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The generalized Sturmian method for obtaining solutions to the many-particle Schro¨dinger equation is reviewed.
The method makes use of basis functions that are solutions of an approximate Schro¨dinger equation with a
weighted zeroth-order potential. The weighting factors are especially chosen so that all the basis functions
are isoenergetic with the state they are used to represent. This means that all the basis functions have turning
points located in such a position that they can contribute usefully to the synthesis of the wave function. The
method is illustrated by a simple examplesthe calculation of atomic spectra.

Introduction

The Schro¨dinger equation for anN-particle system can be
written in the form

where

and

It is usual to build up the solutions to (1) in terms of a set of
basis functions,Φν(x):

In the generalized Sturmian method,1-26 these basis functions
are chosen to be solutions to an approximateN-particle
Schrödinger equation of the form

HereV0 resemblesV as closely as possible (remembering, of
course, that one must be able to solve (6)), and the constants
âν are weighting factors especially chosen in such a way as to
make the energy eigenvalueEκ in (6) equal to the energy of
the desired solution to (1). The advantage of this type of basis
set is that in the asymptotic limit where bothV andV0 become

small, all of the basis functions obey the same Schro¨dinger
equation as the desired solution, since in this region

and

Thus all the basis functions have the right asymptotic behavior,
and their turning points occur in the right place, allowing them
to contribute usefully to the synthesis ofΨκ. By contrast,
conventional methods often representΨκ by superpositions of
basis functions corresponding to various energies, and these may
have the wrong behavior in the asymptotic region,

as well as inappropriate turning points.

Application to the Calculation of Atomic Spectra

The generalized Sturmian method can be applied to a wide
variety of problems in atomic and molecular physics. We can
illustrate it with a particularly simple examplescalculation
of the spectra of few-electron atoms, in the nonrelativistic
approximation, neglecting the motion of the nucleus as well as
spin-orbit coupling. This case is especially simple because if
V0 is chosen to be the Coulomb attraction of the nucleus

then (6) can be solved exactly1 by Slater determinants of the
form

In eq 11, the one-electron functionsøn,l,m,ms are hydrogen-like† Part of the “Gert D. Billing Memorial Issue”.
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spin-orbitals corresponding to an effective chargeQν, which
is related toEκ and to the principal quantum numbers in the
configuration by

To see that (11) will then be an exact solution of (6), we notice
that each of the hydrogenlike spin-orbitals in (11) obeys a one-
electron Schro¨dinger equation of the form

Thus the kinetic energy operator acting on (11) yields

Comparing this with eq 6, we can see that ifΦν has the form
indicated by (11)-(13), it will be an exact solution of (6). One
can show16 that wheneverâν * âν′ the configurationsΦν and
Φν′ will then obey a potential-weighted orthonormality relation
of the form

When two different configurations have the same value ofâ, a
basis set transformation sometimes needs to be made to ensure
that (15) holds.

Generalized Sturmian Secular Equations

It is convenient to introduce the variables

and

In terms of them, (12) can be rewritten in the form

while the energy becomes

The potentialV that enters theN-electron Schro¨dinger eq 1
includes both the nuclear attraction termV0 and an interelectron
repulsion termV′:

Substituting the expansion of the wave function (5) into (1),
we obtain

We now make use of the fact that each of the basis configura-
tionsΦν obeys eq 6. This allows us to rewrite (21) in the form

Multiplying (22) on the left by a conjugate configuration from

TABLE 1: 1S Excited State Energies (in Hartrees) for the
2-Electron Isoelectronic Seriesa

