
Properties of the Baranger Thawed Gaussian Propagator†

M. S. Child,* P. Sherratt, and Y. K. Sturdy
Oxford UniVersity, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K.

ReceiVed: March 10, 2004; In Final Form: May 19, 2004

Properties of a new thawed Gaussian propagator, recently suggested by Baranger et al. for motion under a
smoothed or averaged Hamiltonian, are examined for scaled Morse and quartic oscillators. The resulting
power spectra are similar to those determined by Heller’s thawed Gaussian wavepackets governed by the
classical Hamiltonian, but markedly less accurate than the power spectra obtained by Herman-Kluk
propagation. A phase modification to the new propagator implies a new semiclassical quantization formula,
which is shown to be analytically equivalent to the Bohr-Sommerfeld form for the Morse oscillator, for
parameter values appropriate to molecular systems. Small differences between the two forms for the quartic
oscillator are found to depend on the width of the coherent state used for the smoothing.

1. Introduction
A number of recent publications have raised the connection

between thawed Gaussian wavepackets and Herman-Kluk
dynamics. In particular, Baranger et al.1 gave a very careful
path integral derivation of the thawed Gaussian wavepacket
moving over a smoothed, or ordered, Hamiltonian,Hord(z*, z),
averaged over a continuous set of frozen Gaussian functions,
or coherent states|z〉 ) |p, q〉. The resulting form differs from
that given, for example by Kay2 for motion over the classical
Hamiltonian, by the inclusion of an additional phase term, both
derivations being subject to the approximation that the appropri-
ate Hamiltonian is expanded to quadratic terms about a guiding
reference trajectory. Following an approach initiated by Miller,3

Child and Shalashilin4 showed that the matrix element of the
Herman-Kluk propagator, evaluated in the same quadratic
approximation to the averaged Hamiltonian, was in effect ident-
ical with a projection of the Baranger thawed Gaussian form
onto a final coherent state|zf〉, although the connection with
Baranger et al.1 was not made explicit. Discussion has arisen6-8

from the claim that the Baranger thawed Gaussian form, or
mixed propagator, was more logically derived and more accurate
than the Herman-Kluk propagator, a view that was challenged
by Grossman and Herman6 and later somewhat modified.8 The
present paper addresses a different aspect of the discussion, by
using the power spectra derived by the two thawed Gaussian
propagation schemes (classical and averaged) to examine
connections between the Bohr-Sommerfeld quantization for-
mula for motion on the classical Hamiltonian, with a modified
formula for motion under the averaged one, of which the latter
is a slight variant of a form suggested by Baranger et al.1 Second,
we compare the results with those obtained by Herman-Kluk
propagation and by Bohr-Sommerfeld quantization.

Two systems are chosen for investigation: the Morse
oscillator and a pure quartic oscillator. The Morse oscillator is
particularly simple because the dynamics under both the
Hamiltonian forms can be treated analytically. Moreover, Bohr-
Sommerfeld quantization is exact. The quartic oscillator is
interesting for the opposite reason that Bohr-Sommerfeld
quantization is notoriously inaccurate for the lowest states.10

The organization of the paper is straightforward. Quantization
is achieved, in the usual way, by Fourier transformation of the

autocorrelation function. The necessary working equations for
the thawed Gaussian wavepackets are given in section 2,
together with the phase integral quantization formulas. Applica-
tions to the Morse and quartic oscillator systems are given in
sections 3 and 4, respectively. Section 5 summarizes the overall
conclusions. Finally, analytical properties of the Morse oscillator,
including new formulas for the monodromy matrix elements,
are given in the appendix.

2. Thawed Gaussian Auto Correlation Functions and
Power Spectra

We follow Baranger et al.1 in using the Klauder13 phase
convention for the coherent states, in which case the mixed
propagator for motion under the averaged Hamiltonian, given
by eq 4.29 of Baranger,1 may be expressed as

where the normalization factor,N, and the thawed exponent,
γt, may be represented in terms of monodromy matrix elements2

in the forms

and

Other notations in eq 1 include

† Part of the “Gert D. Billing Memorial Issue”.
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and

where the termγ0p2/m arises from the kinetic energy part of
Hav. Equation 1 differs from the equivalent form for motion
under the classical Hamiltonian2,11by the fact that the trajectories
and the actionScl are governed byHav, and that the termT is
absent from the classical form. It is also readily shown, in the
case of a globally quadratic Hamiltonian, thatHav differs from
Hcl by a constant “local zero-point energy” such thatSav + T is
precisely equal toScl.4

The next step is to calculate the appropriate autocorrelation
function. Following Child and Shalashilin,4 the appropriate form
for the Baranger case of motion underHav is given by

where

and

with an equivalent form forzt
/. The appropriate form for

motion under the classical Hamiltonian is obtained by substitut-
ing Scl for Sav + T.

