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We present a Lorentzian function-based spectral filter method for computing the elements of the quantum
scattering matrix (S-matrix) and molecular bound-state spectra. For computing bound-state eigenvalues in a
predefined energy window, we use the Lorentzian function within the filter diagonalization framework. From
the spectral filter point of view, we find that the formal theoretical structure for computing the S-matrix is the
same as those of overlap and Hamiltonian matrix elements necessary for filter diagonalization, and hence,
the same computational protocol can be utilized for scattering as well as bound-state studies. Furthermore,
we argue that the appropriate scattering boundary conditions can be accurately built while preparing the
initial wave packets. For numerical implementation, we have utilized the Lorentzian filter in two complementary
series forms: (1) using Chebyshev polynomials with the Hamiltonian as its argument, which is useful for a
fully quantum mechanical study; and (2) in terms of a discrete set of short-time quantum propagators, which
can additionally be extended to approximate dynamical regimes. The computation of matrix elements for a
filter diagonalization application and the scattering matrix requires a product of a series representation of two
filter operators for which we have been able to perform a partial resummation of both the series analytically,
giving thereby a very compact and rapidly convergent expression. The exponential damping term associated
with the Lorentzian filter is very useful for controlling the convergence and removing unwanted features
from the computed spectrum. As is true of previous discrete time expansion of the spectral density operator,
the present formalism can also be utilized for inverting discrete time signals obtained from various experiments.
We illustrate the validity of the present approach by test calculations on a model one-dimensional quantum
scattering problem.

I. Introduction and Perspective

Quantum theory provides the most fundamental theoretical
framework for a microscopic description of dynamical processes
of molecular systems in the gas and condensed phases.1 Within
this framework, a molecular system is defined by an appropriate
Hamiltonian, generally possessing a range of eigenstates,
continuum as well as discrete, in which the system may reside.
In addition, the molecular system may also be prepared in an
arbitrary quantum state, which can be expressed as a linear
superposition of eigenstates of the full Hamiltonian. A dynamical
process is then fundamentally visualized as the transfer of the
molecular system from one quantum state into another, as
determined within the framework of the time-dependent Schro¨-
dinger equation. Hence, the most detailed information concern-
ing a molecular process one can have is the eigenvalues/
eigenvectors of the corresponding Hamiltonian and the transition
probability amplitudes between various quantum states. Whereas
the dynamical processes involving bound states of the Hamil-
tonian underly various laser based molecular spectroscopies,2-4

processes involving continuum states directly relate to the

conductance properties of the molecular systems5,6 and elemen-
tary chemical reactions, wherein the quantities of prime
importance are the scattering matrix (S-matrix) and reaction
rates.7,8 Clearly, a theoretical study of molecular dynamics
requires an accurate and efficient computational protocol for
obtaining the elements of the S-matrix and the eigenvalue-
eigenvector information corresponding to molecular-bound states
for a given Hamiltonian. This is the central objective of this
paper. In particular, we utilize the idea of aspectral filter9 to
obtain a very general and compact quantum mechanical
computational framework, suitable for studying molecular
processes involving continuum as well as bound states, along
with an additional flexibility of enabling extension of the theory
to various semiclassical and mixed quantum/classical regimes
in an unambiguous manner. Expressions for other experimental
observables, such as conductance and thermally averaged
reaction rates, can be derived by appropriately referring to the
necessary equations for obtaining eigenstates and transition
probability information; that is, an explicit numerical construc-
tion of eigenstates themselves may not always be required. We
will address these issues in future studies. In this paper, we
will concentrate only on the theory of elementary chemical
reactions and molecular-bound states.
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Concerning elementary chemical reactions, there have been
several theoretical formulations, with varying types of ap-
proximations and degrees of sophistication, of the relevant
scattering processes with an ultimate purpose of obtaining the
elements of the S-matrix.10-48 The present approach of utilizing
the notion of a spectral filter is related to the wave packet
description of quantum scattering, as discussed, for example,
in the treatise of Goldberger and Watson49 and in the text by
Taylor.50 By “wave packet”, we here simply mean a function
that decays sufficiently rapidly, in both the position and the
momentum space; that is, the function can be arbitrarily
accurately approximated as band-limited with finite support. In
recent years, the wave packet approach has become very popular
in molecular dynamics studies because it is intuitive and offers
an efficient computational protocol. In the context of chemical
reaction dynamics, we particularly mention the theoretical
formulations developed independently in the groups of Kouri27-32

and Tannor,33-36 which formally express the S-matrix element
as an integral transform of an appropriate time-correlation
function, and the present spectral filter approach is conceptually
similar to these studies while differing significantly in the
operational details. In the following, we offer a brief critique
of the existing wave-packet-based approaches for computing
the S-matrix, which are relevant to the present investiga-
tion.

In a series of studies, Kouri et al.27-32 proposed and utilized
the following expression for the scattering matrix (omitting the
normalization and other factors)

where |Φ+(R)〉 and |Φ-(â)〉 are wave packets, asymptotically
correlating with the reactant,R, and product,â, channels,
respectively, andG+(E) is the causal full Green’s function. An
expression similar to eq 1 but involving the spectral density
operator,δ(E - Ĥ), in place of Green’s function, has been given
by Tannor et al.33-36 Other variants of eq 1 are also available
in the literature, and they have found several applications.37-48

We first note that eq 1 is formally exact; that is, it will certainly
give an exact answer if one utilizes an exact Green’s function
in an application. This is, unfortunately, a heavy computational
burden because the construction of an exact Green’s function
demands either a complete diagonalization of the associated
Hamiltonian or a physically equivalent quantum propagation
for a sufficiently long time if one uses an integral representation
of the Green’s operator. Neither is feasible in a nontrivial
molecular application. In a practical study, however, one almost
always approximates the Green’s function, usually in the form
of truncating a convergent infinite series, and for an approximate
Green’s function, eq 1 is not the optimal prescription for
obtaining the S-matrix. This is because eq 1 is fundamentally
based on a certain factorization of a product of two spectral
density operators,δ(E1 - Ĥ)δ(E2 - Ĥ) ) δ(E1 - E2)δ(E1 -
Ĥ), which is only approximately true if one uses truncated series
expansions for the relevant operators, and this significantly
reduces the rate of numerical convergence.51 The present spectral
filter approach highlights and eliminates this limitation in an
unambiguous manner, thereby offering a well-convergent and
compact series expansion for the S-matrix. Moreover, an
important feature of the present formulation is that the issue of
enforcing appropriate boundary conditions, scattering as well
as bound state, is directly linked to the way we prepare the
initial wave packets, and no additional device (e.g., a complex
absorbing potential13,14,42,52) is necessary for this purpose. We
will elaborate these points more in the later discussion. Finally,

the present formalism, like the earlier studies on this subject,27-36

effectively retains the correlation function form of the S-matrix,
and this is very important because it then easily allows one to
extend the formalism into approximate dynamical regimes,
which is necessary for treating large molecular systems.

As to the molecular bound-state problem, it can, in principle,
be solved by direct numerical diagonalization of the relevant
Hamiltonian operator expressed in some appropriate basis. But
this is generally impractical because a molecular system typically
involves a very large rank Hamiltonian matrix, and furthermore,
one is typically interested in obtaining only a small subset of
eigenvalues in a given energy range of interest. Therefore, recent
research efforts have been directed toward developing various
iterative methods, which generate a small basis set by a repeated
application of the Hamiltonian operator on an arbitrary quantum
state and use them to diagonalize the original Hamiltonian in
part.9,51,53-89 We parenthetically note that a specific numerical
application usually does not require the explicit construc-
tion and storage of the basis produced by successive iterations,
but only the scalar quantities entering the mathematical pro-
cess by which one computes the relevant matrix elements
directly.54

A common feature which, at present, most iterative methods
share is a three-term recursion process, symbolically expressed
as follows

where fk(Ĥ) is a kth degree polynomial with the Hamiltonian,
Ĥ, as its argument. A notable exception is the Faber polynomial,
which may be used with a recursion process involving more
than three terms.90 Various iterative methods formally differ in
the choice of the polynomials and the ways of computing the
unknown scalar coefficients,Rk andâk. These coefficients are
then used to construct a new matrix of much smaller rank which
is therefore much easier to diagonalize. These eigenvalues
progressively increase in accuracy as the recursion scheme, eq
2, proceeds. In this context, Lanczos’s original prescription of
implementing eq 2 and its variants91,92 has been very popular
for the last several decades. Furthermore, it is well-known that
the Lanczos method tends to converge the well-separated
eigenvalues preferentially. Thus, if one can dilate the spectrum
of the Hamiltonian in the desired energy region using an energy-
dependent “shift operator” before implementing the Lanczos
method, one can substantially accelerate the eigenvalue
computation.54-59,93 Although there have been several studies
exploiting this theme with varying degrees of success,56-59 the
application of an energy-dependent shift operator in a practical
application remains a major computational bottleneck. On the
other hand, the iterative method has gained further popularity
in recent years due to the development of a filter diagonalization
(FD) scheme by Neuhauser60-66 and others.9,51,67-86 A FD
scheme involves an energy-dependent spectral filter, which acts
on an arbitrary state to generate a basis set spanning a
preselected energy window and uses it for the purpose of matrix
diagonalization. Since the filter operator is usually expressed
in a degenerate kernel infinite series94 consisting of orthogonal
polynomials (therefore satisfying a three-term recursion relation
similar to eq 2), the FD scheme can also be visualized as yet
another prescription for computing the coefficients,Rk andâk,
and the filtering process itself is akin to applying the “shift
operator” as mentioned above. However, FD schemes differ
from the Lanczos-type processes in several important ways: (1)
Whereas the Lanczos method attempts to generate a strictly
tridiagonal matrix, whose dimension grows with the number of

fk+1(Ĥ) ) (Ĥ - Rk) fk(Ĥ) - âk-1 fk-1(Ĥ) (2)

SâR(E) ∝ 〈Φ-(â)|G+(E)|Φ+(R)〉 (1)
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recursions, the FD generates a diagonally dominant matrix of a
priori fixed dimension, to be diagonalized, (2) as opposed to
the Lanczos method with an energy-dependent shift operator,
the recursion process in the FD is completely decoupled from
the energy window of interest, solely due to the possibility of
expanding the filter in a degenerate kernel series,94 and this
means the three-term recursion, eq 2, involving a matrix-vector
product, which is numerically the most expensive step, need
not be repeated with a change of the energy window one is
interested in. (3) Although the Lanczos method is useful strictly
for quantum mechanical studies, the FD-based methods can
easily be extended for use in classical or semiclassical studies,
which certainly are required for large molecular systems. In this
paper, we thus focus our attention only on filter-based methods
for molecular bound-state studies. We note that from the present
spectral filter perspective, the theoretical structure of the FD
method for a bound-state problem finally turns out to be similar
to that of the S-matrix theory. The difference lies only in the
nature of the wave packets employed in the final computation,
and this is simply due to the fact that a scattering problem
fundamentally differs from a bound-state one only in the nature
of the boundary conditions. Hence, one can use the same
computational protocol, as developed here, for both bound-state
and scattering studies. We will elaborate on this theme in the
later discussion.

