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Gábor Lente

UniVersity of Debrecen, Department of Inorganic and Analytical Chemistry,
Debrecen 10, P.O.B. 21, Hungary, H-4010

ReceiVed: August 10, 2004; In Final Form: September 23, 2004

A continuous-time, discrete-state stochastic approach was used to study a simple, chiral autocatalytic model
that was composed of the following three reactions: Af 0.5BR + 0.5BS (V1 ) ku[A]), A + BR f 2BR (V2

) kc[A][B R]), A + BS f 2BS (V3 ) kc[A][B S]). It is shown that the final distribution of enantiomers BR and
BS is described by the one-parameter probability functionCxδ(1 - x)δ, wherex is the molar fraction of BR,
δ ) 0.5/R - 1 (whereR ) kc/(kuNAV), NA is Avogadro’s constant, andV is the volume of the sample), and
C ) Γ(1/R)/{Γ(0.5/R)}2 (whereΓ is the gamma function). Comparison with two published examples shows
that the probability function introduced here gives a reasonable interpretation of the experimental results.

Introduction

Chiral autocatalysis is usually defined as an enantioselective
chemical reaction in which the chiral product acts as an
asymmetric catalyst for its own production. It is known that
chiral autocatalysis can lead to the random formation of
measurable enantiomeric excesses in certain reactions without
asymmetric reagents.1-3 Although chiral autocatalysis is most
often associated with crystallization, homogeneous examples
are also known and are probably among the most interesting.1

The implications of spontaneous generation of optically active
material have considerable importance for the ongoing research
aimed at understanding the origins of biological homochirality.

This paper presents a detailed and mathematically rigorous
stochastic kinetic description of a very simple chiral autocatalytic
system. Only the results will be given in the text of the paper;
the mathematical proofs are deposited in the Supporting
Information.

Results and Discussion

The Model. One of the simplest possible kinetic models for
chiral autocatalysis involves three steps. In the first, a chiral
product B is generated from a nonchiral reactant A in a
kinetically first-order process:

The enantiomers of B are BR and BS. Each enantiomer opens a
new, overall second-order, autocatalytic pathway for its own
formation:

Simple considerations about symmetry suggest that the second-
order rate constants in eqs 2 and 3 are equal. The usual
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A f B (0.5BR + 0.5BS) (for this reaction,V1 ) ku[A])
(1)

A + BR f 2BR (for this reaction,V2 ) kc[A][B R]) (2)

A + BS f 2BS (for this reaction,V3 ) kc[A][B S]) (3)
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deterministic approach in chemical kinetics is based on solving
the differential rate equation(s). The model given in eqs 1-3 is
so simple that an analytical solution can be found without much
difficulty, using the deterministic approach. The time-dependent
concentrations of A, BR, and BS are given as (initial concentra-
tions [A] ) [A] 0, [BR] ) [BS] ) 0) follows:

Because [BR] ) [BS] at any time (assuming that the initial
concentrations [BR]0 ) [BS]0 ) 0), this deterministic approach
predicts no formation of enantiomeric excess. Even if there is
a small difference between the initial concentrations of BR and
BS that is due to external fluctuations, this does not get amplified
under the deterministic dynamics.3 However, it is easy to
envision an extreme case in which the autocatalysis is so
efficient that the very first molecule of B formed will result in
a rateV2 or V3 (depending on whether the first molecule of B is
BR or BS) that is much higher thanV1. In this extreme case,
only one of the two possible enantiomers will be formed by
the end of the process, and not a mixture of the two. Since the
usual deterministic approach of chemical kinetics assumes that
matter is infinitely divisible, it cannot handle this case. At this
point, it should be noted that the chemical model considered
here is similar to that first proposed by Frank4 in 1953 to
interpret chiral autocatalysis and spontaneous asymmetric
synthesis. Mathematical analyses of fluctuations in simple
autocatalytic processes5 and irreproducibility in chain reactions6

using stochastic approaches were also published in earlier
literature. These early theoretical contributions5,6 clearly showed
that it is possible to interpret seemingly irreproducible kinetic
phenomena by rigorous statistical analysis. However, no suc-
cessful attempts have been made to predict the statistical
distribution of enantiomeric products in a chiral autocatalytic
system.

