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The generalized Sturmian method for obtaining solutions to the many-particledBa@nequation is reviewed.

The method makes use of basis functions that are solutions of an approximatdiSgérequation with a
weighted zeroth-order potential. The weighting factors are especially chosen so that all the basis functions
are isoenergetic with the state they are used to represent. This means that all the basis functions have turning
points located in such a position that they can contribute usefully to the synthesis of the wave function. The
method is illustrated by a simple exampléne calculation of atomic spectra.

Introduction small, all of the basis functions obey the same Sdimger

The Schidinger equation for alN-particle system can be equation as the desired solution, since in this region

written in the form 1 1
[— A+ V(X) EK]‘PK(X) —0— [—EA - EKIIPK(X) =0

- %A +V(X) — E]w () =0 1) 7
and
where 1 1
’— A+ BV) - EK](I)V(X) —0— [—EA - EKICI)V(X) =0
X = {Xq, Xoy ey Xp} (2) (8)

X =1{% ¥, 2} i=1,2,..N (3) Thus aII_ the b_aS|s fu_nctlons ha_ve the _rlght asymptotlc_behawor,
and their turning points occur in the right place, allowing them
to contribute usefully to the synthesis &f,. By contrast,

and conventional methods often repres&ift by superpositions of
basis functions corresponding to various energies, and these may
N1 ) have the wrong behavior in the asymptotic region,
A= —V, 4)
= 1 1
=m —~ SA+ Vi(x) - EV]<I>V(X) —0— [—EA - Ey]tbv(x) =0
It is usual to build up the solutions to (1) in terms of a set of (©)

basis functions(,(x): as well as inappropriate turning points.

W (x) = Zcpv(x)cw (5) Application to the Calculation of Atomic Spectra

The generalized Sturmian method can be applied to a wide
variety of problems in atomic and molecular physics. We can

In the generalized Sturmian methbd? these basis functions jllustrate it with a particularly simple examptealculation
are chosen to be solutions to an approximatearticle of the spectra of few-electron atoms, in the nonrelativistic
Schradinger equation of the form approximation, neglecting the motion of the nucleus as well as
spin—orbit coupling. This case is especially simple because if
Vo is chosen to be the Coulomb attraction of the nucleus
- %A +BVX) — E|®,00 =0 © °
Nz
. . Vo(X) = —Z— (10)
Here V, resembles/ as closely as possible (remembering, of &ar;

i
course, that one must be able to solve (6)), and the constants

B, are weighting factors especially chosen in such a way as tothen (6) can be solved exactlpy Slater determinants of the
make the energy eigenvallg in (6) equal to the energy of  form

the desired solution to (1). The advantage of this type of basis

set is that in the asymptotic limit where bothandV, become D, = [t it X e e (11)

T Part of the “Gert D. Billing Memorial Issue”. In eq 11, the one-electron functionsmm are hydrogen-like
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spin—orbitals corresponding to an effective chai@g which
is related toE, and to the principal quantum numbers in the
configuration by

—2E, |2
Q=p82Z= 12)
R,
n n

To see that (11) will then be an exact solution of (6), we notice
that each of the hydrogenlike spiorbitals in (11) obeys a one-
electron Schidinger equation of the form

2
1 Q" Q

_Evjz + o2 - r_J Xn,l,m,n;(xj) =0 (13)

Thus the kinetic energy operator acting on (11) yields

—2A|@,00 =
2
Q(1+ +)+Q Q + .. D,(X)
2 n n r

= [E. = B V()] P,(X) (14)

Comparing this with eq 6, we can see thathif has the form
indicated by (113-(13), it will be an exact solution of (6). One
can showf that whenevep, = S, the configurationsb, and
@, will then obey a potential-weighted orthonormality relation
of the form

S A D}(x) Vo(x) @, =0 (15)

2E,
"B,

When two different configurations have the same valug, &
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TABLE 1: S Excited State Energies (in Hartrees) for the
2-Electron Isoelectronic Seried

