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It is shown that the quantum force in the Bohmian formulation of quantum mechanics can be related to the
stability properties of the given trajectory. In turn, the evolution of the stability properties is governed by
higher order derivatives of the quantum potential, leading to an infinite hierarchy of coupled differential
equations whose solution specifies completely all aspects of the dynamics. Neglecting derivatives of the
quantum potential beyond a certain order allows truncation of the hierarchy, leading to approximate Bohmian
trajectories. Use of the method in conjunction with Bohmian initial value formulations [J. Chem. Phys.2003,
119, 60] gives rise to simple position-space representations of observables or time correlation functions. These
are analogous to approximate quasiclassical expressions based on the Wigner or Husimi phase space density
but involve lower dimensional integrals with smoother integrands and avoid the costly evaluation of phase
space transforms. The lowest-order version of the truncated hierarchy can capture large corrections to classical
mechanical treatments and yields (with fewer trajectories) results that are somewhat more accurate than those
based on quasiclassical phase space treatments.

I. Introduction

The Bohmian theory of time evolution1-3 is an alternative
formulation of quantum mechanics. The main appeal of
Bohmian dynamics is its formulation in terms of “trajectories”,
a familiar concept from classical physics, which can lead to
insightful pictures of quantum phenomena. The Bohmian
trajectories obey classical-like equations of motion with an
additional force arising from a “quantum potential” that is
proportional to the local wave function curvature. Apart from
interest in Bohmian theory as an interpretational tool, the close
resemblance of the Bohmian formulation to that of classical
mechanics raises the intriguing prospect of using it to develop
new numerical tools applicable to multidimensional systems that
are too large to treat via conventional quantum mechanical
methods. Of course quantum mechanics is a nonlocal theory,
and the Bohmian formulation is not expected to beat the scaling
laws that apply to basis set or grid based methods. Yet,
approximate versions of Bohmian dynamics may lead to
sufficiently accurate results in some systems with many degrees
of freedom. Another attractive approach is the construction of
practical quantum-classical (or even quantum-semiclassical)
descriptions of the dynamics based on trajectories where the
quantum force acts only on designated degrees of freedom (e.g.,
those corresponding to light particles).4-8

Considerable effort has been invested in Bohmian dynamics
since the late 1990s by several groups.4-25 Much of that work
has focused on visual investigation of quantum trajectories in
model systems and on the development of numerical methods
for evaluating the required quantum force. The latter is given
by the third derivative of the instantaneous density, and its
accurate determination has been the stumbling block in Bohmian
methodology. Most methods have used moving weighted least-

squares fitting schemes,10,15 distributed approximating func-
tionals,14 or Gaussian expansions25 for evaluating the derivatives
necessary to obtain the quantum force from density information
in the neighborhood of a quantum trajectory. Despite their
success in treating barrier and dissociation problems, these
methods have proven elusive in systems that exhibit strong
quantum interference effects. The dynamics of such systems is
characterized by strong and rugged force fields, whose accurate
evaluation continues to pose a serious numerical problem that
tends to render the solution unstable.26 To date, accurate
calculation of Bohmian trajectories in systems with strong
quantum interference has been possible only by utilizing
eigenstate information obtained by solving the full quantum
mechanical problem by conventional methods.17,23,26

The approach presented in the present manuscript was
motivated by our desire to avoid evaluation of the quantum force
via numerical derivative procedures, thereby circumventing the
stability problem in the calculation of Bohmian trajectories and
the need for simultaneous propagation. Starting from the
equation of continuity for the quantum density,27 we show that
the quantum force along a given trajectory can be obtained from
the stability properties of the same trajectory. These, in turn,
satisfy differential equations that involve derivatives of the
stability matrix familiar from classical mechanics, which require
knowledge of derivatives of the quantum potential. This resulting
procedure, which is based on information contained in the
Bohmian trajectory stability (BTS) matrix, leads to an infinite
hierarchy of differential equations whose solution yields simul-
taneously the density, quantum potential, and trajectory coor-
dinates. This way each quantum trajectory can be propagated
independently, avoiding the need for concurrent propagation of
surrounding trajectories required for derivative evaluation by
numerical schemes.

