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Some Observations Concerning Detailed Balance in Association/Dissociation Reactions
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In this article we discuss the chemical kinetics of reversible association/dissociation reactions at great length.
We find that, as long as the characteristic time for internal-energy relaxation is faster (not necessarily much
faster) than that for chemical reaction, there will be a period of time, perhaps only late in the reaction but
before equilibrium is reached, during which phenomenological rate laws will apply with rate coefficients that
satisfy detailed balance. The nonequilibrium factgy,originally introduced by Smith, McEwan, and Gilbert

(J. Chem. Phys1989 90, 4265-4273) isnot a measure of the degree to which detailed balance is satisfied
by the association and dissociation rate coefficients. It is simply the fractional contribution to the “long-time”
association rate coefficienkaqq Of the slowest-relaxing eigenmode of the system. That is, fe is the
fractional contribution to the same rate coefficient of the internal-energy relaxation modes. The standard
practice of taking the dissociation rate coefficidgf,to be equal to that for irreversible dissociation is accurate

as long ay = Kegm(1 — fre) < 1, whereKeqis the equilibrium constant for the association reaction, rand

is the concentration of the excess reactant under pseudo first-order conditions for the association reaction.
Both rate coefficientskagg andky, show a very weak composition dependence, i.e., dependengg on

I. Introduction time and z; is a characteristic time for reaction to occur.
Widom’s paper, which is one of the most lucid and insightful
ever written about chemical kinetics, is limited to discussing
first-order processes. However, even though he emphasized the
condition given by eq 2, from his analysis it is clear that this
condition is too restrictive. We discuss this point below. In fact,
the discussion in section Il of this article might be considered
to be just an extension of Widom’s analysis geeudofirst-

order processes.

It is common practice in chemical kinetics to identify the
thermal dissociation rate coefficielkt, of a molecule with (the
negative of) the largest eigenvalue (least negative) of the
transition matrix of the master equation (ME) governing its
irreversible dissociation:™ It is equally common to calculate
the reverse association (recombination) rate coefficikqnt,
from the detailed balance condition,

K, In 1989, Smith, McEwan, and Gilbé/& made an ambitious
Zadd _ Keg (1) and laudable attempt to identify rigorously if and when eq 1
Ky was satisfied quantitatively for association/dissociation reactions,

not limiting their discussion to diatomic molecules. In a later

whereKeqis the equilibrium constant for the association reaction. papert” Smith and co-workers also discussed detailed balance
However, both of these practices have only been justified for the case where a set of bimolecular products may be formed
qualitatively. The use of eq 1 to calculatgiq was discussed  from the collision complex. Under the same conditions as those
extensively in the 1950s and 19603¢ at least for the discussed above, Smith, McEwan, and Gilbert derived the rate
dissociation of diatomic molecules. Particularly important equation (in our terminology),
contributions were made by Riéé,Keck and Carriet? and
Widom 11 dnc(t)

Ricé*® used microscopic reversibility and the statistical at - Ke® kKo (ONg(), ©)
independence of dissociation and recombination processes in a
dilute gas mixture to argue convincingly that eq 1 should be wheret is the time, andhg, Ny, andnc are the concentrations
satisfied even iky is substantially smaller than its equilibrium  of the reactants and products of the association reactimir
value. The latter effect was (and is) known to occur, because == C. The factorfy,, the “nonequilibrium factor,” is a function
the populations of highly excited molecules are depleted below of the steady-state energy distributiafE), of the dissociating
their equilibrium values during the steady-state dissociation molecule during itsrreversible dissociation, i.e.
process, at least at low pressure. Keck and Carrier provided a

somewhat more quantitative justification of eq 1, but they and ) o e cZ(E) 2
Rice relied heavily on the condition, fre = (j;J c(E) dB)/ JE) F(E) dE|, (4)
T, <1, (2) where F(E) is the equilibrium energy distribution. The rate

coefficientk, (not necessarily equal g under all conditions)
to make their arguments. In eq,is the vibrational relaxation  is that for theirreversible dissociation of C,
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Figure 1. Nonequilibrium factor .. (defined in eq 4), as a function ~ Figure 3. Characteristic time ratio}s/4., for vinyl dissociation as a
of temperature and pressure for vinyl dissociation. Details of the function of temperature and pressure.
calculations are given in ref 4.
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Figure 2. Nonequilibrium factorf,. (defined in eq 4), as a function ~ function of temperature and pressure.
of temperature and pressure for ethyl dissociation. Details of the

calculations are given in ref 4. system would not approach equilibrium at long times. There
are only 2 possibilities: either the rate law given by eq 3 is not
valid at long times or it is valid only if,e = 1. We discuss this
point at length in section IV.

Smith et alt2 emphasize the point thé. is almost always

where &; is the eigenvalue mentioned in the first paragraph
above. If the steady-state distribution is normalized, i.e.