He Li+ Be2+ B3+ C4+ N5+

1s2s1S -2.1429 -5.0329 -9.1730 -14.564 -21.206 -29.098
basis2 -2.1442 -5.0348 -9.1759 -14.567 -21.209 -29.102
exp -2.1458 -5.0410 -9.1860 -14.582 -21.230 -29.131
1s3s1S -2.0603 -4.7297 -8.5099 -13.402 -19.406 -26.521
basis2 -2.0606 -4.7301 -8.5107 -13.403 -19.407 -26.522
exp -2.0611 -4.7339 -8.5183 -13.415 -19.425 -26.548
1s4s1S -2.0332 -4.6276 -8.2837 -13.003 -18.785 -25.629
basis2 -2.0333 -4.6277 -8.2840 -13.003 -18.785 -25.630
exp -2.0334 -4.6299 -8.2891 -25.654
1s5s1S -2.0210 -4.5811 -8.1806 -12.820 -18.500 -25.220
exp -2.0210 -4.5825 -25.241
1s6s1S -2.0144 -4.5562 -8.1250 -12.721 -18.346 -24.998
exp -2.0144 -4.5571
1s7s1S -2.0105 -4.5412 -8.0917 -12.662 -18.253 -24.865
exp -2.0104 -4.5418
1s8s1S -2.0080 -4.5315 -8.0701 -12.624 -18.194 -24.779
exp -2.0079
1s9s1S -2.0063 -4.5248 -8.0554 -12.598 -18.153 -24.720
exp -2.0062
1s10s1S -2.0051 -4.5201 -8.0449 -12.579 -18.124 -24.678
exp -2.0050
1s11s1S -2.0042 -4.5166 -8.0371 -12.566 -18.102 -24.647
exp -2.0041
1s12s1S -2.0034 -4.5140 -8.0312 -12.555 -18.086 -24.624
exp -2.0034

a In making Table 1, the basis set used consisted of 63 generalized
Sturmians. Singlet and triplet states were calculated simultaneously,
0.5 S of 499 MHz Intel Pentium III time being required for the
calculation of 154 states. Basis 2 consisted of 245 symmetry-adapted
configurations20 including angular correlation up tolmax ) 4. Having
constructed the interelectron repulsion matrix, eq 26, one can use the
same matrix for any value of nuclear charge. Experimental values are
taken from the NIST tables.27

TABLE 2: Doubly Excited Singlet S States of the 2-Electron
Isoelectronic Seriesa

C4+ N5+ O6+ F7+ Ne8+ Na9+

2s2s1S -8.2861 -11.4133 -15.0406 -19.1678 -23.7949 -28.9221
2p2p1S -7.6460 -10.6520 -14.1580 -18.1639 -22.6698 -27.6757
exp -7.6531 -10.6604 -14.1699 -18.1777 -22.6908 -27.7075
2s3s1S -6.0563 -8.3257 -10.9563 -13.9479 -17.3007 -21.0145
exp -6.0618 -8.3317 -10.9642 -13.9618 -17.3220 -21.0470
2p3p1S -5.8049 -8.0200 -10.5961 -13.5333 -16.8315 -20.4907
exp -5.8105 -8.0252 -10.6018 -13.5441 -16.8478 -20.5122
2s4s1S -5.3537 -7.3373 -9.6334 -12.2420 -15.1631 -18.3967
2p4p1S -5.2453 -7.2056 -9.4786 -12.0641 -14.9622 -18.1729
2s5s1S -5.0370 -6.8897 -9.0324 -11.4651 -14.1878 -17.2006
2p5p1S -4.9810 -6.8216 -8.9522 -11.3730 -14.0838 -17.0846

a These are autoionizing states embedded in a continuum. The few
available experimental energies28-30 agree well with the calculated
energies (in hartrees) shown in the table. Vainshtein and Safronova29,30

give wavelengths for transitions to states that are listed in the NIST
tables,27 and from these the experimental energies were deduced.
Solution of the Sturmian secular equations with basis 2 (Table 1) yielded
the energies of all the1S states shown in Tables 1-5.
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the basis set, and integrating over space and spin coordinates,
we obtain

We now introduce the definition

With the help of the potential-weighted orthonormality relation
(15) and making use of (18), we have

Thus we see that the matrixTν′,ν
0 defined by (24) is indepen-

dent ofpκ. Similarly, it can be shown16 that

is also independent ofpκ. Substituting these definitions into (23)
and dividing bypκ, we obtain the generalized Sturmian secular
equations

