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Transition-state theory is often used to calculate the rate constant of a chemical reaction. Usually, it gives
quite good results for gas-phase reactions but not for reactions in solution since the interactions of the solvent
molecules with the reactants are not included in the theory. Kramers formulated an extension of the transition-
state theory that included these interactions. They are represented by a friction coefficient that often is related
to the viscosity of the solvent by Stoke’s law. For reactions on the surface of a crystalline catalyst, there will
also be an effect on the rate constant from the interaction between the reactants and the oscillating substrate
atoms. In contrast to reactions in solution, where the friction coefficient is related to the viscosity of the
solvent, there exists no simple property of the solid that may be directly related to a friction coefficient for
the motion of the adsorbed molecule on the surface. In this paper, we propose a method that may be used to
calculate a friction coefficient that may be used in Kramers theory to calculate the rate constant for a chemical
reaction on the surface of a crystalline solid.

I. Introduction the transition state and assume it to be a free translational motion
] . in the direction from reactant to product. Kramers'’ idea was to
Many catalyzed reactions take place on the surface of a solid 4iye 4 more realistic description of the dynamics in the reaction
crystalline catalyst. Today it is possible to supplement experi- coordinate, not only at the transition state but along the entire
mental investigations of a given catalytic reaction by extensive eaction coordinate. Instead of giving a deterministic description
and realistic density functional theory (DFT) calculations of the 4 the dynamics, he proposed a stochastic description of the

potential-energy surface (PES) of the reacfigiith this tool, motion similar to that of the Brownian motion of a heavy particle
we have a direct and powerful method for exploring the i 3 fluid.

energetics and structure of a reacting molecule on the surface 4 result of Kramers’ theory for a reaction in solution is

of a catalytic active subsrate. ~ very simple. The rate constant is equal to the product of the
Once the transition state and the PES have been determ|neq’ST rate constant and a correction factothat Only depends

by the DFT method, transition-state theory (TSi5)often used o the ratio between a friction coefficieptand the magnitude

to calculate the rate constant _for the reaction of interest. The of the imaginary frequency associated with the curvature of the

calculated rate constant often differs from the experimental result pES at the transition state along the reaction coordinate. For

for many reasons. The theoretical PES may not be accuratereactions in solution, the friction coefficientis often related

enough to mimic the experiment, and the approximations in the tg the viscositys of the solvent by Stoke’s law, and the

TST may not be justified for the system considered. The TST correction factork is smaller than one, so the effect of the

theory is developed for a gas-phase reaction and does thereforgglvent molecules is always to reduce the TST rate constant.
not include the interactions between the solvent or solid and  For reactions taking place on a crystalline surface, there is
the molecule for a reaction in solution or on a solid surface, g single property of the solid, such as the viscosity of the
and even then, there are serious approximations involved in thesg|yent, that allows us to make an estimate of the friction
theory, like the establishment of thermal equilibrium between coefficient to be used in Kramers' expression for the rate
reactant and transition-state molecules and the assumption ofgnstant. In general, both electrons and phonons of the bulk
no recrossings of the transition state. That is, once the reactionsojig constitute sinks for the energy dissipation that is associated
coordinate has passed the transition state from reactant tyjith friction. In this paper, we will only consider the purely
product, the theory does not include the possibility of going phononic friction and later consider the electronic friction, since
back from products to reactants. This implies that the TST result ty5¢ may also be important in a molecule/metal system.
usually is larger than the experimental result. Moreover, if TST Specifically, we address the Brownian friction of a gas
is used for reactions in solution or on a surface, the discrepancyolecule that is adsorbed on a crystal surface. In recent
may even be_ larger begause recrossings of the transition statg,qjecular dynamics simulation studies of adsorbate systefns,
will be more important in these systems. it was investigated what the time scale of energy dissipation in
Most modern investigations of the effects of a solvent on the substrate is. The substrate dynamics are known to influence
the rate constant are based on a classical paper by Krdmers.the frequency and damping of the vibrations of commensurate
His theory is based on the TST approach. In the TST approach,monolayer latticé. There also is expected to be an effect on
we only consider the motion in the reaction coordinate right at the temporal persistence of correlations in monolayer fldids.
As a limiting case, we consider the one-dimensional motion in
T Part of the “Gert D. Billing Memorial Issue”. the reaction coordinate of a dissociating molecule on a crystal
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surface. The model is formulated for a gas molecule on a and the equipartition theorem &tk
crystalline surface and then applied to thg@¢(111) system.
The dynamics of the Fe substrate is given by a lattice dynamics Dl/u(t)z[l= Wa(O)Z[r: ks T/m (5)
calculation on an Fe crystal slab. The Brownian friction
coefficient for a gas molecule on Fe(111) is obtained as a Note that the correlation function in eq 3 can only depend
function of position and determined at the position of a DFT on the time difference at equilibrium, that is, on
calculation of the transition state of the molecule. o

