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Properties of a new thawed Gaussian propagator, recently suggested by Baranger et al. for motion under a
smoothed or averaged Hamiltonian, are examined for scaled Morse and quartic oscillators. The resulting
power spectra are similar to those determined by Heller's thawed Gaussian wavepackets governed by the
classical Hamiltonian, but markedly less accurate than the power spectra obtained by Hhakan
propagation. A phase modification to the new propagator implies a new semiclassical quantization formula,
which is shown to be analytically equivalent to the BeBommerfeld form for the Morse oscillator, for
parameter values appropriate to molecular systems. Small differences between the two forms for the quartic
oscillator are found to depend on the width of the coherent state used for the smoothing.

1. Introduction autocorrelation function. The necessary working equations for
A number of recent publications have raised the connection the thawed Gaussian wavepackets are given in section 2,
between thawed Gaussian Wa\/epackets and Heridhrk together with the phase integral quantization formulas. Applica-

dynamics. In particular, Baranger etlafjave a very careful  tions to the Morse and quartic oscillator systems are given in
path integral derivation of the thawed Gaussian wavepacket Sections 3 and 4, respectively. Section 5 summarizes the overall
moving over a smoothed, or ordered, Hamiltonidlg(z*, 2), conclusions. Finally, analytical properties of the Morse oscillator,
averaged over a continuous set of frozen Gaussian functions,including new formulas for the monodromy matrix elements,
or coherent stateigll= |p, qCl The resulting form differs from are given in the appendix.

that given, for example by K&yfor motion over the classical . . .

Hamiltonian, by the inclusion of an additional phase term, both 2- Thawed Gaussian Auto Correlation Functions and
derivations being subject to the approximation that the appropri- POWer Spectra

ate Hamiltonian is expanded to quadratic terms about a guiding  we follow Baranger et al.in using the Klaudéf phase
reference trajectory. Following an approach initiated by Miller,  convention for the coherent states, in which case the mixed
Child and Shalashilthshowed that the matrix element of the propagator for motion under the averaged Hamiltonian, given
Herman-Kluk propagator, evaluated in the same quadratic by eq 4.29 of Barangérmay be expressed as

approximation to the averaged Hamiltonian, was in effect ident-

ical with a projection of the Baranger thawed Gaussian form Dk|e7iHaV”h|pO, 0=

onto a final coherent statg[] although the connection with

Baranger et al.was not made explicit. Discussion has arfsén Vi 5 i 1

from the claim that the Baranger thawed Gaussian form, or N exp{ —oX T Gl Pl X — Gl Sy T Epo%l}

mixed propagator, was more logically derived and more accurate (1)
than the HermanKIuk propagator, a view that was challenged
by Grossman and Herm&and later somewhat modifi€dThe where the normalization factoN, and the thawed exponent,

present paper addresses a different aspect of the discussion, by, may pe represented in terms of monodromy matrix elerfents
using the power spectra derived by the two thawed Gaussianj, the forms

propagation schemes (classical and averaged) to examine

connections between the BehBommerfeld quantization for- ALL

mula for motion on the classical Hamiltonian, with a modified N= (—) (qu + ih)/Oqu)_1/2
formula for motion under the averaged one, of which the latter T
is a slight variant of a form suggested by Baranger &Salcond,

we compare the results with those obtained by Herniéink and
propagation and by BohtSommerfeld quantization. i
Two systems are chosen for investigation: the Morse Mpp — h—Mpq
oscillator and a pure quartic oscillator. The Morse oscillator is = —)/o )
. : : 7t= 7o @)
particularly simple because the dynamics under both the Mgq + 'hyoqu