ﬁ) c(E)dE=1, (6) equal to unity. However, that is not really the case, particularly
for weakly bound free radicals at high temperature. In a recent
fne can be written as investigation of vinyl and ethyl dissociation over a wide range
of temperatures and pressufese found the results fofne
f = 1/(f°° @c(E) dE). @) shown in Figures 1 and 2. At temperatures just above 1000 K,
ne ° F(E) fne begins to deviate from unity for both radicals, so much so

that one would conclude from the Smith et al. analysis that eq
From eq 7 the physical significancefafis clear: its deviation 1 js not satisfied even approximately at temperatures typical of
from unity measures the degree to which dissociation perturbs combustion processes. Somewhat surprisingly, these deviations
the equilibrium population distribution of the dissociating begin to occur at,/t; values as small as 18 . This point is
molecule. If the only states whose populations are depleted byijjjustrated in Figures 3 and 4, where we have plotted, for
dissociation are those that are not heavily populated at equi-the 2 moleculesiiandA; are the 2 least negative eigenvalues
librium, fre = 1 to a high degree of accuraéyf course thisis  of the transiton matrix G for the reversible association/
frequently the case. dissociation problem, described in section Ill. We can identify
The implication of eq 3 is thalty = ky and kaga = fndedku- (1/144]) with 7, and (1/4,]) with ..
Taken together, these two relations imply that eq 1 is satisfied Clearly, the issue described above is an important one for
if, and only if, fre is equal to unity. This result is at odds with  5qeling combustion kinetics. Generally speakingdepends
the prior work of Rice, Keck and Carrier, and Widom. Viewing  op, the proximity of the peak in the equilibrium internal-energy
eq 3 from a slightly different perspective, let us simply take its gistribution of the dissociating molecule to the threshold energy
limit as t — c and get for dissociation. The closer these 2 energies are together, the
more likely it is that states that are highly populated at
f Keg= Ne(*) _ 8) equilibrium will have those populations perturbed by reaction.
e84 n_(c0)ng(e0) Thus, larger (high density of states), weakly bound, free radicals
will be affected even more than,8; and GHs. Tsang et al8
Clearly, eq 8 can be valid only ffe = 1, otherwise the reacting  have discussed the limiting case where the peak in the thermal
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internal-energy distribution lies wekbove the dissociation Boltzmann’s constant, andis the temperature of the bath gas.
threshold. In such cases it is impossible to distinguish betweenIntroducing the functiorf(E) through the definition,
7y and 7, and consequently it is impossible to define a 5 e

f4(E) = p(E)e ™= = FE)Q(T),

dissociation rate coefficient.
In the following discussion we are able to reconcile the . . . . . .

one can write the microscopic reversibility condition (eq 11) in

the symmetric form,

(13)

conflicting results alluded to above. The main result of the
present article is contained in section IV, where we rederive

the Smith et al. rate equation correcting a flaw in their analysis.

f(E) f(E")

In the process, we are able to offer an extended (different) P(E' .E).=-=PEE)_=. (14)
interpretation of,e and to define a condition under whigh= f(E) f(E)

ky, . However, to understand these results, one must have a firm-l-hen defining a new dependent variable

grasp of both the reversible and irreversible dissociation ' '

problems. We provide this background in sections Il and Ill. y(E) = x(E)/f(E), (15)

the master equation can be written in the form,

dy(E) _, (= A(E)
_E__ZA{HEBR5

1. Irreversible Dissociation

In this section we consider thiae versibledissociation of a
molecule C,

C—R+m. (R1)

[1 + @]5(E - E')} y(E') dE', (16)
By the term “irreversible” we mean that the products are

removed from the gas mixture as soon as they are formed, sowhered(E — E') is the Dirac delta function. In view of eq 14,
that the reverse association process plays no role in the analysisthe kernel of this integral is symmetric with respect to
In this and the following sections we also assume that the initial interchanging= andE', making the integral operator Hermitian.
reactant (or reactants) is immersed in an inert bath gas, so thaApproximating the integral in eq 16 as a discrete sum with a

energy-transferring collisions of C with the bath gas are the

fixed energy spacingE and multiplying through by)E, the

only ones that need to be considered. These are standardE reduces to the simple vector equation,

assumptions that define the irreversible, unimolecular dissocia-
tion problem. In addition, we consider only a one-dimensional
master equation in which the total internal enefgyis the
independent variable. This facilitates comparisons with the
solutions to the reversible ME, where only 1-d solutions are
readily obtainable. This latter restriction is justified further by
our observation that 1-d and 2-d solutions (wh&rand the

dyd

e G|yl (17)
where|ylis the vector whose components are

Y, = Y(E)JE, (18)

total angular momentum quantum number are the independentynd G’ is a matrix whose elements are

variables) give very similar results at high temperatdres.
Under the conditions described in the previous paragraph,
one can write the master equation as

dn(E)
at

Z[;" P(EE)N(E) dE — Zn(E) — KENE), (9)

wheren(E) dE is the concentration of C with energy between
E andE + dE, Zis the collision ratek(E) is the microcanonical
(RRKM) rate coefficient for the molecule, arR(E,E') is the
probability that a collision will transfer the molecule from a
state with energy betwedfi andE' + dE' to one with energy
betweenE andE + dE. It is convenient to normalize eq 9 by
dividing through by the initial concentration of the reactangt,
Equation 9 then becomes

&(E)

S =7 [ PEE)XE) dE' — ZX(E) — KEXE), (10)

wherex(E) = n(E)/no.
The functions P(E',E) and P(E,E') are related through
microscopic reversibility,

P(E',.E)F(E) = P(E,E)F(E), (11)
whereF(E) is the equilibrium energy distribution,
F(E) = p(E)e "1Q(T), (12)

p(E) is the vibrationat-rotational density of states of @Q(T)
is the corresponding partition functio, = (1/kgT), ks is

G - f(EJ-)(5 k(E) s 9

i =Z P(Ei,Ej)@ E- 1+7 if- (29)
Like the kernel of the integral in eq 165 is real and
symmetric, and thus Hermitian. This property greatly facilitates
the solution of eq 17, which can be solved in exactly the same
way as one obtains the general solution of the time-dependent
Schrodinger equation in quantum mechanics. The general
solution of eq 17 so obtained is

N
=3 e¥igaglyO))

=1

(20)

whereN is the number of grid points in the energy space, and
ly(0)ds the initial condition vector. Th§'s are the eigenvalues
and the|g[’s the orthonormaleigenvectors o', i.e.

