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In this article we discuss the chemical kinetics of reversible association/dissociation reactions at great length.
We find that, as long as the characteristic time for internal-energy relaxation is faster (not necessarily much
faster) than that for chemical reaction, there will be a period of time, perhaps only late in the reaction but
before equilibrium is reached, during which phenomenological rate laws will apply with rate coefficients that
satisfy detailed balance. The nonequilibrium factor,fne, originally introduced by Smith, McEwan, and Gilbert
(J. Chem. Phys. 1989, 90, 4265-4273) isnot a measure of the degree to which detailed balance is satisfied
by the association and dissociation rate coefficients. It is simply the fractional contribution to the “long-time”
association rate coefficient,kadd, of the slowest-relaxing eigenmode of the system. That is, 1- fne is the
fractional contribution to the same rate coefficient of the internal-energy relaxation modes. The standard
practice of taking the dissociation rate coefficient,kd, to be equal to that for irreversible dissociation is accurate
as long asγ ≡ Keqnm(1 - fne) , 1, whereKeq is the equilibrium constant for the association reaction, andnm

is the concentration of the excess reactant under pseudo first-order conditions for the association reaction.
Both rate coefficients,kadd andkd, show a very weak composition dependence, i.e., dependence onnm.

I. Introduction

It is common practice in chemical kinetics to identify the
thermal dissociation rate coefficient,kd, of a molecule with (the
negative of) the largest eigenvalue (least negative) of the
transition matrix of the master equation (ME) governing its
irreVersibledissociation.1-4 It is equally common to calculate
the reverse association (recombination) rate coefficient,kadd,
from the detailed balance condition,

whereKeq is the equilibrium constant for the association reaction.
However, both of these practices have only been justified
qualitatively. The use of eq 1 to calculatekadd was discussed
extensively in the 1950s and 1960s,5-16 at least for the
dissociation of diatomic molecules. Particularly important
contributions were made by Rice,5,6 Keck and Carrier,10 and
Widom.11

Rice5,6 used microscopic reversibility and the statistical
independence of dissociation and recombination processes in a
dilute gas mixture to argue convincingly that eq 1 should be
satisfied even ifkd is substantially smaller than its equilibrium
value. The latter effect was (and is) known to occur, because
the populations of highly excited molecules are depleted below
their equilibrium values during the steady-state dissociation
process, at least at low pressure. Keck and Carrier provided a
somewhat more quantitative justification of eq 1, but they and
Rice relied heavily on the condition,

to make their arguments. In eq 2,τv is the vibrational relaxation

time and τr is a characteristic time for reaction to occur.
Widom’s paper, which is one of the most lucid and insightful
ever written about chemical kinetics, is limited to discussing
first-order processes. However, even though he emphasized the
condition given by eq 2, from his analysis it is clear that this
condition is too restrictive. We discuss this point below. In fact,
the discussion in section III of this article might be considered
to be just an extension of Widom’s analysis topseudofirst-
order processes.

In 1989, Smith, McEwan, and Gilbert1,2 made an ambitious
and laudable attempt to identify rigorously if and when eq 1
was satisfied quantitatively for association/dissociation reactions,
not limiting their discussion to diatomic molecules. In a later
paper,17 Smith and co-workers also discussed detailed balance
for the case where a set of bimolecular products may be formed
from the collision complex. Under the same conditions as those
discussed above, Smith, McEwan, and Gilbert derived the rate
equation (in our terminology),

wheret is the time, andnR, nm, andnC are the concentrations
of the reactants and products of the association reaction R+ m
a C. The factorfne, the “nonequilibrium factor,” is a function
of the steady-state energy distribution,c(E), of the dissociating
molecule during itsirreVersibledissociation, i.e.

where F(E) is the equilibrium energy distribution. The rate
coefficientku (not necessarily equal tokd under all conditions)
is that for theirreVersibledissociation of C,
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where ê1 is the eigenvalue mentioned in the first paragraph
above. If the steady-state distribution is normalized, i.e.

fne can be written as

From eq 7 the physical significance offne is clear: its deviation
from unity measures the degree to which dissociation perturbs
the equilibrium population distribution of the dissociating
molecule. If the only states whose populations are depleted by
dissociation are those that are not heavily populated at equi-
librium, fne ) 1 to a high degree of accuracy.3 Of course this is
frequently the case.

The implication of eq 3 is thatkd ) ku andkadd ) fneKeqku.
Taken together, these two relations imply that eq 1 is satisfied
if, and only if, fne is equal to unity. This result is at odds with
the prior work of Rice, Keck and Carrier, and Widom. Viewing
eq 3 from a slightly different perspective, let us simply take its
limit as t f ∞ and get

Clearly, eq 8 can be valid only iffne ) 1, otherwise the reacting

system would not approach equilibrium at long times. There
are only 2 possibilities: either the rate law given by eq 3 is not
valid at long times or it is valid only iffne ) 1. We discuss this
point at length in section IV.

Smith et al.1,2 emphasize the point thatfne is almost always
equal to unity. However, that is not really the case, particularly
for weakly bound free radicals at high temperature. In a recent
investigation of vinyl and ethyl dissociation over a wide range
of temperatures and pressures,4 we found the results forfne

shown in Figures 1 and 2. At temperatures just above 1000 K,
fne begins to deviate from unity for both radicals, so much so
that one would conclude from the Smith et al. analysis that eq
1 is not satisfied even approximately at temperatures typical of
combustion processes. Somewhat surprisingly, these deviations
begin to occur atτv/τr values as small as 10-2 . This point is
illustrated in Figures 3 and 4, where we have plottedλ1/λ2 for
the 2 molecules;λ1andλ2 are the 2 least negative eigenvalues
of the transition matrix G for the reversible association/
dissociation problem, described in section III. We can identify
(1/|λ1|) with τr and (1/|λ2|) with τv.

