations of multichannel Stinger

were clarified, and various special properties of these repre- ¢qations is the theory of Hamiltonian and symplectic matrices
sentations were discussed in detail. We also performed a poster real or complex numbers. Recall thatras2 2n matrix K
adiabatic analysis of the van der Waals interactions of the i complex entries is said to Héamiltonianif

fluorine, chlorine, and oxygen atoms with some closed-shell

particles Z, namely, the rare-gas atoms and molecules of K+ JK=0
deuterium, methane, and hydrogen halides HCI, HBr, and Hl.

The theory founded by Klar et &0 and developed further in ~ where

our work* was used in recent papé¥é2to study the interaction

between a Rydberg electron and an ionic core, the slow J:(O _l)
coordinate being the distance between the electron and the 10
nucleus of the ion. | denotes then x n identity matrix, and the superscript t

The aim of constructing post-adiabatic representations of designates the matrix transposition. The Hamiltonian matrices
multichannel Schdinger equations is threefoldFirst, in many determine Hamiltonian linear differential equations. @2 2n
cases, post-adiabatic couplings of low orders do turn out to be matrix K is Hamiltonian if and only if it has the form
smaller than the initial nonadiabatic coupliRgwhich promises
more accurate and faster integration of the Sdimger equation. K = (A B ) 1)
Second, comparing post-adiabatic couplings of different orders C —-A
may help one to estimate the strength of the nonadiabatic effectswith symmetricn x n blocksB andC (B! = B, C' = C) and an

n tr?le syst?rtr;]. If:_ort m(sjtance,tor(lj(_a tr)n?y conclud;eh ftrct)rT the arbitraryn x n block A. A 2n x 2n matrix S with complex
smallness of the first-order post-adiabatic couplibigthat the entries is said to beymplecticif

nonadiabatic effects in the system in question (i.e., the prob-

abilities of nonadiabatic transitions) are weak, even if the d35=7

original nonadiabatic coupling is not very small. Third, using

the post-adiabatic potentials in simulations of the process (with The symplectic matrices determine canonical linear transforma-

the coupling neglected) in place of the adiabatic ones sometimestions.

leads to better agreement with the experimental data. This is In the rich literature on the theory of Hamiltonian and

the case for the situations considered by Klar ét#land Clark symplectic matrices, we confine ourselves here to references

et all112 to the landmark paper by Williamsdf,where the so-called
The main g0a| of the present paper is to extend the post- normal forms of the Hamiltonian matrices were derived for the

adiabatic analysis of the interactions of the F, Cl, and O atoms first time, and to books by Arnold and Brunc'® (The latter

with closed-shell particles presented in our previous artiéles book contains an extensive bibliography.)

to the van der Waals interaction of tealfur atom with rare- The adiabatia»-channel stationary Schdmger equation in

gas atoms. Such an analysis is of interest both from a practicalthe case of aingleslow variableR has the forrf’

viewpoint, taking into account the great importance of sulfur- 2

containing compounds for combustion and atmospheric chem- — h_(|£ + p)zq) +U®d = E®D 2)

istry and their potential to damage the ecology of the earth’s 2u\ dR

atmospheré? and from the point of view of exploring the trends

in the behavior of the post-adiabatic couplings, depending on

the properties of the adiabatic potentials and the nonadiabatic

couplings and the masses of the partners. Some preliminary

results of the post-adiabatic approach to theN®, —Ar, —Kr,

and —Xe interactions have been reporfédiVe also address

some more special questions such as the optimal way of

comparing post-adiabatic couplings of different orders and a

rigorous proof of the nonexistence of post-adiabatic representa-

tions for systems with several slow degrees of freedom. d(o 0 I P o\l/o
The paper is organized as follows. In section II, we give a mﬁ( ) + [(U — El 0) + m(o p)] (3 ) =0 @

sketch of the Klar-Fano iterative procedure for deriving post-

adiabatic representations of multichannel Sdimger equations ~ Where the coefficientn is

and recall some properties of these representations discussed A

in more detail previously. The theoretical background for m=—— (4)

investigating the interactions of the2P), CIEP), O€P), and (2#)1/2

SEP) atoms with closed-shell particles Z and the results of our

post-adiabatic analysis of the-Ble, —Ne, —Ar, —Kr, and—Xe and

systems are presented in section Ill. The features of the first- _ dd

order post-adiabatic coupling in all four seriesF, Cl-Z, === ﬁ"‘ P‘I’) (5)

O—Z, and S-Z are surveyed in section V. Conclusions follow

in section V. Appendix A contains a proof of the impossibility Suppose that the Hamilton operator of the system in question

whereU(R) is the diagonal reah x n matrix whose diagonal
entriesui(R), . . ., Uun(R) are the adiabatic potentiaB(R) is the
skew-Hermitiann x n matrix of the nonadiabatic coupling,

is the reduced mass (corresponding to the coordifRteE
denotes the total energy of the system, aiR) is an
n-dimensional vector of the coefficients at the adiabatic states.
Recall thatl is then x n identity matrix. Equation 2 can be
rewritten as

—
=)
—
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is real. (In the theory of atomic and molecular processes, this least over complex numbers, by a symplectic>2 2n matrix

is almost always the case if the spiarbit interaction is
neglected, and often, although not alwa$& it holds in the
presence of this interaction as well.) Then the n matrix P
is real and skew-symmetric, the X 2n matrix

e

SS(R):16—18
SsileSs = Qs11
The Zh x 2n matrix
L a5
IR =8"5 (9)

is therefore Hamiltonian, and eq 3 can be used as the starting
point for the hierarchy of the post-adiabatic representations of ;s Hamiltoniarts for eachR and is calle# the matrix of the

the stationary Sclidinger equation that we are studying. One
may call eq 3 the zeroth-order post-adiabatic equation.

Now an iterative step of the procedure is performed as
follows. The post-adiabatio-channel stationary Schdnger
equation of any ordes > 0 has the forrh®

dX

_ _[o |
mn+KX=0 KS_(US—EI 0)+mHS @

where U¢R) is a diagonaln x n matrix whose (generally
speaking, complex) diagonal entrigd(R), . . ., u\9(R) are the
post-adiabatic potentials of ordsi(corresponding to the total
energyE), II(R) is a (generally speaking, complex) Hamiltonian
2n x 2n matrix of the post-adiabatic coupling of order
(corresponding to the total enerdy), and X(R) is a -
dimensional vector. Fos = 0, one sets

U,=U uW=u(1=<k=<n)
and the matrixIIp is defined by eq 6. It is obvious that the
eigenvalues of the Hamiltoniam2x 2n matrix

_ [0 |
Q= (Us_ El 0)
are

+uP —EY? 1<ksn
Taking into account that the eigenvalues of any Hamiltonian
matrix come in pairstA,'%718 et us denote the eigenvalues
of the Hamiltonian B8 x 2n matrix Ks = Qs + mlls by
+110, ..., £1,09. The functions

LR =PRI +E, .. u PR =[4.2(R)*+E

are called® the post-adiabatic potentials of order+ 1
(corresponding to the total enerd.