Recent work by our group has shown that useful dynamical
properties can be cast in initial value representations with smooth
integrands,26,28 so the independent evaluation of quantum
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trajectories in the BTS approach allows the use of Monte Carlo
methods in order to select initial conditions in Bohmian
calculations. In practice, however, a solution of these differential
equations is possible only if the hierarchy terminates. Although
this occurs naturally in special cases, in most systems, it is
necessary to truncate the hierarchy by neglecting derivatives
of the quantum potential beyond a certain order. This procedure
gives rise to approximate Bohmian dynamics whose accuracy
depends on the system and the property in question. Quantum
interference phenomena (which arise from cross terms in the
analogous semiclassical formulation of time-dependent quantum
mechanics) are a signature of nonlocality and thus probably
cannot be captured by low-order versions of the BTS hierarchy.
On the other hand, truncation of the BTS hierarchy at the second
order gives rise to exact quantum trajectories in parabolic
potentials, and thus low-order BTS approximations can account
reasonably well for near-barrier-top tunneling.

Section II describes the theory and develops the BTS
hierarchy. That section also discusses various features of the
BTS scheme and its use in conjunction with Monte Carlo
sampling techniques. Several numerical examples are presented
in section III, illustrating the capabilities and limitations of the
BTS methodology. Finally, some concluding remarks appear
in section IV.

II. Theory

For simplicity, the theory that follows is presented for a one-
dimensional system. Extension of the formalism to many
dimensions is straightforward.

For a general (possibly time-dependent) Hamiltonian, the
Bohmian solution to the time-dependent Schro¨dinger equation

is written in the form

HereR(x;t) is a real-valued amplitude (which may be negative)
and the phaseS(x;t) satisfies the quantum Hamilton-Jacobi
equation

The latter differs from the ordinary equation of classical
mechanics through the presence of a quantum potential pro-
portional to the local wave function curvature

The corresponding quantum force can be written in the form

whereF(x;t) ) R(x;t)2 is the local density. The initial condition
for eq 3 is the phaseS0(x0) of the initial wave function at the
coordinatex0. The trajectory reaches the positionxt at the time

t upon integration according to the equations

with an initial momentum

The dynamics of the Bohmian trajectories resembles fluid flow,
and the density obeys the following continuity equation:

To obtain the quantum force at a given point along a quantum
trajectory one must know the first three derivatives of the
density. Numerical evaluation of these derivatives from the
evolving grid of Bohmian particles (the “Lagrangian field”) is
a demanding and often unstable task, as small errors in the
determination of the quantum force can destroy the stability of
the method. Further, the storage and propagation of the full
Bohmian grid is impractical for systems of many particles, where
Monte Carlo methods provide the only option. Recent work has
indicated that Bohmian expressions can be cast in an initial value
form with a smooth integrand.26,28 This possibility raises the
question of whether the quantum force necessary to propagate
an individual Bohmian trajectory can be evaluated from the
trajectory itself and its stability properties, in the absence of
information from neighboring trajectories.

To proceed, we notice that the continuity equation can be
exploited to obtain spatial derivatives of the density. Indeed,
repeated differentiation of eq 8 and use of the chain rule leads
to the equations

Here all derivatives are evaluated subject to fixed initial
conditions, as specified by eq 7. For a real-valued initial wave
function, p0 ) 0 and the derivatives are evaluated with fixed
initial momentum. Similar expressions can be obtained for
higher order derivatives.

The derivatives of the initial density are assumed known. The
other derivatives are brought into the form of derivatives of
positionxt reached by a trajectory with respect to its initial value

etc. These equations require knowledge of derivatives of the
coordinate reached by a quantum trajectory with respect to its
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initial condition. The first of these derivatives is related to one
of the elements of the stability matrix

This matrix is known to satisfy the following differential
equation:

where

In the last equationVtot(xt;t) ) V(xt;t) + Q(xt;t) is the sum of
the classical and quantum potentials acting on the Bohmian
particle.

To calculate the required higher order derivatives, we
differentiate eq 12 repeatedly with respect tox0. This procedure
leads to the following differential equations:

etc. These equations require knowledge of derivatives of
V′′tot(xt) with respect to its initial positionx0. One finds

and the procedure can be repeated to obtain higher order
derivatives.