Clearly, the issue described above is an important one for
modeling combustion kinetics. Generally speaking,fne depends
on the proximity of the peak in the equilibrium internal-energy
distribution of the dissociating molecule to the threshold energy
for dissociation. The closer these 2 energies are together, the
more likely it is that states that are highly populated at
equilibrium will have those populations perturbed by reaction.3

Thus, larger (high density of states), weakly bound, free radicals
will be affected even more than C2H3 and C2H5. Tsang et al.18

have discussed the limiting case where the peak in the thermal

Figure 1. Nonequilibrium factor,fne (defined in eq 4), as a function
of temperature and pressure for vinyl dissociation. Details of the
calculations are given in ref 4.

Figure 2. Nonequilibrium factor,fne (defined in eq 4), as a function
of temperature and pressure for ethyl dissociation. Details of the
calculations are given in ref 4.
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Figure 3. Characteristic time ratio,λ1/λ2, for vinyl dissociation as a
function of temperature and pressure.

Figure 4. Characteristic time ratio,λ1/λ2, for ethyl dissociation as a
function of temperature and pressure.
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internal-energy distribution lies wellaboVe the dissociation
threshold. In such cases it is impossible to distinguish between
τv and τr, and consequently it is impossible to define a
dissociation rate coefficient.

In the following discussion we are able to reconcile the
conflicting results alluded to above. The main result of the
present article is contained in section IV, where we rederive
the Smith et al. rate equation correcting a flaw in their analysis.
In the process, we are able to offer an extended (different)
interpretation offne and to define a condition under whichkd )
ku . However, to understand these results, one must have a firm
grasp of both the reversible and irreversible dissociation
problems. We provide this background in sections II and III.

II. Irreversible Dissociation

In this section we consider theirreVersibledissociation of a
molecule C,

By the term “irreversible” we mean that the products are
removed from the gas mixture as soon as they are formed, so
that the reverse association process plays no role in the analysis.
In this and the following sections we also assume that the initial
reactant (or reactants) is immersed in an inert bath gas, so that
energy-transferring collisions of C with the bath gas are the
only ones that need to be considered. These are standard
assumptions that define the irreversible, unimolecular dissocia-
tion problem. In addition, we consider only a one-dimensional
master equation in which the total internal energyE is the
independent variable. This facilitates comparisons with the
solutions to the reversible ME, where only 1-d solutions are
readily obtainable. This latter restriction is justified further by
our observation that 1-d and 2-d solutions (whereE and the
total angular momentum quantum number are the independent
variables) give very similar results at high temperatures.3,4

Under the conditions described in the previous paragraph,
one can write the master equation as

wheren(E) dE is the concentration of C with energy between
E andE + dE, Z is the collision rate,k(E) is the microcanonical
(RRKM) rate coefficient for the molecule, andP(E,E′) is the
probability that a collision will transfer the molecule from a
state with energy betweenE′ andE′ + dE′ to one with energy
betweenE andE + dE. It is convenient to normalize eq 9 by
dividing through by the initial concentration of the reactant,n0.
Equation 9 then becomes

wherex(E) ) n(E)/n0.
The functions P(E′,E) and P(E,E′) are related through

microscopic reversibility,

whereF(E) is the equilibrium energy distribution,

F(E) is the vibrational-rotational density of states of C,Q(T)
is the corresponding partition function,â ) (1/kBT), kB is

Boltzmann’s constant, andT is the temperature of the bath gas.
Introducing the functionf(E) through the definition,

one can write the microscopic reversibility condition (eq 11) in
the symmetric form,

Then, defining a new dependent variable,

the master equation can be written in the form,

whereδ(E - E′) is the Dirac delta function. In view of eq 14,
the kernel of this integral is symmetric with respect to
interchangingE andE′, making the integral operator Hermitian.
Approximating the integral in eq 16 as a discrete sum with a
fixed energy spacingδE and multiplying through byδE, the
ME reduces to the simple vector equation,

where|y〉 is the vector whose components are

andG′ is a matrix whose elements are

Like the kernel of the integral in eq 16,G′ij is real and
symmetric, and thus Hermitian. This property greatly facilitates
the solution of eq 17, which can be solved in exactly the same
way as one obtains the general solution of the time-dependent
Schrodinger equation in quantum mechanics. The general
solution of eq 17 so obtained is

whereN is the number of grid points in the energy space, and
|y(0)〉 is the initial condition vector. Theêj’s are the eigenvalues
and the|g′j〉’s the orthonormaleigenvectors ofG′, i.e.

Because of the Hermiticity ofG′ theêj’s are real, and they must
necessarily be negative,êj < 0 for all j; otherwise the solution
given in eq 20 would blow up ast f ∞. Also because of the
Hermiticity of G′, the |g′j〉 are orthogonal, and the solution of
the ME leading to eq 20 requires that the|g′j〉 be normalized so
that

Let us look at the solution to the ME, eq 20, more care-

C f R + m. (R1)

dn(E)
dt

) ·∫0

∞
P(E,E′)n(E′) dE′ - Zn(E) - k(E)n(E), (9)

dx(E)
dt

) ·∫0

∞
P(E,E′)x(E′) dE′ - Zx(E) - k(E)x(E), (10)

P(E′,E)F(E) ) P(E,E′)F(E′), (11)

F(E) ) F(E)e-âE/Q(T), (12)

f2(E) ) F(E)e-âE ) F(E)Q(T), (13)

P(E′,E)
f(E)

f(E′)
) P(E,E′)

f(E′)
f(E)

. (14)

y(E) ) x(E)/f(E), (15)

dy(E)
dt

) ·∫0

∞ {P(E,E′)
f(E′)
f(E)

-

[1 +
k(E′)

Z ]δ(E - E′)}y(E′) dE′, (16)

d|y〉
dt

) G′|y〉, (17)

yi ) y(Ei)δE, (18)

G′ij ) Z{P(Ei,Ej)
f(Ej)

f(Ei)
δE - [1 +

k(Ej)

Z ]δij}. (19)

|y(t)〉 ) ∑
j ) 1

N

eêjt|g′j〉〈g′j|y(0)〉, (20)

G′|g′j〉 ) êj|g′j〉. (21)