Hamiltonian forms can be treated analytically. Moreover, Bohr ' . .
Sommerfeld quantization is exact. The quartic oscillator is Other notations in eq 1 include
interesting for the opposite reason that BeBommerfeld

quantization is notoriously inaccurate for the lowest stétes. = t[p.q. —H_(p, g)] dt (3)
The organization of the paper is straightforward. Quantization S j(; H (P G
is achieved, in the usual way, by Fourier transformation of the 1 )/ohz
Hav =_p2 + Vav + (4)
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and may be used to provide a semiclassical quantization condition
for motion underH,,. Bearing in mind that the pre-exponent
yoﬁ term, Mx»)"12 in eq 6 contributes a phase factoreof” for
4ﬁ) Yo aq m (5) each cycle, with periodr, the condition for constructive
interference in the averaged case may be expressed as
where the termygh?/m arises from the kinetic energy part of 1 1
Hay. Equation 1 differs from the equivalent form for motion %[sav(r) + T(z) + Et] — 5=V (13)
under the classical Hamiltoniak by the fact that the trajectories
and the actior&, are governed by, and that the termT is  pecause the remaining terms in eq 6 come back to themselves
absent from the classical form. It is also readily shown, in the after each cycle.
case of a globally quadratic Hamiltonian, thé, differs from The connection with the BokrSommerfeld formula for
Hq by a constant “local zero-point energy” such tBat+ T is quantization of the classical Hamiltonian,
precisely equal t&;.4
The next step is to calculate the appropriate autocorrelation _ 1 _ 1
function. Following Child and Shalashilirthe appropriate form = ﬁ) podt= ( + E)h (14)

for the Baranger case of motion undey, is given by
may be established by rewriting eq 13 as
Cat) = Py, dole " pg, G V2 |
_ Do GlP, G Zﬂj;’q poT— +H—H +E|dt= (u+§)h

M. (15)

EXP{%Mzz(Mrf)_l(zg — ﬁ)z + %(Sav—"_ T)} (6) Hence the analogue of eq 14 is conveniently written as

2
where 1 1 TV _ 1
Zm/;[quyo o dt={v+3h (16)
Y i i
Mzz = Z(qu Moo IhVOqu + hyOMpq) (7) with the energy of the trajectory chosen such that
_1 : i v 1
My = E(qu + M+ ifty Mg, — h_yoMpq) (®) E=Hy =70 = p2 17)
Yo 1 because the termoh?4m from the T integral in eq 4 cancels
2 2 . . . . . .. . .
[Po, GolPy = €xp —7(G = )" — ~— (B — Po)” + with an identical contribution téla,. A less heuristic derivation
4y of eq 16, without this cancellation, is given by Baranger ét al.

i (see eq 6.62).
Fl(pt + po)(qt - qo)} (9)
3. Morse Oscillator

and Classical and Averaged Hamiltonianslt may be verified

. by scaling the energy, coordinate, and momentum and energy

= Yo, _ 1 by a, Ala. andh2m, with o = (h22maD)Y4, that the classical

PA (% po) (10) S
2 Y Hamiltonian reduces to the scaled form

with an equivalent form forZ. The appropriate form for
motion under the classical Hamiltonian is obtained by substitut-
ing & for S,y + T.

The corresponding form for the HermaKluk autocorrela-
tion function appears as an integral over initial phase points

Hy = pr +D(1-e®? a=1V2D  (18)
with A = 1. In addition it turns out, by averaging the quantum
analogue oH over the coherent statpql) with exponentyo,
that the averaged Hamiltonian also takes the Morse form

(pi, o)
1 —aq
i dpdd, Hay=Ho+35p° +D'(1 - ) (19)
Cix (1) =ff|-_poa ol Pie: G/ M;;ésdlhl-_pio' GolPor qOBW ¥ ° 2
(12) where
in which M5 is the complex conjugate of the form in eq 8, + Py — e @20 oy
evaluated for theth trajectory. =7J4+D-D,D'=De q'=q - 3aly, (20)
Finally, the power spectra are given by In addition, the integrand in eq 8 is given by
1
P(E —Re ST dt 12 9H, OH 2Dy
( ) () ( ) 1 1 +)/oh2 ;v zﬂ)_i_aD(zefzaq_efaq) (21)
4\y, AP ap 4 2y,

where the exponent is chosen to reduce the integrand to a

negligible value at = tmax. Peaks occur at energy values such  All the quantities required for evaluation of the two thawed
that contributions from successive cycles of the classical motion Gaussian autocorrelation functions, including new expressions
combine in phase. Hence an analysis of the origin of such peaksfor the monodromy matrix elements, may be evaluated with
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swarm is not simply required as a crude root search for