G'lgl= &gl (21)
Because of the Hermiticity d&' the&;’'s are real, and they must
necessarily be negativé, < 0 for all j; otherwise the solution
given in eq 20 would blow up as— . Also because of the
Hermiticity of G', the |g/lare orthogonal, and the solution of
the ME leading to eq 20 requires that tig be normalized so
that

g9 L= 6ij' (22)

Let us look at the solution to the ME, eq 20, more care-
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fully. Absorbing the scalar coefficientsg|y(0)L) into the
eigenvectors, we can write

O N
YO= ‘TD: ; eyl

where |y;= |gjlIgjly(O)L] The |y;[s are still eigenvectors of
G' with the eigenvaluesg;, and they are orthogonal. However,
unlike the|gils, they are not normalized, and they depend on
the initial condition. Writing eq 23 in terms of components,

x(@® N

(23)

— =Y ey, (24a)
wherexi(t) = x(E;,t)0E andf; = f(E), or
N N
X =y ey = 3 ey, (24b)
AP

In eq 24b, we have defined the components of a velcioas
cj = fiypjj. Thus the vectorgciOand |y;0are related by

C
|G0= |fy;Cor [y,0= ‘?’D (25)
Finally, the population distribution can be written in vector form
as

N
Xt =S ellic (26)
A

The vector|ciThas an important physical interpretation. One
can write

0= | — Ax O (27a)

or

6 = —Ax, (27b)
whereAx; is the change in population of thth energy level
that accompanies the time evolution of fltte eigenpair front
= 0 to o. After the “transients”, or fast-relaxation modes
(corresponding to vibrationalrotational relaxation), die out,
()= e|c, 0 (28)
If 1&1] <|&2|, implying that there is no significant dissociation
during the vibrational/rotational, or internal energy (IE), relax-
ation period, we have the result,

N N

Zc” =-YAx, =1
= =

N N

1= 1=

Thus, |c;0is the steady-state energy distribution of C during
the dissociation process as long H3| < |&;. It is still
proportional to the steady-state distribution as long&shas
not merged with the IE relaxation eigenvaluesgn if there is

and

(29)
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significant dissociation from g 2; |c;simply needs to be
rescaled so thaf ! ;¢ = 1.

Note that theij's are relateghysicallyto the corresponding
Jj's mentioned in the Introduction and very crudefy,~ 4
(except forj = 1). However, mathematicall§; and 4; are
eigenvalues of 2 different matrice§' and G, the transition
matrices of the ME’s describing thee versibleandreversible
dissociation problems, respectivelg.andG' are different in
thatG has one more dimension th&j, i.e.,Gis an N + 1) x
(N + 1) matrix andG' is N x N. We will continue to make the
appropriate distinctions between them. Nevertheless, fAgth
< |42] and|&;] < |&2] mean the same thing, that internal-energy
relaxation is much faster than chemical relaxation.

Summing eq 26 over all components, one obtains

N
Xe(®) = ;eﬁ‘(—qu), (30)

whereAX, is the change in the normalized concentration of C
induced by thgth eigenpair. After all the higher-eigenvalue
terms have died out,

Xo(t) = —AX €™, (31)
Differentiating eq 31 with respect tp we get
dX(t
—);i( = —EAX e, (32)

and using the definition of the unimolecular rate coefficient,

L CEAXE

D=7 d T Caxee)

or

k,=—& (33)
Equation 33 just gives the well-known relationship between the
unimolecular rate coefficient for the irreversible problem and
&1 mentioned in the Introduction. Note that this resides not
require |&1] < |&,|. As long as&; has not been absorbed into
the continuum of IE relaxation eigenvalues, even if there is a
large amount of dissociation during the IE relaxation period,
there will be some period of time during which eqgs 31 and 33
will apply, although this time period may produce a very small
amount of dissociation. If this latter condition is not satisfied,
separate |E relaxation and dissociation time periods are not
distinguishable, and all the dissociation occurs as part of the IE
relaxation process.

Understanding the derivation given above, even its more
subtle points, is important to understanding the analysis
described in section IV. In this vein, we need one more result.
For anirreversible dissociation

dX. N

- © it
" ; J dEG(E)K(E)e™, (34)

where for convenience we have shifted back to a continuous
(integral) formulation of the problem from a discrete one (using
sums). We hope that the relation between the 2 formulations is
clear. Defining an “average rate coefficient” as
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A o © reformulate the last term in eq 43 in terms of the properties of
k= ﬂJ k(E)q(E)dE/j(; G(E)dE, (35) C (rather than those of R and m), we can write the ME as
eq 34 becomes dv(E " fH(E'
M = Zf {P(E,E')Q _
dX. N dt 0 f(E)
——=YST[k [ c(E) dE]e™". 36 K(E K
dt ]Zl[kh/; i(E) Al (36) [1 + %]é(E — E)ty(E) dE' + aeok(E)f(E)nmXR(t). (44)
Integrating this equation with respect to time, we get The present problem is a special case of the more general,

multiple-well problem we have treated previoudty?® so we
adopt the same procedure as before and write a rate equation

N
—AXe=1= J;[kjfo ¢(E) dEV/I5;l. (37) for Xg(t) (nm = constant),

Each term on the right-hand-side of eq 37 can be identified as % = f‘” K(E)X(E) dE — Xq(t)n_K q/""’ k(E)F(E) dE
— AXg, the contribution of théth eigenvector of' to the decay dt 0 RTmed/o

of the concentration of C, or

~AXc = [k [, 6(E) dEV/|§|. (38)
%= 5o : %‘ = [7KEFE)YE) dE — Xg(ON,Keq [, KE)F(E) dE.
Now from eq 27 we know that (45)