Equations 4, 6, and 8-15 form a set of differential equations
from which the density, quantum potential, and Bohmian
trajectories can be propagated simultaneously in time. These
equations are not closed but form an infinite hierarchy. (For
example, evaluation of the quantum force according to eq 4
requires knowledge of the first three derivatives of the density;
these, in turn, require knowledge of the fourth derivative of the
trajectory position, which obeys a differential equation whose
right-hand-side depends on the fifth derivative of the quantum
potential.) In certain situations the hierarchy terminates at a
given order, and the solution of this set of differential equations
yields exact Bohmian trajectories. More often, the above
procedure yields an infinite set of equations. Depending on the
problem at hand, truncation of these equations may lead to
reasonable approximations to the dynamics or to physically
incorrect results. The remainder of this section discusses these
situations, and section III illustrates them with analytic and
numerical examples.

While the present manuscript was in preparation, an article
by Trahan et al.29 appeared that describes an infinite differential

equation hierarchy for the real and imaginary parts of the
logarithm of a wave function. These equations are obtained
directly by expressing the evolving wave function in exponential
form and substituting in the time-dependent Schro¨dinger equa-
tion. Thus, that approach is an exponential derivative scheme
for propagating a wave function and is (in its more general form)
no easier than solving the time-dependent Schro¨dinger equation
in its conventional form. Of course, once the full wave function
has been determined from the solution to the Schro¨dinger
equation, it is a straightforward task to evaluate the quantum
potential and explore the properties of Bohmian trajectories;
but we emphasize that the approach described in ref 29 does
not solve the Bohmian equations of quantum mechanics as a
way of generating the desired dynamics.

Solution of the differential equations for the logarithm of a
wave function is facilitated by adopting a particularansatzfor
the evolving function. Some celebrated choices include Gaussian
superpositions,30 the time-dependent WKB expansion in powers
of p, local quadratic approximations,31 and expansions in powers
of time.32 (The last two of these methods have been implemented
in the context of the quantum mechanical propagator.) The
article by Trahan et al. truncates the hierarchy by neglecting
derivatives of the wave function logarithm beyond a certain
(typically the second) order. The validity of that assumption is
debated later in this section, but we note here that the neglect
of derivatives higher than second order is not necessarily
equivalent to full quantum mechanical propagation subject to a
local Gaussianansatz for the wave function. The assumed
exponential form implies that the scheme cannot account for
nodes that develop in the course of the evolution nor can it be
used to propagate excited states. If a locally Gaussian wave
function approximation is used to generate a quantum potential,
the latter will have only two nonzero derivatives at any point.

The BTS approach described in the present paper generates
the Bohmian trajectories exclusively from knowledge of the
quantum forces, which are, in turn, obtained from the instan-
taneous stability properties of an individual trajectory. Imple-
mentation of this scheme requires in most cases of interest the
neglect of high order derivatives of the quantum potential. Note,
however, that no assumptions are made for the form of the wave
function, and thus, the present methodology can be used to
propagate excited-state functions with spatial nodes.

The question that arises naturally in conjunction with any
truncated hierarchy is whether the derivatives of the function
actually exist and, assuming they do, whether they vanish
beyond a certain order. A functionf can be accurately
represented by a Taylor series in the neighborhood of a given
point x0, provided thatf (n + 1)(xj)(x - x0)n + 1/(n + 1)! (where
f (k) denotes thekth derivative of the function andxj lies between
x and x0) is sufficiently small. For smooth functions, this
condition can always be satisfied by constrainingx to be as
close tox0 as necessary. However, these facts do not imply that
f (n + 1) vanishes. Although the use of a Taylor expansion of the
function throughnth order may lead to an excellent approxima-
tion, the neglect of derivatives of order higher thann in a
differential equation hierarchy may not lead to an accurate
solution. These remarks apply to the derivative propagation
method of Trahan et al.29 (which truncates the exponent of the
evolving wave function) and also to the BTS approach
developed in this paper (which truncates the quantum potential).

