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A theoretical study of primary kinetic isotope effects (KIEs) is presented for proton transfer (PT) reactions
in a polar environment in the nonadiabatic, i.e., tunneling, regime. This treatment differs from traditional
descriptions for PT most notably in the identification of a solvent coordinate as the reaction coordinate. The
theory explicitly addresses KIE features that are extremely sensitive to the proton donor-proton acceptor
mode dynamics. Besides KIE behaviors that arenot consistent withnontunnelingPT, individual KIE
aspects in some cases, such as magnitude, temperature dependence, variation with reaction asymmetry, and
Swain-Schaad behavior can yield results consistent withnontunnelingPT. However, a combination of KIE
aspectsswith particular emphasis on KIE variation with reaction asymmetry or temperaturescan clearly
identify tunneling in PT systems. In addition, PT via excited proton vibrational states is shown to significantly
contribute to the reaction rate and KIEs, especially for extremely asymmetric reactions, where it can
dominate.

1. Introduction

Proton transfer (PT) is of obvious importance in chemistry
and biology.1 Of particular interest is the growing attention to
the occurrence of tunneling in PT reactions,2-4 signaled
primarily by the observation of large primary kinetic isotope
effects (KIEs). In these reactions, it is apparent that the proton
donor-proton acceptor mode, often called a “promoting” or
“gating” mode,2-7 has a significant impact. When this PT occurs
in a hydrogen-bonded (H-bonded) AH‚‚‚B complex, e.g.

the relevant coordinate would be the H-bond coordinate, e.g.
the A‚‚‚B separation.8 Such coupling between H-bond dynamics
and tunneling rates has, for example, been implicated in a variety
of enzymatic reactions,2-4,6 and KIEs have been used to
characterize the H-bond dynamics.2-4,6 In addition to large KIEs
kH/kD > 10, anomalous Swain-Schaad ratios and non-Arrhenius
temperature dependencies are proposed to be signatures of a
tunneling process.2

This paper extends previous work on nonadiabatic, i.e.,
tunneling, PT reactions by this group5 to explicitly examine KIE
trends, with emphasis on effects due to the H-bond mode
dynamics and excited proton vibrational state transitions. The
“nonadiabatic” terminology refers to the perspective that tun-
neling can be regarded as a (nuclear) nonadiabatic transition
between diabatic proton vibrational levels localized in the
reactant and product wells.5,6 With this formalism, we analyze
four KIE trends for tunneling PT reactions to assist in clarifica-
tion and analysis of KIE behavior: (i) KIE magnitude, (ii)

temperature dependence, (iii) variation with reaction asymmetry,
and (iv) the Swain-Schaad relationship connecting ratios of
isotope effects,11 e.g.,kH/kT ) (kD/kT)3.3.

This formalism uses a nontraditional view for PT in solution
and other polar environments.5,6,12 In this perspective, the
reaction coordinate is rearrangement of the environment sur-
rounding the H-bond complex and does not include proton
motion: after a suitable rearrangement, proton tunneling then
occurs, through anelectronically adiabatic barrier. In the
resulting rate constant, this rearrangement cost largely deter-
mines the activation free energy, while the tunneling features
enter as a prefactor.5 This contrasts with the “traditional”
view1,13,14 where the reaction coordinate explicitly includes
classical proton motion. In the traditional view, a tunneling
correction is added to the rate expression to account for the
transmission probability through the reaction barrier.13-16 The
one-dimensional picture for this correction is often referred to
as “Bell” tunneling,16 while the multidimensional tunneling
picture is denoted as “corner-cutting” .15,17

Further, the standard picture normally makes no reference to
the solvent. To the degree that the solvent is included, it is
imagined to alter the rate via a differential equilibrium solvation
of the TS and the reactant.1,13-17 However, the equilibrium
solvation assumptionswhich requires that the solvent motion
is fast compared to the relevant motion of the reacting solutes
in the TS regionsis not at all plausible in the case of high
frequency quantum proton motion; indeed, the opposite situation
is more appropriate: the solvent is generally slow compared to
the proton motion.5,6,12,18-20

The outline of the remainder of the paper is the following.
After a review of the general picture and formalism of nonadi-
abatic PT in section 2, section 3 presents the KIE behavior
arising from this formalism. Concluding remarks are offered in
section 4.
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2. Proton Nonadiabatic Tunneling Theory

Here we briefly review the key aspects of the tunneling rate
constant formulation of ref 5. We begin with a review of the
basic PT tunneling regime picture and the role of the H-bond
mode, followed by the rate constant formulation including this
mode, but restrict PT to involving only the ground proton
vibrational state. The rate constant including excited proton
vibrational levels is then discussed.

2a. General Perspective. 2a.1. Preliminary Fixed H-Bond
Picture. In the underlying picture of PT reactions5,7,12,18-20

employed within, the reaction is driven by configurational
changes in the surrounding polar environmentsa feature of
much modern work on PT reactions,5,7,12,18-21 and the reaction
activation free energy is largely determined by the reorganization
of this environment. The physical picture is displayed in Figure
1, with a fixed H-bond separation, a constraint later relaxed.
The system free energy as a function of the proton coordinates
involving the electronicallyadiabatic proton potentialsis
displayed with the reactant and productdiabatic proton vibra-
tional states indicated, for three values of the solvent coordinate
characterizing different environmental configurations: reactant
stateR (Figure 1a), transition state (TS) ‡ (Figure 1b), and
product stateP (Figure 1c). TheR andP proton diabatic levels
in Figure 1a-c are found by solving the nuclear Schro¨dinger
equation for the proton in each of the reactant and product wells,
respectively. (Adiabaticproton levels are found by solving the
Schrödinger equation for the entire proton potential.) The
evolving diabatic ground proton vibrational states define free
energies as a function of the environment rearrangement, shown
in Figure 1d. The reaction free energy barrier is due to the
solvent, and at the TS solvent configuration, the proton potential
is a symmetric double well, Figure 1b. At this thermally
activated TS position, the proton reactant diabatic vibrational
state is in resonance with the corresponding ground proton
product state, and the proton can thus tunnel. This view is in
stark contrast with the traditional picture for PT where the
reaction coordinate and barrier are associated with the proton
coordinate, and tunneling is a correction.15-17

For the picture in Figure 1, the rate constant for nonadiabatic
PT between reactant and product proton ground vibrational states
with the H-bond separation (hereafterQ) fixed is5,18,20

where the free energy barrier∆Gq is

and∆GRXN is the reaction asymmetry in Figure 1d, andES is
the solvent reorganization (free) energy. The tunneling prob-
ability is governed by the square of the proton couplingC
(described in more detail below), and thus the PT rate constant
in eq 2.1 involves the combination of thermal activation to the
TS in the solvent coordinate and the tunneling transmission
probability at that TS.22

2a.2. H-Bond Mode and Proton Coupling.Figure 1 depicts
what we term the proton nonadiabatic regime, in which the
quantized diabatic proton vibrational levels lay below the barrier
in the electronically adiabatic proton potential at the environ-
ment’s TS configuration (Figure 1b). Figure 2 displays proton
potentials andadiabatic proton vibrational levels for the
environment’s TS configuration for three different proton
donor-proton acceptor (H-bond) distances, three differentQ
values.25 Starting with largeQ, Figure 2a has the proton ground
and first excitedadiabaticvibrational levels below the proton
barrier. AsQ is decreased, the proton barrier decreases. In Figure
2b, the proton levels still lie below the barrier. In both cases,
the diabatic levels (e.g., Figure 1b) are split by twice the
couplingC, which determines the tunneling probability between
the diabatic levels. This coupling increases as the H-bond
coordinateQ decreases, as the proton potential barrier for
tunneling is lower and narrower. This is a key and strong
dependence.

We pause to observe that for small enoughQ, Figure 2c, the
adiabatic levels lie above the proton barrier, and while the proton
motion is still quantum, the reaction is no longer tunneling.21

Figure 2 emphasizes that attention must be paid to whether the
H-bond vibration remains at large values where PT is a
nonadiabatic transition (tunneling, Figure 2, parts a and b), or
whether the H-bond vibration allows the system to reach a small
enough separation such that the proton vibration adiabatically
follows the environment’s slower rearrangement (nontunneling,
Figure 2c).26 Here we restrict ourselves to PT systems that are
entirely nonadiabatic.29 (KIEs for adiabatic nontunneling PT
reactions have been presented elsewhere.30) Finally, we refer

Figure 1. Free energy curves vs proton position at (a) the reactant R,
(b) transition state ‡, and (c) product state P solvent configurations. In
each case, the ground diabatic proton vibrational energy levels are
indicated for both the reactant and product proton wells. (d) Free energy
curves vs the solvent coordinate for both diabatic proton levels displayed
in parts a-c.