ﬁ” G(E)dE= — j:o AX(E) dE = —AXc (39) Writing the integrals in eq 45 as discrete sums and multiplying
‘ through by 0m/(QrmOE))Y2, eq 45 becomes

Consequently, it follows from egs 38 and 39 that d o\ N n, O\ 12
k=& =—¢& —| Xg(1) = Y EKE)(E) -
k] |§] | 5] 1 (40) dt R QRméE & 1 ! 1 QRm
an important result that we need below. Note that if there is no Ny |\ N
dissociation from the higher eigenvector, c,(E) dE = 1, Xg(t) NyKeq ) KE)F(E)OE. (46)
and we have the intuitively obvious result, Rm =
- o After discretizing, eq 44 we can write it as
k= [ KE)C,(E) dE = —§, =Kk, (41)
_ o ay(g) N f(E)oE k(E)
where, as noted abovey(E) is the steady-state energy distribu- —— =7 (Ei,Ej) —|1+— 6"- y(EJ-) +
tion of C during the dissociation phase of the relaxation process. dt = (E) VA
However, it is the general result, eq 40, that proves useful below. n,OE 1/2 n, |2
: o . K(E)H(E) X (47)
lll. Reversible Association/Dissociation Reaction: _m =

Homogeneous Formulation o
) ) .. Now we have the form that we want - the coefficient of/

The most accurate, rigorous way of handling the association/ (g, SE))12Xx(t) in eq 47 is identical to that of(E) in eq 46.
dissociation problem is to treat it reversibly. In so doing, We T keep the present formulation as close as possible to that for
generally view the reaction as going in the association direction, {he jrreversible dissociation, it is useful to multiply both eqs 46
although our results do not depend on this being the case. Togng 47 byoE.
simplify the problem, we assume that we have pseudo first-  The manipulations just described allow us to combine egs

order conditions, 46 and 47 into one vector equation, a generalized master

Ng <N, <Ny (42) equation, of the form,

whereny is the concentration of the diluent. The master equation d|v(\j/(t) D: Giw(t)Q] (48)
(analogous to eq 9) can be written as t
here
dn(E)  _ je ) - w
5 =Z [, P(EE)N(E) dE' — Zn(E) g K(E)n(E) + o, EWE [ oE\e T
—pE
l%(E)[PRm(E)e / /Qan]anmv (43) Iwh= f(O) E..s f(Ei) v QRm XR ’ (49)

where prm(E) is the density of states (including relative

- - . and the transition matri again is Hermitian. Thus, we can
translation motion) of theR + m fragments, Qrm is the

. . ) < . i write the solution to eq 49 in terms of the eigenvalues and
corres_pqndlng partition f.unctlon, akg(E) is the mlcrocgnonlcal eigenvectors o6, G|gC= 4|g L as we did for the irreversible
association rate coefficient. In formulating eq 43, it has been issociation problem

assumed thaR andm are maintained in thermal equilibrium,
consistent with eq 42. N

Recasting the problem in the same way we did for the |w(t) = Ze‘ﬂgj (Tigy | w(O)CJ (50)
irreversible dissociation, and using microscopic reversibility to =
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Formally, the only difference between this solution and that Kigg  Xc(e0) Ne(e0)

given by eq 20 is that eq 50 includes an eigenpair corresponding E = N X-(e0) = N () = Req
to Ao = 0. Thus, eq 50 approaches a constant veleugr)as moR m R
t — oo that corresponds to a state of complete chemical and ) o
thermal equilibrium, whereas eq 20 approaches the null vector Noté that in the second substitution, even though the rate

(56)

at long times. coefficients were calculated for different initial conditions, they
From eq 50, we can obtain the energy level popu]ations of are preSUmed to be universally valid. Therefore, in any particular
C, x; = x(E))JE, as a vector, case, we can multiply both numerator and denominator by the

appropriate normalization constant. Thus, we find that detailed
N balance is satisfied, at least under the assumptions employed.
IX(C= Z|ch€i‘, (51) However, it should be clear thahis result is predicated on
= there being no reaction from the higher eigentors Otherwise,

where|c;is formally the same as before (eq 27) for 1 and the second s_ubstltutlon In eqgs 54 is not valid. L
Cio = %(0), the equilibrium population. Note th#(t)ThasN . A more sa.tlsfactory approaqh to the rate-coefflment problem
components, whereas(t)ChasN + 1, i.e.,|x(t)Cis a vector in is the “long-time” mgthod of Kllppen_steln and Mlllé?:ZONot_e
a subspace of one less dimension than that defined by thethat eqs 53 are valid after all thé'g = 2) terms have died
eigenvectors of5. After the transients have died out, i.e., all OUt, regardless of whether these terms bring about any chemical
the terms involving = 2, one can write eq 51 as change. The only requirement for their validity is thathas
not yet been absorbed in the continuum of IE- relaxation
1 eigenvalue® (not necessarilyl:| < |12|), in which case there
IX() = Zlq@jt = |x(c0) T |, & will be a time period, perhaps very short and perhaps only late
= during the course of the reaction, but before equilibrium is
¢ attained, where eqs 53 are applicable. This last phase of the
IX(®) 0= [x(0) CH- |_AX1@M- (52) reaction may be responsible for only a small fraction of the
chemical change.