Denote byUss; the diagonaln x n matrix with diagonal
entriesu, D), . . . u,tD, The Hamiltonian 8 x 2n matrices
Ks and

0
Q41 = (Us+l —El IO) (8)

have the same spectrum

+ulFP—EY  1<ks=n
If this spectrum for any value oR in a certain range is
simple; in other words, if all of th@ numbersu;S*(R), . . .,

U I(R) are pairwise distinct and other thEnthen the matrices
K«(R) and Qs+1(R) are conjugated for eadR in this range, at

post-adiabatic coupling of order+ 1 (corresponding to the
total energyE). In many cases, the calculation of this matrix is
facilitated greatly by the so-called symplectic Hellmann
Feynman theorerhThe coordinate transformatiot= SY with

a 2n-dimensional vectol(R) casts eq 7 as the equation

dy 0 I
mﬁ+ Ks+1Y= 0 KS+1 = (U5+1 —El 0) + ITHS+1 (10)

which is called® the post-adiabaticn-channel stationary
Schralinger equation of ordes + 1. Equation 10 has the
same form as eq 7, but wits+; in place ofUs andT1st; in
place ofIls.

Simpler analogues of this construction were proposed (in
different setups) by A. I. Neishtadt (published by Arrd)d
and A. G. Chirko¥? for quantum systems with slowly varying
(i.e., depending on slow time = et, 0 < ¢ < 1) Hamilton
operators. Instead of transforming the Sclinger equation,
Chirkov?? considers successive approximations to its solutions.
Interestingly, one of the approximations in Chirkov’s theory is
referred to in his papétas the “postadiabatic approximation”.
Quantum®24 and classical-?*25systems with slowly varying
Hamilton operators or functions constitute the Ehrenfest frame-
work for the adiabaticity theories, which is probably more
familiar.17-23-25

In contrast to the conventional adiabatic representation (eq
2) of a multichannel stationary Schimger equation, the post-
adiabatic representation of any order 1 obtained as explained
above is not unique because the symplecticx22n matrix S
conjugating the Hamiltonianr2x 2n matricesKs (eq 7) and
Qs+1 (eq 8) is not determined uniquely. (In fact, for any fixed
value of the slow variableR, the matricesS; constitute a
manifold of complex dimension.) An unsuitable choice df
could lead to very large post-adiabatic coupliig.; (eq 9) of
orders + 1. We proposetia simple algorithm for choosing,,
which ensures a small coupliddsy; provided that the coupling
I1s of the previous ordess was already sufficiently small.
Moreover, as was proven in our subsequent papies, matrix
S(R) yielded by this algorithm keeps smoothness (as a function
of R) at the so-called turning poinf8*,26 whereuS™(RY) =
E for somek, 1 < k < n. In the sequel, the conjugating matrices
S at each step of the post-adiabatic iteration procedure and at
each value of the slow coordinate will always be assumed to
be chosen according to our algoritinit. is also important to
emphasize that the post-adiabatic potentials and couplings
depend on the reduced massnd on the total energl.

The sequence of the post-adiabatic representations of a generic
multichannel stationary Schdonger equation of orders= 1,

2, . . .diverges ass — .27 The reason is the operation of
differentiating the conjugating matrix with respectRpwhich
enters eq 9: theth derivative of a typical holomorphic function
grows likes! assincrease® (the derivatives of nonholomorphic,
infinitely differentiable functions grow, as a rule, much fa&lgr
and this rapid growth becomes dominant for lasgi section
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V below, we present this argument in more detail. Moreover,
according to a recent paper by Kendrick et3&multichannel

Schralinger equations admit no representation for which the
nonadiabatic terms are systematically (i.e., for most of the

equations) smaller than the conventional nonadiabatic coupling.

However, as we will see in section IV below, the first-order
post-adiabatic couplinBl; is smaller than the usual nonadiabatic
coupling P for a number of systems.

Sevryuk et al.

and for the elements, v, z, t of the first-order post-adiabatic
coupling matrixIT; (eq 13) in terms of the adiabatic potentials
u; andup, of the elemenp of the nonadiabatic coupling matrix

=%, 0)

of the reduced magsof the system, and of the total energy

Nevertheless, a comparison of the post-adiabatic couplings\ye also determined under which conditions the first-order “post-

of different orders is complicated greatly by the fact thatrthe
x n blocks A, B, Cs of the Zh x 2n matrix

A, B
Hs:(cs _S/sg s>1 (11)
(cf. eq 1) are ofdifferent physical dimensiorf$
=1 =1 —1/2
M, ~ Iength_l ., Iength_1 energy (12)
length * energy’? length

This circumstance makes it impossible to comgaggvhich is

of dimension length!) andIls, s=1, 2, . . ., in astraightforward
manner. In our previous papersywe suggested multiplying the
entries of the symmetric blocks and Cs of the matricedTs

by functions of the adiabatic potentials, . . ., u, to achieve a
dimension of length!. This “palliative”, despite its arbitrariness,

is utilized in the present work as well (cf. eq 14 below). As an
alternative remedy, one could deal with the dimensionless
Schrainger equation, which is of course equivalent to multiply-
ing the blockBsin eq 11 by hartréé? and blockCs by hartreg 2

adiabatic” potentialsy® andu,® and the transformation matrix
S are real.

It is worthwhile to note that the meaning of the term “post-
adiabatic” used in some articles is quite different from the post-
adiabaticity discussed in Klar et 811 Aquilanti et al.#> Clark
et al.}%12and the present article. For instance, the post-adiabatic
potentials of Nikitin et aP? are the eigenvalues of the mattix
+ icP (in our notation), where is a certain real parameter.
Such potentials are always real (provided that the coug?ing
is real) because the matrld + icP is Hermitian. The post-
adiabatic potentials in the sense of Zhu e¥alre just the usual
adiabatic potentials. In a number of papers by Berry eta$,

a hierarchy of corrections to the adiabatic approximation is
studied in certain systems with classical slow variables and
classical or quantum fast variables, and some of those correc-
tions (e.g., the so-called geometric magnetism and deterministic
friction) are sometimes referred to as post-adiabatic correc-
tions 3536 However, such corrections have nothing in common
with the post-adiabatic representations and potentials as intro-
duced by Klar and Fan®.