Focusing on the formulation presented in this section, whether
derivatives of the quantum potential are small and thus can be
neglected beyond a certain order depends on the physical system
under consideration. Clearly, quadratic Hamiltonians, as well
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as certain special wave functions in nonlinear systems (see
section IIIb) are amenable to such truncations without ap-
proximation. For other situations, such as short duration
scattering events, truncation of the quantum potential may lead
to excellent approximations to the dynamics. Equations 4, 6,
and 8-15 allow propagation of an individual quantum trajectory,
without any reference to neighboring trajectory information. Yet,
this set of equations is formally exact precisely because the
hierarchy is an infinite one. By virtue of Taylor’s theorem,
knowledge of an infinite set of derivatives at a given point is
equivalent to global knowledge of a smooth function. Thus, the
nonlocality of quantum mechanics manifests itself in the infinite
hierarchy of coupled equations in the present formalism: the
infinite set of sensitivity characteristics of a Bohmian trajectory
(i.e., all derivatives of the type∂nxt/∂x0

n) contains information
equivalent to that carried by all other Bohmian trajectories and
the underlying quantum potential. In strongly nonlinear systems
where strong interference is observed, the dynamics cannot be
made local by truncating the differential equation hierarchy.
Truncation of such schemes will in such cases lead to significant
errors in the propagation of the Bohmian trajectories and a loss
of important quantum interference. Dynamical observables that
exhibit strong quantum interference effects are not described
accurately by low-order versions of the BTS methodology.

On the other hand, trajectories generated via the BTS
methodology can penetrate classically forbidden regions. Propa-
gation of a Gaussian wave packet in a parabolic barrier gives
rise to a quadratic quantum potential, and thus, the BTS scheme
truncates rigorously at the second potential derivative in this
case. BTS trajectories can also penetrate nonquadratic potential
barriers and can lead to reasonable (albeit not exact) descriptions
of tunneling effects. The ability of the truncated BTS scheme
to account for tunneling is an important practical advantage of
the methodology described in this paper and can be exploited
to allow barrier penetration for select light particles in a mixed
quantum-semiclassical (or quantum-classical) calculation on a
polyatomic system.

Assuming that neglect of high order derivatives is possible,
the BTS method decouples the quantum trajectories from one
another and thus can be implemented in conjunction with Monte
Carlo methods. Such methods provide the only viable approach
for evaluating integrals of high dimension and their use will be
necessary in order to apply Bohmian dynamics to polyatomic
systems such as molecule-surface scattering. Recent papers by
our group26,28 have derived initial value representations for
observables and time correlation functions that are ideally suited
to Monte Carlo integration. For example, the expectation value
of a coordinate-dependent operatorÂ is given by the expres-
sion26

This exact quantum mechanical result has a deceptively simple
quasiclassical appearance, where the dynamical observable of
interest evaluated at a point along a Bohmian trajectory is
averaged with respect to a distribution specified by the initial
wave function density. Equation 16 does not contain oscillatory
phase factors, and thus, the integrand is a smooth function
suitable for integration by Monte Carlo techniques. Implementa-
tion of such methods is entirely straightforward since the
sampling function given by the initial density|Ψ0(x0)|2 is by
definition readily available.

Below we summarize the equations that are propagated in
the 2nd order BTS scheme. It is easy to show that all derivatives

of the stability matrix vanish in this approximation. This leads
to the following compact expressions for the first two derivatives
of the quantum potential:

The position, momentum, and stability matrix elements along
each quantum trajectory are obtained by solving the following
set of six first-order differential equations:

Several examples presented in the next section show that the
simple 2nd order BTS approximation often provides a reason-
ably accurate and inexpensive approximation to the dynamics.

Extension of the BTS methodology to multidimensional
systems is in principle straightforward. Derivation of the relevant
equations can be easily performed with the aid of symbolic
algebra software. For a system ofN degrees of freedom, the
2nd order BTS methodology leads to 4N2 + 2N coupled
differential equations; this is the same number of equations
required by phase space semiclassical formulations33 (where all
elements of the stability matrix must be propagated concur-
rently), and thus, the integration of BTS trajectories in multi-
dimensional systems (with a second order truncation of the
quantum potential) should not be computationally prohibitive.

III. Examples

(a) Quadratic Hamiltonians. It is always instructive to
consider application of a new method to a simple harmonic
oscillator

Here we choosem) ω ) 1. First we consider a Gaussian initial
state described by the wave function

It is easy to show that the quantum potential is at all times a
quadratic function in this case, and thus, the hierarchy of
differential equations terminates at the second derivative of the
total potential.