Brownian friction or generalized Langevin Theory has T=r -t (6)
previously been applied to various gasurface reactive scat-

. : i . and not on the absolute tim&sandt”, so
tering systems, and trajectory calculations have shown details

of the dynamics in catalyzed chemical reacti®ns. This i, (1) (") O= O, (t)f(t' + 7)0
method differs from those in that it is not based on trajectory
calculations of the reactive scattering event. = [{,(0)f (1)U (7)

The organization of the paper is as follows. Section 2 contains
the basic Langevin theory of Brownian motion on the surface Hence, it will be independent of tim for example, and the
of a crystal. Section 3 describes the determination of the integrals in eq 3 may be written
fluctuating forces in the Langevin theory, and section 4 is a ; —p
summary of the theory and its implementation. Section 5 fo dt’ f_t, dr exp(2,(t' — t) exp,7) &, (0)f ()1 (8)
describes the application of the theory to th#R¢(111) system.

Section 6 contains results and a discussion. where we have expressé€tby t' andzt as given in eq 6. The
. double integral in eq 8 may be replaced by a single integral,
Il. Langevin Theory when the order of integration is interchanged, and eq 8 becomes

It is well known that an isolated molecule in a bulk solution 1 e
exhibits random motion, usually referred to as Brownian motion, — j; dz exp(—y 7)), (0)f ()0 9
caused by interactions with the solvent molecules. A phenom- Va
enological description of this motion is given by the Langevin

: . ! finally m written
equation for the center of mass velocity of the molecule in the S0 eq 3 finally may be writte

solution. Likewise, an isolated mobile molecule adsorbed on a kg T 1 e
crystal surface exhibits random two-dimensional (2D) motion — = fo dr exp(—y,7), (0)f, (1)U (10)
caused by interactions with oscillating substrate atoms. Let us m sza
therefore also describe the motion of the adsorbed molecule by o o
the Langevin equation. For tlecomponent of the velocity,, where we also have taken the lintit~ co. This is justified,
of the adsorbed molecule or atom, we have because we are interested in the behavior of the system on a
much longer time scale than the correlation time for the random
av, force. We may then solve for, and find
m? = _myava + fa (1)

Vo= it Jo e ATORED ()
wherem is the mass of the gas atorfy, the o (X, y, or 2)

component of the random force, apgthe friction coefficient

for motion in thea direction. Its dimension is 3, and note
that we associate a friction coefficient with motion in each of
the Cartesian directions, since anisotropy may be significant
on a crystalline surface.

Let us begin with setting up an internally consistent equation
for the friction coefficient. A formal integration of the Langevin
equation in eq 1 (an inhomogeneous first-order linear differential
equation) gives the result

This is the central self-consistent relation between the friction
coefficienty, and the fluctuating forcé,. It is a fluctuation-
dissipation relation securing that the system will relax to
equilibrium atT/K, when disturbed. It differs slightly from the
ordinary form of the fluctuatiordissipation theorem, where
the exponential factor in the integrand is missing. It appears
here because we have used an exact integration of the Langevin
equation in eq 2. Ordinarily, an approximate solution is used.
If the time scale for the fluctuating force is much shorter than
" vo L, then the exponential essentially will be equal to one when
V, (1) =V, (0) exptry,t) + j; dt’ P exply,(t' — )i, () the correlation function is nonzero, so it may be omitted. It is
obvious thaty, has to be found iteratively from this equation.