Summing the components ¢f(t)[) we get from eq 52 that We can write egs 53 as

X(t) = Xo(00) — AX €. 53a
=) - o5 Xo(t) = ay; + ag £ (57)
Similarly, from the last component ¢#L] we arrive at Xe(t) = @y, + a,,&™"
_ _ at

Xell) = %e() AXRlel ' (53b) and regard the coefficients as elements of a matrix A
Equations 53 are applicable for any and all initial con_di_ti_ons, Q. a X () —AXe
although the values of thAX's depend on what the initial A= |1 1z 1 (58)
conditions are. Ay Ay Xg(e0) —AXR1

If |11] < |A2], which we take to mean that the difference _ )
between the 2 magnitudes is sufficiently different that there is Whose inverse i$
no significant contribution to reaction fromg;C]j =2, we can
apply the “initial-rate” method of Klippenstein and Milf€r°
to obtain the rate coefficientg andkage This method requires
that internal-energy relaxation be complete before any reaction
takes place. Essentially, one must be able to identify unambigu-\yhered, = ajja,, — a1 is the determinant of. The long-
ously a timet = 0, when IE relaxation is over but none of the  jme method recognizes that egs 57 (or 53) are uhigue

reactant has disappeared. Applying this method, we obtain for 5o tion to a system of first-order rate equations whose rate
the rate coefficients coefficients are

bll b12
b21 b22

aldy  —afd,
“a,/d, a/d, (59)

B:A_l:[

— © = _
Ker AiAXR, A1 Xe(®) Ker = 418005,
and (54) and (60)
Kec = —llAX(cR;) = =2, Xg(), ke = 418105,
wherekcr is the C— R rate coefficient, an#irc is the pseudo Using the conservation conditiom\Xg, = — AXc,, da
first-order R— C rate coefficient. The superscripts on th¥'s becomesds = AXc, = —AXg,, and we get
in eq 54 indicate the reactant, i.e., the initial condition, in the
calculation. Note that the second substitutions in these equations —X o(00)
are valid only ifall the reaction occurs throughyL Ker = 4:AX¢ R
Sincekrc is pseudo first orderkrc = Kadd'm and we have 1 Xc(@)AX e, = (AX )Xg()
ke _ Kaddm _ X() (55) = _}LlXR—@O)’
Ker Ky Xg(®)’ X () + Xg(e)

or or ker = — A1XRg(®), since X() + Xgr(0) = 1. Similarly,
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Xc() them), we can use the vector equivalent of an integrating factor
Krc = A1(—AXc) AX to solve eq 62, viz
, .. K
= =4 Xc(%). ly(t) = %" O‘e G o (‘fl‘_‘)|(pmme(s) ds + |y(0)g.

These expressions féer andkgc are identical to those given
in eq 54. Thus we deduce that the rate coefficients calculated

by this method satisfy the detailed-balance condition, eq 1. It " . . . .
y fy o ultimately we will derive a rate equation analogous to eq 3,

follows that, as long as IE relaxation is complete before chemical which should not depend on initial conditions anvway. Then
relaxation is complete (not necessaril§s] < [12]), the we have P yway.

concentrations of R and C obey phenomenological rate equations
with rate coefficients that satisfy detailed balance. The period Koo o o
of time during which this occurs before equilibrium is achieved ly(t) = ﬂfo e® 9, Xx(9) ds, (64)
may be extremely small, i.e., the fraction of the reactant Q
consumed during this period may be small, but there will always |\ here the operatoi®9 operates oifi[] Continuing to follow
exist a rate-coefficient period during which detailed balance is gnith et al., we expangCin terms of the eigenvectors &,
satisfied. , _ , . using thely;s instead of theg;(s even though the former are
Before we close out our discussion of this method of treating 5+ normalized and depend on the initial conditions. Then
the reversible association/dissociation problem, we want to

Consistent with our general approach of viewing the reaction
from the addition direction, we can takg0)= |OC] However,

establish one last result. Consider a “recombination experiment” N
in which initially there is only R. The long-time, pseudo first- o= Zﬁ”w]ﬂ
order, addition rate coefficient is given by =
Kre = Nkaga = —41Xc(%0) where
N [;leUl
11; K £ 3yl
N and eq 64 becomes
= Alexgj” (61)
&

Keg N
YO = —qz [ &Iy, D Xe(S) s,
Thus, the contribution to the long-time addition rate coefficient QL
of each eigenpair is directly proportional to its contribution to
the aerall change in composition.

IV. Association/Dissociation Problem: Inhomogeneous

Keq N t &
Treatment IX()= EZﬁjlcj% 179N, X(9) ds, (66)
]:

There are 2 ways of treating the association/dissociation . . . i
problem mathematically. As we did in the last section, one can where |Gl) of course, refers to the irreversible dissociation
absorb X% into the vector of unknowns and create a system of problem discussed in section . . .
homogeneoudifferential equations. Alternatively, one may take . NOW. let us calculate§. Using the relationships introduced
the last term on the RHS of eq 43 as a source term, or in section II, we have
inhomogeneity, in the master equation. The first method is
superior for practical calculations and is easily generalizable to
multiple-well problems; it has the advantage of treating bimo- Wly=
lecular fragments and stabilized adducts as equals in calculating
thermal rate coefficients:2* However, the source-term method
has been employed several times in the past-26 In fact, it
is the method used by Smith et!din the work discussed in 2
the Introduction of this article. This method, when viewed in = N Ci(Ei)k(Ei)f(Ei)(éE)
conjunction with the results discussed above, can yield important Wile V4 f(E)
insights into the association/dissociation problem. '

Starting with eq 44, we write the integral as a discrete sum N
with constant energy intervale, and multiply through byE. = kjéEch(Ei)cSE.