Figure 1 shows quantum trajectories obtained with various
values ofR for the initial condition specified byx0 ) 4. These
trajectories were propagated independently of one another by
using the methodology presented in section II. The Bohmian
trajectory corresponding to the center of the Gaussian wave
packet evolves completely classically, oscillating about the
potential minimum. WhenR ) mω/p, the wave packet oscillates
rigidly about the potential minimum, and the Bohmian trajec-
tories display the simple behavior observed in Figure 1b. ForR
* mω/p, there is an additional “breathing” motion, where the
width of the wave packet exhibits an oscillatory pattern about
the ground-state value, and the quantum trajectories exhibit more
complex behaviors.

The observable of interest is the width (root-mean-square
deviation) of the evolving Gaussian wave packet

as a function of time. The expectation values entering this
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expression were obtained from eq 16 withÂ ) x̂ or x̂2. This
initial value representation of Bohmian dynamics,26 eq 16, is
an exact result that can be straightforwardly extended to
multidimensional systems. Figure 2 shows the oscillating width
of the wave packet centered atx0 ) 4 in the caseR ) 4mω/p
obtained via Monte Carlo integration of eq 16 with the initial
probability density as the sampling function. These results were
obtained with 5000 BTS trajectories.

Finally, we demonstrate the application of this methodology
to the evolution of a non-Gaussian state. The initial wave
function has the form

with R ) 2mω/p andx0 ) 4. This function corresponds to the
first excited state for a harmonic potential with frequency 2ω
and a minimum atx0. Again, truncation of the quantum potential
at the second order leads to exact dynamics. It is easy to show
that the Bohmian force of a displaced harmonic oscillator state
is identical to the one corresponding to a shifted Gaussian of
the same width. Figure 3 shows the quantum trajectories for
this wave function. Excluding nodes, which lead to zero
denominators and thus cannot be propagated, all other trajec-
tories were propagated using a straightforward application of
the BTS scheme. It can be seen from Figure 3 that the BTS
trajectories do not pass through the nodal line.

(b) Eigenstates of Anharmonic Systems.Eigenstates of a
general time-independent Hamiltonian give rise to Bohmian
forces that precisely cancel their classical counterparts. To see

Figure 1. Quantum trajectories for a displaced Gaussian state with (a)R ) (1/10)mω/p, (b) R ) mω/p, (c) R ) 2mω/p, and (d)R ) 10mω/p. One
of these trajectories in each figure is shown as a dashed line for clarity. Notice the different scale in d.

Figure 2. Width of a Gaussian wave packet withR ) 4mω/p, x0 ) 4
in a harmonic potential. Solid circles: Monte Carlo results obtained
with 5000 BTS trajectories. The error bars are smaller than the size of
the markers. The solid line shows the exact quantum mechanical result.

Figure 3. Quantum trajectories for a displaced excited state of a
harmonic potential (cf. eq 22). The dotted line shows the trajectory of
the center, for which the quantum force vanishes.

Ψ0(x) ) (4R3

π )1/4

(x - x0) exp(- R
2
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this, consider a Bohmian wave function whose amplitude
function at t ) 0 satisfies the time-independent Schro¨dinger
equation

It follows thatR(x;t) ) R(x;0) andS(x;t) ) -Et. The Bohmian
potential is

Thus,V(x) + Q(x;t) ) E, and the total force equals zero. As a
result, the Bohmian particles do not evolve. However, these
features require a delicate (in principle, exact) cancellation of
classical and quantum forces, and thus, the propagation of
eigenstates in anharmonic potentials using methods based on
numerical derivatives encounters similar challenges to those
discussed in the Introduction.

Because the quantum potential equals exactly the negative
of the classical one, these two functions must have the same
Taylor series expansion (with opposite signs). One can thus
truncate the quantum potential at any given order, and provided
that the classical potential is also truncated at the same order,
the forces will balance exactly, leading to correct time evolution.

These features are illustrated by propagating the first excited
state of a strongly anharmonic oscillator corresponding to the
potential

with m ) ω ) 1. The excited state wave function and its
derivatives were evaluated via a basis set expansion. The BTS
scheme was applied with the quantum potential truncated at
the fourth order, consistent with the quartic form of the classical
potential. The BTS trajectories displayed in Figure 4 are seen
to be perfectly straight lines, a consequence of exact cancellation
between classical and quantum forces.

