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Different methods to obtain information about the probability densities of vibrational wave packets in diatomic
molecule are compared. More explicitly, we consider pump-probe ionization processes. Time-resolved
photoelectron spectra and total ion yields as well as fragment ion distributions are calculated, and these different
quantities are employed to reconstruct radial densities. It is shown that pump-probe ionization experiments
are well suited for the mapping of vibrational wave packets.

1. Introduction

The preparation of quantum mechanical wave packets and
the real-time observation of their dynamics is at the heart of
time-resolved spectroscopy with femtosecond laser pulses.1,2 In
a typical experiment, a first laser pulse, commonly termed the
pump pulse, interacts with the system and produces a linear
combination of eigenstates, i.e., a wave packet. At a variable
delay-time a second pulse (probe) causes another transition in
the system. A signal then is recorded as a function of the pump-
probe delay, yielding information about the dynamical behavior
of the system under investigation. Here we are concerned with
pump-probe ionization measurements where the transient signal
consists of an ion yield or photoelectron distribution. Many
experiments have been performed using femtosecond pump-
probe ionization and the detection of ions, see, e.g., refs 3-6.
Also, femtosecond time-resolved photoelectron spectroscopy,
which has been reviewed extensively recently,7-9 has become
a valuable technique to investigate dynamical processes in
molecules.

The present paper is concerned with pump-probe ionization
signals and the imaging of molecular wave packets. To be more
precise, the question to be asked is as follows: if a vibrational
wave packet is prepared in a molecule, then how much of the
properties of this packet can be traced in a signal? The relation
of measured signals to quantum mechanical wave functions has
a long history. As a prominent example, we mention the
reflection principle of cw-spectroscopy: in a molecular bound-
to-free transition, the absorption spectrum directly reflects the
ground-state wave function of the system;10-12 for an application
in atomic photoionization, see the work of Rost.13 Likewise,
excitation profiles in continuum resonance Raman spectroscopy
map the nodal structure of the final state in the two-photon
process.14-17 Also, it is possible to relate properties of wave
functions directly to rotational (rotational reflection principle18)
and vibrational (vibrational reflection principle19) fragment
distributions in photodissociation processes.

Whereas the latter examples do not explicitly involve time,
i.e., transient changes of a system, the imaging of wave packets

in time-resolved experiments has been addressed by several
groups. It is, for example, possible to use the technique of time-
gated emission spectroscopy20 to map the probability density
of vibrational wave packets in a diatomic molecule.21,22 Also,
it can be shown that the probability density of a wave packet
which serves as the initial state for a resonant excitation of a
molecule in a well defined geometry can be related to the time-
derivative of a pump-probe fluorescence signal.23,24

Regarding ionization processes, other approaches have been
realized. Seel and Domcke showed that time-resolved photo-
electron spectra directly reflect the wave packet dynamics in
molecules.25,26 Their seminal study treated a multi-mode
vibrational dynamics in pyracine but the mapping is unique in
the simple case of a single vibrational mode, e.g. for a diatomic
molecule.27 Here, femtosecond experiments of Baumert and co-
workers showed beautifully the changes of radial probability
densities in the Na2 molecule in weak28 and strong laser
fields.29,30 Another technique employs Coulomb explosion of
molecules where dissociating ions interact via their pure
Coulomb repulsion.31-33 Here, the asymptotic momentum
distribution yields information about the wave packet in the
neutral system. Of course, this technique can also be applied to
ionization processes involving single or double ionization.34,35

Experimental and theoretical efforts have been reported which
aim at the construction of wave packets, concerning not only
their density but also their phase.22,36-40 This topic will not be
discussed here.

In the following sections, we investigate the vibrational
motion in a bound-state potential of the sodium dimer (see
Figure 1). The probe pulse initiates a transition to an anti-
bonding state of the cationic molecule. We calculate the transient
signals of photoelectron spectra, total ion yields, and fragment
momentum distributions and compare quantum mechanical
densities as constructed from the various signals with the
numerically obtained ones. The theory and the model are
described in section 2. Numerical results are presented in section
3 and a summary is given in section 4.

