GIAO-MP2/SCF/DFT Calculated NMR Chemical Shift Relationships in Isostructural Onium Ions Containing Hypercoordinate Boron, Carbon, Aluminum, and Silicon Atoms

Golam Rasul,* G. K. Surya Prakash, and George A. Olah

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661

Received: April 29, 2004; In Final Form: July 2, 2004

Good linear correlations between GIAO-MP2 calculated ¹¹B NMR chemical shifts of boronium-onium cations 1a-h and ¹³C NMR chemical shift of the corresponding isoelectronic carbonium-onium dications 2a-h as well as between ²⁷Al NMR chemical shifts of the alonium-onium cations 3a-h and the ²⁹Si NMR chemical shifts of the corresponding isoelectronic siliconium-onium dications 4a-h were found. The close relationship demonstrates that the same factors that determine the chemical shifts of the boron and aluminum nuclei also govern the chemical shifts of the carbon and silicon nuclei, respectively, within the hypercoordinate onium compounds. On the other hand, no correlation exists between ¹³C NMR chemical shifts of carbonium-onium dications 2a-h and the ²⁹Si NMR chemical shifts of the corresponding siliconium-onium dications 4a-h. Furthermore, no correlation was found between ¹¹B NMR chemical shifts of boronium-onium cations 1a-h and ²⁷Al NMR chemical shifts of the corresponding alonium-onium cations 3a-h.

Introduction

As boron and carbon are consecutive first-row elements, onium-boronium cations **1** are isoelectronic with the corresponding onium-carbonium dications **2** (Scheme 1). Recently we have been able to show¹ a good boronium-carbonium NMR chemical shift relationship for the carbonium dications H_4CX^{2+} **2** and boronium cations H_4BX^+ **1** ($X = NH_3$, PH₃, H₂O, H₂S, CO, N₂, HF, HCl, CO₂, and CS₂), based on ab initio/GIAO-MP2 calculations. The general correlation equation is shown below (equation 1). In this equation $\delta^{13}C$ is the chemical shift of the cationic carbon of **2** with respect to (CH₄)₄Si (tetramethylsilane), and $\delta^{11}B$ is the chemical shift of the corresponding boron of **1** with respect to the BF₃:O(C₂H₅)₂.

$$\delta^{11} \mathbf{B}_{(\mathrm{BF}_3:\mathrm{O}(\mathrm{C}_2\mathrm{H}_5)_2)} = 0.45 \ \delta^{13} \mathbf{C}_{((\mathrm{CH}_4)_4\mathrm{Si})} - 25 \tag{1}$$

Previously, Spielvogel et al.² and Nöth and Wrackmeyer³ have been able to show a close relationship between the experimental ¹³C NMR chemical shifts of the carbons in trigonal carbenium ions and the corresponding experimental ¹¹B NMR chemical shifts of the boron atoms in trigonal isoelectronic boron compounds. The general correlation equation for trigonal species is shown below (equation 2).

$$\delta^{11} \mathbf{B}_{(\mathrm{BF}_3:\mathrm{O}(\mathrm{C}_2\mathrm{H}_5)_2)} = 0.40 \ \delta^{13} \mathbf{C}_{((\mathrm{CH}_4)_4\mathrm{Si})} - 25 \tag{2}$$

Prakash et al. reported an extension of the relationship to cage compounds containing trivalent carbon and boron atoms.⁴ Williams et al. also derived a similar empirical equation for the hypercoordinate carbocations (carbonium ions) and their corresponding hypercoordinate boron compounds.^{5,6} Rasul et al. later derived a similar empirical equation for the hypercoordinate hydrido carbocations and their isoelectronic boron compounds.⁷

SCHEME 1

These relationships show that the same factors that determine the chemical shifts of the boron nuclei also govern the chemical shifts of carbon nuclei. We now report our study of the relationship between GIAO-MP2 calculated ¹¹B NMR chemical shifts of boronium-onium caions 1 and ¹³C NMR chemical shift shifts of the corresponding isoelectronic carbonium-onium dications 2 as well as between ²⁷Al NMR chemical shifts of the alonium-onium cations 3 and the ²⁹Si NMR chemical shifts of the corresponding isoelectronic siliconium-onium dications 4 (Scheme 1). We also report our study of the relationship between ¹³C NMR chemical shifts of carbonium-onium dications 2 and the ²⁹Si NMR chemical shifts of the corresponding siliconium-onium dications 4 and the correlation between ¹¹B NMR chemical shifts of boronium-onium cations 1 and ²⁷Al NMR chemical shifts of the corresponding alonium-onium cations 3.