Figure 2. Variation of proton potentials at the reaction transition state
configuration with decreasing AB separation, going from part a to part
c. Both the ground and first excited protonadiabaticvibrational levels
are indicated.
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to proton transfer throughout, but the theory applies to H atom
and hydride transfer as well.8

As noted above, the splittingC increases as the H-bond
separation decreases, e.g. going from Figure 2a to Figure 2b,
due to the increased tunneling probability for a smaller proton
barrier. TheQ dependence ofC is exponential, which can be
understood via a semiclassical formula5b,e,31

in which C depends on the TS proton potential properties: the
curvatures in the wells,ωR andωP, and at the top of the bar-
rier ωq, as well as the barrier heightVq in the proton coordi-
nate. The differenceVq - ZPE, where ZPE is the zero-point
energy of the proton, ZPE≈ pωR/2, is the vertical distance
from the ground proton vibrational level to the top of that
barrier. The frequencies in eq 2.3 contain the sole mass
dependence,ω ∝ 1/xm. The Q dependence in eq 2.3 pre-
dominantly resides in the change in proton barrier heightVq vs
Q. Model calculations for OH‚‚‚O systems21,27 and quantum
chemistry calculations of NH‚‚‚N systems32 show that the
change inVq vs Q in the tunneling regime is predominantly
linear.33 This behavior then leads via eq 2.3 to a predominantly
linear exponential form

whereQeq is the equilibrium H-bond separation in the reactant
state andRL is the exponent characterizing the exponential
dependence (L) H, D, and T).

The mass dependence in eq 2.4 is contained withinRL and
CeqL. In particular,RL is expected to be of the formRL ∝ xmL
because the exponent in eq 2.3 is inversely proportional to the
barrier frequencyωq. Evaluation ofC for proton potentials
derived from quantum chemistry and model calculations21,27,32-34

confirms this (e.g.,RD ≈ x2 RH, and RT ≈ x3 RH), with
typical values5 RH ∼ 25-35 Å-1. We will exploit this mass
correlation throughout in analyzing KIEs.35

In evaluating rate constant expressions given below, we will
use a proton coupling derived from a proton TS potential with
a significant barrierVq ) 25 kcal/mol, so that the PT system
remains in the tunneling regime, and with well and barrier
frequencies consistent with an O‚‚‚O system,ωR

H ) 3200 cm-1

and ωH
q ) 2700 cm-1. D and T isotope frequencies are

appropriately mass-scaled, and from eq 2.3,CeqH ) 3.57× 10-4

kcal/mol, CeqD ) 3.74 × 10-6 kcal/mol, andCeqT ) 1.27 ×
10-7 kcal/mol. Finally, RH is chosen to be 28 Å-1, and
RD ) 39.6 Å-1 and RT ) 48.5 Å-1 are appropriately mass-
scaled.

2b. Proton Nonadiabatic “Tunneling” Formalism with
Proton Donor)Acceptor Vibration. The importance of proton
donor-proton acceptor modes in nonadiabatic PT has been
emphasized in previous work.5 We limit our discussion to a
single modesthe H-bond modesbut other modes that regulate
the barrier through which the proton must tunnel, e.g., H-bond
bending modes,6,30,36can be dealt with in a similar manner. In
this section, we summarize key aspects of the PT nonadiabatic
formalism, referring the reader to ref 5 for a more detailed
presentation, where a series of analytic forms for the rate
constant were derived, each form corresponding to a specific
regime. We first briefly present an extreme, purely quantum
picture for theQ vibration in its ground vibrational state, and

then proceed to higher temperaturesT where the mode is
progressively excited, ultimately becoming classical. For sim-
plicity, we take a harmonic H-bond vibrationUQ(Q) ) UQ,eq +
(1/2)mQωQ

2(Q - Qeq)2, with an effective massmQ and vibrational
frequencyωQ.37 For the moment, we retain the restriction to
PT between ground proton vibrational levels in the reactant and
product.

For low temperaturespωQ . RT, the Q vibrational mode
resides primarily in its ground state, and the PT rate expression
is5

which is similar to eq 2.1 except that the proton couplingC is
replaced by its quantum average over the groundQ-vibrational
state

Here ∆Q ) QP,eq - QR,eq is the difference in product and
reactant equilibriumQ positions, andEQ ) (1/2)mQωQ

2∆Q2 is
the associated reorganization energy.ERL is a quantum energy
term associated with the tunneling probability’s variation with
the Q vibration

Even with ∆Q ) 0 (EQ ) 0), C is increased from its fixed
valueC(Qeq) by exp(ERL/pωQ): there is a finite probability of
smaller H-bond separations even at lowT due to zero point
motion of Q. It is to be emphasized that this increase is larger
for heavier particles for whichERL is larger (ERL ∝ mL since
RL ∝ xmL). Here, the ratioERL/pωQ can be thought of as the
square of the length scale of theC (tunneling probability)-
H-bond mode couplingRL

2 times the average square quantum
fluctuation ofQ5

The ratioERL/pωQ thus describesERL as a quantum energy scale
for the localization of theQ wave function. IfERL/pωQ ,1,
the couplingC is essentially that for fixedQ ) Qeq. As ERL/
pωQ increases,C increases, corresponding to increased quantum
accessibility of smallerQ values.

For higher temperatures, the population ofQ-vibrational
excited states is increased, with thenth eigenstate with eigenen-
ergy En ) pωQ(n + 1/2) probability given byPn ) exp(-
ânpωQ)[1 - exp(-âpωQ)]. Now, there are a set of solvent free
energy curves for both the reactant and product for each
Q-vibrational state. Figure 3 displays this for the ground and
first excited Q-vibrational state free energy curves for the
reactant (n ) 0, 1) and product (m ) 0, 1), with each set of
levels separated by one quantum of energypωQ. PT thus can
occur via a number of possible paths, starting from a thermal
population of reactantQ-vibrational states. The arrows in Figure
3 correspond to two such paths: starting from either the ground
or excitedQ-vibrational state in the reactant and ending in the
product groundQ-vibrational state. (For the system in Figure
3, there are two additional paths ending in the excitedQ product

C(Q) ≈ pxωRωP

2π
exp[- π

pωq
(Vq - ZPE)] (2.3)

CL(Q) ) CeqL exp[-RL(Q - Qeq)]; CeqL ) CL(Qeq) (2.4)

kL )
C00

2

p x π
ESRT

exp[-
(∆GRXN + ES)

2

RT(4ES) ] (2.5)

C00
2 ) |〈0|C(Q)|0〉|2 )

CeqL
2 exp[RL∆Q +

(ERL - EQ)

pωQ
] (2.6)

ERL ) p2RL
2/2mQ (2.7)

RL
2〈(Q - Qeq)

2〉QM ) RL
2 p
2mQωQ

)
ERL

pωQ
(2.8)
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vibrational state.) Each path has a reaction activation free energy
barrier∆Gnfm

q

where∆Enm ) pωQ(m - n), and the transition probability at
each TS (crossing point) involves the matrix element forC for
the nth reactant andmth productQ vibrational states:Cnm )
〈n|C(Q)|m〉. For this dynamicalQ perspective, the PT rate is
the sum of all possible state-to-state transition contributions
starting with a thermal distribution of reactant states5a

For harmonicQ, Cnm is expressible in terms of Laguerre
polynomials L5a

We briefly discuss, for future use, the activation energy for each
transition in eq 2.10. The combination of the excitation
probabilityPn of thenth reactant state and the free energy barrier
for each transition∆Gnfm

q gives

One should note that the second exponent in eq 2.12, i.e.,npωQ

+ ∆Gnfm
q - ∆G

q
ofo, is symmetric upon interchange ofn and

m, if ∆GRXN is inverted as well, e.g., the second argument of
the activation energy withm > n for an endothermic reaction,
∆GRXN > 0, will be identicalto that for an exothermic reaction
of equal magnitude reaction asymmetry,∆GRXN < 0, with m
andn switched. The significance of this, when combined with
a similar symmetryCnm

2 ) Cmn
2 in eq 2.11, is the following.

The combination of the activation barrier in eq 2.12 andCnm
2

describes then andm dependence for each contribution in eq
2.10. The symmetry of the combination implies that the
contribution of excited H-bond vibrational states will sym-
metrically increase with increasing reaction asymmetry (increas-
ing |∆GRXN|). This behavior is central to the reaction asymmetry
dependence of rate constants and KIEs, to be discussed in
section 3a.

Equation 2.10 gives the nonadiabatic PT rate constant
expression for any temperature. For low temperaturespωQ .
RT, theQ mode predominantly resides in its ground vibrational
state, and eq 2.10 reduces to eq 2.5. AsT is increased,
contributions from excitedQ vibrational states become more
significant. For the intermediate regimepωQ ∼ RT, many paths
must be considered in eq 2.10, and for high temperaturespωQ

, RT, the Q mode is classical and a continuum of levels is
involved.