We now briefly review the ingredients of filter theory and
the scope of the present work. In spectral filter theory,9 the
quantity of central importance is thespectral density operator
(SDO), δ(E - Ĥ), where the filter energy,E, is within the
spectral range of the Hamiltonian,Ĥ, of the quantum system.
Becauseδ(E - Ĥ) is a projection onto the space of solutions
of the homogeneous Schro¨dinger equation both for scattering
and bound states, its application on an arbitrary wave function
yields the eigenstates describing the bound as well as the
scattering states,95 depending on the value ofE and the enforced
boundary conditions. Since the SDO mathematically involves
an infinite limiting process, it must be suitably approximated
before it can be applied numerically. This is an important issue
associated with the implementation of various spectral filter
algorithms. In practical applications, it is often convenient to
take the filter function to have some prelimit form (e.g., a sinc,
Gaussian, Lorentzian, etc.) and express it as a degenerate-kernel
infinite series94 involving polynomials, thereby separating the
dependence on the filter energy,E, from that of the Hamiltonian
operator. The choice of a prelimit expression of the SDO and
its series expansion necessarily determines the convergence fea-
tures of the resulting algorithm, and hence, there have been sev-
eral suggestions for dealing with this issue in the literature.90,96-100

In particular, Kouri and co-workers90,96-98 used a sinc function
approximation of the SDO and obtained its series expansion in
terms of Legendre and Chebyshev polynomials. A more general
expansion of the SDO and Green’s function in terms of Jacobi
polynomials, of which Legendre and Chebyshev polynomials
are special cases, has also been reported.99 Hermite polynomials
have also been used to obtain a series representation of the SDO,
expressed as a Gaussian limiting process.78 Further extension
of a general complex operator-valued function, in terms of Faber
polynomials, a special case of which is the Chebyshev poly-
nomial, has also been reported by Kouri and co-workers.90,98

In the present work, we use a Lorentzian function representation
of the SDO, limúf0 ú/π[ú2 + (E - Ĥ)2], and we will explain
later why this choice is better suited for numerical studies. In
the first implementation approach, we expand the Lorentzian
in terms of Chebyshev polynomials with a Hamiltonian argu-

ment, because it is known to provide a uniformly convergent
approximating scheme.91 Furthermore, this choice allows us to
perform all relevant time integrals analytically and also facilitates
certain algebraic manipulations involving series, leading to a
compact, energy-separable and nicely convergent set of equa-
tions. In the second implementation approach, we express the
SDO as a degenerate kernel series in terms of the short-time
quantum propagator, which then allows us to express all
observable quantities in terms of a discrete set of time-
correlation functions. We then argue that in appropriate practical
situations, one may ignore the quantum mechanical origin of
the time-correlation function and obtain it by other suitable
approximate dynamical schemes. That means one can easily
obtain a dynamically approximate representation (for example,
a semiclassical one) for the SDO. In this way, the present
approach offers a unified computational framework extending
from quantum to classical regimes, suitable for studying
molecular bound states and scattering problems for systems
ranging from small to large. It should be noted that the present
suggestion of computing short-time correlation functions by
approximate dynamical means has been very popular and
explored by other researchers in various contexts.10,11,48,70,71,101-105

The organization of this paper is as follows. In Section II,
we define the notion of spectral filter along with its Lorentzian
function realization, in terms of both Chebyshev polynomials
and discrete-time quantum propagators. In Section III, we
introduce the wave packet description of quantum scattering
from a filter perspective and obtain a compact set of expressions
for the elements of the S-matrix. In Section IV, we elaborate
on the Lorentzian function-based filter diagonalization scheme
to compute a set of eigenvalues in an arbitrary energy window
and also obtain an expression for the spectral intensity. We
discuss numerical results for a model scattering problem in
Section V, and finally, we present our conclusions and future
research directions in Section VI.

II. Spectral Filters

In the present work, we are concerned with the use of an
energy filter, associated with the Hamiltonian,Ĥ, of the system.
The general notion of a filter in quantum mechanics is directly
related to the concept of “selective measurement”, as discussed
by Dirac,1 and this aspect has recently been elaborated by us
for the purpose of bound-state studies.9 We first recall the salient
features of the notion of a filter, which are relevant for the
present investigation.

We first assume the existence of an orthogonal reference
space spanned by the eigenvectors, discrete [|φm〉; m ) 1, ...,
N, satisfying〈φm|φn〉 ) δmn] as well as continuous, [|φε〉; ε )
0, ∞, satisfying〈φε|φε′〉 ) δ(ε - ε′)] of the system Hamiltonian.
This allows us to express an arbitrary quantum state,|ψ〉, as
follows:

The discrete and the continuous sectors of the eigenstates are
assumed to be orthogonal. It is clear that the arbitrary state,
|ψ〉, contains complete eigenstate information, provided the
coefficients,A(ε) andCm, are all nonzero. To extract spectral
information from |ψ〉, we introduce the notion ofselectiVe
measurementor filtration, in which we imagine an ideal process
which selects only one of the eigenstates (discrete or continuous)
from |ψ〉. Mathematically, this amounts to applying a projection
operator,∆(E), which acts on|ψ〉 and produces the eigenstate

|ψ〉 ) ∫ dε A(ε)|φε〉 + ∑
m

Cm|φm〉 (3)
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if the filter energy,E, is equal to the corresponding eigenvalue
of Ĥ, as is evident from the following implicit definition,

whereE is either a discrete or a continuous variable. The notion
of filteration in eq 4 is only formal, because it defines the
projection operator in terms of the eigenstates of the Hamilto-
nian, which are a priori unknown; hence, it cannot be used for
practical applications. For operational purposes, however, the
mathematical object that satisfies the primary notion of the filter
in quantum mechanics is the spectral density operator (SDO)
δ(E - Ĥ), whereE is the energy at which the filter process is
to be carried out. By definition, then, the application ofδ(E -
Ĥ) on an arbitrary state,|ψ〉 selects out the eigenstate ifE is an
eigenvalue and the corresponding eigenstate has a finite overlap
with the initial arbitrary state,|ψ〉. Whether the projected state
belongs to the discrete or the continuous sector of the spectrum
will depend on the energy,E, and the manner in which the|ψ〉
has been initially prepared, because the Hamiltonian portion of
the SDO in itself does not possess any bias favoring a particular
state vector; therefore, it does not enforce any boundary
condition whatsoever. We will say more on this point later on.
In any event, it is clear that the spectral filtering essentially
necessitates an appropriate application of the spectral density
operator. We here stress that the notion of the Dirac delta
function as a filter is a very general unifying theme, which offers
a convenient framework to set up various computational
algorithms necessary to study molecular dynamics.

Becauseδ(E - Ĥ) conceptually refers to an infinite limiting
process applied to an appropriate sequence of functions, it must
be suitably represented before it can be applied numerically,
and this is an important issue associated with the implementation
of various spectral filter algorithms. The procedure we follow
here is first to choose an appropriate integral representation of
the following form

Here, different choices for the damping function,f(|t/p|; ú),
will give different sequential representations for the SDO. With
f(|t/p|; ú) as unity, we have the traditional prelimit sinc function
approximation to the delta function. Other frequently used
choices forf(|t/p|; ú) are exponential and Gaussian functions.
In the present study, we shall use an exponential form for
f(|t/p|; ú); the reason for this choice will become clear later (see
also ref 51). The choice of an exponential function forf(|t/p|;
ú) is equivalent to approximatingδ(E - Ĥ) by a Lorentzian
function. A finite value of the parameterú, having units of
energy, ensures that the integral in eq 5 is convergent and gives
a finite width to the otherwise sharp delta function. This is very
useful for practical calculations. Thus, for a finiteú, we have
the following Lorentzian representation of the SDO,

whereG+ ) (E - Ĥ + iú)-1 is the well-known causal Green’s
function. Notably, eq 6 shows the SDO to be the real part of a
Laplace transform of the quantum time propagator, e-iĤt/p. Thus,
our next problem is to obtain an appropriate representation of
the time propagator, for which we here consider two possibili-

ties: (1) a series expansion in terms of some choice of
orthogonal polynomials, and (2) an iterative solution in short-
time steps. As we will later see, although the polynomial
expansion is useful for a fully quantum mechanical treatment,
the latter can additionally be implemented with a semiclassical
or a mixed quantum/classical form of the time propagator. There
are excellent short-time dynamical schemes, valid in the
quantum, semiclassical, and mixed-quantum/classical regimes,
available in the literature, which can be employed for this
purpose.10,101-103,106-115

We first consider the orthogonal polynomial representation
of the time propagator, for which there have been several studies
in the past.97,99,100,107-110 In the case of a real and time-
independentĤ, a general expression for the time propagator in
the form of ultraspherical polynomials has been obtained.99

Special cases are Legendre97 and Chebyshev100,108 (first and
second kind) polynomials. In the present study, we utilize the
Chebyshev polynomials of the first kind, and therefore, the
present treatment will be limited to the case in which the
damping parameter,ú in eqs 5 and 6, is coordinate-independent.
Chebyshev polynomials, in addition to giving a uniformly
convergent scheme for applying the quantum propagator, also
possess certain algebraic properties (not shared by any other
orthogonal polynomials) which allow further simplification,
leading to a very compact and rapidly convergent expression
for computing the elements of the scattering matrix (S-matrix)
and necessary matrix elements used in the filter diagonalization
algorithm for studying molecular bound states. The Chebyshev
polynomial expansion of the time propagator99,100,108also allows
the time integral in eq 6 to be performed analytically, and thus,
we obtain95,96,99

whereD(E)-1 ) [1 - (Esc + iúsc)2]1/2, Z(E) ) [(Esc + iúsc) -
i D(E)-1], úsc ) ú/∆λ, and∆λEsc(Ĥsc) ) E(Ĥ) - λh. Here,∆λ
and λh are parameters (with units of energy) which map the
eigenvalues ofĤ in the range [λmin, λmax] into the eigenvalues
of Ĥsc in the range [-1, 1], and renderĤsc dimensionless. This
Hamiltonian renormalization is a necessity with the choice of
Chebyshev polynomials, but it does not affect the generality of
the overall scheme. It should be noted that in a practical
calculation, the upper limit of the summation in eq 7 is truncated
to some appropriate finite number,N, which is equivalent to
restricting the upper limit of the integration in eq 6 to a total
time, T. This incurs an additional error, which is equivalent to
multiplying the Lorentzian representation of the SDO by a
numerical factor. It can easily be shown that a practical
calculation using eq 7 with a finite number of terms and a finite
positive value of the parameter,ú, approximates the SDO as
follows,

whereδT(E - Ĥ) refers to an approximate SDO. Clearly, the
numerical factor multiplying the Lorentzian is equal to (1-
e-úT/p) at the exact location of the eigenvalue of the Hamiltonian;

δ(E - Ĥ) ) lim
úf0

( 1

π∆λ) ∑
k)0

∞

(2 - δk0)Re[D(E) Zk(E)]Tk(Ĥsc)

(7)

δT(E - Ĥ) ) 1
π

ú
ú2 + (E - Ĥ)2

×

[{1 - e-úT/p cos(E - Ĥ)T/p} +

(E - Ĥ
ú )e-úT/p sin(E - Ĥ)T/p] (8)

∆(E)|ψ〉 ) |φE〉 〈φE|ψ〉 ) A(E)|φE〉 (4)

δ(E - Ĥ) ) lim
úf0

1
2πp

∫-∞

∞
dt f (|t/p|; ú) eiEt/pe-iĤt/p (5)

δ(E - Ĥ) ) - 1
π

ImG+ ) lim
úf0

1
π

ú
ú2 + (E - Ĥ)2

)

lim
úf0

1
πp

Re∫0

∞
dt ei(E+iú)t/pe-iĤt/p (6)
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that is, “the focusing power” of the Lorentzian is reduced by a
small exponential factor. Now, a comment concerning the
general convergence characteristics of the series in eq 7 is in
order here.51 This series is composed of terms that oscillate faster
with higher k, superimposed upon ak-dependent exponential
damping factor. It is easy to verify the damping factor to be
exp(-ky), where y is a positive number determined from
the relation, 2 cosh2 y ) (1 + Esc

2 + ú sc
2 ) + [(1 + Esc

2 + ú sc
2 )2

- 4Esc
2 ]1/2. The convergence is, thus, guaranteed here due to

two factors: (1) cancellation due to the summation of rapidly
oscillating terms, and (2) the exponential damping.

