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We show that the law of linearity for a unit compressibility factor testifying a lot of experimental data for
many substances can be provided by appropriate procedure following from the rigorous consequences of
statistical mechanics, namely, the virial expansion. An equation of state that includes the terms up to the
fourth power of density is obtained by using second and third virial coefficients. The critical point parameters,
phase densities, and pressure along the liggas coexistence curve for the Lennard-Jonesl@ (LJ) and
Buckingham (exp6) potentials are defined. The results corresponding to the LJ potentials are in good agreement
with the solution of integral equations and simulation results. For the Buckingham potentials, our predictions
agree well with the experimental data for the group of real substances, satisfying the law of corresponding
states.

The law of linear dependence between density and temper- oK EVA(OR))
ature along the line of unit compressibility facir= 1 (recently Z(p,T) = ZD — =1+ pBy(T) + p2|33('|') +
christened the Zeno line) has been verified experimentally for & k! 3pk
many substancés? Unfortunately, this law is less known in pBB M+ Q)
comparison with the corresponding states law, despite the fact 4
that the linearity of the Zeno line has no less experimental . . . .
confirmations than the law of corresponding states. The high IS an expansion of the co_mpre53|b|l|_ty factbr:_ P/pT in the
accuracy and wide domain of applicability of the linearity for series _Of density, wherBy is thekth virial coefﬁme_nt. .

Zeno line indicates that this law may be a generic property of In this paper, we analyze whether the law of linearity for a

matter, and it is advantageous to incorporate it in the equationsumt cpmpressmlllty factor 9OUId be deduced from the vmgl
of state model. Nowadays there is a large variety of various equation of state. We consider a model system that describes

equations of state. However, only one equation of state, namely,\t,\klﬁi(I:‘r:a ggirdt'r‘?gﬁ]:; g}‘]goﬁféing%?nnds%;?gg 3\2 trﬁ ?L:ué’jéiinncés’
the virial equation of state, is the rigorous consequence of y P 9 ’ 9

statistical mechanics. This equation relates the intermolecularharn (exp6) potential
potential for a given state of matter with its macroscopic

parameters. The well-known form of the virial equation of state o(r,a) = LG{S expla(l —r)] — (%)6} (2
1 —

* Corresponding author. E-mail: vrbv@mail.ru. a
TInstitute for High Energy Densities of RAS.

* Institute of Physical Chemistry of RAS. Here, the constard = 15.6. (See the text below.)

10.1021/jp046417z CCC: $27.50 © 2004 American Chemical Society
Published on Web 10/26/2004



10382 J. Phys. Chem. A, Vol. 108, No. 47, 2004 Letters

Batschinski noted that there are two consequences straight- (a) 003 J
forwardly following from the van der Waals equation written ] " o n
in the dimensionless unit$ & p/pc, T = T/T, wherep is the 10 ¥
density,T is the temperature, and subscript ¢ indicates the critical 3 7.1
point). The first consequence, obtained by van der Waals 17 -

himself, relates to the well-known law of corresponding states, 3
claiming that the pressure in the reduced units does not depend 4.1
on the nature of the substance. The second (lesser-known) _ 3
consequence deals with the compressibility fador= P/pT 0.014
(hereP is the pressure), which has the following expression 3

Ne
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Equation 3 states that density-versus-temperature curve is a
straight line forZ = 1. It intersects the temperature axis at the T
Boyle pointT = Tg = 27/8 and the density axis at the pofiat

= 3. Therefore, for dimensionless Boyle-point parameters (b)
(01 = plps, and6; = T/Tg), eq 3 can be rewritten as

91(91 +60;— 1) 10
Z=1+—77——"7"— 4)
(- p)0;

It is evident that on the straight linps + 61 = 1 the
compressibility factor must be equal to unity.