For two-state systems with any number of slow degrees of

(cf. eq 23 below). For the van der Waals interactions considered ffedom 7and real nonadiabatic coupling operators, Baer and
in the present paper, this second method of “dimension Englmar#’ proposed another construction of “including” non-

correction” always results in larger first-order post-adiabatic
couplings as compared with the first method. (See section IV
below.)

However, the most natural way to overcome the dimension

adiabatic couplings in the adiabatic potentials, which was
subsequently extended to a certain class of systems with an
arbitrary number of stat€s’® This construction is entirely
different from the Klar-Fano approach and admits no iterations.

problem just indicated is perhaps to measure the smaliness of Finally, one should distinguish between the hierarchy of post-
Tl by the differences between the post-adiabatic potentials @diabatic representations of multichannel Sdimger equations

wED, ., Ut of orders + 1 and the respective post-
adiabatic potentials;®, . . .,u,® of the previous ordes. Indeed,

if IIs = 0 thenKs = Qs andustY) = u® for each 1< k < n,
and the stronger the couplinds, the larger the differences
|ustD) — udd|. This approach to estimating the coupling strength

outlined above and the hierarchy of adiabatic separations of the
variables®® The latter hierarchy appears in the case where all
of the slow variables can be divided into moderately slow
variables and very slow ones; then a similar procedure is carried
out with respect to the very slow degrees of freedom and so

can be equally applied to the conventional nonadiabatic coupling ©n- A typical example (one of the three examples pointed out

P (which corresponds to the differenceg® — ) and the
post-adiabatic couplingds of orderss > 1. Its usefulness will
be justified further in section 1V below.

Another complication of the post-adiabatic analysis is that

by Tolstikhin et al) is the Born-Oppenheimérseparation of

fast electronic evolution from slow nuclear coordinates ac-
companied by a subsequent analysis of the nuclear motions by
the hyperspherical coordinate metfé¥*°and the separation

the post-adiabatic potentials and coupling matrices can pe Of, for example, the very slow hyperradius from the moderately

complex in certain ranges of the slow variaBlé® Nonetheless,
nonreal potentials are widely used in the modern theory of

slow angular variables.

elementary processes in, for example, the wave packet propagalll- Post-Adiabatic Analysis of Rare-Gas Sulfides and

tion techniques!

We performed a detailed post-adiabatic analysis of the two-
state problemr( = 2)45 For n = 2, the matrix of the first-
order post-adiabatic coupling has the form

g x00 z
o1 _ [0y z O
=% "®R™lot —~xo0 (13)
t 00 -y

(cf. egs 9 and 11). In particular, explicit expressions were
derived for the first-order post-adiabatic potential® andu,®)

Some Other Open-Shell Systems

The long-range van der Waals interaction of th&Pff(CI@P),
OEP), and S{P) atoms with closed-shell (i.€,S) particles Z
has been extensively studied over the last 15 years from both
theoretical and experimental viewpoift§: >’ the appropriate
angular momentum coupling schemes and decoupling ap-
proximations were developed earlr The nonadiabatic
transitions in these systems are induced mainly by the radial
relative motion of the partners; therefore, it makes sense to
examine the interactions-F Cl—, O—, and S-Z neglecting
the rotations of the interparticle axis and treating the interparticle
distancer as the only slow variable. In turn, this circumstance
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makes it possible to apply the post-adiabatic analysis to theseTo each of the 19 systems+ and CHZ, there corresponds

systems. a single two-state problem with adiabatic potentials
The interaction betweels and?P particles gives rise to three Y Y
adiabatic stateg§ QU= |3/21/Z) |3/23/2Z]) |1/21/Z] (The state Uy = Virpuzn Uz = Vizpuz

[jQUOcorrelates with the total angular momentynof the d diabati i trix el T h of th
species’P asR — « and is characterized by the projection and nonadiabatic coupling matrix elemenk. To each of the

: . 13 systems ©Z and S-Z, there corresponds a pair of two-
Q of the total angular momentum along the interparticle
axis)_42%49,51,53,54,5259,GlFor the case of ga Pb)(2P) al'?om state problems: the problem f@ = 0 and that forQ = 1.
(e.g., a halogen atom), the ground state|321/2] States The Q = 0 problem is characterized by adiabatic potentials

|3/21/Z0and [1/21/Z0with the same value of2 = Y/, are
coupled and therefore constitute a two-state problem.

Similarly, the interaction betweets and®P particles gives  and nonadiabatic coupling matrix elemem The @ = 1

rise to six adiabatic statgfQU= [220] |21[] |200] |110] |100)] problem is characterized by adiabatic potentials
|O0L1*1.43,44,50,52,5658,60 This collection of states turns out to

U = Voo Uy = Va01

constitute two mutually uncoupled two-state problgats)] |00 U =V Uy, = Vo1p
(the problem withQ = 0) and|210] |1100(the problem withQ
= 1), but the coupling between each of the sta22§) |100and and nonadiabatic coupling matrix elementIn all casesy(R)

any of the remaining five states vanishes. For the case of a> Ux(R) for all values ofR.

(p*)CP) atom (e.g., the oxygen, sulfur, selenium, or tellurium  For each of these 45 two-state problems for 1=2B < 7 A
atom), the ground state |82[] with a step of 0.001 A, we have calculated first-order post-
The adiabatic potentialjo (R) for all the three stategQr] ~ adiabatic potentialsi®(R) and u(R), elementsx(R), y(R),
and the matrix elemenpy(R) of the nonadiabatic coupling zZ(R), andt(R) of the first-order post-ad|_abat|_c couplmg matrix

between the3/21/Zand |1/21/Zstates have been experimen- 111 (€d 13), and second-order post-adiabatic potentiZf4R)

tally determined for 10 systems#P)—Z, namely, F-He, —Ne, ~ andu:®(R) for four values of the total energy = —50, 25,
—D,, —CHa % F—Ar, —Kr, —Xe 2 F—HCI, —HBr, and—Hl,46 100, and 200 meV. For each problem, the zero value of the

and 7 systems CIP)-Z, namely, C-He, —Ne, —Ar, —Kr,*8 total energy was fixed by the condition tha(R) — 0 asR —
—Xe A —D,, and—CH,.% The adiabatic potentialé;q(R) for . this condition being equivalent to requiring that the ground-
all six stategj QL] the matrix elemenpo(R) of the nonadiabatic state potential of the system under consideration \{anllﬁhrat
coupling between th0(and|00Cstates, and the matrix element  ©- The values = 25, 100, and 200 meV lie in the
pi(R) of the nonadiabatic coupling between tf#0and |110 experimentally observable range of collision energies. The value

states have been experimentally determined for seven system& = —50 meV corresponds to a bound motion in the potential
O@P)-Z, namely, O-He, —Ne, —Ar, —Kr, —Xe*1 —D,, and well (if its depth exceeds 50 meV). For the adiabatic potentials