We now consider the short-time iterative scheme for the SDO.
In this scheme, we first choose a total length of time propagation,
T (formally, T f ∞), and discretize the total interval intoN
smaller steps,∆t; that is, N∆t ) T. We then perform the
integration in eq 6 according to the trapezoidal rule.116 Thus,
eq 6 can be approximated as follows,

whereÛ ) e-iĤ∆t/p, Z(E) ) ei(E+iú)∆t/p, and * denotes complex
conjugation. We have chosen integration by the trapezoidal rule
because it is known to be more accurate than the ordinary
summation resulting from the rectangle integration scheme. This
can be seen as follows. We first note that without the end-point
correction factors, (1- δk0/2) and (1- δkN/2), in eq 9, the
finite discrete time representation essentially amounts to the
following approximation for the SDO.

It can then easily be shown that the end-point correction as
employed in eq 9 exactly cancels the term [1+ e-úT/p cos(E -
Ĥ)T/p] on the right-hand side of eq 10, which is an extra error
solely due to the time discretization. Furthermore, it is easy to
verify that the∆t f 0 limit transforms eq 10 to eq 8, which is
to be expected for consistency. Thus, eqs 8 and 10 clearly reveal
the nature of the approximations involved in the present
treatment. Of course, one could also choose even more accurate
numerical integration schemes than what we use here in eq 9,
the necessity of which was not felt in the present investigation.
Finally, we note that no Hamiltonian renormalization is neces-
sary for the discrete representation of the SDO as shown in eq
9, contrary to the use of Chebyshev polynomials as in eq 7;
however, it may be desirable to carry out such a renormalization
for certain implementations of the FD algorithm (see Discrete
Time Representation).

A comment on the nature of the damping parameter,ú, in
eqs 6-10 is in order here. That is, one may chooseú to be
coordinate-dependent after passing the SDO to the integral or
the discrete summation form, in which case this will act as an
absorbing potential and render the Hamiltonian of the system
to be non-Hermitian. Even though a non-Hermitian Hamiltonian
carries its own set of disadvantages, the use of absorbing
potentials has found many useful applications in earlier molec-
ular scattering studies and it has also been highlighted as a
convenient device that may be used to enforce an outgoing wave

boundary condition in scattering studies.13,14,42,52 If one so
desires, the present formulation can easily be extended to such
situations with only minor modifications. The present study,
however, uses a coordinate-independentú and handles the
scattering boundary conditions by appropriately constructing
initial wave packets (vide infra). That is, one does not necessarily
have to make the Hamiltonian a non-Hermitian one just for the
purpose of enforcing boundary conditions.

III. Quantum Scattering

Here we follow a general quantum mechanical wave packet
approach to the scattering process of a molecular system with
internal degrees of freedom, with the objective of computing
the so-called scattering matrix. The present theoretical treatment
of quantum scattering is similar to the time-dependent method
discussed by Taylor50 and Goldberger and Watson,49 modern
implementations of which have appeared in the research of
Tannor et al.33-36 and Kouri and co-workers.27-32 In the
following, we first briefly define the notion of a scattering
process and obtain a general expression for the elements of the
S-matrix in terms of reactant and product wave packets, using
the idea of spectral filters as discussed in the previous section.

A general molecular scattering process is characterized by
an interaction region (in the position space, for example), in
which the interaction between molecular fragments is nonzero,
and asymptotic regions in which the interaction vanishes
asymptotically (in the reactant and product arrangement chan-
nels). The complete scattering dynamics itself is governed by
the Hamiltonian,Ĥ, of the total molecular system, consisting
of asymptotic Hamiltonian plus the interaction. As an example,
we consider a general bimolecular collision,

and denote the molecular system in the reactant (A- B +
C - D) and product (A- C + B - D) arrangement channels
by the symbolsR andâ, respectively. For notational simplicity,
we specify the translational degree of freedom byx and suppress
the set of quantum numbers needed to specify the various
internal degrees of freedom of the fragmented systems in their
respective asymptotic arrangement channels. We now assume
the existence of a complete set of energy eigenstates for each
asymptotic arrangement channel,ĤRφ(R)(E) ) Eφ(R)(E), where
ĤR is the asymptoticR-arrangement channel Hamiltonian. For
example, the energy eigenstate for theRth arrangement channel
is given as

Here, the total energy is given as,E ) EAB + ECD + Ex, where
EAB and ECD are the rotational-vibrational energies of the
fragments, andEx is the energy in the relative rotational and
translational degrees of freedom (scattering energy). Ideally, a
molecular scattering experiment would prepare the system in
one of the channel eigenstates; in practice, this may not be
feasible.

Now, the energy is a conserved quantity in a physical process,
and therefore, we use this as a basis for our discussion of the
molecular scattering process here. For every value of energyE
in the molecular continuum, the scattering eigenstate,ø(E),
consists of degenerate components, which differ in the direction
of the associated quantum flux. In one dimension, for example,
ø(x, E) ) ø+(x, E) + ø-(x, E), where the flux associated with

A - B + C - D f A - C + B - D (11)

|φ(R)(E)〉 ) |ro - vibration〉A- B X |ro - vibration〉C-D X

|ro - translation〉R(AB-CD) (12)

δT(E - Ĥ) )
∆t

2πp
∑
k)0

N

(1 - δk0 /2)(1 - δkN/2) ×

[{Z(E)}kÛk + {Z(E)*}kÛ-k] (9)

δ(E - Ĥ) ≈ {[{sinh(ú∆t/p){1 - e-úT/p cos(E - Ĥ)T/p} +
e-úT/p sin(E - Ĥ)∆t/p sin(E - Ĥ)T/p} /
{cosh(ú∆t/p) - cos(E - Ĥ)∆t/p}] +

[1 + e-úT/p cos(E - Ĥ)T/p]} ∆t
2πp

(10)
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ø+ and ø- points in the positive and negative directions,
respectively. We can thus define the scattering eigenstate as
follows:

Here, ø((R)(E) and ø((â)(E′) are globally defined in the
representation space, and they asymptotically correlate with the
eigenstate of the Hamiltonian in the reactant channel (R-
arrangement) of the energyE, φ((R)(E) and the product channel
(â-arrangement) of the energyE′, φ((â)(E′), respectively. The
existence of such asymptotic correlations is motivated on the
physical ground that the Hamiltonian,Ĥ, takes the form of
channel Hamiltonians (ĤR andĤâ) as the molecular interaction
vanishes.

Now, all scattering eigenstates within both positive and
negative flux sectors are mutually orthogonal and normalized
in the delta function sense, as shown below.

The overlap between the positive and the negative flux
components, which correlate with the respective asymptotic
scattering channels, defines the elements of the on-shell S-
matrix, as shown below.

This completes the definition of the scattering matrix, and our
next problem is to provide a procedure to compute the scattering
states, as required in eq 17.

We now use the idea of the spectral filter to obtain the
scattering eigenstates from known (but to an extent, arbitrary)
wave packets,Φ+(R) and Φ-(â), located in the appropriate
asymptotic channels in the position space, as follows,

where AR
+(E) and Aâ

-(E′) are, in general, nonzero complex
numbers, denoting the contribution of scattering eigenstates
ø+(R)(E) and ø-(â)(E′) to the wave packetsΦ+(R) and Φ-(â),
respectively. In particular, eqs 18 and 19 easily lead to the
following definitions.

and

and

and

Eq 21 defines the quantity that is generally known as the spectral
intensity, and it is clearly seen here to be the Fourier transform
of the autocorrelation function. An important question, however,
which remains here is: How does one ensure that the filtering
process satisfies the appropriate boundary conditions? That is,
eq 18, for example, produces the state withonly positive flux
from the reactant side directed toward the scattering region so
that the coefficient computed using eq 21 belongsonly to the
incident wave. Enforcing such scattering boundary conditions
is known to be a nontrivial issue as an arbitrarily prepared wave
packet in an asymptotic channel produces quantum flux both
in the positive and negative directions. As we explain in the
following, it is possible to make the negative flux compo-
nent negligible by a proper choice of the wave packets in eqs
18 and 19 so that eq 21 remains accurate for the numerical
purpose.

We first note thatΦ+(R) andΦ-(â) in eqs 18 and 19 are the
moving wave packets, which we obtain by choosing an arbitrary
function, Φ(R), that has a sufficiently rapid decay both in the
coordinate space and in the Fourier space (one may select a
real Gaussian function, for example), and multiplying by a
momentum eigenfunction as follows,

and similarly,

where K0 ) + x2µE0 /p and E0 is an arbitrary (preferably
large) energy. Thus, we can expressΦ+(R) in the integral
representation as follows,

whereKε ) x2µε/p and K̃ is a function ofε andE0. The last
step in eq 23 is symbolic, where we have explicitly shown that
the stateΦ+(R) consists of components moving in the positive
(first term) and negative (second term) directions and, thus,
produces flux in both directions, toward as well as away from
the interaction region. But we know that the original function,
Φ(R), is rapidly decaying in the Fourier space, and this means
the coefficients,A(ε) andB(ε), must rapidly go to zero as we
increaseε. Thus, the contribution from the second term in eq
23 can be made arbitrarily small if we chooseE0 to be
sufficiently large, which is in any case arbitrary. Thus, the above
construction effectively gives the following results.