〈g′i|g′j〉 ) δij. (22)
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fully. Absorbing the scalar coefficients,〈g′j|y(0)〉, into the
eigenvectors, we can write

where |ψj〉 ) |g′j〉〈g′j|y(0)〉. The |ψj〉’s are still eigenvectors of
G′ with the eigenvaluesêj, and they are orthogonal. However,
unlike the|g′j〉’s, they are not normalized, and they depend on
the initial condition. Writing eq 23 in terms of components,

wherexi(t) ) x(Ei,t)δE and fi ) f(Ei), or

In eq 24b, we have defined the components of a vector|cj〉 as
cij ) fiψij. Thus the vectors|cj〉 and |ψj〉 are related by

Finally, the population distribution can be written in vector form
as

The vector|cj〉 has an important physical interpretation. One
can write

or

where∆xij is the change in population of theith energy level
that accompanies the time evolution of thejth eigenpair fromt
) 0 to ∞. After the “transients”, or fast-relaxation modes
(corresponding to vibrational-rotational relaxation), die out,

If |ê1| , |ê2|, implying that there is no significant dissociation
during the vibrational/rotational, or internal energy (IE), relax-
ation period, we have the result,

and

Thus, |c1〉 is the steady-state energy distribution of C during
the dissociation process as long as|ê1| , |ê2|. It is still
proportional to the steady-state distribution as long asê1 has
not merged with the IE relaxation eigenvalues,eVen if there is

significant dissociation from jg 2; |c1〉 simply needs to be
rescaled so that∑i)1

N cil ) 1.
Note that theêj’s are relatedphysicallyto the corresponding

λj’s mentioned in the Introduction and very crudely,êj ≈ λj

(except for j ) 1). However, mathematicallyêj and λj are
eigenvalues of 2 different matrices,G′ and G, the transition
matrices of the ME’s describing theirreVersibleandreVersible
dissociation problems, respectively.G andG′ are different in
thatG has one more dimension thanG′, i.e.,G is an (N + 1) x
(N + 1) matrix andG′ is N x N. We will continue to make the
appropriate distinctions between them. Nevertheless, both|λ1|
, |λ2| and|ê1| , |ê2| mean the same thing, that internal-energy
relaxation is much faster than chemical relaxation.

Summing eq 26 over all components, one obtains

where∆XCj is the change in the normalized concentration of C
induced by thejth eigenpair. After all the higher-eigenvalue
terms have died out,

Differentiating eq 31 with respect tot, we get

and using the definition of the unimolecular rate coefficient,

or

Equation 33 just gives the well-known relationship between the
unimolecular rate coefficient for the irreversible problem and
ê1 mentioned in the Introduction. Note that this resultdoes not
require |ê1| , |ê2|. As long asê1 has not been absorbed into
the continuum of IE relaxation eigenvalues, even if there is a
large amount of dissociation during the IE relaxation period,
there will be some period of time during which eqs 31 and 33
will apply, although this time period may produce a very small
amount of dissociation. If this latter condition is not satisfied,
separate IE relaxation and dissociation time periods are not
distinguishable, and all the dissociation occurs as part of the IE
relaxation process.

Understanding the derivation given above, even its more
subtle points, is important to understanding the analysis
described in section IV. In this vein, we need one more result.
For anirreVersible dissociation,

where for convenience we have shifted back to a continuous
(integral) formulation of the problem from a discrete one (using
sums). We hope that the relation between the 2 formulations is
clear. Defining an “average rate coefficient” as

|y(t)〉 ) |x(t)

f 〉 ) ∑
j)1

N

eêjt|ψj〉, (23)

xi(t)

fi
) ∑

j)1

N

eêjtψij, (24a)

xi(t) ) ∑
j)1

N

eêjtfiψij ) ∑
j)1

N

eêjtcij. (24b)

|cj〉 ) |fψj〉 or |ψj〉 ) |cj

f 〉. (25)

|x(t)〉 ) ∑
j)1

N

eêjt|cj〉. (26)

|cj〉 ) | - ∆xj〉 (27a)

cij ) -∆xij, (27b)

|x(t)〉 ) eê1t|c1〉. (28)

∑
i)1

N

cil ) -∑
i)1

N

∆xil ) 1

∑
i)1

N

cij ) -∑
i)1

N

∆xij ) 0 for j > 1. (29)

XC(t) ) ∑
j)1

N

eêjt(-∆XCj), (30)

XC(t) ) -∆XC1
eê1t. (31)

dXC(t)

dt
) -ê1∆XC1

eê1t, (32)

ku(T,p) ≡ - 1
XC

dXC

dt
) -

(-ê1∆XC1
eê1t)

(-∆XC1
eê1t)

ku ) -ê1. (33)

-
dXC

dt
) ∑

j)1

N ∫0

∞
dEcj(E)k(E)eêjt, (34)
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eq 34 becomes

Integrating this equation with respect to time, we get

Each term on the right-hand-side of eq 37 can be identified as
- ∆XCj, the contribution of thejth eigenvector ofG′ to the decay
of the concentration of C,

Now from eq 27 we know that

Consequently, it follows from eqs 38 and 39 that

an important result that we need below. Note that if there is no
dissociation from the higher eigenvectors,∫0

∞ c1(E) dE ) 1,
and we have the intuitively obvious result,

where, as noted above,c1(E) is the steady-state energy distribu-
tion of C during the dissociation phase of the relaxation process.
However, it is the general result, eq 40, that proves useful below.

III. Reversible Association/Dissociation Reaction:
Homogeneous Formulation

The most accurate, rigorous way of handling the association/
dissociation problem is to treat it reversibly. In so doing, we
generally view the reaction as going in the association direction,
although our results do not depend on this being the case. To
simplify the problem, we assume that we have pseudo first-
order conditions,

wherend is the concentration of the diluent. The master equation
(analogous to eq 9) can be written as

where FRm(E) is the density of states (including relative
translation motion) of theR + m fragments,QRm is the
corresponding partition function, andka(E) is the microcanonical
association rate coefficient. In formulating eq 43, it has been
assumed thatR andm are maintained in thermal equilibrium,
consistent with eq 42.