—CHg,*3and four systems &)—Z, namely, S-Ne, —Ar, —Kr, and nonadiabatic coupling matrix el_ements, we u_sed ab initio
and—Xe521n all of the cases, the indicated features of the long- Curves in the case of the-$le interactiofi” and experimentally
range intermolecular interaction were found by analyzing the derived functions for all of the other systeris?4>-4952 For
elastic differential and integral cross sections (first, the glory the interactions of the F, ClI, and O atoms with the hydrogen
structure in the integral cross sections) measured by molecularmolecule H, the same adiabatic potentials and nonadiabatic
beam techniques. The experiments were performed in theCOUPling matrix elements were exploited as for the respective
Gittingen group for systems-FHCI, —HBr, and—HI46 and in |nteract|ons.of these atoms with the Qeuterlum molecule D
the Perugia group for all of the other systems. Molecules D "€ post-adiabatic potentials and coupling matrices are nonethe-
CHa, HCI, HBr, and HI were treated as spherically symmetric €SS dependent on the reduced mass the two partners, and
1S particles, although this approximation is probably not very these potentials and matrices were therefore different for the
good for such strongly anisotropic molecules as HCl and HBr. Hz and D» species. _ o
Experimental data for the-SHe system are absent. However, _ The minimal value (1.25 A) of the interparticle distarRe
accurate ab initio adiabatic potential§o{R) and the corre- that we probed was chosen by taking into account the observa-
sponding nonadiabatic coupling matrix elememis(R), po(R), tion that at smaller distancé® the potential models we used
and py(R) have recently become available for rare-gas fluo- for CI—He* and S-He"" become inadequate (concerning the
rides?3.55.62chloridess!53.54629xides5056.62and sulfide$057.62 Cl—He case, cf. Table 3, thig;; column, and Figure 5 of our
In fact, for both types of system3R—Z and3P-2), all of the previous publicatiof). ) .
adiabatic potentials and nonadiabatic coupling matrix elements !N all cases, we considered the “dimension-corrected” ele-
mentioned above can be expressed in terms of the eigenvalue§N€nts
Vx(R) andVp(R) of the electrostatic Hamilton operator (diabatic 1 w o o.on _1
potentials) and the fine-splitting constant(s) of the open-shell X Y, Z= ’—(ul - uz)] z, t= ’—(ul - uz)] t (14)
atom. 2 2

Around the ground-state potential minimum, the interaction of the first-order post-adiabatic coupling matfik (eq 13). The
in the systems studied can be described by an atomic couplingdimension of all four quantities, y, z, t and of the nonadiabatic
scheme (Hund’s case)j for light closed-shell species (weaker  coupling matrix elemenp is length? (eq 12).
interactions) and by a molecular coupling scheme [Hund'’s case  The experimental data on the scattering of S erobBrained

(a)] for heavy closed-shell species (stronger interactiéh}*® recently in the Perugia grofare rather preliminary and have
We have performed a post-adiabatic analysis of 45 two-state therefore not been used in the present post-adiabatic analysis.

problems arising from interactions3P()—Z, with Z = He, Ne, We do not discuss various 2D and 3D potential energy surfaces

Ar, Kr, Xe, Hy, D, CHy, HCI, HBr, HI; CI(?P)—Z, with Z = (PESSs) that are available for the interactions between the F, Cl,

He, Ne, Ar, Kr, Xe, B, Dy, CHs; OCP)—Z, Z = He, Ne, Ar, O, and S atoms and the,HHCI, HBr, and HI molecules and
Kr, Xe, Hp, D2, CHy;, and SEP)—Z, Z = He, Ne, Ar, Kr, Xe. multidimensional (at most 12-dimensional) PESs for the interac-
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TABLE 1: Results of the Post-Adiabatic Analysis of the
Two-State Problems Constituted by State$00CJand |20Cof

Rare-Gas Sulfide8

Sevryuk et al.

TABLE 2: Results of the Post-Adiabatic Analysis of the
Two-State Problems Constituted by Statesl1land |2100of

Rare-Gas Sulfides

max{0* , 6%},

max A*,, A*},

max{ 0* , 6%},

max{ A* , A*.},

p*, A= E, meV meV t At meV pt, A-1 E, meV meV A2 meV
He -50 *, =6.37 1.39 * =254 He -50 * =289 0.730 *, =0.738
25 0*, =3.61 0.839 A* =0.651 25 o*, =133 0.409 A* =0.120
1.09 100 o*, =158 0.832 A*,=0.274 0.779 100 o*,=1.35 0.660 A*,=0.249
200 o*,=4.40 1.34 A*,=1.16 200 o*,=3.37 1.16 A*,=1.06
Ne -50 *, =204 0.832 *,=0.235 Ne -50 *, =0.863 0.401 *,=0.0632
25 *,=1.40 0.679 *,=0.109 25 *, =0.505 0.341 *, =0.0225
1.05 100 *,=0.878 0.698 *,=0.0462 0.749 100 *,=0.328 0.475 *,=0.0269
200 o*,=1.01 0.927 A*,=0.110 200 o*,=0.865 0.737  A*,=10.0960
Ar —50 0*,=0.942 0.392 A* =0.0428 Ar —50 o*,=0.420 0.200 A* =0.0125
25 o*,=0.481 0.266 * =0.00925 25 o*,=0.158 0.154 *, =0.00226
1.07 100 *,=0.428 0.397 * =0.0168 0.764 100 *,=0.367 0.329 *,=0.0158
200 *,=1.08 0.693 * =0.0739 200 *,=0.778 0.586 *,=0.0618
Kr —50 *,=0.695 0.326 * =0.0228 Kr —50 *,=0.307 0.161 *, =0.00643
25 o*,=0.344 0.233 A*, =0.00466 25 o*,=0.110 0.144 A* =0.00144
1.08 100 o*,=0.365 0.366 A*,=0.0115 0.770 100 o*,=0.306 0.306 A*,=0.0108
200 o*,=0.874 0.634 A*,=0.0484 200 o*,=0.628 0.536 A*,=0.0403
Xe =50 *,=0.610 0.297 *,=0.0172 Xe =50 *,=0.273 0.149 *, =0.00499
25 o*,=0.285 0.205 A* =0.00294 25 o*,=0.0898 0.133 A*,=0.00118
1.09 100 *,=0.357 0.343 *,=0.00985 0.781 100 *,=0.294 0.294 *,=0.00946
200 o*,=0.829 0.608 A*,=0.0423 200 o*,=0.593 0.520 A*,=0.0353
a Functionso(R), AR), andi(R) are defined by eqgs 16, 17, and a2 The notation is the same as in Table 1.
14, respectively, ang(R) is the non-adiabatic coupling matrix element.
The asterisk n)fans the maximum of the absolute value over the rangeof the differences
125=R=T7A
0(R) = uM(R) — u(R) k=1,2 (16)