Similarly,

In this manner, we can ensure that the states filtered from the
packets,Φ+(R)(x) andΦ-(â)(x), satisfy the appropriate incident
and scattered wave boundary conditions. For example, we can

Ĥ ø((R)(E) ) E ø((R)(E) (13)

Ĥ ø((â)(E′) ) E′ ø((â)(E′) (14)

〈ø((R)(E) |ø((R)(E′)〉 ) δ(E - E′) (15)

〈ø((â)(E) |ø((â)(E′)〉 ) δ(E - E′) (16)

〈ø-(â)(E′) |ø+(R)(E)〉 ) Sâ,R(E) δ(E - E′) (17)

ø+(R)(E) ) 1

AR
+(E)

δ(E - Ĥ) Φ+(R) (18)

ø-(â)(E′) ) 1

Aâ
-(E′)

δ(E′ - Ĥ) Φ-(â) (19)

AR
+(E) ) 〈ø+(R)(E)|Φ+(R)〉

Aâ
-(E′) ) 〈ø-(â)(E′)|Φ-(â)〉 (20)

|AR
+(E)|2 ) 〈Φ+(R) |δ(E - Ĥ)|Φ+(R)〉

|Aâ
-(E′)|2 ) 〈Φ-(â)|δ(E′ - Ĥ)|Φ-(â)〉 (21)

Φ+(R) ) eiK0x Φ(R)

Φ-(â) ) e-iK0x Φ(â) (22)

Φ+(R)(x) ) ∫0

∞
dε [A(ε) ei(K0+Kε)x + B(ε) ei(K0-Kε)x]

) ∫0

∞
dε A(ε) ei(K0+Kε)x + ∫0

E0 dε B(ε) ei(K0-Kε)x +

∫E0

∞
dε B(ε) e-i(Kε-K0)x

≡ ∫0

∞
dε A+(ε) eiK̃x + ∫E0

∞
dε B(ε) e-i(Kε-K0)x (23)

Φ+(R)(x) ) ∫0

∞
dε AR

+(ε) eiK̃x (24)

Φ-(â)(x) ) ∫0

∞
dε Aâ

-(ε)e-iK̃x (25)
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easily verify that the result of filtering in eq 18 in the reactant
(R-arrangement) channel is indeed only the incoming wave,

whereKE ) x2µE/p andpk̂ is the momentum operator. In eq
26, we have utilized the fact that the Hamiltonian in the reactant
channel is simply the kinetic energy operator. There is certainly
no denying the fact that there is always an error, controllably
small, in the above prescription of preparing wave packets. This
is because the second term in eq 23 is always finite, but it can
be made arbitrarily small. As we will later see from the
numerical evidence, this prescription is very accurate for
computing scattering probabilities, and they are independent of
E0. Thus, the scattering boundary conditions will be fulfilled
from the nature of the initially prepared wave packets, which
are localized in the asymptotic reactant and product channels
and spatially separated. No additional device is, therefore,
needed to enforce the boundary conditions in the wave packet-
based scattering calculations.

Using eqs 17-19, the S-matrix can now be expressed as
follows:

At this stage, we could, in principle, factorize the product of
two delta functions in eq 27 as

and obtain the expression for the on-shell S-matrix as follows.

Equation 29, which essentially defines the on-shell S-matrix
elements as the Fourier transformation of an appropriate
correlation function, was obtained by Tannor and co-workers.33-36

In addition, an expression for the on-shell S-matrix, which is
similar to eq 29 but involves a causal full Green’s function,
G+(E), in place of the delta function, was independently obtained
by Kouri and co-workers.27-32 Notably, the presence of the
anticausal Green’s function,G-(E), in the numerator of eq 29
does not contribute anything significant if the wave packet,
Φ+(R), contains predominantly positive flux (vide supra). In this
sense, the two formulations are essentially equivalent.31,32,117

In any event, we note that the above factorization of the product
of two delta functions mathematically holds only in the exact
limit. This means thatN f ∞ andú f 0, if one uses a series
representation for the delta function, for example, as given by
eqs 7 and 9. In a practical calculation,N (and alsoú) is always
finite, and for a finiteN, this factorization introduces some
additional error, which diminishes only slowly asN increases.
This is due to the fact that a truncated series gives a finite width
to the delta function (which can, of course, be made as small
as one wishes by simply increasingN), and this width is
symmetrically distributed between the bra and ket in eq 27. This
symmetry is clearly lost when one goes to eq 29. This assertion

can easily be verified by examining the identity in eq 28 with
the use of any integral representation of the delta function,
wherein one notices that the direction of double integration
resulting from two delta functions gets rotated as one goes from
the left-hand side to the right-hand side. Additionally, with an
appropriate truncated series representation for each of the delta
functions, eq 27 defines both the on-shell and the off-shell
S-matrix elements, which information is lost in the factorization
process. Therefore, we shall not use this factorization in the
present work. Instead, we will make an additional, exact
algebraic manipulation with eq 27 to obtain a compact series
expression for the S-matrix elements. Our strategy is as follows.

We first select an appropriate truncated series representation
for the SDO (see Section II). Because eq 27 contains a product
of two SDOs, we will have a corresponding finite double series.
It then turns out that a partial, analytically exact, resummation
of the resulting double series can be accomplished in certain
situations, resulting in a single series, which is advantageous
for the most efficient numerical implementation. Finally, we
substituteE ) E′ to obtain the expression for the elements of
on-shell S-matrix. Thus, the modulus square of the S-matrix
element is given as follows,

whereδT in eq 30 refers to an approximation to the spectral
density operator that would be obtained by truncating the series
afterN terms in eqs 7 and 9 for a finite and positiveú. Equation
30 is a central object for which we obtain series representations
in the following sections.

We parenthetically note that eq 29 in conjunction with eq 7
or 9 for the spectral density operator will remain accurate in
situations when the associated time cross-correlation functions
decay sufficiently rapidly. If, however, there are long-lived
scattering resonances in the system and the time evolution of
wave packets contains the feature of multiple revivals, the
associated time-correlation functions will have a practically
inaccessible long time tail, and therefore, the convergence of
the scattering probabilities will be slow with eq 29.

Short-Time Iterative Implementation. Here, we obtain a
compact expression for the elements of the on-shell S-matrix
as a sum involving a discrete series of short-time correlation
function. First of all, the spectral intensity,|AR

+(E)|2, as re-
quired in eq 30 can be obtained using eqs 9 and 21 as follows

whereC(k
(R,R) ) 〈Φ+(R)|Û(k|Φ+(R)〉 is the short-time autocorre-

lation function. In eq 31, we used the fact that the packetΦ+(R)

is initially localized in the asymptotic channel, and therefore,
the autocorrelation function in eq 31 will decay very rapidly
and also satisfy the time reversal symmetry,C-k

(R,R) ) [Ck
(R,R)]*.

There will be a similar expression for|Aâ
-(E)|2 because the

above analysis holds equally forΦ-(â).

δ(E - Ĥ) Φ+(R)(x) ) 1
px µ

2E∫0

∞
dε AR

+(ε) ×
[δ(KE + k̂) + δ(KE - k̂)] eiK̃x

) AR
+(E) eiKEx (26)

Sâ,R(E) δ(E - E′) )
〈Φ-(â)|δ(E′ - Ĥ) δ(E - Ĥ)|Φ+(R)〉

[Aâ
-(E′)]* AR

+(E)
(27)

δ(E - Ĥ) δ(E′ - Ĥ) ) δ(E - E′) δ(E - Ĥ) (28)

Sâ,R(E) )
〈Φ-(â)|δ(E - Ĥ)|Φ+(R)〉

[Aâ
-(E)]* AR

+(E)
(29)

|Sâ,R(E)|2 )

||||〈Φ-(â)|δT (E - Ĥ) δT (E - Ĥ)

δT (E - E) |Φ+(R)〉 ||||

2

|Aâ
-(E)|2|AR

+(E)|2
(30)

|AR
+(E)|2 )

∆t

2πp
∑
k)0

N

(1 - δk0/2)(1 - δkN/2) ×

[{Z(E)}kCk
(R,R) + {Z(E)*}kC-k

(R,R)]

)
∆t

πp
∑
k)0

N

(1 - δk0/2)(1 - δkN/2) Re[{Z(E)}kCk
(R,R)]

(31)
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The expression forδT(E - E), on the other hand, can easily
be obtained by substitutingE ) Ĥ in eq 10, which gives the
following result,

whereT ) N∆t is the total length of time propagation.
Now, using eq 9 for the SDO and results from Appendix A,

we obtain the following result

where

whereZ ) ei(E+iú)t/p, x ) 2ú∆t/p andC(k
(R,â) ) 〈Φ-(â)|Û(k|Φ+(R)〉

is the short-time cross-correlation function. An important point
to note here is that for a general scattering problem, [Ck

(R,â)]*
* C-k

(R,â), but in the expression for the correlation function,
C(k

(R,â), we notice that the wave packetΦ+(R) is initially located
in the asymptotic reactant arrangement channel and by construc-
tion produces predominantly positive quantum flux. Therefore,
the operatorÛ-k will primarily move this packetaway from
the interaction region. Thus, the contribution from the backward
time propagation,C-k

(R,â), will be controllably small for the
scattering process.117 In fact, this contribution can be made
negligible in a practical calculation by using the form of the
wave packet as discussed earlier and using various devices to
keep the wave packet narrow until it reaches the interaction
region. We can therefore drop the term containingC-k

(R,â) from
eq 33 without significant numerical error. This is equivalent to
removing the contribution of the anticausal Green’s function
from eq 30.

We can now substitute eqs 31-34 in eq 30 to obtain the
desired scattering probabilities. Notably, eqs 31 and 33 remain
in the energy-separable form; hence, one needs to compute the
correlation functions only once and use them for different
energies.

We now discuss further simplifications of eq 33 that are
possible by taking some appropriate limits, valid under specific
situations. First of all, the factor,x ) 2ú∆t/p is expected to be
small; therefore, we can safely take the limitx f 0. In this
limit, we substitute ex ) 1 + x, sinh(x) ) x, and cosh(x) ) 1 +
x2/2. As a result,δT(E - E) in eq 32 reduces to (N∆t/πp), and
eq 34 takes the following simple form:

Now, using eqs 32, 33, and 35, it is straightforward to obtain
the following result.

In eq 36, we have dropped the term containingC-k
(R,â) for the

reason discussed above. Now, eq 36 can be further simplified
if the nature of the correlation function,Ck

(R,â), is such that it
remains finite only for a “short” time and then falls off rapidly,
at least at a rate faster than 1/N. In such a situation, the
summation in eq 36 would be practically restricted to a finite
2N; hence, taking the limitN f ∞ would not add anything
significant. Moreover,Ck

(R,â) is expected to be 0 fork ) 0 as
well as for k ) N, whereN f ∞. As a result, the end-point
corrections no longer matter here, and we can drop terms
containingδk,0 andδk,2N from eq 36. Thus, eq 36 reduces to the
following simple form.

In the numerical implementation of eq 36 or 37, we can
explicitly take the limitú f 0 in the expression forZ without
any difficulty as we have already taken the limitx f 0. That
meansZ would simply be eiE∆t/p, and the implementation would
be free from the width parameter of the Lorentzian filter. We
emphasize that the nature of simplifications leading to eq 37 is
specific only for certain scattering situations. As we will see
later, such simplifications are not possible for filter diagonal-
ization-based bound states studies.