0 am | . d as. : ch
. trajectories at the eigen-energies. It is also required to eliminate

|

|

|

H . - o

i.-"; ] the spurious sideband peaks, by destructive interference.
|

= I
, _,'i& ! N /L 1 Semiclassical Quantization.To understand the features of
the thawed Gaussian spectra in more detalil, it is simplest first
o] i e to consider the “classical” case, for which the Hamiltonian takes
SR otuinil *1’255 \ e the angle-action form
=2 L ’ i I ]
= g ! 1. 2
0 A | : 1 _JAI/Q. | I,A“ Hc| — | _ 4'3 (22)
T T T 1 @
1; — i o i © with the period of the trajectory given by= 2n/w, where
a0 ! [ 7
Tor | oH
Ass JLMJL Ao a1
" 75 3 5 9 ©=% =173 (23)
E

Figure 1. Morse oscillator power spectra obtained by (a) the classical 1N€ “classical” analogue of eq 15 therefore rearranges to

thawed Gaussian approximation (TGA), (b) the averaged TGA, and H ]

(c) Herman-Kluk propagation. 1 _ c _ 1
Ej;)[pq— Hy+Eldt=|l ————|=v+35 (24)

the help of the angle-action expressions listed in the appendix. ) ) o )

We first compare the forms of the resulting power spectra, with Wherev is an integer. Written in another way, with= v + 1/2

the power spectrum obtained by Hermdluk propagation and +0

then compare the quantization formulas (eqs 14 and 16).

2
Power Spectra.Figures la-c show the “classical”, “aver- 1 | 2 1 (v + %) 52
aged” and HermanKluk power spectra, respectively, for a = =1 - =]+ -—== =— —
g p p pectively E (v + 2)(1 2D) + 5= e+ s (25)

scaled Morse oscillator with = 10.25, for which the quantum
energies are indicated by vertical dashed lines. In each case than other words, as seen in Figure 1a, the
initial coherent statépo, ol with width parametepo = 1, was ! ;
centered at the right-hand turning point for the appropriate
motion. The autocorrelation functions were propagated for 25
cycles of the classical motion, and damped with an expoment

= log(300)T in eq 12. The three spectra illustrated in Figures “averaged” spectra in Figures 1a and 1b, note first that the

la and 1b were obtained for classical actibrss (v + 1/2), actions | for the classical andl for the avera :
- . . . , ged motion, may
with v = 9.5, 10, and 10.5. The corresponding energy in €q 17, o o510 by using eq A.2 in the appendix to express eqs 17

for the *averaged” case, was taken as the classi'cal energy giVenand 19 in angle action form. One finds, on equating the resulting
by eq 22 below. The HermarKluk autocorrelation function energy expression withlg in eq 22, that

in eq 11 was approximated by Monte Carlo quadrature over
500 trajectories; results were independent of the precise location 12 D' I
of |po, Goll E=I——=\/%I'—E+D—D' (26)
It is of course no surprise that the Hermafluk spectrum
is superior to the two thawed Gaussian spectra. This superioritywhich rearranges to
of a frozen multi-Gaussian propagator was demonstrated by
Kay? 10 years ago, and even the multitrajectory variant of I=1+2(D — vDD) 27)
thawed Gaussian propagation was recently sfidavhe inferior
to the HK approach. It is interesting for what follows to see Second, the angle-action identity (eq A.3)
almost precise equivalence, in the present Morse oscillator case, . ,
with the true quantum mechanical spectrum (shown by dots), g ad — _ 1= ¢ = w (28)
obtained by Lorentzian convolution ¢fw,||po, god? with a 1+ /¢ cos6 D’
width parametera. It is also seen that the “classical” and
“averaged” thawed Gaussian spectra are virtually identical, eachmay be verified to yield
with one well-reproduced peak at the energy of the 10th
. . . . . 2
eigenstatel = 7.8) but with progressively large discrepancies 1 0 Vay @D’ p2r
oj; 8q2 a

classical” thawed
Gaussian power spectrum, based on a trajectory with attion
= v+ 1/2, precisely reproduces thth eigenvalue, but all other
eigenvalues have errors proportional to# 1/2 — 1)2.