In Figure 1 a the pressure and b the phase equilibrium
densities versus temperature along the phase coexistence curves
for the substances that satisfy the law of corresponding states
are plotted in dimensionless units. The dimensional parameters
are, for the pressur®/c®, for the temperature), and for the
density,o~3. Here,D is the depth of the potential is the 0.0 15 20 25 20
minimum distance at which the potential is zero. For the plots T
shown in Figure 1, we used the values (denoted by symbols)
of thermodynamic functions for noble gases tabulated in refs1 Figure 1. (a) Reduced pressure and (b) equilibrium densities versus
and 6. The latter are consistent with the entire body of reduced temperature along the phase coexistence curves and Zeno line

- . Z = 1). Symbols correspond to the values of pressure and equilibrium
experlm.ental dqta on thermal properties of noble gases. Sets o hase densities tabulated in refs1 and 6 for Ar, Ne, Kr, and Xe. In a,
reliable interaction potentials between two atoms of a noble gaspjots 1 and 2 correspond to the setiiquid coexistence curve and
have been published earlier? The resulting parametersn liquid—gas coexistence curve, respectively. In b, plots 1, 2, 3, and 4
andD for Ne, Ar, Kr, and Xe and the critical point parameters correspond to the solidification curve, melting curve, vaporization curve,
in absolute and reduced units are given in Table 1. One can seand condensation curve, respectively. Solid lines are calculations of
that the law of corresponding states is valid. The experimental this Paper.
data for the Zeno lines are also shown in these phase diagramsyag| g 1

The density at this line decreases as the temperature increases

12 4

[N

linearly for all substances in hand. We note that the change in _SuPstance parameter Ne Ar Kr Xe
the pressure along thg = 1 line is small as the temperature  I'min = 20, A° 3.09 3.76 4.01 4.36
increases. D, meV 3.64 12.3 17.3 24.4
The linearity of the line Z= 1 has been observed for other % gu 4220 18 1345’95 Zggg 2131 3
substances such as hydrocarbop4>CsHg, CsHg, and GHio 0o = D/o?, atm 286 525 608 666
in ref2 and water and other liquids in ref3. po = m/a3, glemd 1.61 1.76 3.05 3.72
First, we analyze the validity of linearity o = 1 line Te, K 44.4 150.9 209.4 289.7
depending on the number of the virial terms taken into account. (1.05p  (1.06}  (1.04} (1.02y
It is shown that the best results are obtained when we take into Pe am (%76%7)1 ?09 003 ?(;3 0005 (5(?'5187)1
ac_count the four terms of the_ virial series. In this case Zthe _ po, glen? 0.484 0.535 0.919 111
1 line begins at the Boyle point and is very close to the straight (0.30f  (0.304} (0.301}  (0.298}

line in a very wide range of temperature. Deviations from the
straight line increase when the subsequent terms of the virial
series are taken into account. However, the experiment shows
that theZ = 1 line must be a straight line in the dense-fluid the determination of the critical point parameters, the initial
region as it nears the triple point. Therefore, we corrected the branch of the binodale curve, and the pressure on this binodale
four-term virial equation get a direct Zeno line. As a result, we for LJ and (exp6) potentials. The calculated thermodynamical
obtained the equation of state that includes the terms up to thefunctions are compared with the results of integral equation
fourth power of density, where the fourth virial coefficient is solutions, computer simulations, and experimental data.
expressed by a combination of second and third coefficients The reduced virial coefficient8; = By(3/2r)<* for k =

and the Zeno line parameters. This equation can be used for2—5 are given in Figure 2 for the LJ potential, calculated

2The values in parentheses are given in reduced units.
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Figure 2. Dependence of the reduced virial coefficients on temperature 0.0 T T T T T !
for LJ potential, Lines 1B, 2-B;,'* 3-B4, and 4Bs.12 Lines 3-By, 4'- 05 1.0 1.5 20 25 3.0 35
Bs, and 53-B; are calculations of this paper by the MV metkbd T

according to refs 11 and 12 by the group integral method. Figure 3. Line Z = 1. Line 1 was calculated from eq 7, and lines

Additionally, we show values of 36 virial coefficients, 2—5 were calculated from eq 6. Line 2 by taking into accoBnand

calculated in this work by the MartynewWompe (MV) Bs, line 3, B,, Bs, andB,, line 4,B,, Bs, By, andBs, and line 5B8,, Bs,

method!3 The latter is based on the expansion in power series Bi, Bs andBs. Line 6 is the crystallization lin&

of the density of the OrnsteirZernike equation. Accordingto  TABLE 2

the MV method, the second and third coefficients coincide with

that calculated in the framework of the group integral metHod.
One can see that the fourth and the fifth coefficients calculated __ P McC 8 mc 8 MC 8

T=274 T=20 T=135

by the MV method quantitatively differ a little from the values 0.1 0.97 0.973 0.72 0.72
calculated by Barkel2 However, the difference is not too large. 02 0.99 0.982 0.50 0.5