Recasting the problem in the same way we did for the
irreversible dissociation, and using microscopic reversibility to

reformulate the last term in eq 43 in terms of the properties of
C (rather than those of R and m), we can write the ME as

The present problem is a special case of the more general,
multiple-well problem we have treated previously;19-23 so we
adopt the same procedure as before and write a rate equation
for XR(t) (nm ) constant),

or

Writing the integrals in eq 45 as discrete sums and multiplying
through by (nm/(QRmδE))1/2, eq 45 becomes

After discretizing, eq 44 we can write it as

Now we have the form that we want - the coefficient of (nm/
(QRmδE))1/2XR(t) in eq 47 is identical to that ofy(Ei) in eq 46.
To keep the present formulation as close as possible to that for
the irreversible dissociation, it is useful to multiply both eqs 46
and 47 byδE.

The manipulations just described allow us to combine eqs
46 and 47 into one vector equation, a generalized master
equation, of the form,

where

and the transition matrixG again is Hermitian. Thus, we can
write the solution to eq 49 in terms of the eigenvalues and
eigenvectors ofG, G|gj〉 ) λj|gj〉, as we did for the irreversible
dissociation problem,

khj ≡ ∫0

∞
k(E)cj(E)dE/∫0

∞
cj(E)dE, (35)

-
dXC

dt
) ∑

j)1

N

[khj∫0

∞
cj(E) dE]eêjt. (36)

-∆XC ) 1 ) ∑
j)1

N

[khj∫0

∞
cj(E) dE]/|êj|. (37)

-∆XCj
) [khj∫0

∞
cj(E) dE]/|êj|. (38)

∫0

∞
cj(E) dE ) - ∫0

∞
∆xj(E) dE ) -∆XCj

(39)

khj ) |êj| ) -êj, (40)

kh1 ) ∫0

∞
k(E)c1(E) dE ) -ê1 ) ku, (41)

nR , nm , nd, (42)

dn(E)
dt

) Z∫0

∞
P(E,E′)n(E′) dE′ - Zn(E) - k(E)n(E) +

ka(E)[FRm(E)e-âE/QRm]nRnm, (43)

dy(E)
dt

) Z∫0

∞ {P(E,E′)
f(E′)
f(E)

-

[1 +
k(E)

Z ]δ(E - E′)}y(E′) dE′ +
Keq

Q
k(E)f(E)nmXR(t). (44)

dXR

dt
) ∫0

∞
k(E)x(E) dE - XR(t)nmKeq∫0

∞
k(E)F(E) dE

dXR

dt
) ∫0

∞
k(E)f(E)y(E) dE - XR(t)nmKeq∫0

∞
k(E)F(E) dE.

(45)

d

dt[XR(t)( nm

QRmδE)1/2] ) ∑
i)1

N

y(Ei)k(Ei)f(Ei) (nmδE

QRm
)1/2

-

[XR(t)( nm

QRmδE)1/2]nmKeq∑
i)1

N

k(Ei)F(Ei)δE. (46)

dy(Ei)

dt
) Z∑

j)1

N {P(Ei,Ej)
f(Ej)δE

f(Ei)
- [1 +

k(Ej)

Z ]δij} y(Ej) +

(nmδE

QRm
)1/2

k(Ei)f(Ei) [( nm

QRmδE)1/2

XR(t)]. (47)

d|w(t)〉
dt

) G|w(t)〉, (48)

|w〉 ) [x(0)

f(0)
δE,...,

x(Ei)δE

f(Ei)
,...,(nmδE

QRm
)1/2

XR]T

, (49)

|w(t)〉 ) ∑
j)0

N

eλjt|gj 〉〈gj|w(0)〉. (50)
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Formally, the only difference between this solution and that
given by eq 20 is that eq 50 includes an eigenpair corresponding
to λ0 ) 0. Thus, eq 50 approaches a constant vector|w(∞)〉 as
t f ∞ that corresponds to a state of complete chemical and
thermal equilibrium, whereas eq 20 approaches the null vector
at long times.

From eq 50, we can obtain the energy level populations of
C, xi ) x(Ei)δE, as a vector,

where|cj〉 is formally the same as before (eq 27) forj g1 and
ci0 ) xi(∞), the equilibrium population. Note that|x(t)〉 hasN
components, whereas|w(t)〉 hasN + 1, i.e.,|x(t)〉 is a vector in
a subspace of one less dimension than that defined by the
eigenvectors ofG. After the transients have died out, i.e., all
the terms involvingj g 2, one can write eq 51 as

Summing the components of|x(t)〉, we get from eq 52 that

Similarly, from the last component of|w〉, we arrive at

Equations 53 are applicable for any and all initial conditions,
although the values of the∆X’s depend on what the initial
conditions are.

If |λ1| , |λ2|, which we take to mean that the difference
between the 2 magnitudes is sufficiently different that there is
no significant contribution to reaction from|gj〉, j g2, we can
apply the “initial-rate” method of Klippenstein and Miller19,20

to obtain the rate coefficientskd andkadd. This method requires
that internal-energy relaxation be complete before any reaction
takes place. Essentially, one must be able to identify unambigu-
ously a time,t ) 0, when IE relaxation is over but none of the
reactant has disappeared. Applying this method, we obtain for
the rate coefficients

wherekCR is the Cf R rate coefficient, andkRC is the pseudo
first-order Rf C rate coefficient. The superscripts on the∆X’s
in eq 54 indicate the reactant, i.e., the initial condition, in the
calculation. Note that the second substitutions in these equations
are valid only ifall the reaction occurs through|g1〉.

SincekRC is pseudo first order,kRC ) kaddnm and we have

or

Note that in the second substitution, even though the rate
coefficients were calculated for different initial conditions, they
are presumed to be universally valid. Therefore, in any particular
case, we can multiply both numerator and denominator by the
appropriate normalization constant. Thus, we find that detailed
balance is satisfied, at least under the assumptions employed.
However, it should be clear thatthis result is predicated on
there being no reaction from the higher eigenVectors. Otherwise,
the second substitution in eqs 54 is not valid.