He Lit Be?" B3t CH N5+

1s2s!'S  —2.1429 —5.0329 —9.1730 —14.564 —21.206 —29.098
basis2 = —2.1442 —5.0348 —9.1759 —14.567 —21.209 —29.102
exp —2.1458 —5.0410 —9.1860 —14.582 —21.230 —29.131
1s3s!S  —2.0603 —4.7297 —8.5099 —13.402 —19.406 —26.521
basis2 —2.0606 —4.7301 —8.5107 —13.403 —19.407 —26.522
exp —2.0611 —4.7339 —8.5183 —13.415 —19.425 —26.548
1s4s'S —2.0332 —4.6276 —8.2837 —13.003 —18.785 —25.629
basis2 —2.0333 —4.6277 —8.2840 —13.003 —18.785 —25.630
exp —2.0334 —4.6299 —8.2891 —25.654
1s5s'S  —2.0210 —4.5811 —8.1806 —12.820 —18.500 —25.220
exp —2.0210 —4.5825 —25.241
1s6s'S —2.0144 —4.5562 —8.1250 —12.721 —18.346 —24.998
exp —2.0144 —4.5571

1s7s'S  —2.0105 —4.5412 —8.0917 —12.662 —18.253 —24.865
exp —2.0104 —4.5418

1s8s!'S —2.0080 —4.5315 —8.0701 —12.624 —18.194 —24.779
exp —2.0079

1s9s!S  —2.0063 —4.5248 —8.0554 —12.598 —18.153 —24.720
exp —2.0062

1s10s'S —2.0051 —4.5201 —8.0449 —12.579 —18.124 —24.678
exp —2.0050

1s11s'S —2.0042 —4.5166 —8.0371 —12.566 —18.102 —24.647
exp —2.0041

1s12s'S —2.0034 —4.5140 —8.0312 —12.555 —18.086 —24.624
exp —2.0034

2 |n making Table 1, the basis set used consisted of 63 generalized
Sturmians. Singlet and triplet states were calculated simultaneously,
0.5 S of 499 MHz Intel Pentium Il time being required for the
calculation of 154 states. Basis 2 consisted of 245 symmetry-adapted
configuration& including angular correlation up . = 4. Having
constructed the interelectron repulsion matrix, eq 26, one can use the
same matrix for any value of nuclear charge. Experimental values are
taken from the NIST table%.

TABLE 2: Doubly Excited Singlet S States of the 2-Electron
Isoelectronic Seried

Cc4+ N5+

OG+ F7+ N e8+ N a9+

basis set transformation sometimes needs to be made to ensurgsosls —8.2861 —11.4133 —15.0406 —19.1678 —23.7949 —28.9221

that (15) holds.

Generalized Sturmian Secular Equations
It is convenient to introduce the variables

p.=+—2E, (16)
and
} 1,1
R,= S5+t .. a7)
2 2
In terms of them, (12) can be rewritten in the form
pK
Q=pZ=" (18)
while the energy becomes
2
P
E=-" (19)

The potentialV that enters theN-electron Schidinger eq 1
includes both the nuclear attraction te¥fnand an interelectron
repulsion termv':

N7 N N9q
V) =Ve) +V ) =-Y-+Y Y-
(x) o) ) J;r j ; ;rij

(20)

2p2p'S —7.6460 —10.6520 —14.1580 —18.1639 —22.6698 —27.6757

exp —7.6531 —10.6604 —14.1699 —18.1777 —22.6908 —27.7075
2s3s!S —6.0563 —8.3257 —10.9563 —13.9479 —17.3007 —21.0145
exp —6.0618 —8.3317 —10.9642 —13.9618 —17.3220 —21.0470
2p3p’S —5.8049 —8.0200 —10.5961 —13.5333 —16.8315 —20.4907
exp —5.8105 —8.0252 —10.6018 —13.5441 —16.8478 —20.5122

2s4s!S —5.3537
2p4plS —5.2453
2s5s!'S —5.0370
2p5plS —4.9810

—7.3373 —9.6334 —12.2420—15.1631 —18.3967
—7.2056 —9.4786 —12.0641 —14.9622 —18.1729
—6.8897 —9.0324 —11.4651 —14.1878 —17.2006
—6.8216 —8.9522 —11.3730—14.0838 —17.0846

aThese are autoionizing states embedded in a continuum. The few
available experimental energi€s’® agree well with the calculated
energies (in hartrees) shown in the table. Vainshtein and Safréfva
give wavelengths for transitions to states that are listed in the NIST
tables?” and from these the experimental energies were deduced.
Solution of the Sturmian secular equations with basis 2 (Table 1) yielded
the energies of all théS states shown in Tables-5.