; hili ; 0.3 1.04 1.03 0.35 0.356
The MV method gives the possibility to calculate the higher 1 119 1129 0.97 03
terms in the virial series, which would present a challenge if g5 1.46 126 0.31 0.342
calculated by the group integral method. In Figure 2, there is (.6 1.9 1.45 1.40 1.154 0.55 0.496
the sixth virial coefficient, calculated by MV method. 0.7 2.586 1.678 2.11 1.421 1.175 0.774

We note that fofT < T the absolute values d increase o )
steeply with the decrease in temperature. A minimal value of density in the formp = A — BT (A andB are constants) in eq
temperature when the virial coefficients are equal to zero 9. then only the conditioB, = Bs = -+ = B, = 0 provides the
approaches the critical temperature with the growth of virial Validity of this equation, wheré is the number of the higher
term number. This fact has also been confirmed by the Virial term taken into account. This condition has no physical

calculations for generalized the LJ potentiais—n) and meaning. _ )

rectangular well potentiaf Nevertheless, experimental evidence suggests that the Zeno
The equation for the lin& = 1, following from the virial line must be a straight line for low temperatures too (at least

expansion eq 1, has the form up to the intersection with the line of crystallization; see line 6,

Figure 3). To satisfy this condition, we kept in eq 4 only three
B,(T) + pBy(T) + pB(T) + p°B(T) + =+ =0 (5)  Vvirial coefficients and introduce an effective fourth virial

coefficient
Solutions of this equation are presented in Figure 3, where the
number of virial terms is increased in a consecutive manner. . B,(T) + B5(T)pg(T)
Line 1 in Figure 3 corresponds to the limiting case, wiefr B* (M=~ o (T)2 @)
B

0 andT — Tg (Ts = 3.418 for the LJ potential). In this cade,

the dependence Here,pp is determined by eq 6. The equation of state then reads

0y = _(de(T)) T—Tg (6) 2
B dT J7=7,B4(Ty) Z(p,h=1+ pszm(l -1+ pzeam(l - pﬂ) (8)
Ps B

is a straight line (1) that starts at the Boyle point. Lines 2, 3, 4,

and 5 correspond to cases where the terBis Bs), (B2, Bs, This form of equation of state guarantees the linearity of the
Bs), (B2, Bs, By, Bs), and B2, B3, Bs, Bs, Bg) are accounted for, line Z(p, T) = 1 in the p—T plane.

respectively. It is seen that the whole set of solutions coincides Let us discuss the consequences resulting from this equation.
with the asymptotic eq 5 when the temperature tends to the First, we consider the systems with LJ intermolecular potential.
Boyle point. The solution with only two terms (Line 2, Figure The compressibility factors for the LJ potential, calculated by
3) noticeably deviates from the straight line (Line 1, Figure 3) the MC method&* and by means of eq 8, are given in Table 2.
with the decrease in temperature. The best solution with respectOur calculations are in good agreement with MC data up to

to the validity of Batschinski’'s law is the solution with four < Oo. The latter value apparently determines the upper boundary
terms of the virial series. The addition of the fifth and sixth of validity of the method considered here.

terms results in the increase in the deviation from the straight We can determine the critical point parameters using the
line (1). Generally, it can be shown that if we substitute the conditionsaP/dp = 0, 3°P/dp? = 0, and eq 8. As a result, we



10384 J. Phys. Chem. A, Vol. 108, No. 47, 2004

------ 115]
(@) = [16]
— A [17]
1,0
~ — [ 4 |
08 T’-/%\
’ \'\l\!‘ 4 3
a \\
0,4
’ N\
1
0,2 ;2///'/
._.,,A.—V' = 2
0,0
0.6 0.8 1.0 12 14
T
(b)
0.12 ,/
2,
//
0.08 e
- /
P/
0.04 //
a
/"/
0.00 UL 5 o
0.6 0.8 1.0 1.2 1.4

T

Letters

5
3
.
0 / B etk Geleded- S-S
; 1=
-
|I
5 i‘
"l
!
A04+—+
o;’1 2 3 4 5
T

Figure 5. Dependence of the second (2) and third (3) virial coefficients
on temperature. Solid lines denote the LJ potential, and dashed lines
denote the (exp6) potential.