2. Theory and Model
2.1. Pump)Probe Ionization. We regard a pump/probe

process involving three electronic states. In our numerical
example, these states correspond to the electronic ground-state
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|0〉 (1∑g
+), the double minimum state|1〉 (1∑u

+) and the
dissociative ionic state|I〉 (2∑u

+) of the sodium dimer. The
potentials of the latter two states are displayed in Figure 1. In
the pump process, initiated by a femtosecond pulse with a
photon energy ofω1 (atomic units are used throughout this
paper), a vibrational wave packet is prepared in state|1〉. Within
the probe transition (ω2), ionization takes place at a defined
delay-timeT. The ionization scheme, as displayed in Figure 1,
was realized in several femtosecond pump-probe ionization
experiments.34,41-43

In what follows, we assume that all transitions are electric
dipole transitions and the fields are weak so that the matter-
light interaction may be described by time-dependent perturba-
tion theory. Thus, the wave packet prepared in the pump process
can be written as

whereU1(t) is the propagator for the nuclear motion in state
|1〉 and

Here|ψ0〉 is the initial vibrational state in the electronic ground
state|0〉 (the rotational motion is not included in what follows),
evolving in time with the nuclear propagatorU0(t). The
interaction energy is

where only the term leading to absorption was kept. The pulse
envelope is denoted asg1(t) and µ10 is the projection of the
transition dipole moment on the field polarization vector.

The wave packet|ψ1(t)〉 moves unperturbed until the second
laser pulse starts interacting with the molecular sample at time
T, thus inducing ionization. In the ionization process, the photon
energy is shared between the photoelectron and cationic

molecule. The wave function corresponding to the ejection of
a photoelectron with kinetic energyE then is25,26

with

Here, we assumed (besides the usual Born-Oppenheimer
separation of electronic and nuclear degrees-of-freedom) that
the photoelectron decouples from the nuclei and the other
electrons. The propagator in the ionic state,UE(t) ) exp [-i(HI

+ E)t], contains the nuclear HamiltonianHI and the photoelec-
tron energy as an additive constant. The interaction energy is

where the notation is as above.
The states|ψE(t)〉 are of central importance for the calculation

of various experimentally accessible signals as will be detailed
in the next subsection. To calculate these states we solve the
time-dependent Schro¨dinger equation using the method of Feit
and Fleck.44 The ionization continuum is discretized so that the
nuclear ionic wave function is calculated for a finite number of
energiesEn. All transition dipole moments are, within the
Condon approximation, set to a constant value ofµnm ) 1.

2.2. Pump)Probe Ionization Signals.The photoelectron
spectrumP(E, T) is determined from the probability of finding
electrons with a fixed kinetic energyE which is given as the
norm of the ionic states of eq 5:

Note that the spectrum explicitly depends on the pump-probe
delayT. Also, since the population in the ionic state remains
constant after the ionization pulse stops, the states|ψE〉 at time
t ) T (eq 5) enter in the expression for the spectrum. Thus, the
subsequent time evolution in the ionic state does not influence
the spectrum, which is important with respect to the wave packet
imaging; see below.

The total ion yield, as a function of the pulse-delay, is
calculated from the photoelectron spectrum by integration:

Another measurable quantity is the momentum (p) distribution
of the ionic fragmentsF(p, T). This distribution can be calculated
from the momentum-space wave functions of the states|ψE(t)〉
as

The kets|p-〉 are the eigenstates of the full nuclear Hamiltonian
and |p〉 are plane waves. It is important to notice that here the
time-limit enters if the fragment distribution is calculated in
terms of the projection on plane waves; i.e., a wave packet
prepared at timeT has to move into the asymptotic region in
order to arrive at a constant momentum distribution.

3. Wave Packet Imaging

3.1. Transient Photoelectron Spectra.We start with the
wave packet reconstruction from a given photoelectron spec-

Figure 1. Pump-probe ionization schemes. Upper panel: ionization
at a delay-timeT yielding photoelectrons with different kinetic energies
E. Middle panel: threshold ionization with different photon energies
(indicated by the arrows) allowing one to image properties of the
vibrational wave packet passing a critical bond lengtha(T) where
ionization becomes possible. Lower panel: during an ionization at
delay-timeT, building of fragments with momentap. This goes in hand
with the production of photoelectrons with energyE. The horizontal
line defines an energyε corresponding to a kinetic fragment energy of
ε - VI(∞) ) p2/(2m).

|ψ1(t)〉 ) U1(t)|ψ1(0)〉 (1)

|ψ1(0)〉 ) 1
i ∫-∞

+∞
dt U1(-t) W1(t) U0(t)|ψ0〉 (2)

W1(t) ) - 1
2

µ10 g1(t) e-iω1t (3)

|ψE(t)〉 ) UE(t - T) |ψE(T)〉 (4)

|ψE(T)〉 ) 1
i ∫-∞

+∞
dt UE(-t) W2(t) U1(t) |ψ1(T)〉 (5)