A more satisfactory approach to the rate-coefficient problem
is the “long-time” method of Klippenstein and Miller.19,20Note
that eqs 53 are valid after all the eλjt(j g 2) terms have died
out, regardless of whether these terms bring about any chemical
change. The only requirement for their validity is thatλ1 has
not yet been absorbed in the continuum of IE- relaxation
eigenvalues20 (not necessarily|λ1| , |λ2|), in which case there
will be a time period, perhaps very short and perhaps only late
during the course of the reaction, but before equilibrium is
attained, where eqs 53 are applicable. This last phase of the
reaction may be responsible for only a small fraction of the
chemical change.

We can write eqs 53 as

and regard the coefficients aij as elements of a matrix A

whose inverse isB

wheredA ) a11a22 - a12a21 is the determinant ofA. The long-
time method recognizes that eqs 57 (or 53) are theunique
solution to a system of first-order rate equations whose rate
coefficients are

Using the conservation condition,∆XR1 ) - ∆XC1, dA

becomesdA ) ∆XC1 ) -∆XR1, and we get

or kCR ) - λ1XR(∞), since XC(∞) + XR(∞) ) 1. Similarly,

|x(t)〉 ) ∑
j)0

N

|cj〉 eλjt, (51)

|x(t)〉 ) ∑
j)0

1

|cj〉e
λjt ) |x(∞)〉 + |c1〉e

λ1t

|x(t)〉 ) |x(∞)〉 + |-∆x1〉e
λ1t. (52)

XC(t) ) XC(∞) - ∆XC1
eλ1t. (53a)

XR(t) ) XR(∞) - ∆XR1
eλ1t. (53b)

kCR ) -λ1∆XR1

(C) ) -λ1XR(∞)

and (54)

kRC ) -λ1∆XC1

(R) ) -λ1XC(∞),

kRC

kCR
)

kaddnm

kd
)

XC(∞)

XR(∞)
, (55)

kadd

kd
)

XC(∞)

nmXR(∞)
)

nC(∞)

nmnR(∞)
) Keq. (56)

XC(t) ) a11 + a12e
λ1t

(57)
XR(t) ) a21 + a22e

λ1t

A ) [a11 a12

a21 a22] ) [XC(∞) -∆XC1

XR(∞) -∆XR1
] (58)

B ) A-1 ) [b11 b12

b21 b22] ) [a22/dA -a12/dA

-a21/dA a11/dA ] (59)

kCR ) λ1a22b21

and (60)

kRC ) λ1a12b22

kCR ) λ1∆XC1[ -XR(∞)

XC(∞)∆XC1
- (-∆XC1

)XR(∞)]
) -λ1

XR(∞)

XC(∞) + XR(∞)
,
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These expressions forkCR andkRC are identical to those given
in eq 54. Thus we deduce that the rate coefficients calculated
by this method satisfy the detailed-balance condition, eq 1. It
follows that, as long as IE relaxation is complete before chemical
relaxation is complete (not necessarily|λ1| , |λ2|), the
concentrations of R and C obey phenomenological rate equations
with rate coefficients that satisfy detailed balance. The period
of time during which this occurs before equilibrium is achieved
may be extremely small, i.e., the fraction of the reactant
consumed during this period may be small, but there will always
exist a rate-coefficient period during which detailed balance is
satisfied.

Before we close out our discussion of this method of treating
the reversible association/dissociation problem, we want to
establish one last result. Consider a “recombination experiment”
in which initially there is only R. The long-time, pseudo first-
order, addition rate coefficient is given by

Thus, the contribution to the long-time addition rate coefficient
of each eigenpair is directly proportional to its contribution to
the oVerall change in composition.

IV. Association/Dissociation Problem: Inhomogeneous
Treatment

There are 2 ways of treating the association/dissociation
problem mathematically. As we did in the last section, one can
absorb XR into the vector of unknowns and create a system of
homogeneousdifferential equations. Alternatively, one may take
the last term on the RHS of eq 43 as a source term, or
inhomogeneity, in the master equation. The first method is
superior for practical calculations and is easily generalizable to
multiple-well problems; it has the advantage of treating bimo-
lecular fragments and stabilized adducts as equals in calculating
thermal rate coefficients.19-24 However, the source-term method
has been employed several times in the past.1,2,24-26 In fact, it
is the method used by Smith et al.1,2 in the work discussed in
the Introduction of this article. This method, when viewed in
conjunction with the results discussed above, can yield important
insights into the association/dissociation problem.

Starting with eq 44, we write the integral as a discrete sum
with constant energy intervalδE, and multiply through byδE.
The ME then can be written in the vector form,

where the components of|æ〉 are

Following Smith et al. (and Schranz and Nordholm25 before

them), we can use the vector equivalent of an integrating factor
to solve eq 62, viz

Consistent with our general approach of viewing the reaction
from the addition direction, we can take|y(0)〉 ) |0〉. However,
ultimately we will derive a rate equation analogous to eq 3,
which should not depend on initial conditions anyway. Then
we have

where the operator eG′(t-s) operates on|æ〉. Continuing to follow
Smith et al., we expand|æ〉 in terms of the eigenvectors ofG′,
using the|ψj〉’s instead of the|gj〉’s even though the former are
not normalized and depend on the initial conditions. Then

where

and eq 64 becomes

or

where |cj〉, of course, refers to the irreversible dissociation
problem discussed in section II.