In these latter regimes,pωQ ∼ RT and pωQ , RT, the PT
rate expression eq 2.10 can be simplified for∆Q ) 0 to5

where the reaction barrier is given by

where ẼRL is an isotope-dependent parameter viaERL with â )
1/RT: the ratio ẼRL/ERL is the thermal average of the oscillator
potential energy to the thermal valueRT/2. The square proton
coupling factor in eq 2.13 is the thermal average over theQ
vibrational states5

As one expects,RL (via ERL, eq 2.7) contributes significantly
to the average in eq 2.16. In particular, the sensitivity of the
coupling ofC to Q dynamics is displayed in the ratioERL/pωQ

so that〈C2〉 increases as this ratio increases (cf. eq 2.8). As an
example, a system withERH ) 1 kcal/mol,pωQ ) 200 cm-1,
andT ) 300 K, gives a value of 7.8 for the argument in the
exponent in eq 2.16, resulting in an∼2500-fold rate enhance-
ment from the fixedQ ) Qeqvalue. Heavier particles will benefit
even more from thermal activation ofQ motion becauseERL/
pωQ is larger (ERL ∝ mL); for the above example with D instead
of H, the rate enhancement from theQ fixed is ∼(2500)2-fold.
Thus, the exponential in eq 2.16decreasesthe KIE from a fixed
Q value by∼2500-fold. The actual KIE magnitude is reflected
by the isotopic ratio of eq 2.16. Using theCeq values given at
the end of section 2a,Ceq,H

2/ Ceq,D
2 ) 9100, the isotopic ratio

of eq 2.16 is this fixedQ value reduced by∼2500-fold〈C2〉H/
〈C2〉D ) 3.6. Physically, the reduction in KIE is due to the
heavier particle “waiting” for a larger compression in the H-bond
coordinate to compensate for a weaker tunneling probability.

Figure 3. Proton diabatic free energy curves vs the solvent coordinate
for individual reactant (n) and product (m) H-bond vibrational states.

∆Gnfm
q )

(∆GRXN + ∆Enm + ES)
2

4ES
(2.9)
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∑
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∆Gnfm
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Cnm
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Ceq
2e-RL∆Qe(ERL-EQ)/pωQ (xERL

pωQ
- x EQ

pωQ
)2(n-m)

×
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n! [Lm

n-m(EQ - ERL

pωQ
)]2

; m e n

) Ceq
2e-RL∆Qe(ERL-EQ)/pωQ (xERL

pωQ
+ x EQ

pωQ
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×

n!
m![Ln

m-n(EQ - ERL

pωQ
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Pn exp[-
∆Gnfm

q

RT ] ∝ exp[-
(npωQ + ∆Gnfm

q )

RT ]
) exp{-

∆Gofo
q

RT
- {[pωQ(m - n)]2 +

2pωQ(m - n)∆GRXN +

2pωQ(m + n)ES}/4RTES} (2.12)

kL )
〈C2〉

p x π
(ES + ẼRL)RT

exp[-
∆GL

q

RT ] (2.13)

∆GL
q )

(∆GRXN + ES + ERL)2

4(ES + ẼRL)
(2.14)

ẼRL ) ERL(1/2)âpωQ coth((1/2)âpωQ) (2.15)

〈C2〉 ) CL
2(Qeq) exp(2 ERL

pωQ
coth((1/2)âpωQ)) (2.16)
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Also apparent in eq 2.16 is the increase of〈C2〉 with temperature
due to the increased probability of smallerQ separations,
governed by the ratiopωQ/RT. Clearly, H-bond dynamics plays
a critical role in the magnitude of rate constants and KIEs.

ERL also appears in the reaction barrier in eq 2.14;ERL appears
as an energetic contribution to that barrier due to thermal
activation of the H-bond mode. The isotopic dependenceERL

∝ mL will play a key role in isotope and temperature effects, a
theme discussed further within. First, however, we need to
describe the inclusion of excited proton vibrational levels.38

2c. Excited Proton Product and Reactant Vibrational
States.So far, PT has been assumed to occur from the reactant
ground proton diabatic vibrational state to the corresponding
state in the product. However, for very exothermic or endo-
thermic reactions (|∆GRXN| g ES + EQ + pωL), excited proton
vibrational states will become important. The proton can be
transferred into an excited proton product vibrational state for
an exothermic case and from a thermally excited reactant proton
vibration for an endothermic case. This is analogous to the
Figure 3 H-bond mode picture, except that now each free energy
curve will correspond to a diabatic proton vibrational level.

Figure 4 presents the TS proton potentials where four such
transitions are involved. Each TS or intersection of the proton
diabatic free energy curves corresponds to a specific resonance

situation. Figure 4b is the symmetric proton potential for the
ground state-to-ground state (0-0) transition and the corre-
sponding first excited-state transition (1-1). Note that the 1-1
transition will have a higher transition probability (largerC)
because the excited proton level is closer to the proton barrier
top. The increase in tunneling probability for the 1-1 transition
comes, however, at a cost of 1 quantum of proton vibration
excitation, which is added to the activation energy (analogous
to that in eq 2.12, see also Figure 3). Parts a and c of Figure 4
show the proton potentials with 1-0 and 0-1 transitions,
respectively. Both will have a reduced tunneling probability
compared with the 0-0 transition due to a smaller barrier to
tunnel through.39 Starting on the ground proton vibrational
reactant free energy curve, thermal excitation of the reactant
proton vibrational mode leads to the 1-0 transition, assisting
endothermic reactions, while extra solvent activation passed the
0-0 transition to the 0-1 transition assists exothermic reactions.
The interplay between cost of thermal excitation and gain from
increased tunneling probability and their isotope dependence
will play a significant role in KIEs. This will be described further
in section 3 with examples.

Excited proton vibrational states are included in the PT rate
as a sum over all state-to-state PT ratesknRfnP from a proton
reactant statenR to a product statenP

where each state-to-state rate is weighted by the reactant state
thermal occupationPnR (PnR ) exp(-âEnR)/∑nR exp(-âEnR), and
EnR ) pωR(nR + 1/2)). knRfnP is given by eq 2.10

except that the reaction free energy barrier∆Gq
n,m;nRfnP and

couplingCnm(nR f nP) are now transition-specific. The reaction
asymmetry for each transition depends on the reactant and
product states, and thus it alters the reaction barrier5e

whereωR andωP are the proton frequencies in the reactant and
product states.

The proton coupling squaredCnm
2(nR f nP) is identical to

that in eq 2.11

except thatCeqL(nR f nP) is transition-dependent.CeqL(nR f
nP) increases as the quantum numbersnR andnP increase because
the width and height of the proton coordinate barrier is smaller
as the proton level sits higher in either well. Using proton
potential parameters presented at the end of section 2a results
in a significantly higher proton coupling, a∼10-fold increase
going from the 0-0 (nR ) 0 to nP ) 0) transition to either the
0-1 or 1-0 transition.40 A good approximation forCeqL for all
the transitions involved is a variant of eq 2.340

Figure 4. Proton potentials for the solvent coordinate TS for four
proton vibrational transitions (nR - nP): (a) 1-0, (b) 0-0 and 1-1,
and (c) 0-1. The lines indicate diabatic proton vibrational levels.

kL ) ∑
nR

∑
nP

PnR
knRfnP

(2.17)

knRfnP
) ∑

n
∑
m

Pn

Cnm
2(nR f nP)

p x π

ESRT
exp[-

∆Gn,m;nRfnP

q

RT ]
(2.18)

∆Gn,m;nRfnP

q )
(∆GRXN + ∆Enm + nPpωP - nRpωR + ES)

2

4ES
(2.19)

Cnm
2(nR f nR) ) |〈n|CnR

,nR
(Q)|m〉|2 (2.20)
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Hence, the proton couplingQ dependenceCnR,nP(Q) in eq 2.20
is written

In principle, RL in eq 2.22 is also transition-dependent, but
calculations indicate that the dependence is not significant,41

and we thus regardRL as being isotope-dependent, but not
transition-dependent. For example, the thermal average ofC2

for the moderate to high-temperature regime in eq 2.16 is
accordingly

Equations 2.17 and 2.18 formally give the general nonadia-
batic PT rate constant for all regimes. For low temperatures,
the nonadiabatic PT rate only involves a few excitations in either
the proton or H-bond mode. For moderate to high temperatures,
more excitations are probable, and here the nonadiabatic PT
rate is given by eq 2.17 with a modified version of eq 2.13 for
knRfnP

where the reaction barrier is altered from the 0-0 value in eq
2.14

The above PT rate constant expressions will now be used to
analyze KIE trends.

3. Nonadiabatic Proton Transfer Kinetic Isotope Effects

In this section, we present the KIE behaviors that follow from
the nonadiabatic PT formalism of Sec. 2, focusing on the four
KIE observables (i-iv) listed in the Introduction. We first
discuss the KIE magnitude and its variation with reaction
asymmetry, which serves to demonstrate the importance of
excited proton and H-bond vibrational states, and then we
examine the temperature dependence. The Swain-Schaad
behavior concludes the KIE behavior discussion.

3a. Kinetic Isotope Effect Magnitude and Variation with
Reaction Asymmetry.Traditional treatments of KIEs, including
those invoking tunneling along a minimum energy path, predict
that the KIE is maximal for a symmetric reaction∆GRXN )
0.42 We now present the nonadiabatic PT KIE vs reaction
asymmetry behavior, and show that a similar behavior results.
During the course of our discussion, the magnitude of tunneling
PT KIEs will also be presented.