The ME then can be written in the vector form, i=

N G7(E)(OE)”

1= fz(Ei)

dlyd Keq Thusg; reduces to
——=CG'lylH+ X 2
o~ GOt ||, (62) B
where the components ¢pCare k‘;Cij
= 67
¢, = K(E)I(E)OE. (63) Bi=- (67)
ZCiJZ/(FiQ)
Following Smith et al. (and Schranz and Nordh&irbefore =
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whereF; = F(E)JE. Substituting this expression f@y into eq
66 and summingx(t)Ofrom eq 66 over all components, one
obtains an expression fofc(t),

N

= (i t &(t—

Xc(t) = Kqukjf O[5 e 9n X(s) ds, (68)
J:

where

( Cij)z
10—

ne =

Zcijlei

Note thatfﬂl, is a generalization of thé&, discussed in the
Introduction. In fact, if there is no contribution to reaction from
the higher eigenvectors d&', |c;00becomes the steady-state
energy distribution during thdissociationprocess,LN:lcil =
1, andf®) = f.« We usef,e and (Y interchangeably in the
following analysis. It is an extremely important parameter, but
we defer a discussion of its physical significance until we have
completed our derivation of the rate law.

It is convenient and physically appealing to write eq 68 as

(69)

N
X0 =S x, (70)
J; &

where

XY = Kook T2 [ €990, Xo(s) ds (71)
is the contribution of thgth eigenpair ofG' to the population

of the addition product at timé during our recombination
experiment. The flaw in the Smith, et al. analysis was to identify
Xe(t) with X2(t) under all conditions. Note that this is
equivalent to assuming!, = 0 for j =2 and (to be shown
below) f ) = f,. = 1. We know, however, from the previous
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(i.e., pseudo first-order conditions). Integrating the integral in
eq 71 by parts twice, we have

Ny Xr(1) _ nmXR(O)ngjt _

Bl BT

N e o My ot OXRS)
R O)et + Mgt f iR g,
151§ @ © 151§ J ds’

(73)

j; dse9n X (s) =

n,, dXg(t)
g7 dt

This process of successively integrating by parts generates a
power series in (1£j|). Terminating the series with the (§)?)
term results ultimately in a first-order correction to the rate
coefficients in the small parameté&y/§j, j =2. This approxima-
tion is adequate for our purposes. Nevertheless, we consider
the complete series in the Appendix. Also, we consider only
the long-time behavior of the solution, i.e., after thigterms,
j = 2, have died out. This approximation is consistent with
obtaining analogues to the long-time rate coefficients discussed
in the last section.

Then we have, foj > 2,

Xt 1 de(t))

0)(t) A i )
XC (t) Keqnmk]‘f ne( |§J| |§J |2 dt

Using eq 40, this becomes

1 dXR(t)) (74)

& dt
Note that herélegm acts like an effective or pseudo first-order
equilibrium constant. Now we can substitute eq 74 into eq 72
and obtain, again using eq 40,

dXc(t)

at

XO(V) ~ Ko HL(XR(t) -

N
—kXc(t) + Z(; — EDKodhf Y X (1) —
]:

1 dXz(®)
) dt

) Nﬁfg)e]
+ kKo tnXe®|F 5+ S —]. (75)
O] et 27

section that, even if there is substantial reaction that occurs aS\\/e obtain the final form of our rate law by combining the

part of the IE relaxation process, i.e(g) = 0forj =2, there is
still a period of time during which phenomenological rate laws

Xgr(t) term in the brackets with the last term on the RHS of
eq 75, utilizing the conservation conditionXglt)/dt

apply and the detailed balance condition is satisfied. Conse-_dxc(t)/dt, and combining the resultingX@(t)/dt term on the

quently, we do not want to limit our discussion to the special
caseXc(t) = X).

Differentiating eq 68 with respect to time, using eqs 33 and
70, and rearranging, we arrive at

aX(t) N |
- - 0}
= RO S E e
ke
Ko X0 S ). (72)
KKeel0l 2

Up to this point our analysis iexact i.e., equation 72 is an
exact consequenad the master equation. We have not yet even
invoked the assumption,, = constant; eq 72 could equally
well apply for n,, = ny(t). However, to make further progress
we must evaluatex?(t). We can do this, at least approxi-
mately, by integrating by parts ifi, = constant. This ap-

RHS with the LHS (left-hand side) of eq 75. After simplifying
and rearranging, eq 75 becomes

AX()

= KX+ Kagd X0, (76)

i.e. the standard form for an association/dissociation reaction,
where
N &\
1+Keqan 1——|f9),
= 51

14K N(l gl)fﬂ) (78)
eqnm; £ ne

]

ko =k (r7)

and

= kK, Nfg>/
Kaga = Ky q(; )

proximation, of course, is the same as that made in section Ill The rate coefficients given by eqs 77 and 78 are good to first
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0.01 . T T seems safe to conclude that the condition given by eq 82 is a

' sufficient condition for the applicability d§y = k,. One probably
makes virtually no error in identifyindg with k, under any
ordinary experimental condition.

From eq 78 one can see tmﬂtis at least proportional to the
fractional contribution of thgh eigenvector o5’ to the addition
rate coefficient. Since under “normal” conditiorf§y) = 1, it
seems reasonable to conjecture that the offfs are nor-
i mally zero and compensate to satisfy eq 79 whebegins to

deviate from unity. Moreover, we can wrifé) as
800 1200 1600 2000 2400

N
T(K) IZAXij (AXCJ')2

. . 0) — —
Figure 5. Small parametery = Kegin(1l — fne), as a function of fre= N TN (83)
temperature for @3 and GHs dissociation at a pressure pf= 30

Torr andpm (= NmkeT) of 1 Torr. Z(Axij)lei Z(Axij)Z/Fi

order in g1/§;) for anyj. Figures 1 and 2 show that such an . i . o .
approximation should be a reasonable representation ofthe C  AS discussed in section Il, it is most common that virtually all
and GHs dissociations we have studied previously, so we shall Of the dissociation of C comes frojr= 1. In such caseaXc,

0.001

ne!