The corresponding form for the Herman-Kluk autocorrela-
tion function appears as an integral over initial phase points
(pi, qi)

in which Mzizi is the complex conjugate of the form in eq 8,
evaluated for theith trajectory.

Finally, the power spectra are given by

where the exponentR is chosen to reduce the integrand to a
negligible value att ) tmax. Peaks occur at energy values such
that contributions from successive cycles of the classical motion
combine in phase. Hence an analysis of the origin of such peaks

may be used to provide a semiclassical quantization condition
for motion underHav. Bearing in mind that the pre-exponent
term, (Mz*z*)-1/2, in eq 6 contributes a phase factor ofe-iπ for
each cycle, with periodτ, the condition for constructive
interference in the averaged case may be expressed as

because the remaining terms in eq 6 come back to themselves
after each cycle.

The connection with the Bohr-Sommerfeld formula for
quantization of the classical Hamiltonian,

may be established by rewriting eq 13 as

Hence the analogue of eq 14 is conveniently written as

with the energy of the trajectory chosen such that

because the termγ0p2/4m from theT integral in eq 4 cancels
with an identical contribution toHav. A less heuristic derivation
of eq 16, without this cancellation, is given by Baranger et al.1

(see eq 6.62).

3. Morse Oscillator

Classical and Averaged Hamiltonians.It may be verified
by scaling the energy, coordinate, and momentum and energy
by R, p/R andp2/2m, with R ) (p22ma2D)1/4, that the classical
Hamiltonian reduces to the scaled form

with p ) 1. In addition it turns out, by averaging the quantum
analogue ofHcl over the coherent state|pq〉, with exponentγ0,
that the averaged Hamiltonian also takes the Morse form

where

In addition, the integrand in eq 8 is given by

All the quantities required for evaluation of the two thawed
Gaussian autocorrelation functions, including new expressions
for the monodromy matrix elements, may be evaluated with
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the help of the angle-action expressions listed in the appendix.
We first compare the forms of the resulting power spectra, with
the power spectrum obtained by Herman-Kluk propagation and
then compare the quantization formulas (eqs 14 and 16).

Power Spectra.Figures 1a-c show the “classical”, “aver-
aged” and Herman-Kluk power spectra, respectively, for a
scaled Morse oscillator withD ) 10.25, for which the quantum
energies are indicated by vertical dashed lines. In each case the
initial coherent state|p0, q0〉, with width parameterγ0 ) 1, was
centered at the right-hand turning point for the appropriate
motion. The autocorrelation functions were propagated for 25
cycles of the classical motion, and damped with an exponentR
) log(300)/T in eq 12. The three spectra illustrated in Figures
1a and 1b were obtained for classical actionsI ) (V + 1/2),
with V ) 9.5, 10, and 10.5. The corresponding energy in eq 17,
for the “averaged” case, was taken as the classical energy given
by eq 22 below. The Herman-Kluk autocorrelation function
in eq 11 was approximated by Monte Carlo quadrature over
500 trajectories; results were independent of the precise location
of |p0, q0〉.