tions between these atoms and the methane molecule because
such potentials cannot be used straightforwardly within the post-
adiabatic iteration scheme. As an example, we mention the 3D
ab initio AlexanderStark—Werner PES¥ for the F + H,
system, the subsequent 2@and 3% PESs for this system with
the improved long-range region, and very recent 3D ab initio
diabatic PESs for the F- H, van der Waals comple¥.

The results of the post-adiabatic analysis of the interactions
of the fluorine, chlorine, and oxygen atoms with closed-shell
particles (without the valu& = 200 meV of the total energy
and without computing the second-order post-adiabatic poten-of the differences
tials) were reported in our previous articfer all of the closed-
shell species except,HThe most important results of the post-
adiabatic analysis of the interactions of thelfur atom with
rare-gas atoms are presented in Table 1 (for@he 0 two-
state problems) and Table 2 (for tie= 1 two-state problems).
For rare-gas sulfides, the maximal values

between the first-order post-adiabatic potentials and the adiabatic
potentials, (iii) the maximal valug of the dimension-corrected
elementt of the first-order post-adiabatic coupling matilik
(according to eq 15, this is also the maximal valualbffour
dimension-corrected elementslIdf), and (iv) the maximal value

max A%, A*.} A% = maxA(R)|

AR =UIR —u’R k=12 (17)
between the second-order post-adiabatic potentials and the first-
order post-adiabatic potentials. The notation mlagre means
the maximum over the range 1.25R < 7 A of the internuclear

distanceR.

xX* = mFg:lXIX(R)I y* = mF§:1>4 y(R)| The behavior of the nonadiabatic and first-order post-adiabatic
_— - - ~ coupling matrix elements and the differences given by eqs 16
z = mRax]z(R)| = mRa>4t(R)| and 17 as functions @ for rare-gas sulfides is shown in Figures

1-3. The nonadiabatic coupling matrix elem@(lR) possesses
of the dimension-corrected elements of the first-order post- a single maximum in all cases. However, there are three behavior
adiabatic coupling matrikI; in all cases (i.e., for the five closed-  patterns for the differencex(R) between the first-order post-
shell atoms, each of the two values@f and each of the four  adiabatic potentials and the adiabatic potentials: each function
values of the total energlf sampled) satisfy the inequalities d; and d; has a single extremum (Figure 1), each of these
functions exhibits two extrema (Figure 2), one of these functions
has a single extremum, and the other one has two extrema
(Figure 3). Here we take into account well-pronounced extrema
only. The first pattern is typical fde = 200 meV and especially
for E = —50 meV; the second and third patterns, Eb= 25
and 100 meV. The behavior of the first-order post-adiabatic
coupling matrix elements, y, 2, t is usually more complicated
than that ofp, and the behavior of the difference is
more complicated than that 6f. An interesting topic for further
work would be to compare the vibrational levels corresponding
to the adiabatic potentials and the first-order post-adiabatic
potentials.

X* <y <7< t* (15)

In Tables 1 and 2, we list (i) the maximal value
p* = maxp(R)|

of the corresponding nonadiabatic coupling matrix elengnt
(ii) the maximal value

max 6, 0%} 0*\ = mF§1>q(3k(R)|
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Figure 1. (Upper panel) nonadiabatip)(and first-order post-adiabatic ~ Figure 2. Nonadiabatic and first-order post-adiabatic coupling matrix
(X, ¥, Z t; eq 14) coupling matrix elements for the-8e interaction elements (upper panel), the differences between the first-order post-
(the Q = 0 two-state problem) at a total energyf —50 meV. (Lower adiabatic potentials and the adiabatic potentials, and the differences

panel) differences between the first-order post-adiabatic potentials andbetween the second-order and first-order post-adiabatic potentials (lower
the adiabatic potential§{ 2 eq 16) and differences between the second- panel) for the SNe interaction (the2 = 1 two-state problem) at a
order and first-order post-adiabatic potentidls £ eq 17) for the same total energy of 100 meV. The notation is the same as in Figure 1.
two-state problem at the same valuekof

) _ _ ) systems, and those for the-E systems are larger than those
IV. Trends in the Post-Adiabatic Potentials and for the CHZ systems. The main reason is that the first-order

Couplings post-adiabatic couplindI; for a two-state problem is very

In this section, we report general trends in the properties of Sensitive to the differencen — u, between the adiabatic
the post-adiabatic potentials and couplings observed while Potentials, and the larger this difference, the weaker the
examining all four seriesFZ, Cl—Z, 0—Z, and S-Z of open- coupling®® For the systems that we have explored, the differ-
shell systems that we have considered. Some of these trend€NC€ U1 — Uz is determined primarily by the fine-splitting
were briefly discussed in our previous papfer the first three constants of the open-shell partner (and coincides with the

series F-Z, Cl—Z, and O-Z. corresponding constant Rt= ). These constants &fe
In 42 two-state problems of the total number of 45 that we ) )

dealt with, the first-order post-adiabatic potentia®), the first- [F(°Py2)] — [F(*P3)] = 50.1 meV

order post-adiabatic coupling matri¥;, and the second-order [CI(*P,,»)] — [CI(*Py)] = 109.4 meV

post-adiabatic potentialg(® were real for all values oR in
the range 1.25 R < 7 A for all four values = —50, 25,