Turning to the connection between the “classical” and

—2ad __ —ag —
for the other peaks, depending on the precise starting conditions.gm, - 8y '/ 0 (2e e ") do=

The origin of these discrepancies is simply that the autocorre- 2

lation function of any single thawed Gaussian wavepacket is 2/DD-2- (29)
necessarily modulated by the period of the classical motion, 4y
which is reflected in the power spectrum by a pattern of equally

spaced peaks, with a separation dictated by the classicalafter noting that' = dHa/dl' = 4/(1—¢€')D'/D. Consequently,
frequency. By contrast the potential anharmonicity is properly within the approximation

taken into account, in the HermaKluk method, by decompos-

ing the initial wavepacket into a swarm of coherent states, each iz ~ 0 _ 1 = D 1 (30)
with its own characteristic frequency. Note, however, that the 4y, N D’

presence of the spurious peaks in Figures 1a and 1b goes some

way to explaining the size of the required HK swarm. The large equation 16 goes over to
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2
19V, - 1 — .
zﬂﬁ)[q i, q]dt—l—l—Z(D VDD) = (v +3h z_ (a)_
(31)

P(E)

Taken in conjunction with eq 27, this means that the modified -
guantization formula for the averaged Hamiltonian reduces to o ] !
the classical BohrSommerfeld expression, within the validity
of eq 30. This underlying identity explains the close similarity
between Figures la and 1b, which is likely to apply in all
practical molecular situations, with > 10, because with the

@
present scaling)\ = 2D = 1/a?, while it is natural to choosgo & ]
close to unity, to minimizéHo. Consequently the exponent in 1
eq 30 is of the ordea?/4yg = (4N)"1 < 1. .
4. Quartic Oscillator o
Classical and Averaged Hamiltonians.The scaled quartic _
oscillator Hamiltonian is taken in the form § ]
1, 14 J
H,==zp"+ = 32 .
cl Zp 2q ( ) S
with A = 1, in which case the averaged counterpart becomes E
Figure 2. Quartic oscillator power spectra obtained by (a) “classical”
14, 7% 3 TGA, (b) “averaged” TGA, and (c) HK propagation. The dashed
Ha = 2p + _q + _q + 2 + — (33) verticals indicate the quantum mechanical eigenvalues. The dotted ones
8o in panel (c) are Boht Sommerfeld eigenvalues.
so that TABLE 1: Comparison between Exact and Semiclassical
Eigenvalues for the Quartic Hamiltonian?
1 82Vav 3 3, averaged averaged averaged
— =— (34) v exact classical  yo=1 yo=3¥ ;=10

40 o? 42 200

0.53018 0.43351 0.46056  0.46480  0.43529

. . . . 1.89984 1.87596 1.97545 1.93709 1.87776
Power Spectra.Figure 2 gives a similar comparison between 3.72785 3.70699 3.83247 3.77719 3.70882

0

1

2
the thawed Gaussian and Hermafluk power spectra to that 3 5.82238 5.80576 5.94469  5.88040  5.80760
shown in Figure 1; but the results are rather different. The 4 8.130915  8.11680 8.26400  8.19412  8.11865
coherent state exponent was takerygs 33, which minimizes 5 10.61919  10.60681  10.75964 10.68593  10.60867
the constant part dfl,,. The energy of the initial wavepacket 10 2512813 25120045 25.28622 25.20338  25.12193
was chosen as that of the= 1 eigenstateE =~ 1.9). Each aThe headings “classical” and “averaged” refer to quantization by
autocorrelation function was again propagated for 25 periods, €ds 34 and 38, respectively.
using 500 HermanKIluk trajectories.