2)
We square the velocity in eq 2 and take the ensemble average”l' Determination of the Fluctuating Forces
with the result We assume that the adaterorystal interaction energy may
be written as a sum of atoratom potentialgpad|R — Rq)l),
KeT  kgT whereR is the position vector of the gas atom aRd) the
WZWeXp(_ZVat) + position vector of the d)th crystal atom. The latter may

generally be written as

1 pt t
= [ dt’ [ dt'" expl,(t +t" — 2t)E, ) (")O3)
m’ Jodt Jo ’ ’ Ry =Ry +! (12)
In eq 3, we have used the statistical independence of initial whereRq is the position vector of atord in the unit cell and
velocity and random force at tinte is a lattice vector. There may be sayatoms per unit cell. It
is also assumed, as indicated in the argumeng,tothat the
[V, (0)f, ()= O (4) atom—atom potential only depends on the distance. Then the
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total potential energW(R) is We insert eq 17 in eq 15 and find the following expression

for the fluctuating forces at time
UR) = Z Z_ $adIR — Ryl) (13)

112

f(t) = Z 2!' (VRVr®adIR — Ryi1))o Z —) X

where the summations overand| include all atoms in the vk \2NMyw,(K)

crystal. [ey(v.K)a(v k) expl(k+l — w,(K)t)) + h.c] (18)

The force on the gas atom is determined by the relation
The time correlation function for the fluctuating forces is found
F=-VRU(R)=— Z Z VegadIR = Ry )  (14) by first multiplying the expressions for the fluctuating forces

at timet and time 0 and then taking an ensemble average. When

The fi . in the f d by i . in th the correlation function of the fluctuating forces is formed from
e fluctuations in the force are caused by fluctuations in the o, 15 only the following four combinations of the Bose

crystal atom positiondRg, as a result of the vibrational motions ; A A A A%
' . » perators will appeafn|a(v,k)a(v,k) [nC]l &y, k)a*(v,k)nC) @]
of the crystal atoms and are determined by expanBiimgterms &*(v,K)A(v,K)|nDJ [B|&*(v,k)&*(v,k) I since the Bose operators
of ORq,. We find are orthogonal in both the wave vectoand the normal-mode
index v.13 We first evaluate the expectation value of these

F=F+ Z Z (de,‘F)o'éRd,l expressions for the crystal being in a vibrational eigengtaie
and then determine the thermal average over all vibrational
=F,— Z Z (Vi VrdadIR — Ry D)o ORy; states. We use the definition of the Bose operéators
dl h s

a*In0= (n+ 1)Y4 n+ 10
=Fy+ Z Z (VRVroadIR — Ry )0 0Ry, ( )

=Fo+f (15)

ajnC= n'?n — 10 (19)

and it is easy to see that only the second and third combination
The subscript 0 indicates that the derivatives are calculated with@Pove are nonzero. The thermal average are determined from
the crystal atoms at their equilibrium positiof,is the static  €quilibrium statistical mechanics, and we fifé?
force on the gas atom with all crystal atoms at their equilibrium

positions, and is the fluctuating part of the force. We have e n zn exp(—E,/(ksT)) M| &*&/nC
used eq 14 in the second line of the equation, and in the third (Bl @&k} = s

line we have used the assumption thig{{|R — Rgq)|) only z“ exp(-E/(ksT)
depends on the distanm_? = |R — Ry,| between the gas atom zn n exphne, (K)/(ksT))
and the crystal atom. It is noted th&t{Vrpad|R — Rayl)o in =

eq 15 is a tensor and that tbecomponent of the fluctuating Z” exp(—hnw,(k)/(ksT))

force is given by

1
= =n(w,(k 20
) 30.R — Ry explio,()iln) — 1 ") (20
f,=— Z Z_ ; —————| ORy 4| (16) o
IR, IRy 0 and similar for
The time correlation function in eq 11 for the fluctuating force m| &a* Inl}, = n(w,(k)) + 1 (21)

may now be determined from the time dependence o Eg,

which are determined by the motion of the atoms in the crystal. The correlation function for the fluctuating force may therefore
A. Harmonic Crystal. We begin with the exact quantum  pe written

expression for the displacements of the crystal atéRg in

terms of the normal-mode excitatidAsand use the classical

ert . . ke T 1
limit of that expression. It is m(t)f(0) = — Z —— |b(kv,R)[* 2 cosfo,(k)t) (22)
12 NIE 0,97
6Rd’| = ; m) [ed(v,k)a(v,k) exp@(k-l - where
0,000 +hel AN e

. . . 1
N is the number of unit cells in the crystal and equal to the V.V R—R —— e (rk) explk-D) (23
number of atoms in a simple Bravais lattice. If thereraratoms Z Z-( RVdad| aio M2 a(vk) explk-l) (23)

per unit cell, the number of atoms will bgN. My is the mass
of atomd in the unit cell. If there is more than one atom in a
unit cell, these masses may diffen,(k) is the vth normal-
mode frequency with wave vectér eq(v,k) is that part of the

is a vector with three Cartesian components.
In eq 22, we have taken the classical limit in eq 20