Substituting the expansion of the wave function (5) into (1),
we obtain

1
z’— EA + V(x) — EK]d)v(x)Cv’K =0 (21)

We now make use of the fact that each of the basis configura-
tions @, obeys eq 6. This allows us to rewrite (21) in the form

> V(x) = B,Vo(¥)]®,(x)C,, = 0 (22)

Multiplying (22) on the left by a conjugate configuration from
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TABLE 3 5, = 0,,Z%, (25)
ca+ N5+ o5+ E7+ Nes+ Nao+ '

3s3s'S —3.7116 —5.1069 —6.7244 —8.5641 —10.6261 —12.9102 Thus we see that the matri®’, , defined by (24) is indepen-
3p3plS —3.5578 —4.9241 —6.5126 —8.3231 —10.3559 —12.6108 '

3d3d'S —3.2860 —4.5981 —6.1323 —7.8887 —9.8674 120683  dent ofp.. Similarly, it can be showAt that

3s4s'S —2.9098 —4.0011 —5.2661 —6.7046 —8.3168 —10.1025

3p4plS —2.8134 —3.8850 —5.1302 —6.5489 —8.1411 —9.9070 1

3d4dlS —2.6940 —3.7379 —4.9554 —6.3463 —7.9107 —9.6488 T, , =—= f dx @,(x) V'(x) ®,(x) (26)
3s551S —2.5687 —3.5248 —4.6319 —5.8902 —7.2996 —8.8601 ’ P,

3p5plS —2.5165 —3.4620 —4.5586 —5.8062 —7.2050 —8.7549

3050'S —2.4563 —3.3885 —4.4719 —5.7064 —7.0921 —8.6288

is also independent gf.. Substituting these definitions into (23)

TABLE 4 and dividing byp,, we obtain the generalized Sturmian secular
A+ N5+ o8+ Fr+ Nes+ Na2+ equations

4s4slS  —1.7189 —2.3635 —3.1107 —3.9603 —4.9125 —5.9671 ,

4p4p!S —1.6754 —2.3116 —3.0503 —3.8914 —4.8350 —5.8811 Z[év, LA, + T, , —po,,]C,,. =0 (27)

4d4d'S —1.6169 —2.2405 —2.9665 —3.7949 —4.7258 —5.7592 = ‘ R

4fAf1S  —1.5517 —2.1588 —2.8682 —3.6801 —4.5943 —5.6111

4s5s'S  —1.5293 —2.0997 —2.7604 —3.5113 —4.3525 —5.2840 _ _ _

4p5plS —1.5031 —2.0683 —2.7238 —3.4695 —4.3055 —5.2318 This set of secular equations differs greatly from the usual
4dsd'S —1.4682 —2.0263 —2.6746 —3.4132 —4.2420 —5.1611 secular equations that are obtained when one diagonalizes the

4f5f1S  -1.4308 —1.9801 —2.6198 —3.3497 —4.1700 —5.0806 toni i i
4S6S'S 14170 —1.9429 —25517 —3.2434 —4.0180 —4.8755 Hamiltonian of a quantum mechanical system. The kinetic

4p6plS —1.4004 —1.9230 —2.5285 —3.2169 —3.9881 —4.8423 energy term has disappeared, and the term representing nuclear

4d6dllS —1.3790 —1.8974 —2.4986 —3.1827 —3.9496 —4.7994 attraction is diagonal. Furthermore, the eigenvalues are not
4f6f'S  —1.3553 —1.8684 —2.4646 —3.1436 —3.9056 —4.7504 energies but values of the paramatgrwhich is related to the
TABLE 5 energy through equations (16) and (19). By solving the set of

povm e v — e N secular equations (27), one obtains a spectrup vélues, and
hence also a spectrum of energies= —p,%/2. The lowest

5s5s'S  —1.0065 —1.3957 —1.8448 —2.3470 —2.9096 —3.5327 i
BpaplS —0.9995 —13851 —1.8241 —2.3234 —2.8832 —3.5033 values ofp, corresprc]md tr:)_ the most tightly b(E)un_d states. I;rom
5d5d'S —0.9858 —1.3606 —1.7957 —2.2911 —2.8470 —3.4632 (18) we can see that this parameter can be interpreted as a

5f5f 1S —0.9577 —1.3268 —1.7564 —2.2466 —2.7972 —3.4083 “scaling parameter”, since the effective charggsthat char-
5¢5¢'S —0.9479 —1.3003 —1.7196 —2.2039 —2.7486 —3.3537 acterize the configurations are proportionalgo Thus the
5s6s!S —0.9387 —1.2959 —1.7084 —2.1721 —2.6914 —3.2663 basi t adiust g i ticall tpthp [J;pf the state. F
5p6plS —0.9336 —1.2894 —1.6958 —2.1578 —2.6754 —3.2486 asis set adjusis automatically o the energy or the state. For
5d6dlS —0.9327 —1.2834 —1.6887 —2.1497 —2.6662 —3.2382 the lowest energy states, the basis functions are localized near