Again, the two thawed Gaussian spectra in Figures 2a and
2b reproduce a single eigenvalue moderately well but the others 3 3
very poorly. The subsidiary peaks in Figure 2a now lie below p’=2[E— V(9] =2E—q' — 3 _
the eigenvalues, because the quartic oscillation frequency 70 470
increases with energy, and the peak spacing in Figure 2b is even 2 o 2 5
wider due to the added quadratic term Va/qg). Another = (a; o) —q) (36)
significant difference from the Morse oscillator case is that the
Herman-Kluk propagator fails to reproduce the quartic oscil- Where
lator eigenvalues. Instead, the peaks in Figure 2c closely
coincide with the Boh+Sommerfeld eigenvalues, in Table 1 = [2E+ 3 i (37)
below. The origin of this BohrSommerfeld equivalence is 2y 23/
addressed in the concluding section.

Semiclassical Quantization.Turning to the question of  Second, bearing in mind thgt= p in the present units, eq 16
semiclassical quantization, the BetBommerfeld formula (eq  may be reexpressed as
14) for the classical motion takes the form

1
v+ ==
v+—= qu— qo\/2E—q4dq ( 2)

- [T+ V4
_ @™ 1 e (2E)¥* T (1/4)1'(3/2) > ﬁ)’ q+ 4;”2 dt = f " —————1dq (39)
= [T ud = V& + e — )

Finally, the numerator can be expressed, with the help of egs

whereqo = (2E)Y4. The corresponding integral (eq 16) for the 34 and 36, in terms of tabulated integr&isThe final form
averaged Hamiltonian case may be evaluated in terms of elliptic becomes

integralst® The first step is to write eq 17 in the form

(39)
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_ 1., 4 4 2 .2 4 4 same energy. It is, however, less easy to demonstrate that
N ﬁ{(a* a +8a; &) K(k) + 2(a; — a-) E()} destructive interference will necessarily eliminate all the spurious
(39) sideband peaks.

v+

NI

whereK(k) andE(K) are elliptic integrals of the first and second Acknowledgment. The authors are grateful to Dr. D. V.
types, with the argument Shalashilin for helpful discussions. P.S. acknowledges financial
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aZ
“2ia (40) Appendix A: Properties of the Morse Oscillator
- - Basic Equations.Analytical properties of the Morse oscil-
Table 1 gives a comparison between the exact eigenvaluesator, with the Hamiltonian

and those given by eqgs 35 and 39, including information on

the sensitivity of the latter to the choice pf. The special value H= ip2 +D(1 — e 2?2 (A.1)
yo = 33 gives a minimum zero-point energy of 0.540844. It is u
noticeable that the "classical” and “"averaged” semiclassical gre conveniently based on the angle-action forms collected by
eigenvalues are seriously inaccurate fo+= 0. Second, the Child.1* The corresponding action form is
= 1 eigenvalues in columns 2 and 4 closely correspond to the
positions of the central peaks in Figures 2a and 2b. Finally, the \/ZaTD 2.,
“averaged” eigenvalues values tend toward the “classical” ones H=A/—"—+I (A.2)
asyo increases. 2u
In addition, the coordinatg(f) and momentunp(€) vary with

5. Summary and Conclusions the angle variabl® as

Power spectra determined by thawed Gaussian propagation
under the HamiltonianHg, in its classical form and in its qo) = 1 |n(M)
coherent state averaged forida, were compared with the a 1-€
spectrum obtained by HermaiKluk propagation for the Morse

. ! . - and

oscillator and a quartic oscillator. The most important outcome
of the analysis concerns the relationship between the modified
quantization eqs 1617 for motion under the “averaged” _ Jdsinf
Hamiltonian and the BohrSommerfeld quantization formula pO) = — 1+ Ve cosh (A-3)