W2(t) ) - 1
2

µI1 g2(t) e-iω2t (6)

P(E, T) ) 〈ψE(T)|ψE(T)〉 (7)

Ptot(T) ) ∫ dE P(E, T) (8)

F(p, T) ) lim
tf∞

∫ dE |〈p|UE(t - T)|ψE(T)〉|2 )

∫ dE |〈p - |ψE(T)〉|2 (9)
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trum. Therefore, an approximation to the equation for the ionic
states|ψE(T)〉 is employed. The approximation consists of the
neglect of commutators between the kinetic energy operators
and the r-dependent operators (potential energy, dipole
moment)45-51 leading to

with the integral

Here Vn(r) denotes the potential energy in state|n〉. The
photoelectron-spectrum now takes the form

where we used the definition for the density

It is the latter quantity that we want to reconstruct. From eq 12
it is clear that, to do so, a knowledge of the spectrumP(E) and
the function I(r,E) is necessary. It is also obvious, that the
product between the transition dipole moment and the vibrational
wave function cannot be disentangled.

Let us now proceed to calculate the density from eq 12. As
one possibility, the integral can be discretized, which leads to
a matrix equation. The latter could, in principle, be inverted to
yield the density. This approach was recently investigated by
us in connection with the determination of dipole moments from
time-resolved photoelectron spectra.52 We will not discuss the
method here. Instead, we evaluate the time-integralI(r,E) em-
ploying a Gaussian envelope function asg2(t) ) exp(-(ât/2)2)
leading to the expression

where we have introduced the difference potentialD(r) ) VI(r)
- V1(r). The functionI(r,E) represents a window function which
is peaked around distancesri which are the roots of the equa-
tion

Thus, for a monotonic difference potential (which is the case
in our numerical example and will be assumed in what follows),
the last equation establishes a clear connection between the bond
length and the photoelectron energy. The window function
becomes a representation of theδ-function in the limit of long
pulses (i.e., forâ f 0). Thus, we may write

where the additional termc(r,E) compensates for the error made
by replacing the window function by aδ-function. Neglecting
the termc(r,E) yields the spectrum in the simple form

where we have used the property of theδ-function: δ(f(x)) )
δ(x)/|df/dx|xi. This equation, together with eq 15, relates the
radial probability densityF(r) and the photoelectron spectrum

P(E) for a fixed delay-timeT. The approximations leading to
eq 17, namely (a) the neglect of commutators of the potentials
with the kinetic energy operator and (b) the replacement of the
window function I(r,E) by a δ-function, may be analyzed in
detail.47,53 Here we remark that for a constant difference
potential, approximation (a) becomes exact, but then, the
spectrumP(E,T) is independent of the actual position of the
wave functionψ1(r, T) (and consequently of time). Also, for a
δ-pulse excitation, the spectrum becomes energy- andr-
independent and no information can be gathered from the signal.
On the other hand, for a very long pulse, the correction term
c(r,E) in eq 16 vanishes but then, approximation (a) is invalid.
We thus expect that the connection formulated in eqs 16 and
17 is reasonable for substantiallyr-dependent difference po-
tentials D(r) and for pulses that are short compared to the
vibrational periods but long enough to guarantee that the window
function I(r,E) is strongly peaked around the root of eq 15.

In the numerical examples given in section 3, the wave
functions|ψE(T)〉 are calculated without further approximations
from eq 5 and the photoelectron spectrum is obtained from the
norm of these functions (eq 12). This spectrum is used as the
input for the inversion; e.g., it plays the role of a data set which
is taken from experiment. The density is obtained from eq 17
where the connection between energy and bond length is given
via the resonance condition of eq 15.

3.2. Transient Ion Yields. In this subsection we discuss an
imaging method which was first suggested in connection with
pump-probe fluorescence signals.23,24Here, we briefly describe
the idea and extend the method to experiments which measure
transient ion yields. Figure 1 (middle panel) shows an ioniza-
tion scheme, where the photon energy is chosen such that
for a certain bond lengthr ) a, it matches the difference
potential, i.e.,ω2 ) D(r ) a). For delay-timesT, when the wave
packetψ1(r,T) is located at distancesr smaller thana, ioni-
zation is not possible. The ion yield increases if the packet
moves into the region withr g a and will eventually settle to
a constant value. This happens, if the transition dipole moment
µI1 can be approximated by a constant and the laser frequency
is large enough, for a detailed discussion; see refs 25, 54, and
55. Of course, for later times, the wave packet will pass the
distancea on its way back and the signal again decreases to
zero.