3 3511
100, and 200 meV of the total ener§y The only exceptions [OCPy] — [O(P,)] = 28.14 meV

were the interactions ©He for Q = 0, O—H, for Q = 0, and [0CP)] — [OCP,)] = 19.62 meV (18)
O—H, for @ = 1 atE = —50 meV. For these three two-state

problems at the lowest value;50 meV, of the total energy, 3 1A _

the potentialsi® are complex for 2.45% R < 2.704 A, 2.739 [S(3P°)] [S(SPZ)] 71.12meV

< R=<3.113A and 3.02k R < 3.146 A, respectively. [SCP)] — [S(P,)] = 49.1 meV

For each of the six series of two-state problems that we have
studied, FZ,ClI-Z,0-Z2 (Q =0),0-Z2 (Q =1), SZ (@ where the brackets denote the energy of the corresponding
=0), and S-Z (Q = 1), the first-order post-adiabatic coupling atomic term. For the oxygen and sulfur atoms, ¥Re — 3P,
IT; (eq 13) and the differenced (eq 16) andAx (eq 17) and the3P; — 3P, splittings are relevant for the two-state
decrease in general as the mass of the closed-shell specieproblems withQ = 0 and 1, respectively.
increases. This is caused by the growth of the reduced mass of More precisely, consider the four closed-shell species Ne,
the partners and partially by an increase in the potential well Ar, Kr, and Xe for which the adiabatic potentials and the
depth for the adiabatic potentig.*1~43:45:46,48,49,5154,56,57,60 nonadiabatic coupling matrix elements have been determined
In general, the first-order post-adiabatic couplligand the experimentally for the four open-shell atoms F, ClI, O, and
differencesdx and Ay for the O-Z systems are much larger ~ SA#1424547.4853 et f be any of the eight functions y, 7, t (eq
than those for the SZ systems (for both values &), those 14), 61, 02 (eq 16),A1, and A, (eq 17). For each of the 24
for the S-Z systems are slightly larger than those for theZ- two-state problems+Z, Cl-Z, 0—-Z (2 = 0), 0—-Z (Q = 1),
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0.8 —— . T L case of the SZ interactions. If for a fixed rare-gas atom Ne,

/ I\ Ar, Kr, or Xe one arranges the corresponding six two-state
problems in ascending order jpf = max/p(R)|, then one would
obtain the sequence given by eq 19 for Ne and Ar and the
sequence

Cl—F—0@Q=1)—S@=1)—0(Q =0)— S(Q=0)

for Kr and Xe.

The dependence of the first-order post-adiabatic coupling
and the differenced, andAx on the total energi of the system
(in the range—50 < E < 200 meV) is much stronger for the
O—Z systems (for both values @®) than for the 2, ClI-Z,
and S-Z systems.

Of the 45 two-state problems that we have studied, consider
42 problems for which the first-order post-adiabatic potentials
are real for allR at each of the 4 values &. (As was pointed
out above, the three problems that do not satisfy this condition
are O—He with Q = 0, O—H, with Q = 0, and O-H, with Q
= 1.) For each of the 8 functiorfs=x, y, 7, t (eq 14),04, 02
(eq 16),A;1, and A, (eq 17) and any of these 42 problems,
arrange those 4 values & = —50, 25, 100, 200 meV in
ascending order of the maximuih= maxg|f (R)|. It turns out
that for the functions, y, andz one would obtain the sequence

200— 100— 25— —50 meV (20)

N
i

Couplings [A™]
(=)

<
IS
T T T

=3 =¥
=3 oL
[vs] [o o)

(=}

-0.03

-0.06

-0.09

Differences between potentials [meV]

-0.12

I
2 25 3 35 4 4.5 5 5.5

Internuclear distance R [A] in all 42 problems (the loweE, the largerf*). For each of the

Figure 3. Nonadiabatic and first-order post-adiabatic coupling matrix fynctionst, d,, and A, in most of the problems (to be more

elements (upper panel), the differences between the first-order post-i,acise, in 31, 24, and 22 problems, respectively), one obtains
adiabatic potentials and the adiabatic potentials, and the dn‘ferences,[he sequence

between the second-order and first-order post-adiabatic potentials (lower
panel) for the SKr interaction (theQ = 1 two-state problem) at a BN .
total energy of 25 meV. The notation is the same as in Figure 1. 25 50— 100~ 200 meV

Finally, for the functions); andA;, the most frequent sequence

S—Z (@ =0), SZ (@ = 1) with Z = Ne, Ar, Kr, or Xe, of the values oE (obtained in 19 and 15 problems, respectively)

consider the guantityimeanto be equal to the geometric mean

of the maximal value§* = maxg|f(R)| of |f| over the four total 'S
energiesE sampled: 25— 100— —50— 200 meV
fooan= (P le——50 mev ™ |22 mev™ |e—100 mev™ |E=200 me \)1/4 Return now to the question of comparing the nonadiabatic

couplings and the first-order post-adiabatic couplings. Recall
It turns out that if for each of the 4 atoms Ne, Ar, Kr, and Xe that we have examined 45 two-state problems for 4 values of
and for each of the 8 functiori®ne arranges the corresponding the total energye each (i.e., altogether 180 cases, of which in
6 two-state problems in ascending ordefgf., then as arule 3 cases the first-order post-adiabatic potentials are complex for

(in 23 cases), one would obtain the sequence some distance®). These three exceptional cases areH2
for Q =0, O—Hyfor @ =0, and O-H, for Q =1 atE =
Cl=F—SQ=1)—SQ=0)—0(RQ=1)—0(R=0) —50 meV. Of the remaining 177 cases, in 97 cases the
inequalities

The exceptions are six functiofis= x, y, t, 1, Ay, Ay for Z = ~
Ne and two functionsf = Z, A; for Z = Xe, where the X <yr <ZF <t* <p*
corresponding sequence is max{ A*,, A*,} < min{d*,, 0*,}

Cl—S@=1)—F—SQ=0—0Q=1)—0Q=0) hold (Figures 2 and 3), where, as before, the asterisk means the
maximum of the absolute value over the interval 12R < 7

as well as the functiofi= x for Z = Xe, where the sequence L .
. q A. The minimal value of the ratio