3a.1. Low Temperatures and High H-Bond Frequencies.
The reaction free dependence for the extreme low-temperature
regimepωQ . RT eq 2.5 is isotope-independent (see note in
section 2 aboutES isotope independence), and as such, no
variation in KIE with reaction asymmetry is expected. To

demonstrate the sensitivity topωQ/RT and the importance of
excited proton and H-bond vibrational states even in this limit,
we consider a system withpωQ/RT larger than 1:T ) 200 K;
pωQ ) 500 cm-1, pωQ/RT∼ 3.6. We also use the parameters
given at the end of section 2a.2, except thatVq ) 20 kcal/mol,
with ES ) 6 kcal/mol,∆Q ) 0, andmQ ) 20 amu.

The rates for PT and DT using eq 2.17 with eq 2.18 are
plotted vs ∆GRXN in Figure 5a. Also shown are the rates
excluding any excitation by H or D in the reactant or product,
i.e., only including the 0-0 proton transition. Excited proton
states are clearly significant for more asymmetric cases (|∆GRXN|
> pωL) where the total rate differs from the 0-0 rate. Since
pωH ∼ 9 kcal/mol > pωD ∼ 6.4 kcal/mol, the asymmetry at
which the rate is not dominated by the 0-0 transition is smaller
for D than for H.

We now turn to the KIEs of Figure 5a, displayed in Figure
5b. Both KIE trends are maximal for∆GRXN ) 0 and drop off
with increasing asymmetry. First note that the magnitude of the
KIEs in Figure 5b is large (∼2 orders of magnitude), which is
consistent with PT reactions in a fairly rigid H-bond complex,
where tunneling is expected. Since no proton excitation is
included in the 0-0 KIE, the KIE falloff here is due solely to
differential isotopic excitation in the H-bond mode. Such a
H-bond mode excitation gives an∼3-fold decrease in KIE over
the given reaction asymmetry range. Excitation inQ is more
beneficial to the heavier D becauseC (which governs the
tunneling probability) is more sensitive toQ for largermL, i.e.,
ERD > ERH (see eq 2.11), and thus this falloff in KIE with
increasing reaction asymmetry is due to a preferential increase
in rate for D compared with H (see discussion of eq 2.12).

The next point of interest in Figure 5b is the significant impact
on the KIE (another∼2-fold decrease) from the contribution
of H and D excitation for asymmetric reactions, visible from
the KIE difference between the total rate and that for the 0-0

CeqL(nR f nP) ≈ pxωRωP

2π
×

exp{- π
pωq

(Vq - (1/2)[(nR + 1)pωR + nPpωP])} (2.21)

CnR,nP
(Q) ) CeqL(nR f nP) exp[-RL(Q - Qeq)] (2.22)

〈CnR,nP

2〉 ) CeqL
2(nR f nP) exp(2 ERL

pωQ
coth((1/2) âpωQ))

(2.23)

knRfnP
)

〈CnR,nP

2〉

p x π
(ES + ẼRL)RT

exp[-
∆GnR,nP

q

RT ] (2.24)

∆GnR,nP

q )
(∆GRXN + nPpωP - nRpωR + ES + ERL)2

4(ES + ẼRL)
(2.25)

Figure 5. (a) Log rate constant vs reaction asymmetry for H and D
(bold lines) using eqs 2.17 and 2.18 (T ) 300 K; pωQ ) 1500 cm-1,
Vq ) 20 kcal/mol,ES ) 8 kcal/mol,∆Q ) 0, mQ ) 20 amu,pωH )
3200 cm-1, pωH

q ) 2700 cm-1, andRH ) 28 Å-1. D parameters are
appropriately mass scaled). Dotted lines indicate the logarithm of the
rate constant exclusively for the 0-0 transition for both H and D. (b)
KIE for the rates given in part a. Bold lines reflect the total rate
constants and KIEs, while dotted lines reflect only those including the
0-0 transition.
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transition. Here the excited proton or deuteron vibrational states,
with their increased coupling (tunneling probability), are more
easily accessible for asymmetric reactions, and these excited
levels are more thermally accessible for D than for H because
pωH > pωD. Excitation in both the proton or deuteron and
H-bond modes also becomes more significant for higherT, now
discussed.

3a.2. Moderate and High Temperatures.To illustrate the
KIE behavior for higher temperatures and softer H-bond
complexes (pωQ/RT∼ 1 andpωQ/RT < 1), we consider a PT
system with the parameters presented in section 2a, except that
T ) 300 K, pωQ ) 300 cm-1, ES ) 8 kcal/mol, andVq ) 25
kcal/mol. Here we use eq 2.17 with eq 2.24.

Parts a and b of Figure 6 display logkL vs ∆GRXN for H and
D transfer, respectively, with the individual contributions of
significant transitionsnR f nP indicated. The increasing
significance of the 0-1 and 0-2 transitions is apparent with
increasing exothermicity, and that of the 1-0 and 2-0 transi-
tions with increasing endothermicity. These transitions become
significant for smaller reaction asymmetry for D than for H
becausepωH > pωD.43

The KIE for Figure 6 is displayed in Figure 7. The behavior
is maximal at∆GRXN ) 0 and falls off with increasing reaction
asymmetry, for the same reason discussed in section 3a.1. The
KIE magnitude is, however, much smaller than that in Figure
5, due to the increased H-bond mode flexibility and the higher
temperature. In fact, the KIE magnitude for fairly asymmetric
reactions would be consistent withnontunneling PT. To
emphasize this important point, the KIE with a slightly lower
H-bond vibrational frequencypωQ ) 275 cm-1 is also included
in Figure 7. The KIE magnitude decreases by a factor of 3,
emphasizing the sensitivity of the KIE to the donor-acceptor
frequency. Again, this KIE behavior cannot be distinguished
from that for nontunneling PT.

In summary, the maximal KIE behavior for tunneling PT is
due to increased excitation in both the proton and H-bond

modes, excitations which become more facile with increased
reaction asymmetry. Proton excitation increases the tunneling
probability, via the proton couplingC eq 2.21, and because the
deuteron mode is easier to excite than H,pωH > pωD, this
benefits D more than H. Similarly, H-bond excitation also
benefits D more than H because the D tunneling probability is
more sensitive to changes inQ: see theERL/pωQ ratio in eqs
2.11 and 2.16 withERH < ERD.

3a.3. Free Energy Relationship Analysis.The KIE variation
with ∆GRXN behavior just described for the moderate to highT
regime will now be analyzed quantitatively. First, it will prove
useful to present an isotope-dependent free energy relation for
eq 2.17 with 2.24; the KIE vs∆GRXN behavior will then be
deduced.

The PT rate’s variation with reaction asymmetry, near∆GRXN

) 0, can be generally described by

wherekL
o is the symmetric reaction∆GRXN ) 0 rate constant

and RjoL and Rj ′oL are, respectively, the familiar Brønsted
coefficient1,14 and its derivative evaluated for the symmetric
reaction

(The overbar notation is introduced to distinguish the Brønsted
coefficient from the inverse coupling lengthRL.) We begin the
analysis by anticipating that the 0-0 rate kL00 will have a
significant contribution near∆GRXN ) 0, and thus the rate
expression in eq 2.17 can be written in terms ofkL00 times the
sum of the coefficients for each transition

where the transition coefficients are

Here ∆∆GnR,nP

q is the difference between the general reac-
tion barrier ∆GnR,nP

q eq 2.25 and that,∆GL0,0
q , for the 0-0

case

Figure 6. Log k vs reaction asymmetry (T ) 300 K) for H (a) and D
(b) including excited proton/deuteron vibrational states (solid lines).
Broken lines indicate individual contributions from 0 to 0, 0-1, 1-0,
0-2, and 2-0 transitions. Rate constants were calculated with eqs 2.17
and 2.24 (T ) 300 K; pωQ ) 300 cm-1, Vq ) 25 kcal/mol,ES ) 8
kcal/mol,mQ ) 20 amu,pωH ) 3200 cm-1, pωH

q ) 2700 cm-1, and
RH ) 28 Å-1. D parameters are appropriately mass scaled).

Figure 7. kH/kD for total rate constants in Figure 6 (solid line). The
dotted line is the same PT system as the solid line, except thatpωQ )
275 cm-1 rather than 300 cm-1.
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The second expression in eq 3.3 defines the sum as a rate
constant enhancement factorFL due to excited proton transitions
from kL00.

The parameters in eq 3.1 are derived in this perspective with
the following results in Appendix A. The zero order contribution
ln kL

o to eq 3.1 involves thekL00 0-0 rate evaluated for the
symmetric reaction plus the rate enhancementFLo for ∆GRXN

) 0 due to other transitions

For thepωQ ) 300 cm-1 case in Figure 7, the rate is dominated
by the 0-0 ∆GRXN ) 0 rate, 99.8% for H and 88.9% for D.
The dominance by the 0-0 rate is less with increasing mass
because the excitation probability for heavier L is easier. The
Brønsted coefficientRjoL and its derivativeRj ′oL in eq 3.1 are
described by those for the 0-0 case plus a correction due to
the contribution of excited proton vibrational transitions:

The averages in eqs 3.7 and 3.8 are over the probability
distributionFnR,nP|o defined by eq 3.4 evaluated at∆GRXN ) 0
(see eq A.15).