Now let us calculateâj. Using the relationships introduced
in section II, we have

and

Thusâj reduces to

kRC ) λ1(-∆XC1
)
XC(∞)

∆XC1

) -λ1XC(∞).

kRC ) nmkadd) -λ1XC(∞)

) -λ1∑
j)1

N

∆XCj

(R)

) λ1∑
j)1

N

∆XRj

(R) (61)

d|y〉
dt

) G′|y〉 + [ Keq

Q(T)]|æ〉nmXR(t), (62)

æi ) k(Ei)f(Ei)δE. (63)

|y(t)〉 ) eG′t(∫0

t
e-G′s Keq

Q(T)
|æ〉nmXR(s) ds + |y(0)〉).

|y(t)〉 )
Keq

Q ∫0

t
eG′(t-s)|æ〉nmXR(s) ds, (64)

|æ〉 ) ∑
j)1

N

âj|ψj〉,

âj )
〈ψj|æ〉
〈ψj|ψj〉

, (65)

|y(t)〉 )
Keq

Q
∑
j)1

N ∫0

t
eêj(t-s)âj|ψj〉nmXR(s) ds,

|x(t)〉 )
Keq

Q
∑
j)1

N

âj|cj〉∫0

t
eêj(t-s)nmXR(s) ds, (66)

〈ψj|ψj〉 ) ∑
i)1

N cj
2(Ei)(δE)2

f 2(Ei)

〈ψj|æ〉 ) ∑
i)1

N cj(Ei)k(Ei)f(Ei)(δE)2

f(Ei)

) khjδE∑
i)1

N

cj(Ei)δE.

âj )

khj∑
i)1

N

cij

∑
i)1

N

cij
2/(FiQ)

, (67)
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whereFi ) F(Ei)δE. Substituting this expression forâj into eq
66 and summing|x(t)〉 from eq 66 over all components, one
obtains an expression forXC(t),

where

Note that f ne
(j) is a generalization of thefne discussed in the

Introduction. In fact, if there is no contribution to reaction from
the higher eigenvectors ofG′, |c1〉 becomes the steady-state
energy distribution during thedissociationprocess,∑i)1

N ci1 )
1, and f ne

(1) ) fne. We usefne and f ne
(1) interchangeably in the

following analysis. It is an extremely important parameter, but
we defer a discussion of its physical significance until we have
completed our derivation of the rate law.

It is convenient and physically appealing to write eq 68 as

where

is the contribution of thejth eigenpair ofG′ to the population
of the addition product at timet during our recombination
experiment. The flaw in the Smith, et al. analysis was to identify
XC(t) with XC

(1)(t) under all conditions. Note that this is
equivalent to assumingf ne

(j) ) 0 for j g2 and (to be shown
below) f ne

(1) ≡ fne ) 1. We know, however, from the previous
section that, even if there is substantial reaction that occurs as
part of the IE relaxation process, i.e.,XC

(j) * 0 for j g2, there is
still a period of time during which phenomenological rate laws
apply and the detailed balance condition is satisfied. Conse-
quently, we do not want to limit our discussion to the special
caseXC(t) ) XC

(1)(t).
Differentiating eq 68 with respect to time, using eqs 33 and

70, and rearranging, we arrive at

Up to this point our analysis isexact, i.e., equation 72 is an
exact consequenceof the master equation. We have not yet even
invoked the assumptionnm ) constant; eq 72 could equally
well apply for nm ) nm(t). However, to make further progress
we must evaluateXC

(j)(t). We can do this, at least approxi-
mately, by integrating by parts ifnm ) constant. This ap-
proximation, of course, is the same as that made in section III

(i.e., pseudo first-order conditions). Integrating the integral in
eq 71 by parts twice, we have

This process of successively integrating by parts generates a
power series in (1/|êj|). Terminating the series with the (1/|êj|2)
term results ultimately in a first-order correction to the rate
coefficients in the small parameterê1/êj, j g2. This approxima-
tion is adequate for our purposes. Nevertheless, we consider
the complete series in the Appendix. Also, we consider only
the long-time behavior of the solution, i.e., after the eêjt terms,
j g 2, have died out. This approximation is consistent with
obtaining analogues to the long-time rate coefficients discussed
in the last section.

Then we have, forj g 2,

Using eq 40, this becomes

Note that hereKeqnm acts like an effective or pseudo first-order
equilibrium constant. Now we can substitute eq 74 into eq 72
and obtain, again using eq 40,

We obtain the final form of our rate law by combining the
XR(t) term in the brackets with the last term on the RHS of
eq 75, utilizing the conservation condition dXR(t)/dt )
-dXC(t)/dt, and combining the resulting dXC(t)/dt term on the
RHS with the LHS (left-hand side) of eq 75. After simplifying
and rearranging, eq 75 becomes

i.e. the standard form for an association/dissociation reaction,
where

and

The rate coefficients given by eqs 77 and 78 are good to first

XC(t) ) Keq∑
j)1

N

khjf ne
(j)∫0

t
eêj(t-s)nmXR(s) ds, (68)

f ne
(j) ≡

(∑
i)1

N

cij)
2

∑
i)1

N

cij
2/Fi

. (69)

XC(t) ) ∑
j)1

N

XC
(j)(t), (70)

XC
(j) ) Keq khj f ne

(j) ∫0

t
eêj(t-s)nmXR(s) ds (71)

dXC(t)

dt
) -kuXC(t) + ∑

j)2

N

(êj - ê1)XC
(j) +

kuKeqnmXR(t)(∑
j)1

N khjf ne
(j)

ku
). (72)

∫0

t
ds eêj(t-s)nmXR(s) )

nmXR(t)

|êj|
-

nmXR(0)

|êj|
eêjt -

nm

|êj|2
dXR(t)

dt
+

nm

|êj|2
dXR

dt
(0)eêjt +

nm

|êj|2
eêjt∫0

t
e-êjs

dXR
2(s)

ds2
ds.

(73)

XC
(j)(t) ≈ Keqnmkhjf ne

(j)(XR(t)

|êj|
- 1

|êj|2
dXR(t)

dt ).

XC
(j)(t) ≈ Keqnmf ne

(j)(XR(t) - 1
|êj|

dXR(t)

dt ). (74)

dXC(t)

dt
) -kuXC(t) + ∑

j)2

N

(êj - ê1)Keqnmf ne
(j)[XR(t) -

1

|êj|
dXR(t)

dt ] + kuKeqnmXR(t)[f ne
(1) + ∑

j)2

N khjf ne
(j)

ku
]. (75)

dXC(t)

dt
) -kdXC(t) + kaddnmXR(t), (76)

kd ) ku/[1 + Keqnm∑
j)2

N (1 -
ê1

êj
) f ne

(j)], (77)

kadd) kuKeq(∑
j)1

N

f ne
(j))/[1 + Keqnm∑

j)2

N (1 -
ê1

êj
) f ne

(j)] (78)
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order in (ê1/êj) for any j. Figures 1 and 2 show that such an
approximation should be a reasonable representation of the C2H3

and C2H5 dissociations we have studied previously, so we shall
use those reactions to illustrate our results. The rate coefficients
given by eqs 77 and 78 have 2 immediate consequences:

1. Detailed balance is satisfied if, and only if,

We argue below that this must indeed always be the case in
the rate-coefficient regime.

