
LETTERS

Virial Expansion Providing of the Linearity for a Unit Compressibility Factor

E. M. Apfelbaum,† V. S. Vorob’ev,*,† and G. A. Martynov‡

Institute for High Energy Densities of RAS, Izhorskay 13/19, 125412, Moscow, Russia, and
Institute of Physical Chemistry of RAS, Leninskii pr. 31,117915, Moscow, Russia

ReceiVed: August 10, 2004; In Final Form: September 21, 2004

We show that the law of linearity for a unit compressibility factor testifying a lot of experimental data for
many substances can be provided by appropriate procedure following from the rigorous consequences of
statistical mechanics, namely, the virial expansion. An equation of state that includes the terms up to the
fourth power of density is obtained by using second and third virial coefficients. The critical point parameters,
phase densities, and pressure along the liquid-gas coexistence curve for the Lennard-Jones (6-12) (LJ) and
Buckingham (exp6) potentials are defined. The results corresponding to the LJ potentials are in good agreement
with the solution of integral equations and simulation results. For the Buckingham potentials, our predictions
agree well with the experimental data for the group of real substances, satisfying the law of corresponding
states.

The law of linear dependence between density and temper-
ature along the line of unit compressibility factorZ ) 1 (recently
christened the Zeno line) has been verified experimentally for
many substances.1-4 Unfortunately, this law is less known in
comparison with the corresponding states law, despite the fact
that the linearity of the Zeno line has no less experimental
confirmations than the law of corresponding states. The high
accuracy and wide domain of applicability of the linearity for
Zeno line indicates that this law may be a generic property of
matter, and it is advantageous to incorporate it in the equations
of state model. Nowadays there is a large variety of various
equations of state. However, only one equation of state, namely,
the virial equation of state, is the rigorous consequence of
statistical mechanics. This equation relates the intermolecular
potential for a given state of matter with its macroscopic
parameters. The well-known form of the virial equation of state

is an expansion of the compressibility factorZ ) P/FT in the
series of density, whereBk is thekth virial coefficient.

In this paper, we analyze whether the law of linearity for a
unit compressibility factor could be deduced from the virial
equation of state. We consider a model system that describes
the Lennard-Jones (LJ) potential and group of real substances,
which obey the law of corresponding states, with the Bucking-
ham (exp6) potential

Here, the constanta ) 15.6. (See the text below.)
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Batschinski5 noted that there are two consequences straight-
forwardly following from the van der Waals equation written
in the dimensionless units (F̃ ) F/Fc, T̃ ) T/T, whereF is the
density,T is the temperature, and subscript c indicates the critical
point). The first consequence, obtained by van der Waals
himself, relates to the well-known law of corresponding states,
claiming that the pressure in the reduced units does not depend
on the nature of the substance. The second (lesser-known)
consequence deals with the compressibility factorZ ) P/FT
(hereP is the pressure), which has the following expression

Equation 3 states that density-versus-temperature curve is a
straight line forZ ) 1. It intersects the temperature axis at the
Boyle pointT ) TB ) 27/8 and the density axis at the pointF̃B

) 3. Therefore, for dimensionless Boyle-point parameters
(F1 ) F/F̃B, andθ1 ) T/TB), eq 3 can be rewritten as

It is evident that on the straight lineF1 + θ1 ) 1 the
compressibility factor must be equal to unity.

In Figure 1 a the pressure and b the phase equilibrium
densities versus temperature along the phase coexistence curves
for the substances that satisfy the law of corresponding states
are plotted in dimensionless units. The dimensional parameters
are, for the pressure,D/σ3, for the temperature,D, and for the
density,σ-3. Here, D is the depth of the potential,σ is the
minimum distance at which the potential is zero. For the plots
shown in Figure 1, we used the values (denoted by symbols)
of thermodynamic functions for noble gases tabulated in refs1
and 6. The latter are consistent with the entire body of
experimental data on thermal properties of noble gases. Sets of
reliable interaction potentials between two atoms of a noble gas
have been published earlier.7-10 The resulting parametersrmin

andD for Ne, Ar, Kr, and Xe and the critical point parameters
in absolute and reduced units are given in Table 1. One can see
that the law of corresponding states is valid. The experimental
data for the Zeno lines are also shown in these phase diagrams.
The density at this line decreases as the temperature increases
linearly for all substances in hand. We note that the change in
the pressure along theZ ) 1 line is small as the temperature
increases.