0.0001

K0, (0-1,)

10% |

10 L 1 1 !

2

use those reactions to illustrate our results. The rate coefficients= — 1, andf{J is extremely close to unity. IAXc, = — 1,
given by eqs 77 and 78 have 2 immediate consequences:  there must be some compensation from other eigenvectors,
1. Detailed balance is satisfied if, and only if, because the condition
N N
Zf =1, (79) ZAXCj =-1 (84)
= =
We argue below that this must indeed always be the case inMmust always be rigorously satisfied. Equation 83 shows, at least
the rate-coefficient regime. qualitatively, that thef s will have a similar compensating
2. The dissociation rate coefficiek is approximately equal  effect. In fact, one might take eq 79 to be the analogue of the
to k,, the unimolecular rate coefficient for thiere versible conservation condition, eq 84, for the recombination rate
dissociation problemk( = — &), if coefficient. That is, eq 79 is to recombination what eq 84 is to

irreversible dissociation.
1) . In section lll, we showed that the long-time rate coefficients
KechZ 1-—ffl<1. (80) always satisfy detailed balance as long as such rate coefficients
1= ] can be reasonably defined. Comparison of those results with
the ones given here provide compelling evidence that eq 79 is
satisfied under the same conditions. Let us make a quantitative
comparison between the 2 methods.
The analysis at the end of section Il indicates that the fraction
of the long-time recombination rate coefficient provided by

N

Let us look at the second condition first and assume that eq 79
is satisfied. Our goal is to provide a criterion for the applicability
of kg = k, that depends only oic;[] and not on the higher
eigenvectors. Then we have

N AN j = 1is AXZUXc(x), whereas the analysis of this section

Z 1-—[f0<@a—-f®) indicates that the same fraction is given H = f, Even

= j though the eigenvectors o6 and G' are mathematically
<@-f), 81) different, as emphasized above, in both cased corresponds

(nominally) to chemical reaction arjd> 2 corresponds to IE
relaxation. That is, even though the= 1 eigenvectors in the 2
cases are formally different, they are physically equivalent. This
Y =Kol — frd <1 (82)  suggests strongly thdite = AXE/Xc(e).
We compare these two quantities fosHz and GHs under
for the applicability of the substitutioky = k. In Figure 5, we a variety of conditions in Table 1. The agreement is remarkably
have plotted the parametgras a function of temperature for  good, probably within the numerical uncertainty of the calcula-

and eq 80 becomes

both GH3 and GHs at a pressure gb = 30 Torr andpm = 1 tions. This result provides quantitative confirmation of our
Torr, wherepyn = npksT. This is a fairly typical condition. The  interpretation of fe as the fraction of the association rate
plot shows clearly that indeegtc,n, and ycu, are small coefficient contributed by|g;0] or |cil] More importantly,

compared to unity. The figure does not show results below 800 perhaps, 1— fne is the fractional contribution of the IE-
K, becausd,e becomes so close to 1 at low T that the difference relaxation eigenpairs to the long-time association rate coefficient.
(1 — fne is unreliably small. Nevertheless, the indications are If f,e = 1, chemical reaction will take place as part of the
that bothyc,n, and yc,u, flatten out and remain small at low internal-energy relaxation process. Thiig, is an important
temperatures. physical quantity characterizing association/dissociation reac-
Equations 77 and 78 show that b&thandkagg have a weak tions, but its deviation from unity does not indicate that detailed
composition dependence, i.e., dependencengn Such a balance is not satisfied. Detailed balance is always satisfied as
dependence was not anticipated, but it is confirmed by accuratelong as one can rationally define phenomenological rate
calculations using the methods of section Ill. In any event, it coefficients.
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TABLE 1
C,Hs
p =30 Torr
pm=1Torr
T(K) fre AXE [Xc(e)
1000 1.000 1.000
1200 0.998 0.998
1500 0.977 0.974
1800 0.907 0.900
2000 0.831 0.820
2200 0.739 0.726
2500 0.592 0.578
CHs
p=30Torr
pm=1Torr
1000 0.999 0.999
1200 0.989 0.989
1500 0.908 0.905
1800 0.726 0.721
2000 0.581 0.575
2200 0.444 0.438
2500 0.278 0.274
CoHs
p=30Torr
pm = 1072 Torr
1000 0.998 0.998
1200 0.982 0.980
1500 0.872 0.866
1800 0.663 0.653
2000 0.551 0.502
2200 0.376 0.368
2500 0.224 0.218

A point that has been implicitly assumed in the foregoing
discussion is thaf,e is independent of scaling. For example, if
a large amount of dissociation occurs throygh 2 in the
irreversible dissociation probleny,\ ,c1 = 1, and the inter-
pretation off,e given in the Introduction would appear not to
be strictly correct. However, one can see clearly from the
definition offne that we can always multipljc; by any constant
(forcing Zi’\‘:lcil = 1, and thus establishing the interpretation of

|ciCas a steady-state energy distribution) without changing the

value offne. Thus,fre can be viewed as a property of the steady-

state energy distribution of the dissociating molecule even when
substantial dissociation comes from the IE-relaxation eigenvec-

tors.
To summarize qualitatively, the paramefgris a measure
of the deviation from equilibrium of the steady-state distribution

that emerges during the last stages of dissociation in the

irreversible dissociation problem. The deviatiorfgfrom unity
is an indication that reaction is interfering with the collisional
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1. If AXc, # — 1, the steady-state distribution will deviate
significantly from equilibrium, makindne < 1.