IS

Cl—F—S@=1)—0(Q=1)— S(Q = 0)— O(Q =0) G, = Pt 1)
(29) max x*, y*, 7, t*}

Note that although théP, — 3P, fine-splitting constant for the ~ (equal in these cases f/t*) over the whole collection of 97

oxygen and sulfur atoms is larger than g — 3P fine- cases in question is 1.017, the maximal value is 12.577 (for

splitting constant (see eq 18), tt® = 0 first-order post-  Cl—Kr at E = —50 meV), and the mean value is 3.023. The
adiabatic coupling for these open-shell species turns out to beminimal value of the ratio

larger than theQ = 1 first-order post-adiabatic coupling for e se

each closed-shell partner Z. The reason is that@e= 0 _ min{0*,, 0* 5} (22)
nonadiabatic couplingo for these systems is larger than Qe 2 max A* ., A*.}

)
= 1 nonadiabatic coupling;;*1-52cf. Tables 1 and 2 for the  over this collection is 2.491, the maximal value is 180.439 (for
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Cl—Kr at E = 100 meV), and the mean value is 23.472. There at each of the four values &) hold; in 2 cases, the inequalities
is a well-pronounced trend of an increase in the r&ias the X* <y* <p* <Z <t*hold; and in 1 case, the inequalitigs
ratio G; increases. The correlation coefficiehbetween these < xX* <y* <Z < t*(for the interaction G-D, with Q = 0 at

two ratios over all 97 cases in question is equal to 0.880. E = —50 meV) hold.
In 16 cases (including only interactions-E and Ck2) of In all 177 cases examined, the rat® (eq 22) is greater
the 177 ones pointed out above, the inequalities than the ratids; (eq 21), and as we saw, the inequaliti@s<
L 1 < Gy are valid in 47 cases. A comparison of the differences
XE <y <tr <Z <p* u® — ue andu® — udb is a more sensitive indicator of the
max A*, A* } < min{o*,, 0%} applicability of the post-adiabatic analysis than a straightforward

comparison of the nonadiabatic coupling ma®iand the first-

hold. The minimal value of the rati@; (eq 21) over these cases order post-adiabatic coupling matrl¥; using the dimension
is 2.014 (note that this ratio is equal /Z* in the cases in correction of eq 14.
question), the maximal value is 12.913 (for®r at E = 25 We have also considered another dimension correction for
meV), and the mean value is 7.718. The minimal value of the the elementg andt of the first-order post-adiabatic coupling
ratio G, (eq 22) over these 16 cases is 3.611, the maximal value matrix I; (eq 13), namely,
is 174.301 (again for CiKr at E = 25 meV), and the mean
value is 63.241. The trend of an increase in the réi@s the 2= hartreé'’z t= hartree " (23)
ratio G; increases is pronounced for these 16 cases, even better
than for the 97 cases discussed before: the correspondingiowever, such a correction usually yields a very large element
correlation coefficier¥ is equal to 0.916. z and a rather small elementThe maximal values

Thus, in 113 cases of the total number of 177 cases, ratios _ ~ i
G1 and G both exceed 1. In these 113 cases, the first-order 2* = MaXz(R)| = hartreé maxz(R)|
post-adiabatic coupling is indeed smaller (sometimes an order A A 12
of magnitude smaller) than the conventional nonadiabatic = mng)qt(R)l = hartree J(R)|
coupling, within the framework of the dimension correction of
eq 14. The differences between the post-adiabatic potentials ofof these elements satisfy the inequalities
the second and first orders in these cases are also smaller than Yo~k <5
the differences between the first-order post-adiabatic potentials t p z
and the adiabatic potentials (sometimes more than 2 orders ofi, 411 177 cases discussed above. Moreoveallizases has

magnitude smaller and more than an order of magnitude smallery,qan found to be larger (often more than an order of magnitude
on average). _ . larger) than maf&*, t*}.
In 47 cases of 177, the inequalities However, if one considers the 42 two-state problems for
XE<yR <P <pr < which the first-order post-adiabatic potentials are real foRall
max A*, A%} < min{o*., 6* } at each of the 4 values & and arranges those 4 valuesbof
r=2 re 2 —50, 25, 100, 200 meV in ascending order of the ratio

hold (Figure 1); consequently, the rat® (eq 21), equal to o%
p*/t* in these cases, is less than 1. This means that the first- m
order post-adiabatic coupling (dimension corrected according ’
to eq 14) exceeds the nonadiabatic coupling. The minimal value then for 33 problems out of 42, one would obtain the sequence
of the ratioG; over the collection of the 47 cases in question is

0.275, the maximal value is 0.992, and the mean value is 0.576. 200— 100— —50— 25 meV

However, the ratidG; (eq 22) for these cases is still greater i o

than 1 (i.e., the differences between the post-adiabatic potentialsVoreover, this ratio is minimal aE = 200 meV for all 42

of the second and first orders are still smaller than the differencesProblems. If one arranges the valuessah ascending order of
between the first-order post-adiabatic potentials and the adiabaticZ"> One will obtain the sequence given by eq 20 (the higher
potentials). This means that using the first-order post-adiabatic the smallerz?) in all 42 problems. This suggests that the
two-channel Schiinger equation instead of the adiabatic d!mensmn correction of eq 23 could be useful at total energies
Schralinger equation still makes sense in the cases in question.nigher than 200 meVv. _

The minimal value of the rati; over these 47 cases is 1.001, [N all 177 cases we discussed, all 10 functiang, z, t (and,

the maximal value is 4.796 (for-ANe atE = 200 meV), and ~ consequentlyz andt, eq 23),z t (eq 14),01, 02 (eq 16),A1,
the mean value is 2.266. The correlation coeffici@between andA; (eq 17) attain the maxima of their absolute values inside

the ratiosG; and G, for these cases is equal to 0.431. the interval 1.25< R < 7 A and, as a rule, near the maximum
Finally, in 17 cases (including only interactions of the F and Of [Pl as expected. (See Figuresdfor an example.) Moreover,

O atoms with closed-shell species He, Ne, Bhd D) of the all 10 functions are small outside the interval of a strong enough

total number of 177, the ratio§; (eq 21) andG; (eq 22) nonadiabatic coupling. Thus, speaking of the relative magnitude

both turn out to be smaller than 1; in particular, the inequality ©Of these functions, it does suffice to compare just the maxima
min{0%, 03 < max A% A%} holds. In these cases, using the of their absolute values, the approach utilized in the present
first-order post-adiabatic representation of the corresponding P2Pe'-

two-channel Schiinger equation makes no sense. However,
the trend of an increase in the ra@ as the ratidG; increases
takes place in these cases as well: the corresponding correlation As we saw in the previous section, even the first step of the
coefficienf® is equal to 0.709. In 10 cases of these 17, the post-adiabatic iteration scheme is an effective tool for reducing
inequalitiesxt < y* < 7* < p* < t hold; in 4 cases, the  the coupling in many open-shell systems. However, the price
inequalities?* < x* < y* < p* < t* (for the interaction F-He for that is a more complicated structure of the coupling. The