The linearity of the line Z) 1 has been observed for other
substances such as hydrocarbons C2H6, C3H6, C3H8, and C4H10

in ref2 and water and other liquids in ref3.
First, we analyze the validity of linearity ofZ ) 1 line

depending on the number of the virial terms taken into account.
It is shown that the best results are obtained when we take into
account the four terms of the virial series. In this case, theZ )
1 line begins at the Boyle point and is very close to the straight
line in a very wide range of temperature. Deviations from the
straight line increase when the subsequent terms of the virial
series are taken into account. However, the experiment shows
that theZ ) 1 line must be a straight line in the dense-fluid
region as it nears the triple point. Therefore, we corrected the
four-term virial equation get a direct Zeno line. As a result, we
obtained the equation of state that includes the terms up to the
fourth power of density, where the fourth virial coefficient is
expressed by a combination of second and third coefficients
and the Zeno line parameters. This equation can be used for

the determination of the critical point parameters, the initial
branch of the binodale curve, and the pressure on this binodale
for LJ and (exp6) potentials. The calculated thermodynamical
functions are compared with the results of integral equation
solutions, computer simulations, and experimental data.

The reduced virial coefficientsBk
/ ) Bk(3/2π)k-1 for k )

2-5 are given in Figure 2 for the LJ potential, calculated
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Figure 1. (a) Reduced pressure and (b) equilibrium densities versus
reduced temperature along the phase coexistence curves and Zeno line
(Z ) 1). Symbols correspond to the values of pressure and equilibrium
phase densities tabulated in refs1 and 6 for Ar, Ne, Kr, and Xe. In a,
plots 1 and 2 correspond to the solid-liquid coexistence curve and
liquid-gas coexistence curve, respectively. In b, plots 1, 2, 3, and 4
correspond to the solidification curve, melting curve, vaporization curve,
and condensation curve, respectively. Solid lines are calculations of
this paper.

TABLE 1

substance parameter Ne Ar Kr Xe

rmin ) 21/6σ, A0 3.09 3.76 4.01 4.36
D, meV 3.64 12.3 17.3 24.4
D, K 42 143 200 278
m, au 20.18 39.95 83.8 131.3
p0 ) D/σ3, atm 286 525 608 666
F0 ) m/σ3, g/cm3 1.61 1.76 3.05 3.72
Tc, K 44.4

(1.05)a
150.9
(1.06)a

209.4
(1.04)a

289.7
(1.02)a

pc, atm 27.6
(0.097)a

49
(0.093)a

55
(0.0905)a

58.4
(0.087)a

Fc, g/cm3 0.484
(0.30)a

0.535
(0.304)a

0.919
(0.301)a

1.11
(0.298)a

a The values in parentheses are given in reduced units.
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according to refs 11 and 12 by the group integral method.
Additionally, we show values of 3-6 virial coefficients,
calculated in this work by the Martynov-Vompe (MV)
method.13 The latter is based on the expansion in power series
of the density of the Ornstein-Zernike equation. According to
the MV method, the second and third coefficients coincide with
that calculated in the framework of the group integral method.11

One can see that the fourth and the fifth coefficients calculated
by the MV method quantitatively differ a little from the values
calculated by Barker.12 However, the difference is not too large.
The MV method gives the possibility to calculate the higher
terms in the virial series, which would present a challenge if
calculated by the group integral method. In Figure 2, there is
the sixth virial coefficient, calculated by MV method.

We note that forT < Tc the absolute values ofBk
/ increase

steeply with the decrease in temperature. A minimal value of
temperature when the virial coefficients are equal to zero
approaches the critical temperature with the growth of virial
term number. This fact has also been confirmed by the
calculations for generalized the LJ potentials (m-n) and
rectangular well potential.13

The equation for the lineZ ) 1, following from the virial
expansion eq 1, has the form

Solutions of this equation are presented in Figure 3, where the
number of virial terms is increased in a consecutive manner.
Line 1 in Figure 3 corresponds to the limiting case, whenF f
0 andT f TB (TB ) 3.418 for the LJ potential). In this case,4

the dependence

is a straight line (1) that starts at the Boyle point. Lines 2, 3, 4,
and 5 correspond to cases where the terms (B2, B3), (B2, B3,
B4), (B2, B3, B4, B5), and (B2, B3, B4, B5, B6) are accounted for,
respectively. It is seen that the whole set of solutions coincides
with the asymptotic eq 5 when the temperature tends to the
Boyle point. The solution with only two terms (Line 2, Figure
3) noticeably deviates from the straight line (Line 1, Figure 3)
with the decrease in temperature. The best solution with respect
to the validity of Batschinski’s law is the solution with four
terms of the virial series. The addition of the fifth and sixth
terms results in the increase in the deviation from the straight
line (1). Generally, it can be shown that if we substitute the

density in the formF ) A - BT (A andB are constants) in eq
5, then only the conditionB2 ) B3 ) ‚‚‚ ) Bk ) 0 provides the
validity of this equation, wherek is the number of the higher
virial term taken into account. This condition has no physical
meaning.

Nevertheless, experimental evidence suggests that the Zeno
line must be a straight line for low temperatures too (at least
up to the intersection with the line of crystallization; see line 6,
Figure 3). To satisfy this condition, we kept in eq 4 only three
virial coefficients and introduce an effective fourth virial
coefficient

Here,FB is determined by eq 6. The equation of state then reads

This form of equation of state guarantees the linearity of the
line Z(F, T) ) 1 in theF-T plane.

