
The Effect of the Atomic Dynamics in a Crystalline Catalyst on the Rate Constant for a
Catalyzed Chemical Reaction†

F. Y. Hansen
Department of Chemistry, Technical UniVersity of Denmark, IK 207 DTU, DK-2800 Lyngby, Denmark

ReceiVed: April 15, 2004; In Final Form: June 23, 2004

Transition-state theory is often used to calculate the rate constant of a chemical reaction. Usually, it gives
quite good results for gas-phase reactions but not for reactions in solution since the interactions of the solvent
molecules with the reactants are not included in the theory. Kramers formulated an extension of the transition-
state theory that included these interactions. They are represented by a friction coefficient that often is related
to the viscosity of the solvent by Stoke’s law. For reactions on the surface of a crystalline catalyst, there will
also be an effect on the rate constant from the interaction between the reactants and the oscillating substrate
atoms. In contrast to reactions in solution, where the friction coefficient is related to the viscosity of the
solvent, there exists no simple property of the solid that may be directly related to a friction coefficient for
the motion of the adsorbed molecule on the surface. In this paper, we propose a method that may be used to
calculate a friction coefficient that may be used in Kramers theory to calculate the rate constant for a chemical
reaction on the surface of a crystalline solid.

I. Introduction

Many catalyzed reactions take place on the surface of a solid
crystalline catalyst. Today it is possible to supplement experi-
mental investigations of a given catalytic reaction by extensive
and realistic density functional theory (DFT) calculations of the
potential-energy surface (PES) of the reaction.1 With this tool,
we have a direct and powerful method for exploring the
energetics and structure of a reacting molecule on the surface
of a catalytic active substrate.

Once the transition state and the PES have been determined
by the DFT method, transition-state theory (TST)2 is often used
to calculate the rate constant for the reaction of interest. The
calculated rate constant often differs from the experimental result
for many reasons. The theoretical PES may not be accurate
enough to mimic the experiment, and the approximations in the
TST may not be justified for the system considered. The TST
theory is developed for a gas-phase reaction and does therefore
not include the interactions between the solvent or solid and
the molecule for a reaction in solution or on a solid surface,
and even then, there are serious approximations involved in the
theory, like the establishment of thermal equilibrium between
reactant and transition-state molecules and the assumption of
no recrossings of the transition state. That is, once the reaction
coordinate has passed the transition state from reactant to
product, the theory does not include the possibility of going
back from products to reactants. This implies that the TST result
usually is larger than the experimental result. Moreover, if TST
is used for reactions in solution or on a surface, the discrepancy
may even be larger because recrossings of the transition state
will be more important in these systems.

Most modern investigations of the effects of a solvent on
the rate constant are based on a classical paper by Kramers.3

His theory is based on the TST approach. In the TST approach,
we only consider the motion in the reaction coordinate right at

the transition state and assume it to be a free translational motion
in the direction from reactant to product. Kramers’ idea was to
give a more realistic description of the dynamics in the reaction
coordinate, not only at the transition state but along the entire
reaction coordinate. Instead of giving a deterministic description
of the dynamics, he proposed a stochastic description of the
motion similar to that of the Brownian motion of a heavy particle
in a fluid.

The result of Kramers’ theory for a reaction in solution is
very simple. The rate constant is equal to the product of the
TST rate constant and a correction factorκ that only depends
on the ratio between a friction coefficientγ and the magnitude
of the imaginary frequency associated with the curvature of the
PES at the transition state along the reaction coordinate. For
reactions in solution, the friction coefficientγ is often related
to the viscosityη of the solvent by Stoke’s law, and the
correction factorκ is smaller than one, so the effect of the
solvent molecules is always to reduce the TST rate constant.