How does the present implementation of the S-matrix differ
from those of earlier studies,27-36 which utilized eq 29 as their
starting point? In fact, if we use eq 9 for the SDO in conjunction
with eq 29 and follow the arguments advanced above, we will
obtain eq 37 withZ ) ei(E+iú)∆t/p. This is not surprising, but the
present analysis clearly reveals the limiting process [x() 2ú∆t/
p) f 0, and hence,ú f 0] and clarifies the approximations
that are made in the direct implementation of eq 29. Thus, if
the cross-correlation function decays sufficiently rapidly, at least
faster than 1/N, the present implementation does not differ from
earlier studies.27-36 We advocate the use of eq 37 in that case.
This observation is important and provides a posteriori justifica-
tion for the use of the factorization of a product of two delta
functions (eq 28), which is numerically accurate only in certain
situations, as discussed above. However, if the cross-correlation
function does contain long time features, such as scattering
resonances, wave packet revivals, etc., one will practically have
access to only limited information onCk

(R,â). In such a situa-
tion, the use of eq 33 or 36 is expected to be more accurate.

It is now clear that the computation of the S-matrix requires
the input of short-time auto- and cross-correlation functions,
Ck

(R,R) andCk
(R,â), respectively. At this stage, we may choose to

ignore their quantum mechanical origin and compute them by
a semiclassical,10,101,103,115mixed-quantum/classical,101,102,114or
simply by a classical method. This opens a way to extend the
filter approach of quantum scattering to various approximate
dynamical regimes. This idea has been successfully utilized by
Tannor and co-workers.36

Chebyshev Polynomial Representation.Here, we obtain a
compact expression for the elements of the on-shell S-matrix
as a series involving the Chebyshev polynomials with a

δT(E - E) ) ( ∆t
2πp)[sinh(ú∆t/p) {1 - e-úT/p}

cosh(ú∆t/p) - 1 ] (32)

〈Φ-(â)|δT(E - Ĥ) δT(E - Ĥ)|Φ+(R)〉 )

∑
k)0

2N

Fk(Z) Ck
(R,â) + [Fk(Z)]* C-k

(R,â) (33)

Fk(Z) )

{( ∆t
2πp)2[k + (1 -

δk,0

2 ) ×

{e-x + 1

e-x - 1
(e(k-N)x - 1) -

δk,0

2
e(k-N)x}]Zk

( ∆t
2πp)2[(2N - k) +

δk,2N

4 ]Zk

(0 e k e N)

(N + 1 e k e 2N)

(34)

Fk(Z) ) ( ∆t
2πp)2[(2N - k) - δk,0(N - k + 1/4) +

δk,2N

4 ]Zk

(0 e k e 2N) (35)

〈Φ-(â)|δT(E - Ĥ) δT (E - Ĥ)

δT (E - E)
|Φ+(R)〉 )

∆t

2πp
∑
k)0

2N [(1 -
δk,0

2 ) -
k

2N
+

1

8N
(δk,2N - δk,0)]ZkCk

(R,â) (36)

〈Φ-(â)|δT(E - Ĥ) δT(E - Ĥ)

δT(E - E)
|Φ+(R)〉 )

∆t

2πp
∑
k)0

∞

ZkCk
(R,â)

(37)
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Hamiltonian operator as its argument. Using eq 7 for the SDO
and results from Appendix B, we can easily obtain the following:

where Gk
(1),(2) ) Re{Ak

(1),(2)[Z(Ẽ), D(Ẽ); Z(Ẽ), D(Ẽ)] +
Ak

(1),(2)[Z(Ẽ), D(Ẽ); Z*( Ẽ), D*( Ẽ)]} and Ck
(R,â) )

〈Φ-(â)|Tk(Ĥsc)|Φ+(R)〉. The coefficientsAk
(1) andAk

(2) have been
defined in Appendix B (see eqs B-6-B-10).

Using eqs 7 and 21, we can obtain the following expression
for |AR

+(E)|2, as required in eq 30 for the S-matrix,

where Ck
(R,R) ) 〈Φ+(R)|Tk(Ĥsc)|Φ+(R)〉. The expression for

|Aâ
-(E)|2 will be the same as given in eq 39, but one has to

replaceCk
(R,R) with Ck

(â,â) ) 〈Φ-(â)|Tk(Ĥsc)|Φ-(â)〉. Finally, we
need to substituteE ) Ĥ in eq 7, truncated toN terms, to obtain
the volume factorδT(E - E) to be used in eq 30. In a general
situation, the expression forδT(E - E) remains in the series
form. As a result, the division of eq 38 byδT(E - E) could not
be performed analytically, unlike the case of short-time iterative
implementation in Section III. A. It is, however, anticipated that
such a division would be possible if we explicitly take theú f
0 limit, which we have not attempted here. In any case, the
computation ofδT(E - E) from the series in eq 7 does not incur
significant numerical effort. We can now substitute eqs 38 and
39 in eq 30 to obtain the desired scattering probabilities.

It is important to notice that eqs 38 and 39 are in the energy-
separable form. This means the coefficientsCk

(R,R) andCk
(R,â),

which are computationally most expensive to obtain, have to
be computed only once and stored, and they then can be used
to obtain the S-matrix elements for all scattering energies of
interest. We also note that if one choosesΦ(R) andΦ(â) to be
the same, then one can compute 2N Ck’s by performing only
N Chebyshev recursions by using a special property of Che-
byshev polynomials, 2TkTk′ ) T|k+k′| + T|k-k′|, not satisfied by
other classical orthogonal polynomials. This is one of the reasons
why we choose Chebyshev polynomials for such filter applica-
tions.

Again, we consider how the present implementation of the
on-shell S-matrix is different from the direct use of eq 29 in
conjunction with eq 7 for the Chebyshev expansion of the SDO,
as is implicit in the previous studies?27-36 First of all, the
expression for the Chebyshev correlation functions,Ck

(R,R) and
Ck

(R,â) remains the same; so are the coefficients,|AR
+(E)|2 and

|Aâ
+(E)|2. It is, however, clear that the coefficients,Gk

(1) and
Gk

(2), in eq 38 are different from what one would obtain from
the direct use of eq 7 into eq 29. In addition, we know that the
SDO is by definition a sum of anticausal and causal Green’s
functions, and therefore, the contribution of the former, which
leads to a backward time propagation of the wave packet, can
be removed from eq 29 very easily. In the present formulation,
on the other hand, it is no longer possible to identify the
anticausal Green’s function part in eq 38 in a simple manner,
contrary to what we could accomplish in the discrete time
iterative implementation (see Short-Time Iterative Implementa-
tion). This is of no concern because we know that the initial
wave packet in the reactant channel is constructed such that it

produces predominantly positive flux (vide supra). Moreover,
we have not found a physically appropriate analytical limiting
process which could transform the coefficientsGk

(1) andGk
(2) in

eq 38 into what one would obtain from the direct use of eq 7
into eq 29. Hence, in this case, we do not know the exact
physical situation in which the use of the factorization of a
product of two delta functions (eq 28) will remain numerically
valid here, hence, giving a posteriori justification of the use of
eq 29 as suggested in earlier studies.27-36

IV. Bound States

In this section, we present our implementation of the
Lorentzian function-based spectral filter method for computing
the eigenvalues and spectral intensities, corresponding to the
bound states of a molecular Hamiltonian, in an arbitrary energy
range. The central quantity in this procedure again is the spectral
density operator (SDO), for which we again consider both the
Lorentzian-function-based Chebyshev polynomial and discrete
time representations.

Spectral Intensities. Let us consider a finite dimensional
Hamiltonian,Ĥ, representing a bound molecular system, which
supports a set of eigenstates,|φm〉, m ) 1, N,

whereεm is themth eigenvalue. As discussed in Section II, an
arbitrary quantum state,|ψ〉 (which could be an experimentally
prepared wave packet) can be expressed as a linear combination
of the eigenstates ofĤ,

where|Im|2 ) |〈φm|ψ〉|2 is called the spectral intensity for the
mth eigenstate, and it defines the relative weight with which
each eigenstate contributes to form the initial wave packet,|ψ〉.
It is an important quantity, since this is what is typically
observed in various spectroscopic measurements.

Now, using the idea of the spectral filter, we can easily obtain
the following general expression for|Im|2.

On substituting eq 7 for the SDO in eq 42, we obtain

whereCk ) 〈ψ|Tk(Ĥsc)|ψ〉 is the so-called Chebyshev correlation
function. Similarly, on substituting eq 9 for the SDO, we obtain

where,Dk ) 〈ψ|e-iĤk∆t/p|ψ〉 is the short-time autocorrelation
function.

In eqs 43 and 44, the correlation functionsCk andDk have to
be obtained only once, and they can then be used to compute
the intensity for any arbitrary energy. We note that the plot of
|I(E)|2 as a function ofE will show, by definition, a set of
Lorentzian profiles with peaks falling on the exact eigenvalue
locations. Therefore, the location of eigenvalues can be obtained,
in principle, by finding the zeroes of (d/dE)I(E). It should,
however, be kept in mind that in practical situations, less intense

Ĥ |φm〉 ) εm|φm〉 (40)

|ψ〉 ) ∑
m)1

N

Im|φm〉 (41)

|I(E)|2 ) 〈ψ|δ(E - Ĥ)|ψ〉 (42)

|I(E)|2 )
1

π∆λ
∑
k)0

N

(2 - δk,0) Re[D(E) Zk(E)]Ck (43)

|I(E)|2 )
∆t

πp
∑
k)0

N (1 -
δk,0

2 )(1 -
δk,N

2 )Re[Zk(E) Dk] (44)

〈Φ-(â) |δT(E - Ĥ) δT(E - Ĥ)|Φ+(R) 〉 )

1

(π∆λ)2
∑
k)0

N

(Gk
(1)Ck

(R,â) + Gk
(2)Ck+N

(R,â)) (38)

|AR
+(E)|2 ) ( 1

π∆λ) ∑
k)0

N

(2 - δk0)Re[D(E) Zk(E)]Ck
(R,R) (39)
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peaks may not be very easy to distinguish, and therefore, this
procedure will not always be practically convenient for such
states. In fact, the exact location of eigenvalue positions is easily
obtained by theFD technique, which we discuss in the following.
In fact, it will also be possible in a practical study to combine
the spectral intensity information with the FD method to make
the FD numerically more efficient, because the former faithfully
reveals the energy region where eigenvalues are located.