The Stochastic Approach.Because of the problems outlined
in the previous paragraph, a stochastic approach to chemical
kinetics seems to be advantageous when the autocatalysis is
highly efficient in the model given in eqs 1-3. The mathematics
of stochastic approaches has already been developed in detail.7

In this work, the continuous-time, discrete-state stochastic
approach will be used.7a

In this approach, one state is identified by counting the
different molecules present. Initially (at timet ) 0), the number
of A molecules present isn and the number of BR and BS

molecules present is zero. Note that the conservation of mass
ensures that giving only the number of BR and BS sufficient to
identify any possible state of the system unambiguously, (r,s)
will denote a state where the number of BR molecules is exactly
r, the number of BS molecules is exactlys, and, consequently,
the number of A molecules is exactlyn - r - s. Let P(r,s,t)
denote the probability that state (r,s) occurs at a certain time
instant t. In the full stochastic description of the system, an
ordinary differential equation (ODE) can be written for each

state.7b The equations have the following forms in the model
used here:

The initial state (0,0) is certain att ) 0; therefore,P(0,0,0))
1, andP(r,s,0) ) 0 holds for every other state. Equations 6-9
constitute a system of homogeneous linear first-order ODEs with
constant coefficients, which can be solved analytically for any
values of the parameters. Furthermore, the relationship between
the deterministic parametersku, kc and stochastic parameters
κc, κu is given as7b

whereNA is Avogadro’s constant andV is the total volume of
the sample.

The Final Distribution. Although it is possible to solve eqs
6-9 analytically, the procedure is computationally very de-
manding for large values ofn. In addition, the actual time
dependence of the entire process is only of marginal interest as
the distribution of BR and BS molecules in the final state is much
more important. A state is final ifr + s ) n, because no more
A molecules remain. It will be shown that the distribution of
the final state can be calculated without making efforts to handle
the time dependence numerically.

Let Q(r,s) denote the probability that the system goes through
state (r,s) at any time during the process.Q(0,0) ) 1 holds
because (0,0) is the certain initial state. It can be shown thatQ
is related toP through the following equation:

It can also be shown that the values ofQ are dependent only
on the ratio ofκc andκu, which will be referenced asR in the
following discussion:

[A] ) [A] 0 exp{-(ku+kc[A] 0)t} ×
ku + kc[A] 0

ku + kc[A] 0 exp{-(ku+kc[A] 0)t}
(4)

[BR] ) [BS] ) 1
2
[A] 0(1 - exp{-(ku+kc[A] 0)t} ×

ku + kc[A] 0

ku + kc[A] 0 exp{-(ku+kc[A] 0)t}) (5)

dP(r,s,t)
dt

) - (κu + κcr + κcs)(n - r - s)P(r,s,t) +

{0.5κu + κc(r - 1)} (n - r - s + 1)P(r - 1,s,t) +
{0.5κu + κc(s - 1)} (n - r - s + 1)P(r,s - 1,t)

(for r > 0 ands > 0) (6)

dP(r,0,t)
dt

) - (κu + κcr)(n - r)P(r,0,t) +

{0.5κu + κc(r - 1)}(n - r + 1)P(r - 1,0,t)

(for s ) 0) (7)

dP(0,s,t)
dt

) - (κu + κcs)(n - s)P(0,s,t) +

{0.5κu + κc(s - 1)}(n - s + 1)P(0,s - 1,t)

(for r ) 0) (8)

dP(0,0,t)
dt

) - κunP(0,0,t) (for r ) s ) 0) (9)

κu ) ku

κc )
kc

NAV
(10)

Q(r,s) ) lim
tf∞

P(r,s,t) +

∫0

∞
(κu + κcr + κcs)(n - r - s)P(r,s,t) dt (11)

R )
κc

κu
)

kc

kuNAV
(12)
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The following equations can be shown to hold forQ(r,s):

Based on the recursive definition in eqs 13-15, for r > 0 and
s > 0, it can be proved that

and, forr ) 0 or s ) 0,

The final distribution of BR and BS molecules can be obtained
by calculatingQ(r,s) for states (r,n-r), wherer ) 0, 1, ....,n.
The final distribution reduces to a simple binomial distribution
if R ) 0. Wheren is large enough to be chemically meaningful
(∼1020), calculation of theQ values using eq 16 is not feasible.
However, it can be proved that the distribution converges to a
continuous probability function (f) as the value ofn increases.
It is convenient to introducef as a function of the molar fraction
of BR in the final mixture (x ) r/n). First, f is defined for finite
values ofn:

AssumingR > 0, it can be shown that

whereΓ is the gamma function.8 The probability function given
in eq 19 is normalized. Figure 1 shows the probability
distribution for five different values ofR. For R ) 0.5, the
distribution is flat, i.e., every final state is equally probable.
ForR < 0.5, the distribution has a maximum atx ) 0.5 (racemic
mixture). ForR > 0.5, the distribution has a minimum atx )
0.5.