For reactions taking place on a crystalline surface, there is
no single property of the solid, such as the viscosity of the
solvent, that allows us to make an estimate of the friction
coefficient to be used in Kramers’ expression for the rate
constant. In general, both electrons and phonons of the bulk
solid constitute sinks for the energy dissipation that is associated
with friction. In this paper, we will only consider the purely
phononic friction and later consider the electronic friction, since
that may also be important in a molecule/metal system.4

Specifically, we address the Brownian friction of a gas
molecule that is adsorbed on a crystal surface. In recent
molecular dynamics simulation studies of adsorbate systems,5-8

it was investigated what the time scale of energy dissipation in
the substrate is. The substrate dynamics are known to influence
the frequency and damping of the vibrations of commensurate
monolayer lattice.6 There also is expected to be an effect on
the temporal persistence of correlations in monolayer fluids.8

As a limiting case, we consider the one-dimensional motion in
the reaction coordinate of a dissociating molecule on a crystal† Part of the “Gert D. Billing Memorial Issue”.
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surface. The model is formulated for a gas molecule on a
crystalline surface and then applied to the N2/Fe(111) system.
The dynamics of the Fe substrate is given by a lattice dynamics
calculation on an Fe crystal slab. The Brownian friction
coefficient for a gas molecule on Fe(111) is obtained as a
function of position and determined at the position of a DFT
calculation of the transition state of the molecule.

Brownian friction or generalized Langevin Theory has
previously been applied to various gas-surface reactive scat-
tering systems, and trajectory calculations have shown details
of the dynamics in catalyzed chemical reactions.9-11 This
method differs from those in that it is not based on trajectory
calculations of the reactive scattering event.

The organization of the paper is as follows. Section 2 contains
the basic Langevin theory of Brownian motion on the surface
of a crystal. Section 3 describes the determination of the
fluctuating forces in the Langevin theory, and section 4 is a
summary of the theory and its implementation. Section 5
describes the application of the theory to the N2/Fe(111) system.
Section 6 contains results and a discussion.

II. Langevin Theory

It is well known that an isolated molecule in a bulk solution
exhibits random motion, usually referred to as Brownian motion,
caused by interactions with the solvent molecules. A phenom-
enological description of this motion is given by the Langevin
equation for the center of mass velocity of the molecule in the
solution. Likewise, an isolated mobile molecule adsorbed on a
crystal surface exhibits random two-dimensional (2D) motion
caused by interactions with oscillating substrate atoms. Let us
therefore also describe the motion of the adsorbed molecule by
the Langevin equation. For theR component of the velocityVR
of the adsorbed molecule or atom, we have

where m is the mass of the gas atom,fR the R (x, y, or z)
component of the random force, andγR the friction coefficient
for motion in theR direction. Its dimension is s-1, and note
that we associate a friction coefficient with motion in each of
the Cartesian directions, since anisotropy may be significant
on a crystalline surface.

Let us begin with setting up an internally consistent equation
for the friction coefficient. A formal integration of the Langevin
equation in eq 1 (an inhomogeneous first-order linear differential
equation) gives the result

We square the velocity in eq 2 and take the ensemble average
with the result

In eq 3, we have used the statistical independence of initial
velocity and random force at timet

and the equipartition theorem atT/K

Note that the correlation function in eq 3 can only depend
on the time differenceτ at equilibrium, that is, on

and not on the absolute timest′ and t′′, so

Hence, it will be independent of timet′, for example, and the
integrals in eq 3 may be written

where we have expressedt′′ by t′ andτ as given in eq 6. The
double integral in eq 8 may be replaced by a single integral,
when the order of integration is interchanged, and eq 8 becomes

so eq 3 finally may be written

where we also have taken the limitt f ∞. This is justified,
because we are interested in the behavior of the system on a
much longer time scale than the correlation time for the random
force. We may then solve forγR and find

This is the central self-consistent relation between the friction
coefficientγR and the fluctuating forcefR. It is a fluctuation-
dissipation relation securing that the system will relax to
equilibrium atT/K, when disturbed. It differs slightly from the
ordinary form of the fluctuation-dissipation theorem, where
the exponential factor in the integrand is missing. It appears
here because we have used an exact integration of the Langevin
equation in eq 2. Ordinarily, an approximate solution is used.
If the time scale for the fluctuating force is much shorter than
γR

-1, then the exponential essentially will be equal to one when
the correlation function is nonzero, so it may be omitted. It is
obvious thatγR has to be found iteratively from this equation.