5f6f!S  —0.9261 —1.2746 —1.6787 —2.1385 —2.6538 —3.2247 the nucleus, while for highly excited states, they are diffuse.
5g6glS —0.9186 —1.2653 —1.6676 —2.1256 —2.6391 —3.2082

55751S  —0.9056 —1.2504 —1.6510 —2.1073 —2.6192 —3.1867 By solving the set of secular equations, one obtains simulta-
5p7plS —0.8989 —1.2408 —1.6385 —2.0919 —2.6010 —3.1657 neously the energy spectrum and the optimal basis set for each
5d7d'S —0.8967 —1.2296 —1.6263 —2.0786 —2.5865 —3.1501 state. This characteristic of the generalized Sturmian method

5f7f1S —0.8888 —1.2292 —1.6140 —2.0512 —2.5407 —3.0944

5g79lS —0.8883 —1.2195 —1.6029 —2.0391 —2.5387 —3.0825 makes it very well suited to the rapid calculation of large

numbers of excited states of few-electron atoms, as is illustrated

TABLE 6: Energies for Doubly Excited States of C*" with in Tables 5.
Varying Angular Correlation @
cH lex=0  Imax=1 lrax=2 loex=3 Imax=24 References and Notes
2s2s'S  —8.1172 —8.2854 —8.2860 —8.2861 —8.2861 (1) Goscinski, O.Preliminary Research Report No. 21Quantum
2p2p!S —5.9810 —7.6058 —7.6400 —7.6449 —7.6460 Chemistry Group, Uppsala University, 1968¢v. Quantum Chem2003
2s3s'S —5.3211 -—6.0557 —6.0562 —6.0563 —6.0563 41, 51.
2p3p!S —5.0202 -5.7949 -5.8038 —5.8048 —5.8049 (2) shull, H.; Lavdin, P. ©.J. Chem. Phys1959 30, 617.
2s4s'S  —4.8586 —5.3534 —5.3537 —5.3537 —5.3537 (3) Rotenberg, MAnn. Phys(N. Y) 1962 19, 62.
2p4p!lS —4.7620 —5.2411 -5.2448 —5.2452 —5.2453 (4) Rotenberg, MAdv. At. Mol. Phys.197Q 6, 233.
2sbs'S  —4.6997 -5.0369 —5.0370 —5.0370 —5.0370 (5) Weniger, E. JJ. Math. Phys1985 26, 276.
2p5p!S  —4.6572 —4.9789 —4.9808 -—4.9810 —4.9810 (6) Aquilanti, V.; Cavalli, S.; De Fazio, D.; Grossi, Glyperangular

Momentum: Applications to Atomic and Molecular Scieincdew Methods
2 As can be seen from Table 1, the inclusion of angular correlation in Quantum TheoryTsipis, C. A., Popov, V. S., Herschbach, D. R., Avery,
has only a small effect on the singly excited states. However, Table 6 J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996.
shows that angular correlation is crucial for accurate determination of  (7) Aquilanti, V.; Cavalli, S.; Coletti, C.; Grossi, @hem. Phys1996
the energies of doubly excited states. 209 405. _ _
(8) Aquilanti, V.; Cavalli, S.; Coletti, CChem. Phys1997 214 1.
the basis set, and integrating over space and spin coordinates, (fg)) ﬁ‘\’g%” ﬂ'jﬁﬁjfﬁlbgﬁg'n?i%% “Z]i?zt’ggt”m Chen1992 41, 673.
we obtain (11) Aquilanti, V.; Avery, J.Chem. Phys. Lettl997, 267, 1.
(12) Avery, J.; Antonsen, Rl. Math. Chem1998 24, 175.
% (13) Avery, J.J. Math. Chem1998 24, 169.
z f dx @5, (X)[V(X) = B,Vo(X)]P,(X)C,, =0 (23) (14) Avery, J.,J. Mol. Struct.1999 458 1.
Vv (15) Avery, J.,Adv. Quantum Cheml999 31, 201.
(16) Avery, J.Hyperspherical Harmonics and Generalized Sturmjans
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