Let us discuss the consequences resulting from this equation.
First, we consider the systems with LJ intermolecular potential.
The compressibility factors for the LJ potential, calculated by
the MC method14 and by means of eq 8, are given in Table 2.
Our calculations are in good agreement with MC data up toF
e 0σ. The latter value apparently determines the upper boundary
of validity of the method considered here.

We can determine the critical point parameters using the
conditions∂P/∂F ) 0, ∂2P/∂F2 ) 0, and eq 8. As a result, we

Figure 2. Dependence of the reduced virial coefficients on temperature
for LJ potential, Lines 1-B2, 2-B3,11 3-B4, and 4-B5.12 Lines 3′-B4, 4′-
B5, and 5′-B6 are calculations of this paper by the MV method13.

B2(T) + FB3(T) + F2B4(T) + F3B5(T) + ‚‚‚ ) 0 (5)

FB ) -(dB2(T)

dT )
T)TB

T - TB

B3(TB)
(6)

Figure 3. Line Z ) 1. Line 1 was calculated from eq 7, and lines
2-5 were calculated from eq 6. Line 2 by taking into accountB2 and
B3, line 3 ,B2, B3, andB4, line 4,B2, B3, B4, andB5, and line 5,B2, B3,
B4, B5 andB6. Line 6 is the crystallization line.15

TABLE 2

T ) 2.74 T ) 2.0 T ) 1.35

F MC 8 MC 8 MC 8

0.1 0.97 0.973 0.72 0.72
0.2 0.99 0.982 0.50 0.5
0.3 1.04 1.03 0.35 0.356
0.4 1.19 1.129 0.27 0.3
0.5 1.46 1.26 0.31 0.342
0.6 1.9 1.45 1.40 1.154 0.55 0.496
0.7 2.586 1.678 2.11 1.421 1.175 0.774

B*4(T) ) -
B2(T) + B3(T)FB(T)

FB(T)2
(7)

Z(F, T) ) 1 + FB2(T)(1 - F2

FB
2) + F2B3(T)(1 - F

FB) (8)
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obtain a set of two equations that must be solved to getTc and
Fc with the known values of the virial coefficients

Substituting the valueB4(T) following from the group expansion
in eq 9, we obtainFc ) 0.268 andTc ) 1.3. If the effective
value B4

*(T) is used, then these values for the critical param-
eters will be equal toFc ) 0.284 andTc ) 1.33. The latter
quantities are close to the valuesFc ) 0.34 ( 0.02 andTc )
1.34 ( 0.02, which have been obtained by solving integral
equations15 and computer simulations.16-17 The critical point
parameters found here are also close to the valuesFc ) 0.25(
0.05 andTc ) 1.28 ( 0.5 obtained in ref 13 based on the
investigation of the convergence of the virial series.

We used the relation between the chemical potentialµ and
the pressure dµT ) const) (1/F)(∂P/∂F)TdF. After the substitution
of eq 8 into this relation and performing integration, we obtain

Solving the system of equationsµ(F1, T) ) µ(F2, T) ∏ P(F1, T)
) P(F2, T), we find the phase densities at the equilibrium
coexistence curve (Figure 4a and b). We can see that the gas
branch of this curve is described well within the whole range
of temperature. The coincidence of the liquid branch is quite
satisfactory up toT g 0.9. For too low temperatures, the domain
of liquid state is located near the crystallization line (2) and the
expansions in the form eq 3 become, apparently, invalid. An
analogous comparison of the pressure dependence on the
temperature along the phase coexistence curve is shown in
Figure 4b. One can see that there is acceptable agreement
between our calculations and data.15

It follows from Figure 1b that the experimental value of the
Boyle point is equal toTB = 3 for the substances that obey the
law of corresponding states. The LJ potential givesTB = 3.4,
and from this point of view, this potential is unsuitable for a
description of thermodynamics of these substances. For this
purpose, we use the Buckingham (exp6) potential eq 4. The
values of the second and third virial coefficients for LJ and
(exp6) potentials are presented in Figure 5. As can be seen, the
second virial coefficient for the exp6 potential witha ) 15.6 is
equal to zero at the temperatureTB ) 3. The latter value
corresponds to the experimental one (Figure 1b). The third virial
coefficient for the exp6 potential was calculated by the MV
method.13 These data appear sufficient to repeat the calculation
carried out above for the LJ systems. Results of these calcula-
tions are presented in Figure 1a and b as solid lines. The
calculated binodale coincides with experimental up toF e 0.6.
The calculated pressure along the phase coexistence line is also
in a good agreement with the experiment. The deviations begin
at temperatures belowT e 0.7.

We emphasize that the equation of state developed here
closely describes the experimental values for the critical point
parameters for the group of real substances. These values are
equal toTc ) 1.07,Fc ) 0.3, andPc ) 0.11 and are in excellent
agreement with the corresponding experimental data from Table
1.
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