III. Determination of the Fluctuating Forces

We assume that the adatom-crystal interaction energy may
be written as a sum of atom-atom potentialsφas(|R - Rd,l|),
whereR is the position vector of the gas atom andRd,l the
position vector of the (d,l)th crystal atom. The latter may
generally be written as

whereRd is the position vector of atomd in the unit cell andl
is a lattice vector. There may be saync atoms per unit cell. It
is also assumed, as indicated in the argument toφas, that the
atom-atom potential only depends on the distance. Then the

〈VR(t)2〉 ) 〈VR(0)2〉 ) kBT/m (5)

τ ) t′′ - t′ (6)

〈fR(t′)fR(t′′)〉 ) 〈fR(t′)fR(t′ + τ)〉

) 〈fR(0)fR(τ)〉 (7)

∫0

t
dt′ ∫-t′

t-t′
dτ exp(2γR(t′ - t) exp(γRτ) 〈fR(0)fR(τ)〉 (8)

1
γR

∫0

∞
dτ exp(-γRτ)〈fR(0)fR(τ)〉 (9)

kBT

m
) 1

m2γR
∫0

∞
dτ exp(-γRτ)〈fR(0)fR(τ)〉 (10)

γR ) 1
mkBT∫0

∞
dτ exp(-γRτ)〈fR(0)fR(τ)〉 (11)

Rd,l ) Rd + l (12)

m
dVR

dt
) -mγRVR + fR (1)

VR(t) ) VR(0) exp(-γRt) + ∫0

t
dt′ 1

m
exp(γR(t′ - t))fR(t′)

(2)

kBT

m
)

kBT

m
exp(-2γRt) +

1

m2 ∫0

t
dt′ ∫0

t
dt′′ exp(γR(t′ + t′′ - 2t))〈fR(t′)fR(t′′)〉 (3)

〈VR(0)fR(t)〉 ) 0 (4)
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total potential energyU(R) is

where the summations overd and l include all atoms in the
crystal.

The force on the gas atom is determined by the relation

The fluctuations in the force are caused by fluctuations in the
crystal atom positionsδRd,l as a result of the vibrational motions
of the crystal atoms and are determined by expandingF in terms
of δRd,l. We find

The subscript 0 indicates that the derivatives are calculated with
the crystal atoms at their equilibrium positions.F0 is the static
force on the gas atom with all crystal atoms at their equilibrium
positions, andf is the fluctuating part of the force. We have
used eq 14 in the second line of the equation, and in the third
line we have used the assumption thatφas(|R - Rd,l|) only
depends on the distance∆R ) |R - Rd,l| between the gas atom
and the crystal atom. It is noted that (∇R∇Rφas(|R - Rd,l|)0 in
eq 15 is a tensor and that theR component of the fluctuating
force is given by

The time correlation function in eq 11 for the fluctuating force
may now be determined from the time dependence of theδRd,l,
which are determined by the motion of the atoms in the crystal.

A. Harmonic Crystal. We begin with the exact quantum
expression for the displacements of the crystal atomsδRd,l in
terms of the normal-mode excitations12 and use the classical
limit of that expression. It is

N is the number of unit cells in the crystal and equal to the
number of atoms in a simple Bravais lattice. If there arenc atoms
per unit cell, the number of atoms will bencN. Md is the mass
of atomd in the unit cell. If there is more than one atom in a
unit cell, these masses may differ.ων(k) is the νth normal-
mode frequency with wave vectork. ed(ν,k) is that part of the
3nc dimensional eigenvector associated with wave vectork and
branch ν, which gives the displacement of atomd in that
particular mode.â(ν,k) and its complex conjugate are the Bose
operators for the crystal atoms. h.c. is the Hermite complex
conjugate of the first term in the square bracket.

We insert eq 17 in eq 15 and find the following expression
for the fluctuating forces at timet

The time correlation function for the fluctuating forces is found
by first multiplying the expressions for the fluctuating forces
at timet and time 0 and then taking an ensemble average. When
the correlation function of the fluctuating forces is formed from
eq 18, only the following four combinations of the Bose
operators will appear,〈n|â(ν,k)â(ν,k)|n〉, 〈n|â(ν,k)â*(ν,k)|n〉, 〈n|
â*(ν,k)â(ν,k)|n〉, 〈n|â*(ν,k)â*(ν,k)|n〉, since the Bose operators
are orthogonal in both the wave vectork and the normal-mode
index ν.13 We first evaluate the expectation value of these
expressions for the crystal being in a vibrational eigenstate|n〉
and then determine the thermal average over all vibrational
states. We use the definition of the Bose operators13

and it is easy to see that only the second and third combination
above are nonzero. The thermal average are determined from
equilibrium statistical mechanics, and we find12,13

and similar for

The correlation function for the fluctuating force may therefore
be written

where

is a vector with three Cartesian components.
In eq 22, we have taken the classical limit in eq 20

and approximated the term 1+ n(ων(k)) in eq 21 byn(ων(k)).