(c) Barrier Transmission. As a third paradigm, we consider
transmission through a one-dimensional barrier. The transmis-
sion coefficientP(E) at a given translational energyE was
calculated from the expression

HerePE(t) is the time-dependent transmission probability at the
translational energyE

whereh(x) is a step function. Using again eq 16, the transmission
probability takes the form

This expression integrates the initial probability density over
the coordinate interval that leads to reactive trajectories. Since
there is no recrossing for this simple barrier problem, it suffices
to find the coordinatexdiv which separates Bohmian trajectories
that cross the barrier from those that remain nonreactive. This
can be done iteratively with a small number of trajectories:
initially, one sets up a sparse grid to find an approximate value

of xdiv, which is subsequently refined by propagating trajectories
on a finer grid spanning the vicinity of that coordinate value.
The same procedure can be implemented within a Monte Carlo
setting. Once the critical position is found, calculation of the
transmission probability involves evaluating an integral of a
time-independent positive function

which in the present case of a Gaussian density is given by an
error function and more generally can be evaluated by quadra-
ture or conventional Monte Carlo procedures. We emphasize
again that sampling is straightforward and efficient, as the
integrand is positive everywhere and the sampling function is
given by the initial density.

Below we present results for an Eckart barrier

with a ) 1.3624 au,V0 ) 0.016 au) 0.425 eV, and massm )
1061 au. These parameters correspond roughly to the H+ H2

reaction and have been employed in model calculations by other
groups. The imaginary frequency at the barrier top isω0 )
(2a2V0/m)1/2. The initial wave packet has a Gaussian form

with R ) 4, xin ) -1, andpin ) (2mE)1/2.
Bohmian trajectories were propagated in time according to

the 2nd order BTS methodology described in the previous
section, along with the stability matrix elements, their deriva-
tives, and the density. The time-dependent transmission prob-
ability for E ) 0.002 au is shown in Figure 5 and compared to
accurate quantum mechanical results.

Figure 6 shows the transmission coefficient as a function of
translational energy for the one-dimensional H+ H2 model
specified above. The transmission probability varies by a factor
of 300 over the energy range displayed in the figure. It is seen
that the 2nd order BTS results are in reasonable agreement with
those obtained through exact quantum mechanical propagation.
The same figure also compares the results to those for a
parabolic barrier with the same curvature atx ) 0. The
transmission probability obtained with the parabolic approxima-
tion differs significantly from that of the Eckart potential. One
observes that the 2nd order BTS scheme leads to reasonably
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〈Ψ0|eiĤt/pĥe-iĤt/p|Ψ0〉 (27)

PE(t) ) ∫-∞

∞ |Ψ0(x0)|2h(xt)dx0 (28)

Figure 4. BTS trajectories corresponding to the first excited state of
an anharmonic oscillator with the potential given in eq 25. The quantum
potential was truncated at the fourth order.

PE(t) ) ∫xdiv

∞ |Ψ0(x0)|2 dx0 (29)

V(x) )
V0

cosh(ax)2
(30)

Ψ0(x) ) (Rπ)1/4
exp(- R

2
(x - xin)

2 + i
p

pin(x - xin)) (31)
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accurate results for barrier transmission even though the effects
of potential anharmonicity are quite sizable.

The finite width of the wave packet leads to a momentum
spread. The probability distribution in momentum space for the
initial Gaussian wave function is given by the expression

The classical transmission probability is given by the expression

One can see from Figure 6 that the results of eq 33 underestimate
the transmission probability by almost 2 orders of magnitude
at low energies.

In a recent paper,34 it was shown that a stationary phase
evaluation of the semiclassical expression for an expectation
value leads to an alternative classical expression identical to eq
28 but where the coordinatext is the value reached by a classical
trajectory. The results of this classical approximation are of
particular interest here, as any differences from the BTS results
must reveal the role of the approximate quantum potential on
the trajectories. Figure 6 also shows this position space classical
result for the same system. This classical transmission coefficient

shows a steep rise at a translational energy that satisfies the
energy conservation relationE + V(xin) ) V0 (which corresponds
to E ≈ 0.012 au). This result resembles an S-shape curve when
plotted on a linear scale. (The deviation of this classical result
from a step function can be attributed to the energy spread of
the wave packet.) The results of this classical position-space
treatment are also inferior to those obtained via the 2nd order
BTS approximation, as they underestimate the transmission
probability at low energies and overestimate it at higher energies.
Both sets of trajectories start from the same positions and
momenta for a given value of the translational energy; yet, the
proper fraction of BTS trajectories reach the product side of
the barrier at low energies, where the vast majority of classical
trajectories are nonreactive (and the converse is true at high
energies). Apparently, inclusion of the approximate BTS
potential can guide trajectories to the appropriate long-time
distribution.