It is of course no surprise that the Herman-Kluk spectrum
is superior to the two thawed Gaussian spectra. This superiority
of a frozen multi-Gaussian propagator was demonstrated by
Kay2 10 years ago, and even the multitrajectory variant of
thawed Gaussian propagation was recently shown9 to be inferior
to the HK approach. It is interesting for what follows to see
almost precise equivalence, in the present Morse oscillator case,
with the true quantum mechanical spectrum (shown by dots),
obtained by Lorentzian convolution of|〈ψV||p0, q0〉|2 with a
width parameterR. It is also seen that the “classical” and
“averaged” thawed Gaussian spectra are virtually identical, each
with one well-reproduced peak at the energy of the 10th
eigenstate (E = 7.8) but with progressively large discrepancies
for the other peaks, depending on the precise starting conditions.
The origin of these discrepancies is simply that the autocorre-
lation function of any single thawed Gaussian wavepacket is
necessarily modulated by the period of the classical motion,
which is reflected in the power spectrum by a pattern of equally
spaced peaks, with a separation dictated by the classical
frequency. By contrast the potential anharmonicity is properly
taken into account, in the Herman-Kluk method, by decompos-
ing the initial wavepacket into a swarm of coherent states, each
with its own characteristic frequency. Note, however, that the
presence of the spurious peaks in Figures 1a and 1b goes some
way to explaining the size of the required HK swarm. The large

swarm is not simply required as a crude root search for
trajectories at the eigen-energies. It is also required to eliminate
the spurious sideband peaks, by destructive interference.

Semiclassical Quantization.To understand the features of
the thawed Gaussian spectra in more detail, it is simplest first
to consider the “classical” case, for which the Hamiltonian takes
the angle-action form

with the period of the trajectory given byτ ) 2π/ω, where

The “classical” analogue of eq 15 therefore rearranges to

whereV is an integer. Written in another way, withI ) V + 1/2
+ δ

In other words, as seen in Figure 1a, the “classical” thawed
Gaussian power spectrum, based on a trajectory with actionI
) V + 1/2, precisely reproduces theVth eigenvalue, but all other
eigenvalues have errors proportional to (V + 1/2 - I)2.

Turning to the connection between the “classical” and
“averaged” spectra in Figures 1a and 1b, note first that the
actions,I for the classical andI′ for the averaged motion, may
be related by using eq A.2 in the appendix to express eqs 17
and 19 in angle action form. One finds, on equating the resulting
energy expression withHcl in eq 22, that

which rearranges to

Second, the angle-action identity (eq A.3)

may be verified to yield

after noting thatω′ ) ∂Hav/∂I′ ) x(1-ε′)D′/D. Consequently,
within the approximation

equation 16 goes over to

Figure 1. Morse oscillator power spectra obtained by (a) the classical
thawed Gaussian approximation (TGA), (b) the averaged TGA, and
(c) Herman-Kluk propagation.
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Taken in conjunction with eq 27, this means that the modified
quantization formula for the averaged Hamiltonian reduces to
the classical Bohr-Sommerfeld expression, within the validity
of eq 30. This underlying identity explains the close similarity
between Figures 1a and 1b, which is likely to apply in all
practical molecular situations, withN > 10, because with the
present scaling,N ) 2D ) 1/a2, while it is natural to chooseγ0

close to unity, to minimizeH0. Consequently the exponent in
eq 30 is of the ordera2/4γ0 = (4N)-1 , 1.

4. Quartic Oscillator

Classical and Averaged Hamiltonians.The scaled quartic
oscillator Hamiltonian is taken in the form

with p ) 1, in which case the averaged counterpart becomes

so that

Power Spectra.Figure 2 gives a similar comparison between
the thawed Gaussian and Herman-Kluk power spectra to that
shown in Figure 1; but the results are rather different. The
coherent state exponent was taken asγ0 ) 31/3, which minimizes
the constant part ofHav. The energy of the initial wavepacket
was chosen as that of theV ) 1 eigenstate (E = 1.9). Each
autocorrelation function was again propagated for 25 periods,
using 500 Herman-Kluk trajectories.

Again, the two thawed Gaussian spectra in Figures 2a and
2b reproduce a single eigenvalue moderately well but the others
very poorly. The subsidiary peaks in Figure 2a now lie below
the eigenvalues, because the quartic oscillation frequency
increases with energy, and the peak spacing in Figure 2b is even
wider due to the added quadratic term inVav(q). Another
significant difference from the Morse oscillator case is that the
Herman-Kluk propagator fails to reproduce the quartic oscil-
lator eigenvalues. Instead, the peaks in Figure 2c closely
coincide with the Bohr-Sommerfeld eigenvalues, in Table 1
below. The origin of this Bohr-Sommerfeld equivalence is
addressed in the concluding section.