For RjoL, the first term in eq 3.7sthe 0-0 contributionsis
slightly less than1/2 with a larger deviation for D becauseERD

> ERH. The excited-state contribution of the second term in eq
3.7 is small<0.1% for H and 1% for D, but because it is
positive, it numerically cancels the deviation from1/2 in the
first term, resulting in an isotope-independentRjoL ≈ 1/2.45 In
the context of TS structure, which is commonly associated with
the Brønsted coefficientRjL,1,13,14,21the RjoL ) 1/2 value is here
associated with the symmetric nature of the TS structure, i.e.,
the H (or D) diabatic levels in the reactant and product proton
wells are degenerate. However, for asymmetry in the H-bond
coordinate, e.g.∆Q * 0, one will haveRjoL * 1/2.45

For Rj ′oL, the 0-0 contribution in eq 3.8 (first term) is
decreased by the excited proton state contribution (second term).
This decrease is, however, small compared to the 0-0 Rj ′oL

contributions but is isotope-sensitive,<1% for H and 22% for
D, so that the 0-0 contribution is dominant; that the second
term in eq 3.8 is larger for D is due to the increased significance
of its excited states compared with that for H. This has an impact
for the isotope dependence of the FER, as discussed below.

The KIE behavior with reaction asymmetry is thus determined
by the isotopic difference in FERs in eq 3.1, e.g. for H vsD

where the position of the maximum in a KIE vs reaction
asymmetry plot (H vs D) occurs for a symmetric reaction∆GRXN

) 0, a direct result of the isotope independence of eq 3.7.45

The isotopic difference of eq 3.8 givesRj ′oH - Rj ′oD > 0 because

C is more sensitive to the H-bond mode dynamics for D than
for H, ERD > ERH. The result is a decrease in KIE as the reaction
asymmetry is increased for the reasons discussed above. The
magnitude of the curvature in the KIE plot is determined by
Rj ′oH - Rj ′oD, i.e., the isotopic difference of both terms in eq
3.8, and for the case in Figure 7, each term’s isotopic difference
contributes equally. The∼21% isotopic disparity between the
size of the second term in eq 3.8 for H and D makes its isotopic
difference significant.

3b. Temperature Behavior. The general temperature de-
pendence of the PT rate eq 2.17 is certainly not Arrhenius, and
thus it leads to nonlinear Arrhenius plots for both the rate and
KIE (cf. ref 5e). However, within a limited temperature range,
which is often the experimental situation, the rate and KIE can
exhibit linear behavior in an Arrhenius plot, despite the tunneling
character of the reaction. TheT dependencies of rates and KIEs
are now discussed for several regimes, and in the case of a
limited temperature range, expressions for effective activation
energies are obtained.

3b.1. Low Temperature.Forextremelylow T, pωL andpωQ

. RT, i.e., where there is only the 0-0 proton transition and
no excitation inQ, the rate eq 2.5 applies and clearly appears
to be Arrhenius, with an isotope-independent activation energy
EAL ) ∆Gq eq 2.2.46 The sole isotope dependence there arises
from the tunneling prefactorC2

00, the consequence of which is
a T-independent KIE:

For negligible H-bond mode reorganization∆Q ∼ 0 (EQ ∼ 0),
eq 3.10 reduces to (cf. eq 2.6)

whereERD ∼ 2ERH via mass scaling was used to simplify the
exponential’s argument. The KIE magnitude in this extreme
quantum regime forQ still depends onERH, despite no excitation
in Q; this arises from theQ zero point motion (see discussion
of eq 2.8). Consequently, even at very low T, H-bond mode
motion decreases the KIE from its fixedQ value.

For slightly higher temperatures, excitations in both the
H-bond mode and the proton vibration need to be included, as
described in section 3a.1 (see Figure 5). To explore this, we
consider the same system as in Figure 5, but varyT while
keeping the reaction asymmetry fixed,∆GRXN ) 0. Figure 8a
displays lnkH and lnkD, using eq 2.17 with eq 2.18, vs 1/RT(T
) 180-250 K). In this limited region, both H and D exhibit
Arrhenius behavior, as expected from the lower temperature
limit eq 2.5, except that the slopes are not identical (EAH )
1.78 kcal/mol andEAD ) 2.29 kcal/mol), and they are slightly
larger than that predicted by eq 2.5, whereEAH,D ) 1.5 kcal/
mol. The natural logarithm of the KIET dependence from Figure
8a is displayed as Figure 8b. The actual behavior of this
Arrhenius plot is nonlinear, but the solid line clearly indicates
that the behavior could easily be mistaken for linear, within
experimental error. Theapparentactivation energy for the KIE
in Figure 8b is the difference in the slopesEAD - EAH ) 0.51
kcal/mol in Figure 8a. The KIE temperature dependence is due
to the differential H/D probability of H-bond and proton
vibrational excitation with temperature. From Figure 8, we see
for the first time that excitation of both the H-bond and proton
vibrations will increase the activation energy from that solely
due to the reaction free barrier∆Gq, i.e., that in eq 2.5.
Furthermore, the increase in activation energy is larger for D

kH/kD ) C00
H 2/C00

D 2 (3.10)

kH/kD ) exp[-
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pωQ
]CoH

2(Qeq)/CoD
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than for H,EAD > EAH. This is now discussed in more detail in
the context of higher temperatures and lower H-bond frequen-
cies, where quantitative analysis is more straightforward.

3b.2. Moderate to High Temperatures.For higher temper-
atures (pωQ/RT ∼ 1 andpωQ/RT < 1), theT dependence of
individual transition rates in eq 2.24 has two dominant contribu-
tions. The first is contained within the exponential containing
the reaction free energy barrier, which gives Arrhenius behavior
if the components of the reaction barrier, i.e., E˜ RL (see eq 2.15)
andES,47 have only a minorT dependence. The impact of such
a T dependence is suppressed if the reorganization energy is
significant (ES > ERL). The second contribution to theT
dependence comes from the thermally averaged square proton
coupling eq 2.23, and in principle is not Arrhenius. In addition
to these T dependencies for the individual transition rate
constants, the thermal sum over excited proton transitions for
the full rate in eq 2.17 is clearly also not Arrhenius. Altogether,
these contributions give rise to a nonlinearT dependence in an
Arrhenius plot, as expected for tunneling PT.1,2,13,14,48Nonethe-
less, we now show that thisT dependence is effectively linear
in an Arrhenius plot for a limited but nonnegligible temperature
range. Even for data over a broad temperature range where
nonlinear behavior is observed, our analysis should be useful
to analyze different subregions in the nonlinear plot where the
behavior is effectively linear. That is, we obtain rate and KIE
expressions for a givenTo and the local slope in an Arrhenius
plot at To.

In this analysis, the PT rate in proximity to a specific
temperatureTo is written in an Arrhenius form

where the Arrhenius intercept is just the extrapolation from the
rate atT ) To to infinite temperature:AL ) kL(To) exp[âoEAL],
andEAL is determined by the slope in an Arrhenius plot.

For analysis purposes, we take the same system as described
in section 3a.2, and vary the temperature (T ) 300-350 K),
while keeping the reaction asymmetry constant,∆GRXN ) 0.

Figure 9 displays the apparent Arrhenius rate and KIE behavior
in this limitedT range. The apparent activation energies for H
and D differ considerably, withEAD almost twiceEAH: EAH )
5.66 kcal/mol andEAD ) 10.63 kcal/mol; this results in a
significant effective activation energy for the KIEEAD - EAH

) 4.97 kcal/mol, displayed in Figure 9b. These slopes are now
quantitatively analyzed to determine contributions from H-bond
and proton vibration excitations.

We begin this analysis using the form for the rate expression
given in eq 3.3 including excited proton vibrational states via
the factor FL, where the 0-0 rate kL00 is evaluated at the
midrange temperatureTo, koL ) kL00(To) (e.g.,To ) 325 K in
Figure 9)

An Arrhenius form of eq 3.12 for the rate constant and its KIE
is derived in Appendix B, where (cf. eqs B.12-B.15)

HereFL is evaluated atTo such thatkL(To) ) FLkoL. ∆GL0,0
q is

the 0-0 reaction free energy barrier eq 2.25, and〈∆∆GnR,nP

q 〉L

is the activation free energy barrier contribution from excited
proton states

Figure 8. (a) ln kH (O) and lnkD (0) vs 1/RT (T ) 180-250 K) for
the PT system in Figure 5 with∆GRXN ) 0. (b) ln(kH/kD) (0) for rate
constants in part a. Lines are linear fits to points. Slopes of lines give
the activation energies: (a)EAH ) 1.78 kcal/mol andEAD ) 2.29 kcal/
mol and (b)EADH ) 0.51 kcal/mol.

kL ) kL(To) exp[-(â - âo) EAL] (3.12)

Figure 9. (a) ln kH (O) and lnkD (0) transfer rate constants vs 1/RT
(T ) 300-350 K) for the PT system in Figure 6 with∆GRXN ) 0. (b)
kH/kD (0) for rate constants in part a. Lines are linear fits to points.
Slopes of lines give the activation energies: (a)EAH ) 5.66 kcal/mol
andEAD ) 10.63 kcal/mol and (b)EADH ) 4.97 kcal/mol.
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where the symmetric reaction transition coefficient (cf. eq 3.4)
is FoR,P) FnR,nP(T ) To). For the behavior in Figure 9, eq 3.14
gives reasonable estimates forEAH andEAD, EAH ) 6.1 kcal/
mol andEAD ) 11.2 kcal/mol, which differ by less than 10%
from the obtained numerical values. The decomposition of these
apparent activation energies in eq 3.14 will prove to be useful
in determining which contributions are more important and how
these contributions change withT, pωQ, reaction asymmetry,
and solvent reorganization energyES, as now discussed.