Figure 5. Transmission probability as a function of time for the Eckart
barrier withE ) 0.002 au. Solid line: exact quantum mechanical results.
Dashed line: results of 2nd order BTS method.

Figure 6. Transmission probability as a function of energy for the
Eckart barrier described in eq 30. Solid line: basis set results. Solid
squares: results of the 2nd order BTS scheme. Hollow circles: classical
results obtained from eq 33. Chain-dotted line and triangles: position-
space classical results using eq 28 with classical trajectories. The dashed
line shows the transmission probability for a parabolic barrier with the
same curvature at the potential maximum.

|Ψ̃(p)|2 ) xπRp2 exp(-
(p - pin)

2

p2R ) (32)

Pcl(E) ) ∫0

∞ |Ψ̃(p0)|2h(p2/2m + V(xin) - V0) dp0 (33)

Figure 7. Time-dependent quantum correction factor for the
Eckart model. Solid line: exact quantum mechanical results. Dashed
line: 2nd order BTS results. (a)T ) 1000 K. (b) T ) 300 K. (c)
T ) 200 K.
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In conclusion, the 2nd order BTS results show a much better
agreement with the exact quantum mechanical results compared
to both the momentum-based and position-based classical
approximations. More elaborate phase space formulations (e.g.,
the Wigner prescription,35,36 recently rederived37,38 through
linearization of the semiclassical expression and forward-
backward semiclassical approximations39) must be used to
improve the accuracy of the classical results. When compared
to the results of these phase space representations for the same
system, the 2nd order BTS results generally show small
improvements. Such comparisons are discussed in more detail
in the next subsection. However, phase space formulations
require the integration of oscillatory functions, which poses
significant challenges to Monte Carlo methods.40 Further, phase
space representations of the quantum density are available
analytically only in simple cases where the wave function has
a Gaussian form and more generally require numerical evalu-
ation of a Wigner or coherent state transform, which can be
very demanding tasks.41 By contrast, the 2nd order BTS
methodology is implemented fully in position space (where the
density is readily available) and involves evaluation of positive
definite integrals.

(d) Thermal Flux Correlation Functions. Last, we focus
on the calculation of flux correlation functions, which can be
used to obtain thermal rate constants. The flux-flux auto-
correlation function42 can be written in several forms, one of
which is43

Hereâ ) 1/kBT is the inverse temperature and

whereĥ is a projection operator corresponding to the Heaviside
step function (h(x) ) 1 for x > 0 only). The time integral of
the flux-flux autocorrelation function yields the thermal rate
constant for the reaction. Evaluating the trace in the coordinate
representation and inserting a complete set of position states,
eq 34 becomes

Each factor in this expression requires propagation of the state
F̂e-âĤ/2|x〉 forward (or backward) to timet, a task that is to be
performed using the Bohmian methodology. Before proceeding,
one can exploit the presence of the flux operators in eq 36 to
eliminate both integrals. Simple algebra leads to the final
expression

To evaluate eq 37, the “thermal wave function” (i.e., the
x-representation) corresponding to the state e-âĤ|x1〉 is con-
structed and used as required to propagate the Bohmian
equations to the desired time. Because only low-order derivatives
are involved, differentiation with respect tox1 in eq 37 is

accurately evaluated by finite difference using a total of twox1

values symmetrically placed around the barrier top. Differentia-
tion with respect to the “final” positionx2 was performed using
a 5-point least-squares interpolation formula and requires
propagation of only a few Bohmian trajectories that remain in
the vicinity of the barrier region. Finally, we note that propaga-
tion of a “thermal wave function” to the longest desired time
contains all of the necessary information to allow evaluation of
the correlation function at many intermediate time points.