V. Conclusions
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conventional nonadiabatic coupling in arstate problem with The adiabatim-channel stationary Schdnger equation in
the real Hamilton operator and a single slow variable is the case oN slow variablesRy, . . ., Ry has the forr3:67
described by a skew-symmetrick n matrix, whereas the post-

adiabatic coupling of any order= 1, 2, . . . is described by a N K2 a 2

Hamiltonian 21 x 2n matrix. Therefore, an effective integration - Z_ | Py + P, ®+UP=ED (24)
of multichannel stationary Schidinger equations in the post- 512U

adiabatic representations would perhaps require the developmen\tNhereq)(R) = ®(Ry,. . . ,Ry), UR), E, and! have the same

of special methods. However, no new techniques are needed if
one simulates the process under study on a collection of
potentials and does not take the coupling into account (the
decoupling approximation). As we already pointed out in the
Introduction, using the first-order post-adiabatic potentials within
such an approach may result in a better agreement with the
experiment than using the usual adiabatic potentials. The
examples are the scattering of an electraradd atoni~1° and h
the interaction between a Rydberg electron and an ionic’ééfe. m, = W =

It would be interesting to carry out the post-adiabatic analysis @
of the interactions of the Br, I, Se, and Te atoms with closed- (¢t eq 4). Now eq 24 can be rewritten as
shell particles. For these systems, one expects much smaller

meaning as for th&l = 1 (eq 2) casePy(R), . . ., Pn(R) are the
skew-Hermitiam x n matrices of the nonadiabatic couplings,
and u1, ..., un are the reduced masses corresponding to
coordinatedRy, . . ., Ry. Let the matriced1(R), . . ., Pn(R) be
real and skew-symmetric.

Introduce the notation

post-adiabatic couplings than for the respective interactions of b
the F, ClI, O, and S atoms because of the much larger fine- —[1]
splitting constants of the open-shell partn&3¥he correspond- D+Ky|~. |=0

ing adiabatic potentials and nonadiabatic coupling matrix
elements are exemplified by ab initio functions for the-Bte
interaction®?

From a theoretical viewpoint, the most intriguing question
of the theory of the post-adiabatic ScHioger equations

=[N

whereD is the operator

S m,I8/0R, 0 0
probably concerns the determination of the ordgp of the : : :
post-adiabatic representation corresponding to the minimal b= mn18/0Ry 0 0
coupling for the given value of the slow coordinate. In the case 0 mId/dR, --- mnIO/ORN

where the adiabatic potentials and the nonadiabatic coupling
are holomorphic andP varies slowly (i.e., depends on “slow  Kgis the (N + 1)n x (N + 1)n matrix
distance’p = ¢R, 0 < ¢ < 1), the asymptotics o are /.
with a certain constant.?’ Indeed, each step of the post- mx? é ? 0 g
adiabatic iterative procedure in this case involves differentiation a2 0
X AR ) Ko = L e (25)
with respect tgp and multiplication bye (eq 9). Typically, the maPy 0 o ... 0 I
sth derivative of a holomorphic function grows lile as s U—EI myP, myP, - my_1Py_1 mnPy
increases or, to be more precise, l&kés! for a certain constant
¢ > 028 Consequently, the magnitude of the post-adiabatic and
coupling of orders can be very roughly estimated in the case
in question as<(c)’s! ~ [“/ce]*. (We neglect the factor ()2 =l — -m, 9P +P.® 1<a=<N
in Stirling’s equation fois!.) The minimum of the function‘f/cd|® IR,
is attained as = ¢, and is equal to €. Such exponentially ) .
small estimates are well known, for example, in averaging (cf. g 5). In factD is the analogue of the operatw(d/dR) in

theory?570 eqg 3, andK is the analogue of the matrix
Acknowledgment. We thank A. A. Buchachenko for send- Ko= (O : ) + m(P 0)
ing us the Fortran codes generating ab initio potentigland U—-EIO 0P
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discussions on the post-adiabatic analysis. M.B.S. gratefully
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ineq 3.
It is not hard to verify that the spectrum of thi ¢ 1)n x
(N + 1)n matrix

0 I0 - 00
0 0I--00
Appendix A. On the Nonexistence of Post-Adiabatic Qo= D e
Representations with Several Slow Variables v OEI g g g (I)

As was already emphasized in the Introduction, one can
construct post-adiabatic representations of multichannel station-is always the collection of all of the\(+ 1)-th complex roots

ary Schialinger equations only for systems with a single slow of n numbersu; — E, . . ., u, — E. (Recall thatu, . . ., u, are
degree of freedom. The physical consequences of this restrictionthe diagonal entries of the diagonal mattix)
were discussed in detail in our previous papend here we One would be able to include the nonadiabatic coupling

explain why in the case dfl = 2 slow coordinates even the matricesP, in the adiabatic potentialg and obtain new (first-
first-order post-adiabatic potential energy surfaces cannot beorder post-adiabatic) potentialg? if the spectrum of the matrix
defined. Ko (eq 25) were the collection of all of th&l(+ 1)-th complex
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roots of certain number, . . ., i, for any diagonah x n matrix
U and any skew-symmetric x n matricesPs, . . ., Pn. In this
case, the potentialg;@, . . ., u\® would be just the numbers
&+ E ..., & + E. ForN = 1, the spectrum oKy is
indeed the collection of all of theN(+ 1)-th complex roots
of some numbergy, ..., {, because foN = 1 the matrix

Ko is Hamiltonian and its spectrum therefore has the form

+41, . . .,£An, 161850 one can sl = A2 (1 < k < n). But this
is no longer true foN > 2 (provided that, of coursey > 2).
For instance, leN = n = 2 andU = ElI,

_ [0 Pg _
o, 8) e

wherep; = 0. Then the 6x 6 matrixKg is

O mp1 0 00
-mp; 0 0 1 00
Ko o 0o 0o 10
°“lo 0o 0o 0 01
0 0 0 mpoOoo

0 0 -mpO0o 00

It is easy to see that the eigenvalues of this matrix are

m 1/2
+imp, (£1 +i) (%pl)

(the square roots of-m? pZ and the fourth roots of-m? p?)
and have the form

A %(—uisl’?)zl, N %(—1:|:i31’2)12

(the cubic roots of.3 andA3) for no complexi; andA,.
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