As in the last section we use a Gaussian probe-pulse to
obtain the total ion yield as

Performing the integration over energy and employing properties
of the error function erf(x)56 yields

The latter equation demonstrates in a clear way what has been
said above: if the densityF(r,T) is located in a region where
the argument of the error function is substantially negative, the
signal is zero. If the wave packet moves into the region to the
right of a, the signal levels off to a constant proportional to the
area under the density, see the discussion in refs 24 and 56.

To establish the relation between the total ion yield at a fixed
delay-time and the radial density, we replace the expression

ψE(r,T) ) µI1(r) ψ1(r,T) I(r,E) (10)

I(r,E) ) i
2∫-∞

∞
dt ei(VI(r)-V1(r)-(ω2-E))t g2(t) (11)

P(E,T) ) ∫ dr F(r,T) |I(r,E)|2 (12)

F(r,T) ) | µI1(r) ψ1(r,T)|2 (13)

I(r,E) ) i
2

x4π/â2 e-(D(r)-(ω2-E))2/â2
(14)

D(r) - (ω2 - E) ) 0 (15)

I(r,E) ) iπ{δ(D(r) - (ω2 - E)) + c(r,E)} (16)

P(E,T) ∼ F(ri,T)

|dD(r)/dr|ri

2
(17)

Ptot(T) ) π
â2 ∫ dr F(r,T) ∫0

∞
dE e-2[E-(ω2-D(r))]2/â2

(18)

Ptot(T) )
(π/2)3/2

â ∫ dr F(r,T) ×

{1 + erf[x2[ω2 - D(r)]

â ]} (19)
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(1 + erf(x))/2 appearing in eq 19 by a step functionΘ(r - a).
It then can be shown that23

with j(a,T) being the probability flux through the pointr ) a at
time T. Employing the definition

where S(r,T) is a real function and assuming that the latter
depends only weakly on the delay time, one finds

wherem is the reduced mass. Thus, under the assumptions as
made above, the time-derivative of the total ion signal is
proportional to the density at the resonance pointr ) a at time
T.

In a last step, the density is constructed from the equation

Here enters the average velocity of the wave packet motion
in state |1〉 which can be estimated classically asν0 )

x2(ω1 - V1(a))/m.
3.3. Transient Fragment Distributions.A third method for

imaging wave packets was used before in the connection with
the Coulomb explosion of small molecules.31-33 A critical
analysis of this method was given by Chelkowski and Ban-
drauk.33 The main idea here is to relate the asymptotic
momentum distribution of the atomic ions to the densityF(r,T)
at the timeT that the ionization proceeds; see Figure 1, lower
panel.

Inserting eq 5 into the expression for the fragment distribution
(eq 9) yields:

where we used the fact that|p-〉 is an eigenstate of the
Hamiltonian in the ionic state and neglected the kinetic energy
operator in state|1〉. Employing, as in the preceding sections, a
Gaussian for the probe-pulse envelope, the time integral can
be evaluated as

Following the arguments as given in section 3.1, the window
function is written as

The latter function is now replaced by aδ-function as

Here, the valuesri are obtained as roots of the equation

Note that, since we have used a projection on the eigenstate
|p-〉 to calculate the fragment distribution, the value of the
momentump is fixed so thatr depends only parametrically on
p. Evaluating the integral overr leads to the fragment distribu-
tion

To eliminate the integral over energy, an additional approxima-
tion is introduced. Therefore, although the probe pulse is
spectrally broad, we employ the limit of energy conservation
which says that, at a given value ofr, we must have (see Figure
1, lower panel)

This allows one to eliminate the photoelectron energy from eq
29 to obtain

Since the rootsri, as determined from the latter equation, are
independent ofE, the momentum distribution now reads

In principle, for a given potentialVI(r), the stationary scattering
states〈p - |r〉 can be calculated by solving

taking the proper boundary conditions into account. Within a
linear approximation to the potential around the pointri, the
solution of the time-independent Schro¨dinger equation is an Airy
function Ai(r ) ri) ) Ai(0), thus is independent ofri

12 and
may be omitted in evaluating the fragment distribution. The final
expression then is

The expression for the photofragment (eq 35) and photoelectron
spectrum (eq 17) are very similar and are identical if the
denominators (containing the derivative ofV1(r) and D(r) at
the same resonance distance) are set to the same constant. They
are, however, based on different kind of approximations.