3n. dimensional eigenvector associated with wave velctand ke
branchv, which gives the displacement of atochin that n(w,(K)) = 1 ~ > 1 (24)
particular modea(v,k) and its complex conjugate are the Bose " expfio,(K)/(ksT) — 1 fw, (k)

operators for the crystal atoms. h.c. is the Hermite complex
conjugate of the first term in the square bracket. and approximated the term-& n(w,(k)) in eq 21 byn(w,(k)).
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B. Translation Symmetry. We take advantage of the

translational symmetry of the crystal and use a Fourier expansion

of the interaction potenti# to simplify the summation in eq
23.

Let us begin with a specification of the geometry of our
system. The surface is placed perpendicular toztbeection
with the surface at = 0. The atoms in the crystal are arranged
in layers parallel to the surface such that layehas thez
coordinatezs. It is a negative number since the crystal extends
to —o along z In the lateralx andy directions, there is an
infinite translational symmetry, so the lattice vectds a 2D
vector. This means that, in addition to indéxised to specify
the atoms in the unit cell, we also need an ingeto specify
the layers.

The 2D lattice vectol in the layers of the crystal parallel to
the surface are defined by

I=la + 138, (25)
wherel; andl, are integers andy; and a, are the 2D lattice
vectors. The reciprocal lattice vectdos and b, are defined
according to

a-b; =9 (26)
and the reciprocal lattice vectogsare given by
g=g,b; + g;b, (27)

Hansen

u(r,z—z) = Z %‘Pas(r — gy tNz=2z) (32

wherer g is the position vector of atord(3) in the unit cell

in layer . In a 3D crystald normally runs over all the atoms

in a 3D unit cell, but here where we only have a 2D lattice, it

must include the atoms in the 2D unit cells in all layers; it is

therefore necessary with a specification of which layer we are
considering. We now introduce eq 32 into eq 30 and get

1
Wz 2) =Y 3 [aeptigniur — (ot
z—zy)ar

1 .
— Z expiger ) x

(B)
[ exp(igrS)p,s (s 2 — z;) ds (33)
where we have introduced the substitution

S=1 —(rgp t1) (34)
and used expg-l) = 1. The integration over was limited to a
unit cella, but with the substitution in eq 34 and the summation
over alll, the integration oves will extend over the entire layer,
hence no label on the integral in the second line of eq 33.
We restrict our discussion to ateratom potentials, where

Let us start with an evaluation of the adsorption energy of a the energy only depends on the distance between the atdms (
gas atom, since we may use the result directly in the evaluation ™ (Z — 2)?)*% so it will be natural to shift to polar coordinates
of the gradients in the sum in eq 23. The adsorption energy I" the integration. We have

U(R) of an adatom will be a periodic function of the lateral s=g

position of the gas atom. Let us therefore write the position

vectorR of the gas atom in terms of a lateral vectoand the ds=sd&ds
z componentz

(39)
whereé is the polar angle of. If the polar angle of is 7, then

(36)

R=r+2z (28)

g's=gscosf — &)
wherez is the unit vector along.
The periodicity of U(R) may be expressed by a Fourier

expansion in the reciprocal lattice vectas 1
Wz = 2) == expigryy) fi a4+
U(r2) =y wid) expigr) e TP o) Jo ¢
[¢] 27
(2= 2))")sds [ explgscosf — &) d& (37)
Clearly, if we add a lattice vectdrto the position vector, we

get the same energy as before, when we use the relation in eqThe integral oveg gives®
26. The coefficients in the Fourier expansion are given by .
Js

whereJy(g9) is the zero order Bessel function, so finally

SO

exp(gs cos@y — £)) d& = 27Jy(g9) (38)

wy(2) = a{ S aexp(ign)u(r 2) dr (30)

whereas = |a; x ag is the area of the 2D unit cell and lakeel
on the integral indicates an integration over a unit cell.