Eigenvalues: Filter Diagonalization.Filter diagonalization
methods have been extensively discussed in the literature, and
the underlying principle is now well-understood.51,60-86 There-
fore, we do not go into detail here, and in the following, we
give the minimum necessary details for the purpose of explain-
ing the current implementation, which utilizes the Lorentzian
function-based spectral filter. A preliminary report of this
implementation involving Chebyshev polynomials has recently
been published.51

For a given Hamiltonian,Ĥ, a FD method involves construc-
tion of a set of basis states by applying a spectral filter in a
preselected energy window, on an arbitrary wave packet,|ψ〉,
and using them as a basis to diagonalize the Hamiltonian.
Conceptually, a filter operator corresponds to the SDO, which
in an ideal situation will select out the eigenstate itself. However,
the operation with an approximate representation of the SDO
(a finite sum in eqs 7 and 9, for example) on an arbitrary wave
packet will produce not an eigenstate, but it yields a superposi-
tion of eigenstates which are concentrated over a range of eigen
energies located near the filter energy,E, and a set of such
selected states (obtained by applyingδT(E - Ĥ) to more than
one packet or using the same packet but changing the value of
E) may serve as a good basis for eventual diagonalization of
the Hamiltonian. This is the basic principle of the FD method.
We denote these filtered states by|æl〉, l ) 1, L, whereL is the
number of energies in a given range at which the filteration
has been carried out. We note that an actual implementation of
the FD method does not require us to construct|æl〉 explicitly.
Instead, one just needs a prescription to compute the necessary
matrix elements over the basis of a set of|æl〉 directly. This is
what we will elaborate on in the following discussion. There
are several choices for an approximate representation of the
SDO, but as discussed in section II, the Lorentzian function
representation currently seems to offer an optimum choice for
a practical application;51 this is what we suggest to use here. In
the following, we give a brief description of the computational
tools required to perform the FD applications.

In FD applications, we first set up the following generalized
eigenvalue problem,

where the matrixB is defined by the linear relation between
the filtered states,|æl〉 and the eigenstates,|φm〉, as follows:

Here, H and S are the Hamiltonian and overlap matrices,
respectively, represented in the basis of filtered states, as shown
below,

where|ψ〉 is an arbitrary “seed” state, which is chosen randomly

for the purpose of the eigenvalue problem. Herep ) 0 and 1
give the overlap and Hamiltonian matrices, respectively. In
practical studies, the overlap matrix,S, may be nearly singular,
and therefore, eq 45 must be solved by employing the singular
value decomposition method which diagonalizes the overlap
matrix and removes “small” eigenvalues, if any. This technique
is well-discussed in the literature.118 In any event, some of the
computed energies will eventually converge to the eigenvalues,
εm, of the original Hamiltonian. In the FD method, it is also
possible to obtain an a priori error estimate for each eigenvalue
by computing, for example, the following quantity,63

where Bt is the transpose ofB and H m,n
(2) ) Am,n

(2) . This error
estimate is a useful guideline that mostly serves the purpose of
identifying the spurious eigenvalues. The formalism presented
here, however, is sufficiently general to allow other more
elaborate treatments for the error estimate.83 From the above
discussion, it is clear that the central quantity one needs to
compute isAm,n

(p) , defined in eq 47, for which we discuss the
Chebyshev polynomial and discrete time representations in the
following sections. Notably, we do not factorize the product of
two delta functions in eq 47 for the reasons explained earlier.

ChebysheV Polynomial Representation.Using eq 7 for the
SDO in eq 47 and results from Appendix B, we can easily obtain
the following expression for the overlap,S, and Hamiltonian,
H, matrix element usingAm,n

(p) for p ) 0 and 1,

where,Ck
(p) ) (1/2)[C |k+p|

(0) + C |k-p|
(0) ] andCk

(0) ) 〈ψ|Tk(Ĥsc)|ψ〉.
The coefficientsGk

(1) and Gk
(2) are defined in Appendix B.

Similarly, it is straightforward to show that

whereH̃m,n and Ĥ m,n
(2) are defined as follows:

We can now use eqs 49-51 in conjunction with eq 45 and
obtain eigenvalues of the Hamiltonian in an arbitrary energy
window.

Discrete Time Representation.In this section, we discuss a
computational implementation of the FD algorithm, which is
based on the discrete-time auto-correlation function, character-
izing the dynamical behavior of the molecular system. In what
follows, we describe two approaches, one which requires scaling

HB ) SBE (45)

|φm〉 ) ∑
l)0

L

Bl,m|æl〉 (46)

Am,n
(p) ) 〈æm|(Ĥ)p|æn〉 (m, n ) 1, L)

) 〈ψ|δT(Em - Ĥ)(Ĥ)p δT(En - Ĥ)|ψ〉 (47)

∆(Em)2 ) |〈φm|(Em - Ĥ)2|φm〉|

) |(BtH (2)B)m,m - Em
2 (BtSB)m,m| (48)

Sm,n ) 〈ψ|δT(Em - Ĥ) δT(En - Ĥ)|ψ〉 )

1

(π∆λ)2
∑
k)0

2N

[Gk
(1)Ck

(0) + Gk
(2)Ck+N

(0) ] (49)

Hm,n ) 〈ψ|δT(Em - Ĥ)Ĥ δT(En - Ĥ)|ψ〉 ) λhSm,n + ∆λH̃m,n

(50)

H m,n
(2) ) 〈ψ|δT(Em - Ĥ)Ĥ2 δT(En - Ĥ)|ψ〉 )

[∆λ2

2
- (λh)2]Sm,n + 2λhHm,n + ∆λ2

2
H̃m,n

(2) (51)

Hm,n )
∆λ

(π∆λ)2
∑
k)0

2N

[Gk
(1)Ck

(1) + Gk
(2)Ck+N

(1) ] (52)

H̃ m,n
(2) )

(∆λ)2

2
∑
k)0

2N

[Gk
(1)Ck

(2) + Gk
(2)Ck+N

(2) ] (53)
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the spectral range of the Hamiltonian (similar to that employed
in the Chebyshev polynomial-based FD method), and the other
approach which allows the use of a spectrally unscaled Hamil-
tonian operator.

With the unscaled Hamiltonian, we first split the operator,
Ĥp, in eq 47 symmetrically between the two delta functions and
then use the following identity,

to obtain the following expression for the matrix element.

It is important to note that although eq 54 is formally an exact
identity, it contains an error of the order (E - Ĥ) p δ(E - Ĥ),
which is small but finite, because we use an approximate delta
function in practical applications. This is why we have sym-
metrically distributed the power of the Hamiltonian between
the bra and the ket, thereby obtaining eq 55. Now, using results
from Appendix A, we can easily express the matrix element as
follows:

where Ck ) 〈ψ|Ûk|ψ〉 is the discrete-time auto-correlation
function. To pass from eq 55 to 56, we have used the factC-k

) Ck
/, which is valid for the auto-correlation function. Now,

eq 56 being in an energy-separable form can be used efficiently
to obtain the necessary matrix elements for FD applications.

We now consider a spectrally scaled Hamiltonian, an ap-
proach used in earlier studies on this subject.9,68We first explain
the rationale behind such a choice, even though its use is not
mandatory. It is well-known that the time discretization enforces
a basic limitation on the physical system; that is, from the time-
energy uncertainty principle, a discretization of the time axis
in terms of∆t suggests that the Hamiltonian can be represented
faithfully at best in the spectral range,λmin e E e λmax, where-
(λmax - λmin) ) 2∆λ ) (πp/∆t). This means∆t is not completely
arbitrary. Thus, it makes sense to build this physically attainable
limit directly into the computational apparatus. To this end, we
propose to compute the eigenvalues of a function of the
Hamiltonian operator in place of the original Hamiltonian,Ĥ.
This is defined as follows,

whereλh ) (1/2) (λmax + λmin) is the offset parameter with units
of energy, which helps to map the spectral range of the
Hamiltonianλmin e Ĥ e λmax onto the range-1 e H̃ e + 1
and rendersH̃ dimensionless so that the latter can be used as
an argument of the sine function, and the eigenvalues off(Ĥ)
fall between-(π/2) and (π/2). It is then easy to verify that if
we compute the eigenvalue,f(εm) of f(Ĥ) as defined in eq 57,
the eigenvalue,εm of the original Hamiltonian,Ĥ can be obtained
by the following relation.

The reason behind the above choice of the function ofĤ is that
it allows keeping the algebraic structure of the theory completely
in the time correlation function form, thereby leading to a
compact expression for the matrix elements as required in the

FD algorithm. Admittedly, other choices are also possible,9,68

which if one desires can be implemented without any difficulty
by following the derivation presented here. We now use eq 57
to obtain the following identity,

where(ps ) is the binomial coefficient andÛ ) e-iĤ∆t/p is the
quantum propagator for a time step∆t. We next substitute eq
59 in eq 47 to obtain

We now use the results for the product of two SDOs from
Appendix A in eq 60 to finally obtain the following expression
for the matrix element.

whereCk ) 〈ψ|Ûk|ψ〉 is the autocorrelation function, and the
coefficientFk has been defined in Appendix A.

V. Results and Discussion

Here, we present preliminary results of our benchmark studies
on the performance of the present spectral filter implementation
of the S-matrix. As a first step, we have made an extensive test
of the short-time iterative algorithm as discussed in Section III,
Short-Time Iterative Implementation. Our model numerical
study constitutes a one-dimensional scattering of a quantum
particle through the Eckart’s barrier as defined below,

where V0 and a are the maximum height and the thickness
parameter of the barrier and their numerical values used here
are 1.03644 eV and 2.0 Å-1, respectively. The analytical
expression for the transmission probability as a function of
incident energy,E, that is used for comparison is well-known
to be119

whereµ is the mass of the particle, which we have chosen to
be 1.0 amu. The scattering configuration of our numerical study
is shown in Figure 1. The reactant channel,R, lies at the left of
the barrier, and the product channel,â, is at the right side of
the barrier. The simplicity of the present model and the scattering
configuration allow us to choose the reactant and product wave
packets to be of the same functional form. For this purpose, we

(Ĥ)p δ(E - Ĥ) ) (E)p δ(E - Ĥ) (54)

Am,n
(p) ) (xEmEn)

p〈ψ|δT(Em - Ĥ)δT(En - Ĥ)|ψ〉 (55)

Am,n
(p) ) (Em En)

p/2∑
k)0

2N

Re[Fk(Zm, Zn) Ck] (56)

f (Ĥ) ) sin[(Ĥ - λh)
∆t
p ] ) sin[(Ĥ - λh

∆λ ) π
2] ) sin(π2H̃) (57)

εm ) p
∆t

arcsin[f (εm)] + λh ) 2∆λ
π

arcsin[f (εm)] + λh (58)

[ f (Ĥ)] p )
1

2p
∑
s)0

p (ps )[ie-iλh∆t/pÛ] p-2s (59)

Am,n
(p) )

1

2p
∑
s)0

p (ps )[ie-iλh∆t] p-2s ×

〈ψ|δT(Em - Ĥ)Ûp-2sδT(En - Ĥ)|ψ〉 (60)

Am,n
(p) )

1

2p
∑
s)0

p (ps )[ie-iλh∆t] p-2s ×

∑
k)0

2N

[Fk(Zm, Zn)Ck+p-2s + F k
/(Zm, Zn)C-k+p-2s] (61)

V(x) )
V0

cosh2(ax)
(62)