In practice, the momentum distributions are calculated from
eq 9: for a fixed value ofE we propagate the wave functions

dPtot(T)

dT
) j(a,T) (20)

µI1(r) ψ1(r,T) ) xF(r,T) eiS(r,T) (21)

dPtot(T)

dT
) 1

m{dS(r,T)
dr }

a
F(a,T) (22)

F(r ) a + ν0t,T) ∼ {dP(λ)
dλ }

λ)T-t
(23)

F(p,T) ) ∫ dE| ∫ dr 〈p - |r〉

〈r |∫ dt ei(p2/2m+VI(∞)+E-ω2-V1)t i
2

g2(t) µI1 ψ1(T)〉|2 (24)

Ip(r,E) ) i
2∫-∞

∞
dt ei(p2/2m+VI(∞)-V1(r)-(ω2-E))t g2(t) (25)

) i
2

x4π/â2 e-(p2/2m+VI(∞)-V1(r)-(ω2-E))2/â2
(26)

Ip(r,E) )

iπ{δ( p2

2m
+ VI(∞) - V1(r) - (ω2 - E)) + cp(r,E)} (27)

Ip(r,E) ) iπ{δ( p2

2m
+ VI(∞) - V1(r) - (ω2 - E))} )

iπ
δ(r - ri)

|dV1(r)/dr|ri

(28)

p2

2m
+ VI(∞) - V1(r) - (ω2 - E) ) 0 (29)

F(p,T) ∼ ∫ dE
|〈p - |ri(E)〉|2F(ri(E),T)

|dV1(r)/dr|ri(E)
2

(30)

V1(r) + ω2 ) VI(r) + E (31)

p2

2m
+ VI(∞) - VI(r) ) 0 (32)

F(p,T) ∼ |〈p - |ri〉|2 F(ri,T)

|dV1(r)/dr|ri

2
(33)

{ p̂2

2m
+ VI} |p-〉 ) ( p2

2m
+ VI(∞)) |p-〉 (34)

F(pi,T) ∼ F(ri,T)

|dV1(r)/dr|ri

2
(35)
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ψE(r,T) until they are completely localized in the asymptotic
region. Then the coordinate space wave function is transformed
into momentum space. This is repeated for a discrete set of
energiesE which covers the photoelectron spectrum sufficiently.
Finally, the energy integral is calculated. The thus obtained
distributions which represent the experimentally provided input,
then enter into eq 35 to determine the densityF(ri), where the
distancesri fulfill eq 32.

4. Numerical Examples

First, the construction of radial densities from photoelectron
spectra will be treated. In what follows, results are discussed
for photon energies of 3.73 eV (pump-pulse) and 4.5 eV
(probe-pulse). The Gaussian pump pulse had a duration of 50
fs (full width at half-maximum), and a shorter (Gaussian)
probe-pulse of 20 fs was employed. Figure 2 compares the
numerically exact densityF(r,T) with the constructed density
Fc(r,T) obtained from eq 17 for different delay-timesT, as
indicated. In our case, the difference potential between the
double-minimum state|1〉 and the repulsive ionic state|I〉 is a
monotonicly decreasing function ofr (in the region, the
vibrational wave packet dynamics takes place), so that there is
a one-to-one correspondence between the pointsri and the
photoelectron energy, as defined via the equality in eq 15. The
figure documents that the prescription for the construction of
the density is indeed excellent, as was demonstrated theoretically
before.57,58 For all three delay times, the position of the
maximum ofFc(r) coincides with that ofF(r). Also, the widths
of the densities agree well so that here we may say that wave
packet imaging through time-resolved photoelectron spectros-
copy works very well.

Next, we turn to the densities, as obtained from the total ion
yields using eq 23. The same parameters for the pulses as
specified above were used except that the probe photon-energy
was varied. As is sketched in Figure 1, resonant ionization with
pulses of different photon energiesω2 selects different bond
lengthsr ) a, at which the vibrational wave packet can be
monitored. Figure 3 contains the calculated densities. We chose
ω2 to assume values of 3.1 eV (upper panel), 2.95 eV (middle
panel), and 2.76 eV (lower panel), corresponding to bond lengths
of a ) 4.3, 4.6, and 5.0 Å, respectively. For the choice of the

first two parameters, the constructed and numerically exact
densities agree perfectly. A larger discrepancy occurs in thea
) 5.0 Å case, mainly at longer bond lengths. This has to do
with the fact that here the wave packet passes the barrier of the
double minimum state and thus the approximation of a constant
velocity ν0 within this state is not valid. It has to be noted that
a wave packet being localized in the regions of the classical
turning points in the potentialV1(r) cannot be monitored using
the flux method as described above, since the transient ion
yield will not level to a constant value as a function of delay
time.