Results and Discussion

The Gaussian 03 program was used for all calculations.⁸ The geometry optimizations were performed at the MP2/6-311+G** level. The ¹¹B, ¹³C, ²⁷Al, and ²⁹Si NMR chemical shifts were calculated by the GIAO⁹-SCF, GIAO-MP2, and GIAO-DFT methods using the 6-311+G** basis set. The density functional theory (DFT) calculations were carried out at the B3LYP/6-

^{*} Corresponding author. E-mail: rasul@usc.edu

Figure 1. MP2/6-311+G** optimized structures of 1-4a.

calculated ¹³C NMR chemical shifts

Figure 2. GIAO-MP2 (a) and GIAO-DFT (b) calculated ¹³C NMR chemical shifts of 2a-h vs calculated ¹¹B NMR chemical shifts of 1a-h.

311+G** level.^{10,11} The ¹¹B NMR chemical shifts were first computed using B₂H₆ (calculated absolute shift, i.e., $\sigma(B) =$ 102.2 (GIAO-SCF), 96.1 (GIAO-MP2), and 84.1 (GIAO-DFT)). The ¹¹B NMR chemical shifts were finally referenced to BF₃: $O(C_2H_5)_2$ (δ (B₂H₆) 16.6 vs BF₃: $O(C_2H_5)_2$). The ²⁷Al NMR chemical shifts were referenced to AlH₄⁻ (calculated

calculated ²⁹Si NMR chemical shifts

Figure 3. GIAO-MP2 (a) and GIAO-DFT (b) calculated ²⁹Si NMR chemical shifts of 4a-h vs calculated ²⁷Al NMR chemical shifts of 3a-h.

TABLE 1: Calculated ¹¹B NMR Chemical Shifts^a

no.	(GIAO-SCF)	(GIAO-MP2)	(GIAO-DFT)
1a	-11.7	-14.2	-20.6
1b	-28.7	-36.2	-39.4
1c	0.2	-3.9	-6.1
1d	-17.4	-23.8	-26.5
1e	-29.3	-36.7	-41.5
1f	-13.9	-20.4	-24.7
1g	12.5	8.3	7.4
1h	-5.9	-11.6	-13.4

^a Calculated ¹¹B NMR chemical shifts were referenced to BF₃: $O(C_2H_5)_2.$

absolute shifts, i.e., $\sigma(AI) = 518.3$ (GIAO–SCF), 513.4 (GIAO– MP2), and 492.5 (GIAO-DFT)). The ²⁹Si and ¹³C NMR chemical shifts were referenced to (CH₄)₄Si (calculated absolute shifts i.e., $\sigma(Si) = 396.7$ (GIAO–SCF), 379.3 (GIAO-MP2), and 340.8 (GIAO-DFT); $\sigma(C) = 194.6$ (GIAO-SCF), 198.4 (GIAO-MP2), and 184.2 (GIAO-DFT)).

We have previously calculated¹² the structures of H_4BX^+ (X = NH₃, PH₃, H₂O, H₂S, and CO) at the ab initio MP2/6-31G** level. We have now calculated the structures of H_4BX^+ **1a**-h at the MP2/6-311+G** level (Scheme 1). Each of the structures

TABLE 2: Calculated ¹³ C NI	MR Chemical Shifts
--	--------------------

no.	(GIAO-SCF)	(GIAO-MP2)	(GIAO-DFT)
2a	14.8	17.1	15.6
2b	-18.0	-17.6	-18.5
2c	47.8	51.7	51.7
2d	-0.8	-0.3	0.5
2e	-8.1	-7.3	-9.2
2f	23.5	24.2	22.7
2g	84.6	87.1	88.6
2h	22.1	22.3	24.5

^a Calculated ¹³C NMR chemical shifts were referenced to (CH₄)₄Si.