P(E) )
cosh(2π

p

x2µE

a ) - 1

cosh(2π
p

x2µE

a ) + cosh(πx8µV0

a2p2
- 1)

(63)

Scattering and Bound States J. Phys. Chem. A, Vol. 108, No. 41, 20048997



have taken a normalized Gaussian wave packet, which is
multiplied with the eigenfunction of the momentum operator
with a large momentum eigenvalue, as shown below

whereσ is the width parameter of the wave packet, which has
been taken to be 0.2 Å. In eq 64,E0 is an essentially arbitrary
but large energy, and its value is taken to be 0.836 04 eV. The
factor ei((2µE0)(1/2)/p)x in eq 64 helps to enforce appropriate
boundary conditions in the calculation as, discussed earlier
(Short-Time Iterative Implementation). Initially, one wave
packet is centered atx ) x0

R in the R channel (left of the
barrier) and the other atx ) x0

â in the â channel (right of the
barrier), as shown in Figure 1. To compute the time correlation
functionsCk

(R,R) andCk
(R,â) to be used in eqs 31-37, we have

represented the wave packets on an uniformly spacedx grid
with ∆x ) 0.039 062 5 Å and evaluated the kinetic energy
operator part of the Hamiltonian by the standard fast Fourier

transform method.120 The time evolution has been accomplished
in steps of∆t ) 0.2 fs by the standard Chebyshev polynomial-
based quantum propagator.99,100,108The maximum kinetic energy
represented on the grid with a spacing of 0.039 062 5 Å used
here is estimated to be (1/2µ)((πp/∆x))2 ≡ 13 eV, and therefore,
both ∆λ and λh parameters, which are required to rescale the
Hamiltonian so that it becomes suitable to be used as an
argument of the Chebyshev polynomial, are 6.997 eV. For
representing the wave function and its derivatives, we have used
a rather large grid (1024 points) and propagated the wave packet
for 50 fs. Because this is aimed solely at demonstrating the
validity of our approach, we have not attempted to optimize
the method of function representation, time propagation, and
other numerical issues involved here.

In Figures 2 and 3, we show the computed correlation
functions Ck

(R,R) and Ck
(R,â) as a function of time, which we

have used to compute the transmission probabilities at a number
of energies. As expected, the autocorrelation function,Ck

(R,R) )
Ck

(â,â), falls off very rapidly, and as a result, we need very few
terms in eq 31 to compute the normalization factors,|AR

+(E)|2
and |Aâ

-(E)|2. We note that the normalization factors|AR
+(E)|2

and |Aâ
-(E)|2 may also be obtained directly by projecting the

initial wave packet, eq 64, on the channel eigenstates (in the
present situation, they are just the planewaves), in which case,
one has to include the appropriate channel momentum factor,
x2E/µ, as follows,

where we have used eq 64 forΦ+(R)(x). Equation 65 is certainly
the exact expression for the normalization factor here. However,
if one computes the normalization factor using the autocorre-

Figure 1. Scattering configuration of the present numerical study.

Figure 2. Computed autocorrelation function,C k
(R,R), of the reactant wave packet. The solid line refers to the real part, and the dotted line refers

to the imaginary part of the function. The autocorrelation function becomes negligibly small before the wave packet reaches the interaction region.
The product wave packet has the identical features in the present study.

Φ+(R)(x) ) Φ-(â)(x) )

[ 1

2πσ2]1/4

ei((2µE0)(1/2)/p)x exp[-(x - x0
R or â

2σ )2] (64)

|AR
+(E)|2 ) x2E

µ
|||x µ

2E∫-∞

∞
dx e-i((2µE)(1/2)/p)x Φ+(R)(x)

|||
2

) 1

xπ

∆x
p xµ

E
exp[-8(∆x

p )2
µ{E + E0 - 2 xEE0}]

(65)
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Figure 3. The cross-correlation function between the reactant and the product wave packets,C k
(R,â). The solid line refers to the real part, and the

dotted line refers to the imaginary part of the function. In the present study, the cross-correlation function is negligibly small outside the time range
shown in the figure.

TABLE 1: A Comparison of the Computed Scattering Probabilities as a Function of Energy with Their Exact Values

|Sâ,R(E)|2
energy (eV) |AR

+|2 ) |Aâ
-|2 |〈Φ-(â)|(δ(E - Ĥ) δ(E - Ĥ)/δ(E - E))| Φ+(R)〉|2 calcd exact

0.1244 0.292 163× 10-4 0.112 804× 10-28 0.132 152× 10-19 0.148 945× 10-19

0.1347 0.517 257× 10-4 0.115 579× 10-27 0.431 982× 10-19 0.400 666× 10-19

0.1555 0.146 450× 10-3 0.554 173× 10-26 0.258 385× 10-18 0.260 199× 10-18

0.1658 0.235 760× 10-3 0.352 793× 10-25 0.634 716× 10-18 0.632 721× 10-18

0.1762 0.369 827× 10-3 0.204 436× 10-24 0.149 473× 10-17 0.149 705× 10-17

0.1969 0.849 160× 10-3 0.561 788× 10-23 0.779 101× 10-17 0.779 172× 10-17

0.2073 0.124 739× 10-2 0.267 737× 10-22 0.172 069× 10-16 0.172 058× 10-16

0.2280 0.254 830× 10-2 0.514 482× 10-21 0.792 263× 10-16 0.792 248× 10-16

0.2384 0.355 259× 10-2 0.209 038× 10-20 0.165 628× 10-15 0.165 630× 10-15

0.2695 0.881 754× 10-2 0.107 397× 10-18 0.138 133× 10-14 0.138 133× 10-14

0.2902 0.151 484× 10-1 0.121 854× 10-17 0.531 016× 10-14 0.531 015× 10-14

0.3213 0.313 588× 10-1 0.360 725× 10-16 0.366 823× 10-13 0.366 823× 10-13

0.3420 0.484 567× 10-1 0.296 702× 10-15 0.126 361× 10-12 0.126 361× 10-12

0.4042 0.145 906× 10+00 0.891 661× 10-13 0.418 846× 10-11 0.418 846× 10-11

0.4457 0.263 417× 10+00 0.258 591× 10-11 0.372 669× 10-10 0.372 669× 10-10

0.4975 0.481 663× 10+00 0.115 686× 10-9 0.498 650× 10-9 0.498 650× 10-9

0.5286 0.649 522× 10+00 0.935 003× 10-9 0.221 628× 10-8 0.221 628× 10-8

0.5804 0.974 764× 10+00 0.230 227× 10-7 0.242 302× 10-7 0.242 302× 10-7

0.6219 0.125 202× 10+1 0.238 548× 10-6 0.152 180× 10-6 0.152 180× 10-6

0.6530 0.145 257× 10+1 0.122 408× 10-5 0.580 141× 10-6 0.580 141× 10-6

0.6944 0.168 820× 10+1 0.937 920× 10-5 0.329 091× 10-5 0.329 091× 10-5

0.7151 0.178 553× 10+1 0.245 074× 10-4 0.768 713× 10-5 0.768 713× 10-5
0.7462 0.189 917× 10+1 0.967 579× 10-4 0.268 263× 10-4 0.268 263× 10-4

0.7773 0.196 940× 10+1 0.353 840× 10-3 0.912 308× 10-4 0.912 308× 10-4

0.8084 0.199 400× 10+1 0.120 387× 10-2 0.302 781× 10-3 0.302 781× 10-3

0.8395 0.197 390× 10+1 0.382 503× 10-2 0.981 712× 10-3 0.981 712× 10-3

0.8706 0.191 280× 10+1 0.113 806× 10-1 0.311 048× 10-2 0.311 048× 10-2

0.9017 0.181 652× 10+1 0.317 214× 10-1 0.961 328× 10-2 0.961 328× 10-2

0.9328 0.169 234× 10+1 0.823 806× 10-1 0.287 641× 10-1 0.287 641× 10-1

0.9639 0.154 816× 10+1 0.195 298× 10+00 0.814 823× 10-1 0.814 823× 10-1

0.9742 0.149 704× 10+1 0.253 209× 10+00 0.112 983× 10+00 0.112 983× 10+00

0.9846 0.144 486× 10+1 0.322 246× 10+00 0.154 360× 10+00 0.154 360× 10+00

0.9950 0.139 189× 10+1 0.401 112× 10+00 0.207 039× 10+00 0.207 039× 10+00

1.0572 0.107 134× 10+01 0.783 705× 10+00 0.682 805× 10+00 0.682 805× 10+00

1.1504 0.646 775× 10+00 0.409 324× 10+00 0.978 499× 10+00 0.978 499× 10+00

1.2541 0.320 765× 10+00 0.102 802× 10+00 0.999 147× 10+00 0.999 147× 10+00

1.5028 0.359 319× 10-1 0.129 110× 10-2 0.999 999× 10+00 0.999 999× 10+00
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lation function in eq 31, the channel momentum factors are
automatically included, but it will agree with the result of eq
65, provided one has used a complete autocorrelation function
and not a truncated one. In the present test calculation, both
methods give the identical result. This is particularly reassuring
because it gives a clear indication that the contribution from
the negative flux component of the wave packet (cf. eq 23) is
vanishingly small, if not completely zero; that is, the scattering
boundary conditions are correctly implemented in the calcula-
tion.

In Table 1, we present the computed results for|AR
+(E)|2

() |Aâ
+(E)|2, in the present example) using eq 31,〈Φ-(â)|(δT(E

- Ĥ) δT(E - Ĥ)/δT(E - E))|Φ+(R)〉 (eqs 6 and 37), and the
tunneling probabilities,|Sâ,R(E)|2 ( eq 30) at select energies and
compare with the analytical values obtained using eq 63. It is
gratifying to note that the present method is able to reproduce
the exact result to machine accuracy for all energies considered
here. This test example gives us confidence that the present
approach will be useful for more complicated scattering
problems we will be studying in the future.

VI. Concluding Remarks

In this paper, we have presented a detailed operational
foundation of the spectral filter approach to quantum molecular
dynamics, involving scattering and bound states. The philosophy
underlying the present approach has been to mathematically
advance the formally exact treatment of the theory as far as
possible before one makes practical approximations, such as
semiclassical or mixed quantum/classical mechanics. In fact, it
finally turns out that the formal theoretical structure and the
protocol to compute observable quantities are the same for
molecular bound states and scattering problems, and the only
difference lies in the way one implements the appropriate
boundary conditions while computing various correlation func-
tions. We find that the boundary conditions can be built
accurately while preparing the initial wave packets, and no extra
device, such as complex absorbing potential is essentially
warranted. As a matter of fact, we have also been able to literally
take the limitú f 0 (damping function in eq 5 being unity) in
the final expression for the S-matrix which involves a discrete
set of short-time correlation function (cf. eqs 36 and 37) without
any numerical error. However, complex absorbing potentials
have other useful applications, and if one so desires, the present
formulation can easily be extended. We will come back to this
framework in our future studies.