We may determine the adsorption energy of the gas atom at
(r + Z2 as a sum of interaction energies between adatom and
crystal atoms in the different layefs

21 w0
w2 = Y expCigTag) fo b(G90al( +

»)

(z—z))Psds= d% expP=igH 4 )Vy(z — ) (39)

U,z = Z u(r,z—z) (31) with
_ _2n e o\21/2
wherez; (a negative number) is thecoordinate of thegth layer Vg(z Zﬁ) - ag j; ‘]0(93)¢as((32 +(z Zﬁ) ) )sds (40)

in the crystal. So let us first determine an expression for the

energy between the adatom and the crystal atoms in Jaylér This is the central result for the Fourier coefficients. To evaluate
is assumed that this energy may be determined as a sum othem, we need an explicit expression for the at@atom
atom—atom potentials such as potential.
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In conclusion, the interaction energy between an adatom and

atoms in thes layer of the crystal is given by the expression
Ur,z—z)=3% % expiger yp)Vy(z — Z;) explg-r)
g
(41)

and the total potential energy

V9= 33 5 expligrapV(z— )expigr) (42
g

Then let us evaluate the sum ovén eq 23. We may rewrite
the expression according to

1
DR = S (VaVedadIR ~ Ryl Wz-ed(v,k) exp(k-1)

1

= VRVR Z % m-ed@(v,k) X
Z bodr — (T 1), 2— 25) exp(=ik-l) (43)

The sum ovel is written as a Fourier expansion according to

Z Godr — (g + 1), 2— Zg)exp(-ik-l) =

> expl(k +9) M)W o(z - ) (44)
]
and the Fourier coefficients are given by the expression

1
W (Z — 7 ) = anp(—i(k + g)'r)¢a5(r -
k+g B a, Z f
(ra@ T 1, 2— z5) exp(k-1) dr (45)
With the same substitution as in eq 34, we find

1 pree
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W, 14(Z— 2,) =alsf .S 2 25) exp(=i(k + g)-9) x
exp(—i(k + g)-ryp) ds

= exp( i(k + )T o) i [ duds 2= 2) x
exp(i(k + g)-s) ds
= exp(i(k + g)-ryp) x
oS kT 096,4(E + (2= 3)) s 0s

=exp(- ik + Q) Typ)Visg2—2)  (46)
Like in the derivation of the expression for the adsorption
energy, we have switched to polar coordinates in the third line
of the equation, and from eq 40, we get the last line in the
equation.

When finally introduced into eq 43 we get the expression

1
b(k,V,R) = VRVR ; [%) —]_/Z.ed(ﬂ)(vyk) X
Mags)

> exp(= i(k + 9)Typ)Viero(Z — 29) expl(k + g)r) (47)
9

IV. Summary and Implementation

When the expression for the time correlation function of the
fluctuating forces, eq 22, is introduced in the expressioryfor
in eq 11, we see that the temperature cancels, so we get a
temperature independent friction coefficient and also that it
depends on the position of the adatom.

To facilitate the calculation, let us introduce a spectral density
po(w) of the function|by(k,v,R)|%w,(k)? such that

Z ! b (k,»,R)[* cos, (K)t) =
T w,K)

S dwpy(w) coset) (48)

09
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Figure 1. The correction factok (eq 51) in Kramers’ theory to the TST rate constant as a functiop/(@fuy).
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Figure 2. A top-down view of the Fe(111) surface. The Fe atoms are
arranged in a hexagonal pattern in layers in an ABCABC... stacking
order. The distance between layers is 0.8285 A.

Figure 3. Top view of an Fe(111) surface with different molecular
states of M. In they and¢ states, the molecular axis is perpendicular
to the surface and only the top atom is seen. The dissociation {® the

The equation fory, is then

Vo= m_lN jcl) “ ot expy,t) J; s ) py(w) cost) state takes place from the state?
() moves over to thé site on top of an Fe atom in the B layer
= iNf‘”maxde (49) below the top layer, still with the molecular axis perpendicular
mN/© v+ o’ to the surface. From there it moves to thestate with the

molecular axis parallel to the surface and finally ends up in the
The phonon frequencies and polarization vectors are calculateda, state from where the dissociation to thetate takes place.
for a uniform distribution of wave vectors in the irreducible There is a barrier to dissociation from this state, and that is the
Brillouin zone. The results for each wave vector are sorted into rate-limiting step. From their energy calculations, we have

a histogram ofw values between zero andmax giving the estimated the magnitude of the imaginary frequency at the
spectral densityq(w). transition state to bey, = 70 THz.
o The dynamics of the Fe crystal has been determined by a
V. Application to the N»/Fe(111) System lattice dynamics calculation of a crystalline slab with translation
The rate constarks, for a chemical reaction in solution is ~ Symmetry in thexandy directions and a finite number of layers

given by alongz. We have used the potential model by ref 17, where the

interaction between the Fe atoms are given by
Ksol = Kyt (50)