The first term in eq 3.14 is the activation energy contribution
from the thermally averaged square coupling〈C2〉 (see eq 2.23),
and as such is extremely sensitive to parameters affecting the
H-bond mode-tunneling coupling, namelyT, pωQ, andERL. For
the present system, this term dominates the activation energy
for both H (60%) and D (66%). Furthermore, sinceERL ∝ mL

is mass sensitive, the predominant contribution to the activation
energy difference determining theEA for the KIE will be
dominated by this first term. The coefficient [coth2(âopωQ/2)
- 1] in this term is extremely sensitive toTo andpωQ, increasing
drastically asTo is increased orpωQ decreases, and the ratio
pωQ/RTo determines the relative contribution for this first term.

The second term in eq 3.14, the activation free energy barrier
∆GL0,0

q , is for the present system also significant for both H
(39%) and D (25%). Of course, the magnitude of this term
changes with reaction asymmetry, decreasing as the reaction
goes from endo- to exothermic (cf. eq 2.19).

The last term in eq 3.14 forEAL is the least important for the
present system,<1% for H and 9% for D. Its lack of importance
correlates with the significance of the 0-0 transition in the
overall rate, described here byFL ∼ 1, FH ) 1.004 andFD )
1.25.FL will obviously change as the reaction becomes more
asymmetric, as discussed in section 3a, as well as with increasing
T.

With the above individual Arrhenius parameter results eq
3.14, we can now focus on those for the KIE, for the chosen
system. The KIE Arrhenius slope is determined by the isotopic
difference ofEALs

The first term contributes the most, 72% as predicted above,
the final difference is next in significance at 20%, and only 8%
is observed for the middle difference. The minimal significance
of the difference in 0-0 reaction barriers reflects the disparity
ES > ERL. The increased contribution of the excited proton state
contribution is due to the differential contribution of the 0-0
transition to the total rate,FH < FD.

The Arrhenius interceptAL in eq 3.14 is the extrapolation
from the rate atT ) To kL(To) ) koLFL to infinite temperature,
and thus the ratio of intercepts (H vs D) is the extrapolation of
the KIE (H vs D) atTo to infinite temperature

where

The significant isotopic difference of Arrhenius intercepts, i.e.,
AH * AD, is a signature for a tunneling process2. For the system
in Figure 9a, the Arrhenius prefactors haveAH < AD, which is
the case where eq 3.17 is less than 1. If, however, the system
hadEAD - EAH ∼1 (not∼5 kcal/mol as in Figure 9), then one

would haveAH > AD, instead ofAH < AD. Clearly, the interplay
between the magnitude of (kH/kD)o and the differenceEAD -
EΑΗ determine whetherAH > AD or AH > AD. Thus, an alternate
yet equivalent isotope analysis of Arrhenius plots would be to
analyze (kH/kD)o andEAD - EΑΗ rather thanAH/AD andEAD -
EΑΗ. The advantage of this alternative analysis is the direct
connection between the KIE magnitude and Arrhenius slope
with H-mode characteristics. Specifically, larger KIE magnitudes
result from longer (large acid-base separations) and more rigid
H-bond (largepωQ/RT) complexes, and small Arrhenius slopes
arise with less probability of H-bond and proton mode excitation
(i.e., lowT and especially higherpωQ/RTratios), as can be seen
from eq 3.14.

To expand on this and summarize the KIE temperature
dependence, we note that Klinman et al.2 have argued that the
ratio AH/AD is an indication of the extent of tunneling at a
specific temperature. In particular, these authors define three
important regions a system goes through as the temperature is
decreased: (I) starting at highT AH/AD ∼ 1, (II) AH/AD < 1 for
intermediate temperatures, and (III)AH/AD > 1 for low T. (Note
that we have ignored the transition region between regimes II
and III whereAH/AD ∼ 1.) In regime I, the proton is supposed
not to tunnel, and the PT rate and KIET behavior is Arrhenius.
In both regimes II and III, the proton is supposed to tunnel,
with more tunneling present in regime III.2

Within the present perspective, these three experimental
possibilities indicate characteristics of the H-bond mode. Regime
I occurs for smallerQ separations where the proton does not
tunnel, but remains quantum, rather than classical, in character.30

Regimes II and III refer to largerQ separations where the proton
tunnels, while the distinction between regimes II and III lies
primarily in the thermal population of the H-bond mode (i.e.,
primarily in pωQ/RT). As indicated above, a smallpωQ/RTvalue
is likely to place a system in regime II, while a largepωQ/RT
value is likely to put a system in regime (II; i.e., regime III
likely occurs for long and rigid H-bond complexes and lowT,
while regime II likely occurs for shorter and softer H-bond
complexes at higherT. Of course, the possibility of a mixture
of properties can give rise to either regime. For example, a short
but rigid H-bond complex might be in either regime, depending
on the magnitude of (kH/kD)o and the differenceEAD - EAH,
via eq 3.18. If (kH/kD)o is small,EAD - EAH does not have to
be as large if (kH/kD)o was larger, to getAH/AD > 1.

3c. Swain-Schaad Relationships.This final category of KIE
behavior describes the relative KIEs between the three isotopes
H, D, and T. For nontunneling PT perspectives, both the
standard and nontraditional approaches,13,14,30the reactant and
TS proton ZPEs associated with nontunneling KIEs give rise
to specific relations between KIEs, Swain-Schaad relation-
ships.11,13,14For purposes of discussion, we select the following
Swain-Schaad relationship

DeViation from this relationship is regarded as a clear indication
of tunneling.2,7 Traditionally, the relationship has been experi-
mentally assessed by varying system parameters and plotting
ln(kH/kT) vs ln(kD/kT) and determining whether this produces a
line which goes through the origin and has a slope∼ 3.3.1b,11,13,14

However, eq 3.19 has also been assessed by plotting the ratio
ln(kH/kT)/ln(kD/kT) vs a system parameter, such as temperature.2

If the ratio deviates significantly from 3.3, the PT system is
said to be tunneling. In this section, we will examine whether
a nonadiabatic tunneling PT system can exhibit the behavior in
eq 3.19 as well as have a KIE magnitude that is normally

EAD - EAH ) ERH[coth2 (âpωQ/2) - 1] +

[∆GDo
q - ∆GHo

q ] + [〈∆∆GnR,nP
〉D - 〈∆∆GnR,nP

〉H] (3.16)

AH/AD ) (kH/kD)o exp[-âo(EAD - EAH)] (3.17)

(kH/kD)o ) (koHFH/koDFD) (3.18)

ln(kH/kT) ) 3.3ln(kD/kT) (3.19)
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consistent with adiabatic nontunneling PT, i.e.,kH/kD e6 at T
) 300 K.1,13,14,30

3c.1. Low Temperature. We begin this analysis with the
low T limit âpωQ . 1, where the KIE can be written as (cf.
eqs 2.6 and 3.10)

The last line was obtained with eq 2.3 and the mass scalingRL

∝ xmL and ωL ∝ x1/mL. With eq 3.20, one can ask the
following question: With what system can one find eq 3.19
and a minimal KIE magnitude, and still remain in this regime
âpωQ . 1? Figure 10 displays the KIE (H vs D) and Swain-
Schaad ratio for a PT system with∆GRXN ) 0, ∆Q ) 0, Vq )
9.25 kcal/mol,RH ) 32.3 Å-1 (RD and RT mass scaled) and
pωQ ) 435 cm-1. Remarkably, the KIE magnitude and Swain-
Schaad ratio are what one might associate withnontunneling
PT. However, this occurs atextremelylow temperatures (50-
100 K), where even fornontunnelingPT, the KIE is expected
to be much larger. Only at these temperatures is it possible to
numerically obtain the characteristic KIE ratios and a minimal
KIE, while simultaneously keepingâpωQ . 1.49 We now
consider higher and more experimentally reasonable tempera-
tures.

3c.2. Moderate to High Temperatures.For this tunneling
regime, we return to Figure 6. For the magnitude of the H vs D
KIE, there is already certainly consistent with nontunneling, but
is the Swain-Schaad relationship satisfied? Figure 11 displays
the deuterium vs tritium KIE for the Figure 6 case, and one
notices immediately that the KIE is predominantly inverse,

except near∆GRXN ) 0, where it is unity. The source of this
KIE inversion is the same as described in section 3a in
connection with KIE vs reaction asymmetry: heavier particles
preferentially benefit from excitation of both the H-bond and L
mode, especially for more asymmetric reactions. In this
particular case, these excitations make Triton transfer more facile
than D transfer. The Swain-Schaad ratio in this case would be
ridiculous to compute, because it is negative. This system,
however, illustrates a possible KIE regime: a low-frequency
H-bond mode that produces a small H vs D KIE could also
produce an inverse D vs T KIEkT g kD.