In the discrete time implementation, the central quantity that
enters various expressions for the S-matrix and the filter
diagonalization method is the time correlation function in various
forms. Consistent with suggestions of earlier authors,10,11,33-36,48

we argue that the quantum mechanical origin of these correlation
functions may be ignored and obtained by other approximate
dynamical schemes for large molecular systems. In this manner,
the present approach offers a completely unified framework for
studying molecular dynamics encompassing large as well as
small systems. Moreover, the time correlation functions could
also be taken as experimentally derived quantities (e.g., NMR
signals66,121), and the present method will be useful for analyzing
the underlying spectra. Further numerical studies with the
present method will be performed in our future applications.
Extension of the present approach toward the computation of
averaged quantities, such as thermal reaction rates and molecular
conductance, is envisioned here, and that will be the subject of
future studies.

Appendix A. Product of Spectral Density Operators
Expressed as a Discrete-Time Finite Series

Here, we present a derivation of the product of spectral
density operators (chosen to be a prelimit Lorentzian function)
as a degenerate kernel, discrete-time finite series. Anticipating
the application in the filter eiagonalization algorithm, we will
obtain a general expression for the quantity,δT(Em - Ĥ)(Û)p

δT(En - Ĥ), whereÛ ) e-iĤ∆t/p andp is an arbitrary integer.
Thus, using eq 9 for a truncated series representation of the
spectral density operator, we can easily obtain

where Zm(n) ) ei(Em(n)+iú)∆t/p. Now, the double summation
involving k andk′ indices, in eq A-1 can be partially summed
by utilizing a Cauchy-type expansion.122 In this procedure, we
first collect all the terms for which|k + k′| and |k - k′| have
the same value and then perform the summation of the resulting
geometrical series analytically. This summation technique has
frequently been used in the filter diagonalization litera-
ture.9,51,67,68Let us first consider a part of the series in eq A-1,
which we can expand as follows.

Similarly,

The summations over the indexk′ in eqs A-2 and A-3 involve
a geometric series, which we perform analytically and finally
substitute the results in eq A-1). The final result is

δT(Em - Ĥ)(e-iĤ∆t/p)p δT(En - Ĥ) )

( ∆t

2πp
)2

∑
k)0

N

∑
k′)0

N (1 -
δk,0

2 )(1 -
δk,N

2 )(1 -
δk′,0

2 )(1 -
δk′,N

2 ) ×

[(Zm)k (Zn)
k′Ûk+k′+p + (Zm

/ )k(Zn
/)k′Û-(k+k′-p) +

(Zm)k(Zn
/)k′Ûk-k′+p + (Zm

/ )k(Zn)
k′Û-(k-k′-p)] (A-1)

∑
k)0

N

∑
k′)0

N (1 -
δk,0

2 )(1 -
δk,N

2 )(1 -
δk′,0

2 )(1 -
δk′,N

2 ) ×

(Zm)k(Zn)
k′Ûk+k′+p ) {∑

k)0

N

Ûk+p(Zn)
k ∑

k′)0

k (1 -
δk′,0

2 ) ×

(1 -
δk′,k

2 )(1 -
δk′,0δk,N

2 )(1 -
δk′,N δk,N

2 )(Zm

Zn
)k′} +

{ ∑
k)N+1

2N

Ûk+p(Zm)k-N(Zn)
N ∑

k′)0

2N-k(1 -
δk′,0

2 )(1 -
δk′,2N-k

2 )(Zm

Zn
)k′}

(A-2)

∑
k)0

N

∑
k′)0

N (1 -
δk,0

2 )(1 -
δk,N

2 )(1 -
δk′,0

2 )(1 -
δk′,N

2 ) ×

(Zm)k(Zn)
k′Ûk-k′+p )∑

k)0

N (1-
δk,0

2 ){(Zm)kÛk+p + (Zn)
kÛ-k+p}×

{∑
k′)0

N-k(1 -
δk′,0

2 )(1 -
δk′,N-k

2 )(1 -
δk′,0 δk,0

2 ) ×

(1 -
δk′,N-k δk,0

2 )(ZmZn)
k′} (A-3)

δT(Em - Ĥ)(Û)p δT(En - Ĥ) )

∑
k)0

2N

Fk(Zm,Zn) Ûk+p + F k
/(Zm,Zn) Û-k+p (A-4)
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where

Equation A4 is the main result for an arbitrary integer,p.

Appendix B. Product of Spectral Density Operators
Expressed as a Finite Series Involving Chebyshev
Polynomials of the First Kind

Here, we present a derivation of the product of two spectral
density operators (chosen to be a prelimit Lorentzian function),
expressed as a degenerate kernel finite series, using Chebyshev
polynomials with the renormalized Hamiltonian as the argument.
Anticipating the application in the filter diagonalization algo-
rithm, we will obtain a general expression for the quantity,δT -
(Em - Ĥ)Ĥp δT(En - Ĥ), wherep is an arbitrary positive integer.
First, by using the definition of the renormalized Hamiltonian,
∆λĤsc ) Ĥ - λh, we can easily obtain the following identity,

where(pk ) is the binomial coefficient and other symbols have
been explained in the main text. We now substitute eq 7 for a
truncated series representation of the spectral density operator
in eq B-1) to obtain

whereẼm ) (Em - λh)/∆λ. Next, we use the (unique) property
of Chebyshev polynomials, 2Tm(x)Tn(x) ) Tm+n(x) + Tm-n(x),
to obtain the following identity.

On substituting eq B-3 into B-2, we obtain

As explained in Appendix A, we can perform a partial
resummation of the double series in eq B-4 by utilizing a
Cauchy-type expansion.122 Let us first consider a part of the
series in eq B-4, which we can expand, and then perform the
necessary summation as follows,

where the coefficients are defined as follows

δT(Em - Ĥ)Ĥp δT(En - Ĥ) )

4

π2

(λh)p

(∆λ)2
∑
k)0

N

∑
k′)0

N (1 -
δk,0

2 )(1 -
δk′,0

2 )Re[D(Ẽm) Zk(Ẽm)] ×

Re[D(Ẽn) Zk′(Ẽn)]{∑
t)0

p (pt )(∆λ

λh )t

Tk(Ĥsc)[T1(Ĥsc)]
t Tk′ (Ĥsc)}

(B-2)

Tk(Ĥsc)[T1(Ĥsc)]
t Tk′ (Ĥsc) )

1

2t+1
∑
r)0

t (tr )[Tk+k′+t-2r(Ĥsc) + Tk-k′+t-2r(Ĥsc)] (B-3)

δT(Em - Ĥ)Ĥp δT(En - Ĥ) )

(λh)p

(π∆λ)2
∑
t)0

p (pt )(∆λ

2λh )t

∑
r)0

t (tr ) ∑
k)0

N

∑
k′)0

N (1 -
δk,0

2 )(1 -
δk′,0

2 ) ×

Re{D(Ẽm) D(Ẽn) Zk(Ẽm) Zk′ (Ẽn) +

D(Ẽm) D*( Ẽn) Zk(Ẽm) {Z*( Ẽn)}
k′} ×

[Tk+k′+t-2r(Ĥsc) + Tk-k′+t-2r(Ĥsc)] (B-4)

∑
k)0

N

∑
k′)0

N (1 -
δk,0

2 )(1 -
δk′,0

2 ) D(Ẽm) D(Ẽn) Zk(Ẽm) Zk′(Ẽn) ×

[Tk+k′+t-2r(Ĥsc) + Tk-k′+t-2r(Ĥsc)] )

D(Ẽm) D(Ẽn) ∑
k)0

N (1 -
δk,0

2 )[Zk(Ẽn) ∑
k′)0

k {Z(Ẽm)

Z(Ẽn)
}k′

+

{Zk(Ẽm) + Zk(Ẽn)}∑
k′)1

N-k

{Z(Ẽm) Z(Ẽn)}
k′]Tk+t-2r(Ĥsc) +

D(Ẽm) D(Ẽn)[Z(Ẽn)

Z(Ẽm)]N

∑
k)N+1

2N

Zk(Ẽm) ∑
k′)0

2N-k{Z(Ẽm)

Z(Ẽn)
}k′

Tk+t-2r(Ĥsc)

) ∑
k)0

N

Ak
(1)[Z(Ẽm), D(Ẽm); Z(Ẽn), D(Ẽn)]Tk+t-2r(Ĥsc) +

Ak
(2)[Z(Ẽm), D(Ẽm); Z(Ẽn), D(Ẽn)]Tk+N+t-2r(Ĥsc) (B-5)

Fk(Zm,Zn) ) ( ∆t
2πp)2

{Rk(Zm,Zn) + â′k(Zm,Zn
/) + â′′k (Zm

/ ,Zn)}
(A-5)

F k
/(Zm,Zn) ) ( ∆t

2πp)2
{Rk(Zm

/ ,Zn
/) + â′k(Zm

/ ,Zn) + â′′k (Zm,Zn
/)}

(A-6)

Rk(Zm, Zn) )

{1
2[Zm + Zn

Zm - Zn
(Z m

k - Z n
k) +

1
2

{δk,0 - δk,N(Z m
k + Z n

k)}]
1
2

(ZmZn)
k-N [Zm + Zn

Zm - Zn
×

(Z m
2N-k - Z n

2N-k) +
δk,2N

2 ]
Z m

k [(N - |N - k|) +

1
4

(δk,0 - 2δk,N + δk,2N)]

(0 e k e N andZm * Zn)

(N + 1 e k e 2N andZm * Zn)

(0 e k e 2N andZm ) Zn)

(A-7)

â ′k(Zm, Zn) )

{(1 -
δk,0

2 ) Z m
k

2 [ZmZn + 1

ZmZn - 1
{(ZmZn)

N-k - 1} +

δk,N

2
-

δk,0

2
{(ZmZn)

N + 1}]
(1 -

δk,0

2 )(N - k -
δk,0

2
+

δk,N

4 )Z m
k

0

(ZmZn * 1)

(ZmZn ) 1)

(k g N + 1)

(A-8)

â ′′k (Zm, Zn) )

{(1 -
δk,0

2 ) Z n
k

2 [ZmZn + 1

ZmZn - 1
{(ZmZn)

N-k - 1} +

δk,N

2
-

δk,0

2
{(ZmZn)

N + 1}]
(1 -

δk,0

2 )(N - k -
δk,0

2
+

δk,N

4 )Z m
-k

0

(ZmZn * 1)

(ZmZn ) 1)

(k g N + 1)

(A-9)

δT(Em - Ĥ) Ĥp δT(En - Ĥ) )

(λh)p

(∆λ)2
∑
t)0

p (pt )(∆λ

λh )t

δT(Ẽm - Ĥsc) (Ĥsc)
t δT(Ẽn - Ĥsc) (B-1)

Scattering and Bound States J. Phys. Chem. A, Vol. 108, No. 41, 20049001



The above resummation process is valid because the series
in eq 7, when applied to a wave packet, is absolutely and
uniformly convergent, and it is presumed that the filtering
process at a particular energy is complete after summing toN
terms. Now we substitute the results from eq B-5 into eq B-4
to finally obtain

where

and

Equation B-8) is the main result, which can be used to obtain
the special cases for any positive integer,p.
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