U(R) ) ∑
l

∑
d

φas(|R - Rd,l|) (13)

F ) -∇RU(R) ) - ∑
l

∑
d

∇Rφas(|R - Rd,l|) (14)

F ) F0 + ∑
l

∑
d

(∇Rd,l
F)0‚δRd,l

) F0 - ∑
l

∑
d

(∇Rd,l
∇Rφas(|R - Rd,l|))0‚δRd,l

) F0 + ∑
l

∑
d

(∇R∇Rφas(|R - Rd,l|))0‚δRd,l

) F0 + f (15)

fR )
∂

∂RR
∑

l
∑

d
∑

â [(∂φas(|R - Rd,l|)
∂Râ

)
0

δRâ,(d,l)] (16)

δRd,l ) ∑
ν,k ( p

2NMdων(k))1/2

[ed(ν,k)â(ν,k) exp(i(k‚l -

ων(k)t)) + h.c.] (17)

f(t) ) ∑
l

∑
d

(∇R∇Rφas(|R - Rd,l|))0 ∑
ν,k ( p

2NMdων(k))1/2

×

[ed(ν,k)â(ν,k) exp(i(k‚l - ων(k)t)) + h.c.] (18)

â* |n〉 ) (n + 1)1/2| n + 1〉

â|n〉 ) n1/2|n - 1〉 (19)

〈n| â* â|n〉th ) ∑n exp(-En/(kBT))〈n| â* â|n〉

∑n exp(-En/(kBT))

) ∑n n exp(-pnων(k)/(kBT))

∑n exp(-pnων(k)/(kBT))

) 1
exp(pων(k)/(kBT)) - 1

) n(ων(k)) (20)

〈n| ââ* |n〉th ) n(ων(k)) + 1 (21)

〈f(t)f(0)〉 )
kBT

2N
∑
ν,k

1

ων(k)2
|b(k,ν,R)|2 2 cos(ων(k)t) (22)

b(k,ν,R) )

∑
l

∑
d

(∇R∇Rφas(|R - Rd,l|))0

1

Md
1/2

‚ed(ν,k) exp(ik‚l) (23)

n(ων(k)) ) 1
exp(pων(k)/(kBT)) - 1

∼ kBT

pων(k)
. 1 (24)
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B. Translation Symmetry. We take advantage of the
translational symmetry of the crystal and use a Fourier expansion
of the interaction potential14 to simplify the summation in eq
23.

Let us begin with a specification of the geometry of our
system. The surface is placed perpendicular to thez direction
with the surface atz ) 0. The atoms in the crystal are arranged
in layers parallel to the surface such that layerâ has thez
coordinate,zâ. It is a negative number since the crystal extends
to -∞ along z. In the lateralx and y directions, there is an
infinite translational symmetry, so the lattice vectorl is a 2D
vector. This means that, in addition to indexd used to specify
the atoms in the unit cell, we also need an indexâ to specify
the layers.

The 2D lattice vectorl in the layers of the crystal parallel to
the surface are defined by

where l1 and l2 are integers anda1 and a2 are the 2D lattice
vectors. The reciprocal lattice vectorsb1 and b2 are defined
according to

and the reciprocal lattice vectorsg are given by

Let us start with an evaluation of the adsorption energy of a
gas atom, since we may use the result directly in the evaluation
of the gradients in the sum in eq 23. The adsorption energy
U(R) of an adatom will be a periodic function of the lateral
position of the gas atom. Let us therefore write the position
vectorR of the gas atom in terms of a lateral vectorr and the
z component,z

whereẑ is the unit vector alongz.
The periodicity of U(R) may be expressed by a Fourier

expansion in the reciprocal lattice vectorsg

Clearly, if we add a lattice vectorl to the position vectorr , we
get the same energy as before, when we use the relation in eq
26. The coefficients in the Fourier expansion are given by

whereas ) |a1 × a2| is the area of the 2D unit cell and labela
on the integral indicates an integration over a unit cell.