4a-h

contains a hypercoordinate boron with a 2e-3c bond and a onium ion group X and therefore can be considered as a boronium-onium cation. Corresponding isoelectronic carbon analogues H₄CX²⁺ **2a**-**h** were also calculated at the same MP2/6-311+G** level. Each of the structures contains a hypercoordinate carbon with a 2e-3c bond and an onium ion group X and can be considered as a carbonium-onium dication. Similarly, the structures of H₄AlX⁺ **3a**-**h** and isoelectronic silicon analogues H₄SiX²⁺ **4a**-**h** were also calculated at the MP2/6-311+G** level and can be considered as a lonium-

TABLE 3: Calculated ²⁷Al NMR Chemical Shifts^a

no.	(GIAO-SCF)	(GIAO-MP2)	(GIAO-DFT)
3a	68.9	79.1	91.3
3b	70.9	79.0	91.7
3c	58.4	67.0	78.5
3d	69.8	79.3	92.3
3e	50.7	55.4	64.0
3f	56.4	61.9	70.8
3g	68.4	76.7	89.2
3h	65.4	74.2	86.9

^a Calculated ²⁷Al NMR chemical shifts were referenced to AlH₄⁻.

TABLE 4: Calculated ²⁹Si NMR Chemical Shifts^a

no.	(GIAO-SCF)	(GIAO-MP2)	(GIAO-DFT)
4a	23.4	24.7	35.4
4b	35.8	34.1	48.7
4c	10.8	11.1	19.9
4d	36.3	38.5	55.2
4e	-7.7	-13.0	-5.7
4f	2.2	-0.4	5.8
4g	38.1	40.2	54.2
4h	28.1	30.3	46.0

^a Calculated ²⁹Si NMR chemical shifts were referenced to (CH₄)₄Si.

onium cations and siliconium—onium dications, respectively. Computed selected structures are displayed in Figure 1.

We have calculated the ¹¹B, ¹³C, ²⁷Al, and ²⁹Si NMR chemical shifts of **1**-**4** using the correlated GIAO-MP2 method with the 6-311+G** basis set and using MP2/6-311+G** geometries (Tables 1-4). For comparison we have also computed the chemical shifts using noncorrelated GIAO-SCF and density functional theory GIAO-DFT methods, and these are listed in Tables 1-4. The GIAO-MP2 method has been shown to give very good results for ¹¹B NMR chemical shift calculations in H₃BX (X = NH₃, PH₃, H₂O, H₂S, and CO) complexes.¹² The GIAO-MP2 method has also given reliable results for ¹³C, ²⁷-Al, and ²⁹Si NMR chemical shift calculations.¹³⁻¹⁵

We have found a good linear correlation when we plotted (Figure 2a) GIAO-MP2 calculated ¹¹B NMR chemical shifts of boronium-onium cations 1a-h and the GIAO-MP2 calculated ¹³C NMR chemical shifts of the corresponding isoelectronic carbonium-onium dications 2a-h. Similar linear correlation was also obtained from GIAO-DFT calculated values (Figure 2b). We have also found a good linear relationship (Figure 3a) between GIAO-MP2 calculated ²⁷Al NMR chemical shifts of the alonium-onium cations 3a-h and the GIAO-MP2 calculated ²⁹Si NMR chemical shifts of the corresponding isoelectronic siliconium-onium dications 4a-h. Good linear correlation was also obtained from GIAO-DFT calculated values (Figure 3b). The close relationship demonstrates that the same factors that determine the chemical shifts of the boron and aluminum nuclei also govern the chemical shifts of the carbon and silicon nuclei, respectively, within the hypercoordinate onium compounds. The correlation line (3) derived from Figure 2a closely corresponds to the correlation line (1).

$$\delta^{11} \mathbf{B}_{(\mathrm{BF}_3:\mathrm{O}(\mathrm{C}_2\mathrm{H}_5)_2)} = 0.43 \ \delta^{13} \mathbf{C}_{((\mathrm{CH}_4)_4\mathrm{Si})} - 27 \tag{3}$$

The correlation line (4) derived from Figure 3a is given below.

$$\delta^{11} A1_{(A1H_4^{-})} = 0.45 \ \delta^{13} Si_{((CH_4)_4 Si)} + 62 \tag{4}$$

We have plotted (Figure 4a) GIAO-MP2 calculated ¹¹B NMR chemical shifts of boronium–onium cations 1a-h and the GIAO-MP2 calculated ²⁷Al NMR chemical shifts of the

calculated ¹¹B NMR chemical shifts

Figure 5. GIAO-MP2 (a) and GIAO-DFT (b) calculated ¹¹B NMR chemical shifts of 1a-h vs calculated ²⁷Al NMR chemical shifts of 3a-h.

corresponding alonium—onium cations **3a—h**. There is no apparent correlation between ¹¹B and ²⁷Al NMR chemical shifts. We have also plotted (Figure 5a) GIAO-MP2 calculated ¹³C NMR chemical shifts of carbonium—onium dications **2a—h** and the GIAO-MP2 calculated ²⁹Si NMR chemical shifts of the corresponding siliconium—onium dications **4a—h**. Again, there is no correlation between ¹³C and ²⁹Si NMR chemical shifts.