2. The dissociation rate coefficientkd is approximately equal
to ku, the unimolecular rate coefficient for theirreVersible
dissociation problem (ku ) - ê1), if

Let us look at the second condition first and assume that eq 79
is satisfied. Our goal is to provide a criterion for the applicability
of kd ) ku that depends only on|c1〉, and not on the higher
eigenvectors. Then we have

and eq 80 becomes

for the applicability of the substitutionkd ) ku. In Figure 5, we
have plotted the parameterγ as a function of temperature for
both C2H3 and C2H5 at a pressure ofp ) 30 Torr andpm ) 1
Torr, wherepm ) nmkBT. This is a fairly typical condition. The
plot shows clearly that indeedγC2H3 and γC2H5 are small
compared to unity. The figure does not show results below 800
K, becausefne becomes so close to 1 at low T that the difference
(1 - fne) is unreliably small. Nevertheless, the indications are
that bothγC2H3 and γC2H5 flatten out and remain small at low
temperatures.

Equations 77 and 78 show that bothkd andkadd have a weak
composition dependence, i.e., dependence onnm. Such a
dependence was not anticipated, but it is confirmed by accurate
calculations using the methods of section III. In any event, it

seems safe to conclude that the condition given by eq 82 is a
sufficient condition for the applicability ofkd ) ku. One probably
makes virtually no error in identifyingkd with ku under any
ordinary experimental condition.

From eq 78 one can see thatf ne
(j) is at least proportional to the

fractional contribution of thejth eigenvector ofG′ to the addition
rate coefficient. Since under “normal” conditions,f ne

(1) ) 1, it
seems reasonable to conjecture that the otherf ne

(j)’s are nor-
mally zero and compensate to satisfy eq 79 whenfne begins to
deviate from unity. Moreover, we can writef ne

(j) as

As discussed in section II, it is most common that virtually all
of the dissociation of C comes fromj ) 1. In such cases∆XC1

) - 1, andf ne
(1) is extremely close to unity. If∆XC1 * - 1,

there must be some compensation from other eigenvectors,
because the condition

must always be rigorously satisfied. Equation 83 shows, at least
qualitatively, that thef ne

(j)’s will have a similar compensating
effect. In fact, one might take eq 79 to be the analogue of the
conservation condition, eq 84, for the recombination rate
coefficient. That is, eq 79 is to recombination what eq 84 is to
irreversible dissociation.

In section III, we showed that the long-time rate coefficients
always satisfy detailed balance as long as such rate coefficients
can be reasonably defined. Comparison of those results with
the ones given here provide compelling evidence that eq 79 is
satisfied under the same conditions. Let us make a quantitative
comparison between the 2 methods.

The analysis at the end of section III indicates that the fraction
of the long-time recombination rate coefficient provided by
j ) 1 is ∆XC1

(R)/XC(∞), whereas the analysis of this section
indicates that the same fraction is given byf ne

(1) ) fne. Even
though the eigenvectors ofG and G′ are mathematically
different, as emphasized above, in both casesj ) 1 corresponds
(nominally) to chemical reaction andj g 2 corresponds to IE
relaxation. That is, even though thej ) 1 eigenvectors in the 2
cases are formally different, they are physically equivalent. This
suggests strongly thatfne ) ∆XC1

(R)/XC(∞).
We compare these two quantities for C2H3 and C2H5 under

a variety of conditions in Table 1. The agreement is remarkably
good, probably within the numerical uncertainty of the calcula-
tions. This result provides quantitative confirmation of our
interpretation of fne as the fraction of the association rate
coefficient contributed by|g′1〉, or |c1〉. More importantly,
perhaps, 1- fne is the fractional contribution of the IE-
relaxation eigenpairs to the long-time association rate coefficient.
If fne * 1, chemical reaction will take place as part of the
internal-energy relaxation process. Thus,fne is an important
physical quantity characterizing association/dissociation reac-
tions, but its deviation from unity does not indicate that detailed
balance is not satisfied. Detailed balance is always satisfied as
long as one can rationally define phenomenological rate
coefficients.

Figure 5. Small parameter,γ ≡ Keqnm(1 - fne), as a function of
temperature for C2H3 and C2H5 dissociation at a pressure ofp ) 30
Torr andpm () nmkBT) of 1 Torr.

∑
j)1

N

f ne
(j) ) 1. (79)

Keqnm∑
j)2

N (1 -
ê1

êj
)f ne

(j) , 1. (80)

∑
j)2

N (1 -
ê1

êj
)f ne

(j) e (1 - f ne
(1))

e (1 - fne), (81)

γ ≡ Keqnm(1 - fne) , 1 (82)

f ne
(j) )

(∑
i)1

N

∆xij)2

∑
i)1

N

(∆xij)
2/Fi

)
(∆XCj

)2

∑
i)1

N

(∆xij)
2/Fi

. (83)

∑
j)1

N

∆XCj
) - 1 (84)
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A point that has been implicitly assumed in the foregoing
discussion is thatfne is independent of scaling. For example, if
a large amount of dissociation occurs throughj g 2 in the
irreversible dissociation problem,∑i)1

N ci1 * 1, and the inter-
pretation offne given in the Introduction would appear not to
be strictly correct. However, one can see clearly from the
definition of fne that we can always multiply|c1〉 by any constant
(forcing ∑i)1

N ci1 ) 1, and thus establishing the interpretation of
|c1〉 as a steady-state energy distribution) without changing the
value offne. Thus,fne can be viewed as a property of the steady-
state energy distribution of the dissociating molecule even when
substantial dissociation comes from the IE-relaxation eigenvec-
tors.