We may determine the adsorption energy of the gas atom at
(r + zẑ) as a sum of interaction energies between adatom and
crystal atoms in the different layersâ

wherezâ (a negative number) is thezcoordinate of theâth layer
in the crystal. So let us first determine an expression for the
energy between the adatom and the crystal atoms in layerâ. It
is assumed that this energy may be determined as a sum of
atom-atom potentials such as

wherer d(â) is the position vector of atomd(â) in the unit cell
in layer â. In a 3D crystal,d normally runs over all the atoms
in a 3D unit cell, but here where we only have a 2D lattice, it
must include the atoms in the 2D unit cells in all layers; it is
therefore necessary with a specification of which layer we are
considering. We now introduce eq 32 into eq 30 and get

where we have introduced the substitution

and used exp(ig‚l) ) 1. The integration overr was limited to a
unit cella, but with the substitution in eq 34 and the summation
over alll, the integration overswill extend over the entire layer,
hence no label on the integral in the second line of eq 33.

We restrict our discussion to atom-atom potentials, where
the energy only depends on the distance between the atoms (s2

+ (z - zâ)2)1/2, so it will be natural to shift to polar coordinates
in the integration. We have

whereê is the polar angle ofs. If the polar angle ofg is η, then

so

The integral overê gives15

whereJ0(gs) is the zero order Bessel function, so finally

with

This is the central result for the Fourier coefficients. To evaluate
them, we need an explicit expression for the atom-atom
potential.

l ) l1a1 + l2a2 (25)

ai‚bj ) δij (26)

g ) g1b1 + g2b2 (27)

R ) r + zẑ (28)

U(r,z) ) ∑
g

wg(z) exp(ig‚r ) (29)

wg(z) ) 1
as
∫a exp(-ig‚r )U(r ,z) dr (30)

U(r ,z) ) ∑
â

U(r , z - zâ) (31)

U(r , z - zâ) ) ∑
l

∑
d(â)

φas(r - (rd(â) + l), z - zâ) (32)

wg(z - zâ) )
1

as
∑

l
∑
d(â)

∫a exp(-ig‚r )φas(r - (rd(â) + l),

z - zâ) dr

)
1

as
∑
d(â)

exp(-ig‚rd(â)) ×

∫ exp(-ig‚s)φas(s, z - zâ) ds (33)

s ) r - (rd(â) + l) (34)

s ) |s|
ds ) s dê ds (35)

g‚s ) gscos(η - ê) (36)

wg(z - zâ) )
1

as
∑
d(â)

exp(-ig‚rd(â)) ∫0

∞
φas((s

2 +

(z - zâ)
2)1/2)s ds∫0

2π
exp(igscos(η - ê)) dê (37)

∫0

2π
exp(igscos(η - ê)) dê ) 2πJ0(gs) (38)

wg(z - zâ) )
2π

as
∑
d(â)

exp(-ig‚rd(â)) ∫0

∞
J0(gs)φas((s

2 +

(z - zâ)
2)1/2)s ds≡ ∑

d(â)

exp(-ig‚rd(â))Vg(z - zâ) (39)

Vg(z - zâ) ) 2π
as

∫0

∞
J0(gs)φas((s

2 + (z - zâ)
2)1/2)s ds (40)
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In conclusion, the interaction energy between an adatom and
atoms in theâ layer of the crystal is given by the expression

and the total potential energy

Then let us evaluate the sum overl in eq 23. We may rewrite
the expression according to

The sum overl is written as a Fourier expansion according to

and the Fourier coefficients are given by the expression

With the same substitution as in eq 34, we find

Like in the derivation of the expression for the adsorption
energy, we have switched to polar coordinates in the third line
of the equation, and from eq 40, we get the last line in the
equation.