BTS trajectories for three thermal wave functions correspond-
ing tox1 values symmetrically placed with respect to the barrier
top were integrated for the Eckart potential described above. In
the present case, the first term in eq 37 vanishes due to potential
symmetry. We calculate the time dependent quantum correction
factor, obtained by dividing the time-integrated flux-flux
autocorrelation function by the classical transition state theory
value

at various temperatures. The long-time limit of this quantity
yields the quantum correction factor to the thermal rate constant.
Figure 7 showsκ(t) obtained with the second-order BTS
approximation and compares to accurate quantum mechanical
results obtained through a basis set method at various temper-
atures. The BTS results are seen to be nearly quantitative at
1000 K and give an error of about 30% at the lowest temperature
considered where the quantum mechanical effects are very large.

Although the 2nd order BTS approximation does not capture
accurately all quantum dynamical features of the motion in this
strongly anharmonic system, its performance is still remarkably
good given the computational advantages discussed earlier,
namely, the coordinate space representation of BTS and the
absence of integrals with oscillatory functions, which lead to
results with small numbers of trajectories. Quasiclassical ap-
proximations, most notably the Wigner formulation of time
correlation functions35,36 (recently rederived37,38 through a
linearization of the semiclassical expression) and forward-
backward semiclassical dynamics (FBSD) techniques39 also
avoid highly oscillatory phase factors associated with quantum
or semiclassical dynamics, but the numerical evaluation of the
phase space transform and the lack of a positive definite
integrand can be major obstacles in their application. The 2nd
order BTS results shown in Figure 7, which were obtained with
2 × 5 + 1 ) 11 trajectories, are slightly closer to the exact
results than those obtained with the most accurate implementa-
tion of the Wigner method for the same system,43 which required
much larger numbers of trajectories for convergence. In light
of this performance, the 2nd BTS methodology appears to
provide an attractive (though still approximate) alternative.

IV. Concluding Remarks

We have presented a procedure for obtaining the quantum
force in the Bohmian formulation of quantum mechanics
concurrently with the instantaneous density and the stability
properties along a given quantum trajectory. The quantities of
interest are given from an infinite hierarchy of coupled dif-
ferential equations. The scheme does not require knowledge of
the density or other properties of surrounding trajectories, and
thus, the BTS may appear to become a local methodology.
However, just as an infinite set of derivatives of an analytic
(Taylor-expandable) function at a given point fully specifies
the entire function, knowledge of the stability characteristics

Cff(t) ) Tr(e-âĤ/2F̂e-âĤ/2eiĤt/pF̂e-iĤt/p) (34)

F̂ ) i
p
[Ĥ,ĥ] (35)

Cff(t) ) ∫dx∫dx′ 〈x|e-iĤt/pF̂e- âĤ/2|x′〉 〈x′|eiĤt/pF̂e-âĤ/2|x〉
(36)

Cff(t) )

- p2

2m2

∂

∂x1
〈0|e-iĤt/pe-âĤ/2|x1〉|x1)0

∂

∂x2
〈x2|e-iĤt/pe-âĤ/2|0〉|x2)0 +

p2

2m2

∂
2

∂x1∂x2
〈x2|e-iĤt/pe-âĤ/2|x1〉|x1)x2)0〈0|e-iĤt/pe-âĤ/2|0〉 (37)

κ(t) ) (e-âV0

2πpâ)-1∫0

t
Cff(t′) dt′ (38)
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of a trajectory toall orders can provide sufficient nonlocal
information to reproduce exactly quantum interference effects.
Truncation of the quantum potential at a specific order closes
the hierarchy, leading to a local and practical approximate
scheme for calculating the quantum force and density along a
quantum trajectory. The truncated BTS scheme makes no
assumptions for the time-dependent wave function or density.
In many situations, the numerical solution of the coupled BTS
equations with low-order truncations of the quantum potential
leads to accurate approximations to the dynamics. However,
the truncated BTS hierarchy generally cannot reproduce inter-
ference effects of a purely quantum mechanical nature.

The independent nature of the BTS trajectories invites the
use of Monte Carlo methods to sample initial conditions. Recent
work has shown that initial value representations of expectation
values or time correlation functions are possible and take a
particularly simple form, with integrands that are smooth
functions, free of rapidly oscillatory phase factors. In the present
paper, we have demonstrated the first use of Monte Carlo
methods to calculate time-dependent observables using the
Bohmian formulation of quantum mechanics. The results
presented in section III are very encouraging and indicate that
low-order BTS approximations with Monte Carlo sampling of
initial conditions provide a useful, often more accurate and more
economical alternative to quasiclassical methods based on phase
space representations.
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