To summarize qualitatively, the parameterfne is a measure
of the deviation from equilibrium of the steady-state distribution
that emerges during the last stages of dissociation in the
irreversible dissociation problem. The deviation offne from unity
is an indication that reaction is interfering with the collisional
processes that try to establish the equilibrium distribution. This
happens when the temperature is raised to the point where the
peak of the thermal (equilibrium) energy distribution is suf-
ficiently close to the dissociation threshold that the populations
of states that are highly populated at equilibrium are affected
by the process. Of course, a value offne < 1 indicates that some
dissociation occurs as a consequence of the fast eigenmodes,
i.e., those nominally associated with vibrational/rotational
relaxation. Such rapid dissociation perturbs the steady-state
distribution that evolves at long times. In more quantitative
terms, if∆XC1 ) - 1, essentially all the dissociation takes place
through the slowest relaxing eigenmode of the transition matrix,
and the steady-state distribution that emerges at long times is
very close to the equilibrium distribution, as indicated byfne )

1. If ∆XC1 * - 1, the steady-state distribution will deviate
significantly from equilibrium, makingfne < 1.

This coupling of IE relaxation and dissociation manifests itself
in the association rate coefficient as a distribution of thef ne

(j)’s
such thatf ne

(1) * 1. However, thef ne
(j)’s are constrained by nature

to satisfy eq 79 and ensure that detailed balance is satisfied.

V. Concluding Remarks

In this article, we have approached the association/dissociation
problem from 2 different perspectives and arrived at some
important conclusions.

1. As long as the characteristic time for vibrational/rotational
relaxation,τv, is smaller than that for reaction,τr, i.e., τv < τr

and not necessarilyτv , τr, there will be a time period (perhaps
only late in the reaction) during which a phenomenological
description of the kinetics will apply, and the associated rate
coefficients will satisfy detailed balance, eq 1. This is true even
if only a small fraction of the initial reactant is consumed during
this period.

2. The nonequilibrium parameterfne, originally introduced
by Smith et al.,1,2 does not measure the degree to which detailed
balance is satisfied. Instead, it represents the contribution of
the slowest relaxing eigenmode of the system to the long-time
association rate coefficient. The quantity 1- fne thus represents
the contribution to the same rate coefficient of the internal-
energy relaxation modes.

3. The long-time dissociation rate coefficient,kd, is equal to
that obtained from the irreversible dissociation problem,ku )
- ê1, at least under conditions whereKeqnm(1 - fne) , 1, which
is satisfied under almost all ordinary experimental conditions.
Thus, we find that the standard procedure of calculating the
dissociation rate coefficient from the steady-state distribution
obtained from the master equation for irreversible association,
then calculating the reverse association rate coefficient from
detailed balance, is valid as long as one interprets the rate
coefficients correctly. The parameterfne, obtained from the same
steady-state distribution, provides important information about
the degree of coupling between reaction and internal-energy
relaxation.
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Appendix

In this appendix, we want to show that higher-order terms in
the expansion ofXC

(j)(t) in powers of (1/êj), eq 74, do not
change the conclusions drawn in section IV. If we continue to
integrate by parts in eq 73 and neglect the eêjt terms, we get

To evaluate thesecond and higher deriVatiVes in eq A.1, we
make use of only the dominant terms in dXR/dt,

TABLE 1

C2H3

p ) 30 Torr
pm ) 1 Torr

T(K) fne ∆XC1

R /XC(∞)

1000 1.000 1.000
1200 0.998 0.998
1500 0.977 0.974
1800 0.907 0.900
2000 0.831 0.820
2200 0.739 0.726
2500 0.592 0.578

C2H5

p ) 30 Torr
pm ) 1 Torr

1000 0.999 0.999
1200 0.989 0.989
1500 0.908 0.905
1800 0.726 0.721
2000 0.581 0.575
2200 0.444 0.438
2500 0.278 0.274

C2H3

p ) 30 Torr
pm ) 10-2 Torr

1000 0.998 0.998
1200 0.982 0.980
1500 0.872 0.866
1800 0.663 0.653
2000 0.551 0.502
2200 0.376 0.368
2500 0.224 0.218

XC
(j)(t) ) Keqnmf ne

(j)[XR(t) + 1
êj

dXR

dt
+ 1

êj
2

d2XR

dt2
+ ...

) Keqnmf ne
(j)[XR(t) + ∑

n)1

∞ 1

êj
n

dnXR

dtn ]. (A.1)
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Then we can approximate the higher order derivatives ofXR as

for n g 2.
Using these results one can evaluate the second term on the

RHS of eq 72 as

The term in this equation involvingXR goes through as before.
However, we can now evaluate the coefficient of dXC/dt
corresponding to thejth eigenvalue ofG′ in closed form, and
thus get a somewhat better approximation tokd andkadd than
we obtained in the main text of this article,

As long as (1+ Keqnm)(ê1/êj) < 1, which generally is the case,
the series in A.5 converges to 1/(1- (1 + Keqnm)ê1/êj). Substi-
tuting these results back into eq A.4 and simplifying one obtains

Using eq A.6 in eq 72 and carrying through the derivation as
before, we get the following expressions for the rate coefficients
kd andkadd:

and

As expected, the higher-order terms in our expansion A.1 change
kd andkadd by the same factor, so that detailed balance is still
satisfied. Moreover, it is almost always the case that

Let us use our results on C2H5 dissociation and recombination
with p ) 30 Torr andpm ) 1 Torr to illustrate this point. At
400 K, Keqnm ≈ 1012 but (ê1/ê2) ≈ 10-14, whereas at 2000 K,
Keqnm ≈ 10-4and (ê1/ê2) ≈ 0.1. In both cases A.9 is satisfied,
as it seems virtually always to be. (Note that these numbers
also confirm that the geometric series in eq A.5 converges in
these cases.) With the approximation A.9, the denominator in
the 2 rate coefficient expressions becomes

whereγ is the same small parameter we discussed in the main
text of the article.
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