When finally introduced into eq 43 we get the expression

IV. Summary and Implementation

When the expression for the time correlation function of the
fluctuating forces, eq 22, is introduced in the expression forγR
in eq 11, we see that the temperature cancels, so we get a
temperature independent friction coefficient and also that it
depends on the position of the adatom.

To facilitate the calculation, let us introduce a spectral density
FR(ω) of the function|bR(k,ν,R)|2/ων(k)2 such that

Figure 1. The correction factorκ (eq 51) in Kramers’ theory to the TST rate constant as a function ofγ/(2ωb).

U(r , z - zâ) ) ∑
g

∑
d(â)

exp(-ig‚rd(â))Vg(z - zâ) exp(ig‚r )

(41)

U(r , z) ) ∑
â

∑
g

∑
d(â)

exp(-ig‚rd(â))Vg(z - zâ)exp(ig‚r ) (42)

b(k,ν,R) ) ∑
l

∑
d

(∇R∇Rφas(|R - Rd,l|))0

1

Md
1/2

‚ed(ν,k) exp(ik‚l)

) ∇R∇R ∑
â

∑
d(â)

1

Md(â)
1/2

‚ed(â)(ν,k) ×

∑
l

φas(r - (rd(â) + l), z - zâ) exp(-ik‚l) (43)

∑
l

φas(r - (rd(â) + l), z - zâ)exp(-ik‚l) )

∑
g

exp(i(k + g)‚r )Wk+g(z - zâ) (44)

Wk+g(z - zâ) )
1

as
∑

l
∫a exp(-i(k + g)‚r )φas(r -

(rd(â) + l), z - zâ) exp(ik‚l) dr (45)

Wk+g(z - zâ) ) 1
as
∫ φas(s, z - zâ) exp(-i(k + g)‚s) ×

exp(- i(k + g)‚rd(â)) ds

) exp(- i(k + g)‚rd(â))
1
as
∫ φas(s, z - zâ) ×
exp(-i(k + g)‚s) ds

) exp(-i(k + g)‚rd(â)) ×
2π
as

∫0

∞
J0(|k + g|s)φas((s

2 + (z - zâ)
2)1/2)s ds

) exp(- i(k + g)‚rd(â))Vk+g(z - zâ) (46)

b(k,ν,R) ) ∇R∇R ∑
â

∑
d(â)

1

Md(â)
1/2

‚ed(â)(ν,k) ×

∑
g

exp(- i(k + g)‚rd(â))Vk+g(z - zâ) exp(i(k + g)‚r ) (47)

∑
ν,k

1

ων(k)2
|bR(k,ν,R)|2 cos(ων(k)t) )

∫0

ωmax dωFR(ω) cos(ωt) (48)
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The equation forγR is then

The phonon frequencies and polarization vectors are calculated
for a uniform distribution of wave vectors in the irreducible
Brillouin zone. The results for each wave vector are sorted into
a histogram ofω values between zero andωmax giving the
spectral densityFR(ω).

V. Application to the N2/Fe(111) System

The rate constantksol for a chemical reaction in solution is
given by

following Kramers’ theory.3 kTST is the rate constant determined
by TST, andκ represents the influence of the solvent molecules
on the rate constant and is given by

γ is the friction coefficient andωb the magnitude of the
imaginary frequency along the reaction coordinate at the saddle
point in the PES representing the transition state.κ is shown as
a function ofγ/(2ωb) in Figure 1. It is clear that the rate constant
in solution always will be smaller than the TST rate constant.
The latter may be determined from the energetics of the
transition state and the reactants. The magnitude of the
imaginary frequency at the transition state may be determined
from the calculated potential energy surface, and the friction
coefficient for a reaction on a crystalline surface may be
determined by the method described above.

J.J. Mortensen et al.16 have reported extensive DFT calcula-
tions of the energetics of N2 adsorption and dissociation on an
Fe(111) surface. In Figure 2 we have shown a top view of the
Fe(111) surface. The Fe atoms are arranged in a hexagonal
pattern in layers that are arranged in an ABCABC... stacking
as we go down through the crystal. Mortensen et al. proposed
the dissociation path as sketched in Figure 3. The N2 molecule
is first adsorbed on top of an Fe atom in the top layer with the
molecular axis perpendicular to the surface, theγ state. Then it

moves over to theδ site on top of an Fe atom in the B layer
below the top layer, still with the molecular axis perpendicular
to the surface. From there it moves to theR state with the
molecular axis parallel to the surface and finally ends up in the
R2 state from where the dissociation to theâ state takes place.
There is a barrier to dissociation from this state, and that is the
rate-limiting step. From their energy calculations, we have
estimated the magnitude of the imaginary frequency at the
transition state to beωb = 70 THz.