(eq 14) for normal “classical” motion. A remarkable feature of

the Morse oscillator system is that the “classical” and “averaged” \yheree = E/D, ¢ = +/2uDe(1—¢), and @ increases linearly
thawed Gaussian spectra in Figures 1a and 1b are indistinguishyyith time, 9 = 6, + ot, at a frequency

able on the scale of the diagram, a feature which is traced to

analytical equivalence between the two quantization schemes, 2 2 ) _

provided that the weak approximation (eq 30) is satisfied. A ¢ = oH = \/26‘ D(l — \/ a :) = w (A.9)
similar analysis, for the quartic oscillator, showed agreement el w\ 2ub u

between the two quantization schemes only in the liygit> Monodromy Matrix Elements. Analytical expressions for

1. Both methods were seriously inaccurate for the lowest the monodromy matrix elements are also available, by noting
eigenvalue, with a slight advantage for the modified (averaged t5¢

Hamiltonian) scheme, while the classical Bel®ommerfeld
formula was more accurate for the higher eigenvalues. (Mpp qu) LO —V") (Mpp Mpq) (A5)
. . =

A second significant conclusion is that, although the two types w Mg 0 Mg, Mg
of thawed Gaussian wavepackets give a good approximation N

to the eigenvalue closest in energy to that of the guiding With the boundary conditiorM(0) = I. Consequently, the
trajectory, the results are markedly inferior to those obtained €lémentsMg,, wherer = q or p, satisfy the same linear
by Herman-KIuk propagation, although the latter is shown, by differential equation as the momentum, namely,

the quartic oscillator example, to approximate the Behr 5 "

Sommerfeld eigenvalues, rather than the exact ones. The am_ _V_(q)M (A.6)
weakness of any single trajectory thawed Gaussian approach is df? u

that the power spectrum inevitably contains sideband peaks, . ) ) o )

separated from the main peak by uniform intervals determined Since the anglé increases linearly with time, it follows that
by the frequency of the guiding trajectory. By contrast, the the Wronskian op(6) with M(6) is constant,

Herman-Kluk spectra combine information from a swarm of dM dp

trajectories in such a way that the spurious sideband peaks are p(0)@ - M(G)@ = —Ad = const (A.7)
removed by destructive interference to be replaced by peaks,

which are shown by the quartic oscillator example, to coincide Consequently, by use of the integrating faqof(6),
with the semiclassical BortSommerfeld eigenvalues, rather

than the exact ones. We cannot at present give a proof of thisM(6) _ Ardo B

equivalence, but it is easy to see, from the argument given above,p(g) TS p2(¢9) S

that members of the swarm at the true quantum mechanical ,

eigenvalues will produce spectral peaks at the correct positions __A 2¢'2 cosH _ B
because each HK term contributes the same classical actionand Sf 1+e os¢ 0+ sirf 6 €[ do + K

turning point contribution as a classical thawed Gaussian at the (A.8)
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from which Equations A.12-A.15 give the monodromy matrix elements for
propagation fromé = 0 at energyE = ¢D. The forms for
M(0) = propagation from other different initial anglég are given by
A(1—|—e) cosO + 2¢¥2 + <6 sim9Jr _ sing (A.9)
1+ %2 cos “1 +2cos0 © Mgqo(0) = foo(00)fqqo(60) — fog(00)fe(6) (A.16)
It is also evident, from eq A.5 that the elemeMs;, where M_(0) =f (0 (0) —f_(0.)f (0 A17
r = q or p, collectively denoted\N(6), are related tdvi(6) by pel®) = ToplO0)oe(0) ~ oo B0fi(6)  (A17)
N(6) = uwid A.10 M, (6) = f. (0. (0) — . (0)f..(6)  (A18
(0) = uwgg (A.10) ap(0) = Taq(00)fp(0) — Tq(00)fge(0)  (A.18)
We now choose standard solutions of t¢0) type, namely Mo(6) = T 00)Tpp(0) — Top(O0)Toe(6) (A.19)
fqa(0) andfyy(0), and of theN(0) type, namelyfpo(0) andfy(6),

such that
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