Comparison with Experimental Data. To compare the
predictions of eq 19 with experimental results, two published
examples9,10 will be used where spontaneous generation of
optically active material was observed and the stochastic nature
of the process was also demonstrated by several repetitions. The
first example (E1) is the preparation of a chiral cobalt(III)
complex,cis-[CoBr(NH3)(en)2]2+, from the reaction of trinuclear

mixed valence [Co(H2O)2{(OH)2Co(en)2}2]4+ with NH4Br in
aqueous solution (20 individual runs).9 The second example (E2)
is the generation of a pyrimidyl alkanol in the reaction between
pyrimidine-5-carbaldehyde and diisopropylzinc (37 individual
runs).10

There is no advantageous way to compare experimental data
with the probability functionf. Although histograms are often
used for this purpose, they are dependent on the selection of
base intervals and are very arbitrary when the number of
experiments is relatively small. A better way to compare results
and theoretical predictions is possible using the cumulative
distribution functionF(τ) (Figure 2). In this case,F(τ) is the
probability that the molar fractionx is smaller thanτ. The
cumulative distribution function is associated with the prob-
ability function as follows:

In Figure 2, the experimental results are shown as markers. The
solid lines were numerically calculated based on eqs 19 and 20
with R values that gave the best fit to the experimental points
(R ) 0.0060 for example E1, andR ) 1.16 for example E2).

Concluding Remarks.Based on the results, it is possible to
find the limiting conditions at which the stochastic effects
become important and the deterministic approach is not ap-
plicable anymore. AtR ) 2 × 10-4, the probability of obtaining
an enantiomeric excess of>1% is very close to 50%; this gives
a somewhat arbitrary lower limiting value. It should also be
considered that the highest possible value for a second-order
rate constant is the diffusion-controlled limit (∼1010 M-1 s-1

at 25°C in water).11 Using R ) 2 × 10-4 and 100µL as the
smallest workable volume, eq 12 shows that the largest possible

Q(r,s) ) Q(r - 1,s)
0.5+ R(r - 1)

1 + R(r + s - 1)
+

Q(r,s - 1)
0.5+ R(s - 1)

1 + R(r + s - 1)
(for r > 0 ands > 0) (13)

Q(r,0) ) Q(r - 1,0)
0.5+ R(r - 1)

1 + R(r - 1)
(for s ) 0) (14)

Q(0,s) ) Q(0,s - 1)
0.5+ R(s - 1)

1 + R(s - 1)
(for r ) 0) (15)

Q(r,s) ) (r + s
r )

∏
j)0

r-1

(0.5+ Rj)∏
j)0

s-1

(0.5+ Rj)

∏
j)0

r+s-1

(1 + Rj)

(16)

Q(k,0) ) Q(0,k) )

∏
j)0

k-1

(0.5+ Rj)

∏
j)0

k-1

(1 + Rj)

(17)

f (rn,n) ) nQ(r,n - r) (18)

f(x) ) lim
kf∞

f(x,k) )
Γ(1/R)

Γ[1/(2R)]Γ[1/(2R)]
x1/(2R)-1(1 - x)1/(2R)-1

(19)

Figure 1. Probability function of the distribution of enantiomers,
according to eq 19, shown for five values ofR.

Figure 2. Cumulative distribution function of the distribution of
enantiomers in two experimental examples. Markers: measured points,
solid lines: curves fitted based on eq 19. Triangles: example E1,R )
0.0060; diamonds: example E2,R ) 1.16. (See text for the identifica-
tion of examples.)

F(τ) ) ∫0

τ
f(x) dx (20)
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value ofku is 8× 10-7 s-1. This corresponds to an “uncatalytic”
half-life of at least 10 days; however, the autocatalytic reaction
itself reaches practical completion within 1µs under these
conditions.

Interestingly, the final distribution is dependent on the volume
of the sample but not on the initial concentration of A. This
might only reflect the simplicity of the model used and is
probably not valid for more-complex systems. Another important
point is that a purely stochastic model that contains only first-
order autocatalysis predicts the random formation of consider-
able enantiomeric excess under certain conditions. This may
be unexpected as mathematical analysis of possible perturbations
using the deterministic approach showed that amplification of
initial enantiomeric excess cannot occur if the autocatalysis is
first-order kinetically.3

Although the mechanisms of the reactions that are used as
examples9,10are very likely to be more complex than the simple
scheme given in eqs 1-3 in this paper, the agreement between
the measured and fitted probability curves in Figure 2 is
remarkable. This may indicate that the distribution given in eq
19 could be applicable more widely for chiral autocatalytic
systems.
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