The dynamics of the Fe crystal has been determined by a
lattice dynamics calculation of a crystalline slab with translation
symmetry in thex andy directions and a finite number of layers
alongz. We have used the potential model by ref 17, where the
interaction between the Fe atoms are given by

The energy is in eV and the distancer in Å. The parameters in
the potential are determined from a lattice dynamics calculation
of the density of states and an experimental determination by
inelastic incoherent neutron scattering.18 The number of layers
in the slab is determined on the basis of the criteria that the
normal-mode frequencies do not change by addition of more
layers. The dependence of a low-frequency and a high-frequency
normal mode on the number of layers is shown in Figure 4.
The figure shows that we should consider at least about 75 layers
before the frequencies become almost independent of the
number of layers, so we have used 75 layers in our computa-
tions.

For the N/Fe interaction, we have used a Morse potential

The parametersD ) 8.1455× 10-2 eV, a ) 5.78 Å-1, andReq

) 3.38 Å are the same as those used by Lajer et al.19 We need
the Fourier coefficientsVg(z) for the Morse potential that are
given by eq 40. The integral may be evaluated numerically, if
an analytic solution cannot be found. In the case of the Morse

Figure 2. A top-down view of the Fe(111) surface. The Fe atoms are
arranged in a hexagonal pattern in layers in an ABCABC... stacking
order. The distance between layers is 0.8285 Å.

γR ) 1
mN∫0

∞
dt exp(-γRt) ∫0

ωmax dωFR(ω) cos(ωt)

) 1
mN∫0

ωmaxdω
γRFR(ω)

γR
2 + ω2

(49)

ksol ) kTSTκ (50)

κ ) (1 + (γ/(2ωb))
2)1/2 - γ/(2ωb) (51)

Figure 3. Top view of an Fe(111) surface with different molecular
states of N2. In theγ andδ states, the molecular axis is perpendicular
to the surface and only the top atom is seen. The dissociation to theâ
state takes place from theR2 state.20

φ(r) ) -0.188917(r - 1.827)4 + 1.70192(r - 2.50849)2 -
0.198294 0e r e 3.44

φ(r) ) 0 r g 3.44 (52)

φas) D[exp(-2a(∆R - Req)) - 2 exp(-a(∆R - Req))]
(53)
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potential it is possible to find an analytic expression. After
lengthy arithmetic manipulations, one finds15

We now have the necessary ingredients for a determination
of theb vector in eq 47. It is determined at a number of wave
vectorsk in the Brillouin zone. We used 400. The results are
binned according to the frequency and added to form the spectral
density FR in eq 48. The friction coefficientγR is finally
determined iteratively from eq 49.

VI. Results and Discussion

For theR2 position of the nitrogen atoms, we have found a
friction coefficient of 20-30 THz for each of the nitrogen atoms.
The reaction coordinate is the relative motion of the two nitrogen
atoms, so the friction coefficient for that motion is about 40-
60 THz. Withωb = 70 THz, we find that the ratioγ/(2ωb)) =
0.35. From Figure 1 is seen thatκ = 0.75, which corresponds
to a 25% reduction of the TST rate constantkTST. Mortensen et
al.16 made an estimate ofkTST and found that it was 2 orders of
magnitude larger than in experiments. Our calculations show
that the phononic friction cannot account for such a large
discrepancy. This may indicate that the electronic friction also
may be important. However, the uncertainties are quite large
in these calculations. The friction coefficient depends strongly
on the position of the adatom on the surface and a systematic
investigation of this dependency will be desirable. Also, the
DFT potentials may be inaccurate. These questions will be
investigated further.
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Figure 4. Lattice dynamics result for an Fe-crystal slab. The
frequencies of two normal modes with respectively a small and a high
frequency are shown as function of the number of layers in the slab.
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