We now consider systems where a positive Swain-Schaad
ratio can be obtained in the moderate to highT limit. Figure
12a displays that ratio for the same system in Figure 11 except
the H-mode frequency has been increased topωQ ) 375 cm-1

(T ) 300 K). The Swain-Schaad ratio is at the expected value
eq 3.19, but the H vs D KIE (displayed in Figure 12b) is clearly
large enough to indicate tunneling PT. Furthermore, theT-

Figure 10. (a) kH/kD vs T eqs 2.17 and 2.18 withpωQ ) 435 cm-1, Vq

) 9.25 kcal/mol,ES ) 8 kcal/mol,∆Q ) 0, mQ ) 20 amu,pωH )
3200 cm-1, pωH

q ) 2700 cm-1, andRH ) 32.3 Å-1. D and T parameters
are appropriately mass scaled. (b) Swain-Schaad ratio ln(kH/kT)/ln-
(kD/kT) vs T for system in part a.

Figure 11. kD/kT for PT system in Figure 7 (pωQ ) 300 cm-1).

Figure 12. (a) Swain-Schaad ratio ln(kH/kT)/ln(kD/kT) vs reaction
asymmetry for same PT system as in Figure 7 (T ) 300 K), except
pωQ ) 375 cm-1. (b) kH/kD for system in part a. (c) ln(kH/kT)/ln(kD/kT)
vs 1/RT (T ) 250-350 K) for symmetric reaction in part a.

kL1/kL2 ) CoL1
2(Qeq)/CoL2

2(Qeq) ×

exp[(RL1 - RL2)∆Q +
ERL1 - ERL2

pωQ
]

) xmL2

mL1
exp[- 2πVq

pωH
q

(xmL1 - xmL2)] ×

exp[(xmL1 - xmL2)RH∆Q +
ERH(mL1 - mL2)

pωQ ]
(3.20)
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variation of the Swain-Schaad ratio for this system, displayed
in Figure 12c, shows a distinct deviation from eq 3.19 for part
of the temperature range, and thus also allows confirmation of
tunneling PT.50 This example clearly illustrates the advantage
of varying systems parameters such asT and reaction asymmetry
to identify tunneling with specific KIE aspects.

4. Concluding Remarks

A theoretical description of primary kinetic isotope effects
(KIEs) has been presented for proton-transfer reactions, of the
acid-base variety within a hydrogen-bonded complex, in the
tunneling regime. This treatment differs from traditional de-
scriptions of tunneling PT in that external environmental
rearrangement is the reaction coordinate. Four individual KIE
aspectssincluding KIE magnitude, temperature dependence,
variation with reaction asymmetry, and adherence to the Swain-
Schaad relationshipshave been analyzed for tunneling PT
reactions. It has been shown that a number of the predictions
for these trends are quite similar to those expected from
traditional treatments that donot include tunneling. In general,
the clear identification of tunneling behavior is not straightfor-
ward for PT reactions involving strong coupling to the environ-
ment. Deviation from Swain-Schaad behavior is the most likely
indicator of tunneling PT2 (cf. section 3c), but generally it is
the combinationof these four KIE behaviors, with special
emphasis on variation with reaction asymmetry or temperature,
which clearly allows for identification of tunneling PT systems.

An additional criteria exists for identifying a PT system as
being in the tunneling regime, namely the existence of an
“inverted” regime.43 An “inverted” regime has been experi-
mentally observed for some PT systems,44 but clarification is
required concerning the conditions necessary for its existence,
especially considering the contribution of excited-state reaction
asymmetry dependencies to the total rate, as displayed in Figure
6.43 These issues are the subject of future work.

The sensitivity to excitation of the H-bond and proton
vibrational modes is a key factor that determines the behavior
of several KIE features. Notably, these modes are more
accessible for asymmetric reactions, and because excitation in
these modes increases the tunneling probability,39 asymmetric
reactions can be dominated by these excitations. The fact that,
compared to the proton, the deuteron is more sensitive to the
H-bond dynamics and is easier to excite implies that H-bond
and deuteron excitation increase the D transfer rate more than
is the case for H. The result is akH/kD KIE that decreases with
increased reaction asymmetry as well as with temperature.

A prescription for interpreting slopes in an Arrhenius plot
for tunneling rate constants and KIEs is a key result of this
work, i.e., eq 3.14. Thermal excitations of the proton/deuteron
and H-bond modes explicitly contribute to the effective activa-
tion energy, in addition to the actual reaction free energy barrier,
and in some cases, these excitations can dominate the effective
activation energy.

We now briefly comment on the critical parameters involved
in the application of the nonadiabatic PT formalism, including
further aspects to consider besides the simple model presented
here.51 These include the proton barrierVq at the H bond
equilibrium positionQeq, the solvent reorganization energyES,
and the H-bond mode frequencyωQ. We focus on these since
other parameters, including the frequencies for the proton well
ωR,P and barrierωq, the exponential coupling coefficientRHs
and their deuterated counterparts, and the effective mass of the
H-bond coordinatemQ can be estimated based on the system
characteristics.3b,5eSinceVq depends onQeq, the H-bond mode

remains a key component, with both its frequency and equi-
librium separation to be determined. The solvent reorganization
energyES defines the last undetermined parameter. Two of the
three parameters that would be “fit” to experimental data,ωQ

andES, are also critical to the effective activation energyEAL.
These uncertainties require that care be taken when interpreting
the H-bond characteristics and solvent reorganization energy.
In particular, the unknown H-bond separation and frequency
may not be uniquely defined; for example, a decrease in KIE
may be due to either a decreased H-bond separation or a
decreased H-bond frequency. These difficulties would be
reduced by insisting that the fit parameters apply to several rate
constant and KIE features simultaneously.

The developments and calculations in this paper have
employed several simplifications, specifically, the neglect of
any temperature dependence of the environmental polarity
(which can give, e.g., a temperature-dependent reorganization),
as well as of other H-bond properties often present in real
systems, anharmonicity and “intrinsic” asymmetry. While the
general picture for KIE behaviors presented is not significantly
altered by ignoring these effects, they may need to be taken
into account in a detailed analysis of individual systems.

Concerning the first simplification, solvent polarity is known
to significantly change with temperature, and this change
translates into a decrease in reorganization energy with increas-
ing T,34,47decreasing the effective activation energy. Of course,
the reorganization energy is not determined solely by polarity,
but often it is best described by environmental rearrangement
including nuclear rearrangement of bonding surrounding the
H-bond complex.19 For complex environments, like proteins,
simulation will provide the best source for evaluation and
interpretation of reorganization energies (e.g., see ref 6). As for
the remaining simplifications, weak H-bond complexes have
properties that deviate from the simple harmonic oscillator
model used here, including anharmonicity and asymmetry
between the reactant and product.37 Anharmonicity inQ will
decrease the thermal accessibility of smallerQ separations that
promote tunneling, and thus also lead to decreased effective
activation energies.5,34 The asymmetry inQ, i.e., ∆Q (cf. ∆Q
and EQ in eq 2.11) also affects the proton couplingC and
thus will contribute to theQ motion averaging component in
EAL.
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Appendix A. Free Energy Relationship (FER) for
Nonadiabatic Proton Transfer

In this Appendix, an isotope-dependent FER of the form of
eq 3.1 is derived for the moderate to high-temperature regime.
We begin the analysis with the PT rate expression in this regime,
cf. eqs 2.17 and 2.24

and rewrite it in terms of the rate constant involving only the
0-0 proton transition and the remaining contribution from

kL ) ∑
nR

∑
nP

PnR

〈CnR,nP

2〉

p x π

(ES + ẼRL)RT
exp[-

∆GnR,nP

q

RT ]
(A.1)
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excited states. For this purpose, the thermal average over the
squared proton coupling in eq 2.23 can be re-expressed in terms
of that for the 0-0 case (see eq 2.21)

and the 0-0 free energy barrier∆Gq
Lo,o can also be isolated

within the general activation free energy in eq 2.25,

where

The rate expression in eq A.1 can now be written as

in terms of the 0-0 rate constant

where the coefficient of each transitionFnR,nP is

The second expression in eq A.6 denotes the sum as an
enhancement factorFL of the rate due to excited proton states.
With the hindsight that the KIE vs∆GRXN behavior is maximal
near∆GRXN ) 0, we focus our attention of this behavior near
∆GRXN ) 0. We start with the natural logarithm of eq A.6

From eq A.7, the first term in eq A.9 is

which is second order in∆GRXN via eq A.4. The second term
in eq A.9 is now expanded up to second order in∆GRXN, near
∆GRXN ) 0

FnR,nP and its derivative are evaluated for∆GRXN ) 0

where ∆∆Go
q is the reaction free energy contribution due to

excited states∆∆GnR,nP

q (see eq 3.5) evaluated at∆GRXN ) 0

With these results, eq A.11 is now

where the average is over the probability distribution defined
by FnR,nP|o, e.g.