Semiclassical Quantization.Turning to the question of
semiclassical quantization, the Bohr-Sommerfeld formula (eq
14) for the classical motion takes the form

whereq0 ) (2E)1/4. The corresponding integral (eq 16) for the
averaged Hamiltonian case may be evaluated in terms of elliptic

integrals.15 The first step is to write eq 17 in the form

where

Second, bearing in mind thatq̆ ) p in the present units, eq 16
may be reexpressed as

Finally, the numerator can be expressed, with the help of eqs
34 and 36, in terms of tabulated integrals.15 The final form
becomes
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Figure 2. Quartic oscillator power spectra obtained by (a) “classical”
TGA, (b) “averaged” TGA, and (c) HK propagation. The dashed
verticals indicate the quantum mechanical eigenvalues. The dotted ones
in panel (c) are Bohr-Sommerfeld eigenvalues.

TABLE 1: Comparison between Exact and Semiclassical
Eigenvalues for the Quartic Hamiltoniana

V exact classical
averaged
γ0 ) 1

averaged
γ0 ) 31/3

averaged
γ0 ) 10

0 0.53018 0.43351 0.46056 0.46480 0.43529
1 1.89984 1.87596 1.97545 1.93709 1.87776
2 3.72785 3.70699 3.83247 3.77719 3.70882
3 5.82238 5.80576 5.94469 5.88040 5.80760
4 8.130915 8.11680 8.26400 8.19412 8.11865
5 10.61919 10.60681 10.75964 10.68593 10.60867
10 25.12813 25.120045 25.28622 25.20338 25.12193

a The headings “classical” and “averaged” refer to quantization by
eqs 34 and 38, respectively.
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whereK(k) andE(k) are elliptic integrals of the first and second
types, with the argument

Table 1 gives a comparison between the exact eigenvalues
and those given by eqs 35 and 39, including information on
the sensitivity of the latter to the choice ofγ0. The special value
γ0 ) 31/3 gives a minimum zero-point energy of 0.540844. It is
noticeable that the “classical” and “averaged” semiclassical
eigenvalues are seriously inaccurate forV ) 0. Second, theV
) 1 eigenvalues in columns 2 and 4 closely correspond to the
positions of the central peaks in Figures 2a and 2b. Finally, the
“averaged” eigenvalues values tend toward the “classical” ones
asγ0 increases.

5. Summary and Conclusions

Power spectra determined by thawed Gaussian propagation
under the Hamiltonian,Hcl, in its classical form and in its
coherent state averaged form,Hav, were compared with the
spectrum obtained by Herman-Kluk propagation for the Morse
oscillator and a quartic oscillator. The most important outcome
of the analysis concerns the relationship between the modified
quantization eqs 16-17 for motion under the “averaged”
Hamiltonian and the Bohr-Sommerfeld quantization formula
(eq 14) for normal “classical” motion. A remarkable feature of
the Morse oscillator system is that the “classical” and “averaged”
thawed Gaussian spectra in Figures 1a and 1b are indistinguish-
able on the scale of the diagram, a feature which is traced to
analytical equivalence between the two quantization schemes,
provided that the weak approximation (eq 30) is satisfied. A
similar analysis, for the quartic oscillator, showed agreement
between the two quantization schemes only in the limitγ0 .
1. Both methods were seriously inaccurate for the lowest
eigenvalue, with a slight advantage for the modified (averaged
Hamiltonian) scheme, while the classical Bohr-Sommerfeld
formula was more accurate for the higher eigenvalues.

A second significant conclusion is that, although the two types
of thawed Gaussian wavepackets give a good approximation
to the eigenvalue closest in energy to that of the guiding
trajectory, the results are markedly inferior to those obtained
by Herman-Kluk propagation, although the latter is shown, by
the quartic oscillator example, to approximate the Bohr-
Sommerfeld eigenvalues, rather than the exact ones. The
weakness of any single trajectory thawed Gaussian approach is
that the power spectrum inevitably contains sideband peaks,
separated from the main peak by uniform intervals determined
by the frequency of the guiding trajectory. By contrast, the
Herman-Kluk spectra combine information from a swarm of
trajectories in such a way that the spurious sideband peaks are
removed by destructive interference to be replaced by peaks,
which are shown by the quartic oscillator example, to coincide
with the semiclassical Bohr-Sommerfeld eigenvalues, rather
than the exact ones. We cannot at present give a proof of this
equivalence, but it is easy to see, from the argument given above,
that members of the swarm at the true quantum mechanical
eigenvalues will produce spectral peaks at the correct positions
because each HK term contributes the same classical action and
turning point contribution as a classical thawed Gaussian at the

same energy. It is, however, less easy to demonstrate that
destructive interference will necessarily eliminate all the spurious
sideband peaks.
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Appendix A: Properties of the Morse Oscillator