This coupling of IE relaxation and dissociation manifests itself
in the association rate coefficient as a distribution of ftfiés
such thaf %)) = 1. However, thd ©'s are constrained by nature
to satisfy eq 79 and ensure that detailed balance is satisfied.

V. Concluding Remarks

In this article, we have approached the association/dissociation
problem from 2 different perspectives and arrived at some
important conclusions.

1. As long as the characteristic time for vibrational/rotational
relaxation,zy, is smaller than that for reactiom,, i.e., 7y < 7,
and not necessarily, < 7, there will be a time period (perhaps
only late in the reaction) during which a phenomenological
description of the kinetics will apply, and the associated rate
coefficients will satisfy detailed balance, eq 1. This is true even
if only a small fraction of the initial reactant is consumed during
this period.

2. The nonequilibrium parametéye, originally introduced
by Smith et al1?does not measure the degree to which detailed
balance is satisfied. Instead, it represents the contribution of
the slowest relaxing eigenmode of the system to the long-time
association rate coefficient. The quantity-If,e thus represents
the contribution to the same rate coefficient of the internal-
energy relaxation modes.

3. The long-time dissociation rate coefficieky, is equal to
that obtained from the irreversible dissociation problép
— &, at least under conditions wheggim(1 — fne) << 1, which
is satisfied under almost all ordinary experimental conditions.
Thus, we find that the standard procedure of calculating the
dissociation rate coefficient from the steady-state distribution
obtained from the master equation for irreversible association,
then calculating the reverse association rate coefficient from
detailed balance, is valid as long as one interprets the rate
coefficients correctly. The paramefgy obtained from the same
steady-state distribution, provides important information about
the degree of coupling between reaction and internal-energy
relaxation.
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Appendix
In this appendix, we want to show that higher-order terms in

processes that try to establish the equilibrium distribution. This the expansion oﬁ(g)(t) in powers of (LEJ-), eq 74, do not
happens when the temperature is raised to the point where thechange the conclusions drawn in section IV. If we continue to

peak of the thermal (equilibrium) energy distribution is suf-

ficiently close to the dissociation threshold that the populations
of states that are highly populated at equilibrium are affected

by the process. Of course, a valudipf< 1 indicates that some

dissociation occurs as a consequence of the fast eigenmodes,

i.e., those nominally associated with vibrational/rotational

relaxation. Such rapid dissociation perturbs the steady-state

distribution that evolves at long times. In more quantitative
terms, ifAXc, = — 1, essentially all the dissociation takes place

through the slowest relaxing eigenmode of the transition matrix,

integrate by parts in eq 73 and neglect théterms, we get

dXR+ 1 dZXR
51_2 a2

X0 = e B0 + £

™,

(A.1)

0 <1
= Kecpmf nd Xr(t) + Z_
=g dt”

and the steady-state distribution that emerges at long times isTo evaluate thesecond and higher derativesin eq A.1, we

very close to the equilibrium distribution, as indicatedfly~=

make use of only the dominant terms iXgddt,
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dx d
d_tR =- %C = kdXC - deeqnmXR
~ _gGC + glKeqnmXR = _gl(XC - KeqnmXR)'

(A.2)

Then we can approximate the higher order derivativeszadis

1B

d"Xg I
- TS (1 + Keqnm) dt (A3)

dt"

forn=> 2.

Miller and Klippenstein

and

N
Koaa = kKo S £/
da= Ky q(JZ1 4
N (0
1+Keome ‘. . (A.8)
1- (Keqnmgllgj)/(l - E

J

As expected, the higher-order terms in our expansion A.1 change

Using these results one can evaluate the second term on they andkaqq by the same factor, so that detailed balance is still

RHS of eq 72 as

N N
Z(é,— — &)XY = Z(é,— — &) Kogof OXe +
1= 1=

1 &t L dXe
D R (R WL L B

i 0= gj dt

N
Z(EJ - El) Keqnmf 2) -
=

(A.4)

The term in this equation involvingg goes through as before.
However, we can now evaluate the coefficient oXcfbit
corresponding to thgh eigenvalue of5' in closed form, and
thus get a somewhat better approximatiorki@nd Kaqq than
we obtained in the main text of this article,

n—1

0) 1 &=t n-1
Keqnmf ne(gj —&)|--— ) —(@1+ Keqnm)
i =g
, ‘Sj - @ [E4\n
= —Kgnof 1+ 5| =] @+ Keg)"
j =5
) ‘i:j =&\ = [&)
= _Kev:pmf (rﬁ( ) —| @+ Keqnm)n-
gi “ZO g (A.5)

As long as (1+ Kegm)(£1/&j) < 1, which generally is the case,
the series in A.5 converges to 1A1(1 + Kegm)&1/&;). Substi-

tuting these results back into eq A.4 and simplifying one obtains

N N
Z(s,- — &)X = Z(sj — EDKohf OXe —
1= 1=

dX N A
KeqnmEJ; A (A.6)
L (K| 1 -

]

satisfied. Moreover, it is almost always the case that

&

Kedme

€ mg_
T Ellé,- <1 (A.9)

Let us use our results onBs dissociation and recombination
with p = 30 Torr andpy, = 1 Torr to illustrate this point. At
400 K, Kegm =~ 10%2 but (£1/&2) ~ 10714 whereas at 2000 K,
Kegim ~ 107%and €1/&,) ~ 0.1. In both cases A.9 is satisfied,
as it seems virtually always to be. (Note that these numbers
also confirm that the geometric series in eq A.5 converges in
these cases.) With the approximation A.9, the denominator in
the 2 rate coefficient expressions becomes

N
1+ Keqanf =1+ Kedm(L = fro)
£

=14y,

wherey is the same small parameter we discussed in the main
text of the article.
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