#(r) = —0.188917( — 1.827f + 1.70192( — 2.50849F —

following Kramers' theory? krstis the rate constant determined 0.198294 r <344

by TST, andc represents the influence of the solvent molecules

on the rate constant and is given by o()=0 r=3.44 (52)

K= (1+ (yI(w)))Y — yI(2w,) (51) The energy is in eV and the distancin A. The parameters in

the potential are determined from a lattice dynamics calculation
y is the friction coefficient andwy the magnitude of the  of the density of states and an experimental determination by
imaginary frequency along the reaction coordinate at the saddleinelastic incoherent neutron scattert¥gthe number of layers
point in the PES representing the transition statis.shown as in the slab is determined on the basis of the criteria that the
a function ofy/(2wy) in Figure 1. It is clear that the rate constant normal-mode frequencies do not change by addition of more
in solution always will be smaller than the TST rate constant. layers. The dependence of a low-frequency and a high-frequency
The latter may be determined from the energetics of the normal mode on the number of layers is shown in Figure 4.
transition state and the reactants. The magnitude of the The figure shows that we should consider at least about 75 layers
imaginary frequency at the transition state may be determinedbefore the frequencies become almost independent of the
from the calculated potential energy surface, and the friction number of layers, so we have used 75 layers in our computa-
coefficient for a reaction on a crystalline surface may be tions.
determined by the method described above. For the N/Fe interaction, we have used a Morse potential

J.J. Mortensen et &f.have reported extensive DFT calcula-

tions of the energetics of Nadsorption and dissociation on an $as= D[eXp(—2a(AR — R,y) — 2 exp(~a(AR — Ryy))]
Fe(111) surface. In Figure 2 we have shown a top view of the (53)
Fe(111) surface. The Fe atoms are arranged in a hexagonal
pattern in layers that are arranged in an ABCABC... stacking The parameter® = 8.1455x 102eV,a=5.78 AL, andReq
as we go down through the crystal. Mortensen et al. proposed= 3.38 A are the same as those used by Lajer &t\le need
the dissociation path as sketched in Figure 3. ThenNlecule the Fourier coefficientd/y(2) for the Morse potential that are
is first adsorbed on top of an Fe atom in the top layer with the given by eq 40. The integral may be evaluated numerically, if
molecular axis perpendicular to the surface,tretate. Then it an analytic solution cannot be found. In the case of the Morse
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Figure 4. Lattice dynamics result for an Ferystal slab. The
frequencies of two normal modes with respectively a small and a high
frequency are shown as function of the number of layers in the slab.

potential it is possible to find an analytic expression. After
lengthy arithmetic manipulations, one fidéls

Vo(z—29) =

2t

20 expR)| | ;

42’ +g? \ (z—z)(4a” + &)Y 2) .
exp@R,) exp(—(z — z)(4a” + g —
2a(z — zy)
a®+g’

1
( (z- Zﬁ)(az + g2)1/2) x

exp(-(z— z)@ + ¢)")| (54)
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We now have the necessary ingredients for a determination
of the b vector in eq 47. It is determined at a number of wave
vectorsk in the Brillouin zone. We used 400. The results are
binned according to the frequency and added to form the spectral
density p, in eq 48. The friction coefficienty, is finally
determined iteratively from eq 49.

VI. Results and Discussion

For theo, position of the nitrogen atoms, we have found a
friction coefficient of 20-30 THz for each of the nitrogen atoms.
The reaction coordinate is the relative motion of the two nitrogen
atoms, so the friction coefficient for that motion is about40
60 THz. Withwy, = 70 THz, we find that the ratig/(2wp)) =
0.35. From Figure 1 is seen that= 0.75, which corresponds
to a 25% reduction of the TST rate consti&rdr. Mortensen et
al.’® made an estimate &fst and found that it was 2 orders of
magnitude larger than in experiments. Our calculations show
that the phononic friction cannot account for such a large
discrepancy. This may indicate that the electronic friction also
may be important. However, the uncertainties are quite large
in these calculations. The friction coefficient depends strongly
on the position of the adatom on the surface and a systematic
investigation of this dependency will be desirable. Also, the
DFT potentials may be inaccurate. These questions will be
investigated further.
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