Basic Equations.Analytical properties of the Morse oscil-
lator, with the Hamiltonian

are conveniently based on the angle-action forms collected by
Child.14 The corresponding action form is

In addition, the coordinateq(θ) and momentump(θ) vary with
the angle variableθ as

and

whereε ) E/D, δ ) x2µDε(1-ε), and θ increases linearly
with time, θ ) θ0 + ωt, at a frequency

Monodromy Matrix Elements. Analytical expressions for
the monodromy matrix elements are also available, by noting
that2

with the boundary conditionM(0) ) I. Consequently, the
elementsMqr, where r ) q or p, satisfy the same linear
differential equation as the momentum, namely,

Since the angleθ increases linearly with time, it follows that
the Wronskian ofp(θ) with M(θ) is constant,
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V + 1
2

) 1
6π

{(a+
4 - a-

4 + 8a+
2 a-

2 ) K(k) + 2(a+
4 - a-

4 ) E(k)}

(39)

k2 )
a-

2

a+
2 + a-

2
(40)

H ) 1
2µ

p2 + D(1 - e-aq)2 (A.1)

H ) x2a2D
µ

I - a2

2µ
I2 (A.2)

q(θ) ) 1
a

ln(1 + xε cosθ
1 - ε )

p(θ) ) - δ sin θ

1 + xε cosθ
(A.3)

ω ) ∂H
∂I

) x2a2D
µ (1 - x a2

2µD
I) ) x2a2D(1 - ε)

µ
(A.4)
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from which

It is also evident, from eq A.5 that the elementsMpr, where
r ) q or p, collectively denotedN(θ), are related toM(θ) by

We now choose standard solutions of theM(θ) type, namely
fqq(θ) andfqp(θ), and of theN(θ) type, namelyfpq(θ) andfpp(θ),
such that

The first column of eq A.11 is satisfied by the coefficient choice,
A ) (1 + ε1/2)-1, B ) 0 in eqs A.9-A.10), and the second by
A ) 0, B ) (1 + ε1/2)/µω. The resulting functional forms are
found to be

Equations A.12-A.15 give the monodromy matrix elements for
propagation fromθ ) 0 at energyE ) εD. The forms for
propagation from other different initial anglesθ0 are given by
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Mqq(θ) ) fpp(θ0)fqq(θ) - fpq(θ0)fqp(θ) (A.16)

Mpq(θ) ) fpp(θ0)fpq(θ) - fpq(θ0)fpp(θ) (A.17)

Mqp(θ) ) fqq(θ0)fqp(θ) - fqp(θ0)fqq(θ) (A.18)

Mpp(θ) ) fqq(θ0)fpp(θ) - fqp(θ0)fpq(θ) (A.19)

M(θ) )

A
(1 + ε) cosθ + 2ε

1/2 + εθ sin θ

1 + ε
1/2 cosθ

+ B
sin θ

1 + ε
1/2 cosθ

(A.9)

N(θ) ) µωdM
dθ

(A.10)

(fqq(0) fqp(0)
fpq(0) fpp(0)) ) (1 0

0 1) (A.11)

fqq(θ) )
(1 + ε) cosθ + 2ε

1/2 + εθ sin θ

(1 + ε
1/2)(1 + ε

1/2 cosθ)
(A.12)

fpq(θ) ) µω
(1 + ε

1/2){εθ cosθ - sin θ
(1 + ε

1/2 cosθ)
+

ε
1/2 sin θ[(1 + ε) cosθ + 2ε

1/2 + εθ sin θ]

(1 + ε
1/2 cosθ)2 } (A.13)

fqp(θ) )
(1 + ε

1/2) sin θ

µω(1 + ε
1/2 cosθ)

(A.14)

fpp(θ) )
(1 + ε

1/2)(ε1/2 + cosθ)

(1 + ε
1/2 cosθ)2

(A.15)
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