This set of secular equations differs greatly from the usual
secular equations that are obtained when one diagonalizes the
Hamiltonian of a quantum mechanical system. The kinetic
energy term has disappeared, and the term representing nuclear
attraction is diagonal. Furthermore, the eigenvalues are not
energies but values of the parameterpκ, which is related to the
energy through equations (16) and (19). By solving the set of
secular equations (27), one obtains a spectrum ofpκ values, and
hence also a spectrum of energiesEκ ) -pκ

2/2. The lowest
values ofpκ correspond to the most tightly bound states. From
(18) we can see that this parameter can be interpreted as a
“scaling parameter”, since the effective chargesQν that char-
acterize the configurations are proportional topκ. Thus the
basis set adjusts automatically to the energy of the state. For
the lowest energy states, the basis functions are localized near
the nucleus, while for highly excited states, they are diffuse.
By solving the set of secular equations, one obtains simulta-
neously the energy spectrum and the optimal basis set for each
state. This characteristic of the generalized Sturmian method
makes it very well suited to the rapid calculation of large
numbers of excited states of few-electron atoms, as is illustrated
in Tables 1-5.
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TABLE 5

C4+ N5+ O6+ F7+ Ne8+ Na9+

5s5s1S -1.0065 -1.3957 -1.8448 -2.3470 -2.9096 -3.5327
5p5p1S -0.9995 -1.3851 -1.8241 -2.3234 -2.8832 -3.5033
5d5d1S -0.9858 -1.3606 -1.7957 -2.2911 -2.8470 -3.4632
5f5f 1S -0.9577 -1.3268 -1.7564 -2.2466 -2.7972 -3.4083
5g5g1S -0.9479 -1.3003 -1.7196 -2.2039 -2.7486 -3.3537
5s6s1S -0.9387 -1.2959 -1.7084 -2.1721 -2.6914 -3.2663
5p6p1S -0.9336 -1.2894 -1.6958 -2.1578 -2.6754 -3.2486
5d6d1S -0.9327 -1.2834 -1.6887 -2.1497 -2.6662 -3.2382
5f6f 1S -0.9261 -1.2746 -1.6787 -2.1385 -2.6538 -3.2247
5g6g1S -0.9186 -1.2653 -1.6676 -2.1256 -2.6391 -3.2082
5s7s1S -0.9056 -1.2504 -1.6510 -2.1073 -2.6192 -3.1867
5p7p1S -0.8989 -1.2408 -1.6385 -2.0919 -2.6010 -3.1657
5d7d1S -0.8967 -1.2296 -1.6263 -2.0786 -2.5865 -3.1501
5f7f 1S -0.8888 -1.2292 -1.6140 -2.0512 -2.5407 -3.0944
5g7g1S -0.8883 -1.2195 -1.6029 -2.0391 -2.5387 -3.0825

TABLE 6: Energies for Doubly Excited States of C4+ with
Varying Angular Correlation a

C4+ lmax ) 0 lmax ) 1 lmax ) 2 lmax ) 3 lmax ) 4

2s2s1S -8.1172 -8.2854 -8.2860 -8.2861 -8.2861
2p2p1S -5.9810 -7.6058 -7.6400 -7.6449 -7.6460
2s3s1S -5.3211 -6.0557 -6.0562 -6.0563 -6.0563
2p3p1S -5.0202 -5.7949 -5.8038 -5.8048 -5.8049
2s4s1S -4.8586 -5.3534 -5.3537 -5.3537 -5.3537
2p4p1S -4.7620 -5.2411 -5.2448 -5.2452 -5.2453
2s5s1S -4.6997 -5.0369 -5.0370 -5.0370 -5.0370
2p5p1S -4.6572 -4.9789 -4.9808 -4.9810 -4.9810

a As can be seen from Table 1, the inclusion of angular correlation
has only a small effect on the singly excited states. However, Table 6
shows that angular correlation is crucial for accurate determination of
the energies of doubly excited states.
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