Finally, we discuss the wave packet imaging by inversion of
the fragment distribution. As in the case of the photoelectron
spectra pulses withω1 ) 3.73 eV, 50 fs width (pump) andω2

) 4.5 eV, 20 fs width (probe) were employed. The upper panel
of Figure 4 compares the densities at a delay-time ofT ) 100
fs. Here, the vibrational wave packet in the intermediate state
is localized at a bond length between 3 and 4 Å. The constructed
density is shifted slightly toward smaller distances as compared
to the numerically exact one. At a later time of 150 fs, the fact
thatFc peaks at smaller distance is as well observed. This trend
continues and is most pronounced atT ) 250 fs (lower panel
of Figure 4). The reason for the discrepancy in the location of
the two densities can be rationalized in the following way: the
basic idea of the construction method is that the initial wave
packet, produced within the ionization step, carries a momentum
distribution which is dominated by components with zero
momentum, and thus the energy at early times is almost exclu-
sively potential energy. The latter then is transformed into kinetic
energy of the fragments. The assumption of a mean zero mo-
mentum is not necessarily valid: since the wave packetψ1(r, T)
is moving outward in the double-minimum state, its kinetic
energy is transferred into the ionic state (see, e.g., eq 10). Thus,
the fragment distribution peaks at a higher momentum which,
in turn, yields a constructed density at shorter distances. This
reasoning also explains why the mismatch in the peak position
increases in going from 100 to 250 fs since for the longer time,
the lower state wave packet has picked up more speed.

Figure 2. Constructed (Fc) vs numerically exact densityF for different
pump-probe delays. The densities are derived from the photoelectron
spectra.

Figure 3. Constructed (Fc) vs numerically exact densityF for different
pump-probe delays. Here the wave packet imaging is performed using
the time-derivative of the transient ion yield. The choice of the probe
photon energies allows for the mapping at different bond lengths. The
numbers given in the different panels indicate the times when the wave
packet has completely entered the excitation window so that the
ionization signal has leveled to a constant.
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As a second observation the deviation in the width of the
two densities is much more pronounced in the 250 fs case than
at earlier times. Because of the large positive momentum from
the intermediate state dynamics, the fragment momentum
distribution yields a constructed density at too small distances
where the potential energy is rather steep and thus the width
becomes too small as well.

Altogether, for the example regarded here, the use of the
fragment distribution is good as long as the vibrational wave
packet in state|1〉 has not developed a momentum distribution
far away from zero momentum which, in the present example,
is the case at small delay times. The imaging procedure could
be improved in a simple way if additional information about
the kinetic energy in the intermediate state are available.33

5. Summary

Three methods to image the density of vibrational wave
packets have been discussed. They are based on a pump-probe
ionization scheme employing ultrashort laser pulses. In the first
method, the photoelectron spectrum is used for the construction
of the density. Because of the very fast ejection of the
photoelectron an excellent snapshot of the density at the time
of the ionization is obtained. The subsequent dynamics in the
ionic state, leading to a modification of the wave packet does
not enter into the signal. Extending our former work on pump-
probe fluorescence spectroscopy, we showed that transient ion
yields can be used to map vibrational densities. The underlying
method does also yield reliable results in the present case, but
is of lower quality for a flat difference potential between the
neutral and ionic state. Opposite to the time-resolved photo-
electron measurements, here it is necessary to adjust the probe-
pulse wavelength in order to map the wave packet at different
times (distances). As a third method, we investigated photo-
fragment distributions which, using energy conservation argu-
ments, can be related to the vibrational densities. The quality
of the procedure depends more critically on the location of the

wave packet in comparison to the results as obtained using the
other two methods. It should be noted that in all three cases
essentially the same approximation were involved leading to a
simple physical picture relating wave functions and observables.
It is of course possible to implement corrections (see, e.g., ref
33) to the approximations, but owing to limited experimental
resolution this might not be useful. In conclusion, we have
demonstrated that pump-probe ionization experiments are well
suited to characterize vibrational wave packets in small mol-
ecules and to monitor their temporal changes.
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