The coefficients in eq 3.1 are thus found to be eqs 3.6-3.8 of
the text.

Appendix B. Arrhenius Behavior for Nonadiabatic
Proton Transfer Kinetic Isotope Effects

In this Appendix, Arrhenius expressions for individual isotope
rate constants as well as the KIE for a limited temperature range
are derived. For this purpose, we consider the rate expression

〈CnR,nP

2〉 ) 〈C0,0
2〉 exp[π(pωRnR + pωPnP)

pωq ] (A.2)

∆GnR,nP

q ) ∆GL0,0
q + ∆∆GnR,nP

q (A.3)

∆GL0,0
q )

(∆GRXN + ES + ERL)2

4(ES + ẼRL)
(A.4)

∆∆GnR,nP

q ) [(nPpωP - nRpωR)(2(∆GRXN + ES + ERL) +

nPpωP - nRpωR)] /4(ES + ẼRL) (A.5)

kL ) kL00∑
nR,nP

FnR,nP
) kL00FL (A.6)

kL00 )
〈C0,0

2〉
p x π

(ES + ẼRL)RT
exp[-

∆GL0,0
q

RT ] (A.7)

FnR,nP
) PnR

exp[π(pωRnR + pωPnP)

pωq ] exp[-
∆∆GnR,nP

q

RT ]
(A.8)

ln kL ) ln kL00 + ln[∑nR,nP

FnR,nP] (A.9)

ln kL00 ) ln[〈C0,0
2〉

p x π
(ES + ẼRL)RT] -

∆G0,0
q

RT
(A.10)

ln[∑nR,nP

FnR
,nR] ) ln[∑nR,nP

FnR
,nR

|o] +

∆GRXN

∑
nR,nP

FnR,nP
|o
∑
nR,nP

∂FnR,nP

∂∆GRXN

|||||o
+

∆GRXN
2

2

1

(∑nR,nP

FnR,nP
|o)2

×

[(∑nR,nP

FnR,nP
|o) ∑

nR,nP

∂
2FnR,nP

∂∆GRXN
2

|||||o
- (∑nR,nP

∂FnR,nP

∂∆GRXN

|||||o)
2] (A.11)

FnR,nP
|o ) exp[π(pωRnR + pωPnP)

pωq ] exp[-
pωRnR + ∆∆Go

q

RT ]
∂FnR,nP

∂∆GRXN

||||o
) - 1

RT

∂∆∆GnR,nP

q

∂∆GRXN
FnR,nP

|o;

∂
2FnR,nP

∂∆GRXN
2

||||o
) 1

(RT)2(∂∆∆GnR,nP

q

∂∆GRXN
)2

FnR,nP
|o (A.12)

∆∆Go
q )

{[nPpωP - nRpωR][2(ES + ERL) + nPpωP - nRpωR]} /

4(ES + ẼRL), and
∂∆∆GnR,nP

q

∂∆GRXN
)

nPpωP - nRpωR

2(ES + ẼRL)
(A.13)

ln[∑nR,nP

FnR,nP] )

ln[∑nR,nP

FnR,nP
|o] -

∆GRXN

RT 〈∂∆∆GnR,nP

q

∂∆GRXN
〉

F

+
∆GRXN

2

2(RT)2
×

[〈(∂∆∆GnR,nP

q

∂∆GRXN
)2〉

F

- 〈∂∆∆GnR,nP

q

∂∆GRXN
〉

F

2] (A.14)

〈∂∆∆GnR,nP

q

∂∆GRXN
〉

F

)
1

∑
nR,nP

FnR,nP
|o

∑
nR,nP

FnR,nP
|o

∂∆∆GnR,nP

q

∂∆GRXN

(A.15)
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eq A.1 referenced to the 0-0 rate constant, focusing first on
putting the 0-0 PT rate constant (see eq A.7)

into an Arrhenius form, and we then describe the influence of
excited proton states.

Here we expand the above rate expression around a given
temperature in the middle of an experimental temperature range
(1/RTo ) âo):

with ∆â/âo and ∆ú assumed to be small,,1. For a small
temperature range (300-350 K) this assumption works fairly
well because the∆â range is∼10%, while∆ú , 1 is valid as
long as theQ mode does not have a very high frequency,ωQ e
600 cm-1. In this limit, keeping only linear terms in∆â, the
hyperbolic cotangent is

Equation 2.23 for 0-0 then becomes

Equation B.1 can now be written in an Arrhenius-like form (kL

) AL exp(-âEAL):

where the Arrhenius parameters have the following definitions

koL ) kL00(To) is just the 0-0 rate at the midrange temperature
To, and

We now consider excited proton vibrational states in a manner
similar to that of Appendix A. Equation 3.3 is rewritten as

whereFoR,P ) FnR,nP(T ) To) (see eq A.12). The slope of the
natural logarithm of eq B.8 with respect to∆â gives the
activation energyEAL

To put eq B.9 into an Arrhenius form, a Taylor series expansion
of its last term around∆â ) 0 is performed

Keeping only the leading orderterm in∆â, the linear term in
∆â is the weighted average of the additional activation by
excited states

Equation B.11 is now in the desired Arrhenius form

with an Arrhenius activation energy given by

The middle term in eq B.12 is just lnFL(T ) To). The KIE at
the reference temperatureTo is

The isotopic difference of the activation energies in eq B.13,
e.g., H vsD, is
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(ES + ẼRL)RT
exp[-

∆GL0,0
q

RT ] (B.1)

â ) âo + â - âo ) âo + ∆â; ς ) (1/2)âpωQ ) ςo + ∆ς
(B.2)

coth(ú) ≈ coth(úo) - (1/2)∆âpωQ[coth2(úo) - 1] (B.3)

〈C0,0
2〉 ≈ CeqL0,0

2 exp(2 coth (úo)
ERL

pωQ
) ×

exp(-∆âERL[coth2(úo) - 1]) (B.4)

kL00 ) koL exp (âoEAL00) exp (-âEAL00) (B.5)

ln AL ) ln koL + âoEAL, and

EAL00 ) ERL[coth2(ςo) - 1] + ∆GL0,0
q (B.6)

AL ) koL exp(âoEAL)

)
CeqL

2(Qeq)

p x π
(ES + ẼRL)RT
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pωQ. Equation 2.5 and 2.13 are two limits of the general rate expression
for proton tunneling includingQ vibration given in eq 2.10.5a
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RjoL * 1/2 is expected for an intrinsically asymmetric reaction (i.e.,∆Q *
0, not considered within). Furthermore, the noticeable deviation fromRjoL
* 1/2 for ∆Q * 0 is isotope-dependent, and thus the maximum in a KIE vs
reaction asymmetry plot will be shifted away from∆GRXN ) 0.
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(47) On the basis of the PT model used in refs 21 and 34, the
reorganization energyES for nonadiabatic PT can be described with the
following microscopic quantities:ES ) (1/2)K(µR - µP)2(∆cP

2)2, whereK
contains the dependence on solvent polarity via the static and optical
dielectric constants:K ) 2MS(1/ε∞ - 1/εo). MS is a factor dependent on
the structure of the H-bond complex. The remaining terms describe the
difference in reactant and product electronic structures:µR andµP are the
electronically diabatic dipole moments of the H-bond complex for the
reactant and product, and∆cP

2 is the difference, between the reactant and
product, in the contributions of the product valence bond state to the
electronic structure. TheT dependence ofES stems from theT dependence
of the static dielectric constantε. In model calculations for nontunneling
PT34 we have included theT dependence of the dielectric constantε of
water and find (i) a∼20% reduction of the rate Arrhenius slopes and (ii)
only a slight effect (<5%) on the KIE Arrhenius slope.

(48) This is particularly true for H atom transfer reactions because they
are weakly coupled to a polar environment, i.e., small reorganization energies
(cf. the H atom transfer reaction in ref 5e).

(49) Because this system has a low proton barrierVq ) 9.25 kcal/mol,
the proton or deuteron could be excited to a vibrational state above the
proton barrier, and PT would then proceed via a nontunneling process.
At this low T, however, the rate constant for such a process is many order
of magnitudes smaller (for both H and D) than the tunneling rate con-
stants.

(50) In Figure 12c, the Swain-Schaad ratio increases from that expected
by eq 3.19 with increased temperature. ThisT behavior is due to the relative
decrease in KIE (kH/kT vs kD/kT) asT is increased. The relative decrease is
due to the magnitude of each KIE and the difference in effective activation
energiesEALs that determines each KIEs’T dependence{(EAT - EAH)}/
{ln(kH/kT)To}<{(EAT - EAD)}/{ln(kD/kT)To}. If a PT system was in the
nontunneling regime at high temperatures one might expect that lowering
the temperature would put the PT system in the tunneling regime, and thus
one would expect a large Swain-Schaad ratio at low temperatures that
progressively decreases toward the expected value eq 3.19 asT is increased.
Figure 12c, however, displays theT dependence for a PT system that remains
in the tunneling regime at all the displayed temperatures.

(51) This formalism has already been applied to an H atom transfer
reaction,5e where the coupling to the solvent is weak, and e.g., the
temperature dependence and KIE magnitude are quite different from those
found in the present work.
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