It appears that only the NMR chemical shifts of isoelectronic analogues correlate well within the isostructural hypercoordinate onium compounds. Therefore, ¹¹B NMR chemical shifts of **1a-h** correlate well with the ¹³C NMR chemical shifts of the corresponding isoelectronic and isostructural **2a-h** as the boron and carbon are the consecutive first row elements. However, ¹³C NMR chemical shifts of the **2a-h** do not correlate with the ²⁹Si NMR chemical shifts of the isostructural **4a-h**, although the carbon and silicon are consecutive group IV elements.

Conclusion

In summary, we have found good linear correlation between GIAO-MP2 calculated ¹¹B NMR chemical shifts of boroniumonium cations 1a-h and ¹³C NMR chemical shift shifts of the corresponding isoelectronic carbonium-onium dications 2a-h as well as between ²⁷Al NMR chemical shifts of the aloniumonium cations 3a-h and the ²⁹Si NMR chemical shifts of the corresponding isoelectronic siliconium-onium dications 4ah. The close relationship demonstrates that the same factors that determine the chemical shifts of the boron and aluminum nuclei also govern the chemical shifts of the carbon and silicon nuclei, respectively, within the isostructural hypercoordinate onium compounds. There is, however, no correlation found when ¹³C NMR chemical shifts of carbonium-onium dications 2a-h were plotted against the ²⁹Si NMR chemical shifts of the corresponding siliconium-onium dications **4a**-**h**. There is also no correlation observed between ¹¹B NMR chemical shifts of boronium-onium cations 1a-h and ²⁷Al NMR chemical shifts of the corresponding alonium-onium cations 3a-h.

Acknowledgment. Support of our work by the National Science Foundation is gratefully acknowledged.

References and Notes

(1) Rasul, G.; Prakash, G. K. S.; Olah, G. A. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 9635.

(2) Spielvogel, B. F.; Nutt, W. R.; Izydore, R. A. J. Am. Chem. Soc. 1975, 97, 7, 1609.

(3) Nöth, H.; Wrackmeyer, B. Chem. Ber. 1974, 107, 3089.

(4) Prakash, G. K. S.; Rasul, G.; Yudin, A. K.; Williams, R. E. In *Borane, Carborane, Carbocation Continuum*; Casanova, J., Ed.; Wiley-Interscience: New York, 1998; Ch. 8, p 147.

(5) Williams, R. E.; Prakash, G. K. S.; Field, L. D.; Olah, G. A. In *Advances in Boron and Boranes*; Liebman, J. F., Greenberg, A., Williams, R. E., Eds.; VCH: New York, 1988; pp 191–224.

(6) Olah, G. A.; Prakash, G. K. S.; Williams, R. E.; Field, L. D.; Wade, K. In *Hypercarbon Chemistry*; John Wiley & Sons: New York, 1987; pp 191–213.

(7) Rasul, G.; Prakash, G. K. S.; Olah, G. A. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 7257.

(8) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Hona, Y.; Kitao, K.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03 (revision B.04), Gaussian, Inc.: Pittsburgh, PA, 2003.

(9) London, F. J. Phys. Radium 1937, 8, 3974. Ditchfield, R. Mol. Phys. 1974, 27, 789. Wolinski, K.; Himton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251.

(10) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

(11) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

(12) Rasul, G.; Prakash, G. K. S.; Olah, G. A. Inorg. Chem. 1999, 38, 44.

(13) Gauss, J. J. Chem. Phys. **1993**, 99, 3629. Sieber, S.; Schleyer, P. v. R.; Gauss, J. J. Am. Chem. Soc. **1993**, 115, 6987.

(14) Gauss, J.; Schneider, U.; Ahlrichs, R.; Dohmeier, C.; Schnöckel, H. J. Am. Chem. Soc. **1993**, 115, 2402.

(15) Ottosson, C.-H.; Cremer, D. Organometallics 1996, 15, 5495.