Solving the system of equatiop$p1, T) = u(p2, T) [1 P(p1, T)
= P(p2, T), we find the phase densities at the equilibrium
coexistence curve (Figure 4a and b). We can see that the gas
branch of this curve is described well within the whole range
of temperature. The coincidence of the liquid branch is quite
satisfactory up td@ = 0.9. For too low temperatures, the domain
of liquid state is located near the crystallization line (2) and the
expansions in the form eq 3 become, apparently, invalid. An
analogous comparison of the pressure dependence on the
temperature along the phase coexistence curve is shown in
Figure 4b. One can see that there is acceptable agreement
between our calculations and data.

It follows from Figure 1b that the experimental value of the

Figure 4. Dependence of equilibrium phase densities (a) and pressure Boyle point is equal tdg = 3 for the substances that obey the
(b) on temperature for LJ systems. Solid lines are calculations of this law of corresponding states. The LJ potential giTgs= 3.4,

work: line 1 is the original virial expansion with five terms, and line
2 is the modified virial expansion, eq 9. Line 34s= 1, and line 4 is
crystallization linet* Dashed lines are integral equatidhsSymbols
are numerical experimentg!’

obtain a set of two equations that must be solved tolgend
pc With the known values of the virial coefficients

207BUT) ~ p BT =1
9

Substituting the valuB,(T) following from the group expansion
in eq 9, we obtairp; = 0.268 andT; = 1.3. If the effective
value BZ(T) is used, then these values for the critical param-
eters will be equal tpc = 0.284 andT; = 1.33. The latter
quantities are close to the valups= 0.34 £+ 0.02 andT, =
1.34 + 0.02, which have been obtained by solving integral
equation® and computer simulatiod$€-17 The critical point
parameters found here are also close to the valgles0.25+
0.05 andT; = 1.28 & 0.5 obtained in ref 13 based on the
investigation of the convergence of the virial series.
We used the relation between the chemical poteptiahd
the pressureur = const= (1/p)(3P/dp)1dp. After the substitution
of eq 8 into this relation and performing integration, we obtain
2
232(17( —2%) +
3pg)

3B4Tp (1 - g—if’—)) (10)
Bl

40 By(TI3 + pBy(T) = —1,

u(p, T) =TlIn(p) + Tp

2

and from this point of view, this potential is unsuitable for a
description of thermodynamics of these substances. For this
purpose, we use the Buckingham (exp6) potential eq 4. The
values of the second and third virial coefficients for LJ and
(exp6) potentials are presented in Figure 5. As can be seen, the
second virial coefficient for the exp6 potential wih~ 15.6 is
equal to zero at the temperatuig = 3. The latter value
corresponds to the experimental one (Figure 1b). The third virial
coefficient for the exp6 potential was calculated by the MV
method!® These data appear sufficient to repeat the calculation
carried out above for the LJ systems. Results of these calcula-
tions are presented in Figure 1a and b as solid lines. The
calculated binodale coincides with experimental up to 0.6.

The calculated pressure along the phase coexistence line is also
in a good agreement with the experiment. The deviations begin
at temperatures below < 0.7.

We emphasize that the equation of state developed here
closely describes the experimental values for the critical point
parameters for the group of real substances. These values are
equal toT, = 1.07,p. = 0.3, andP; = 0.11 and are in excellent
agreement with the corresponding experimental data from Table

Acknowledgment. This study was supported by the Russian
Foundation for Basic Research, project nos. 02-02-17255, 02-
02-17376, 04-02-17292, NSh-1953-2003.2, and NSh-2045.2003.2.

References and Notes

(1) Rabinovich, V. A.Thermophysical Properties of Neon, Argon,
Krypton, and XenaonHemispere: Berlin, 1988.



Letters

(2) Nedostup, V. |.; Galkevich, E..RCalculation of Thermodynamic
Properties of Gases and Liquids by the Ideal Gzg Method Naukova
Dumka: Kiev, Ukraine, 1986.

(3) Kutney, M. C.; Reagan, M. T.; Smith, K. A,; Tester, J. W.; D. R.,
J Herschbachl. Phys. Chem. B00Q 104, 9513,

(4) Martynov, G. A.Fundamental Theory of LiquigdsAdam Hilger
Bristol, U.K., 1992.

(5) Bachinskii, A.Ann. Der Phg. 19, H. 1906 4, 307.

(6) Crawford, R. K. Melting, Vaporization and Sublimation. Rare
Gas Solid&lein M. L., Venables J. A., Eds.; Academic Press: New York,
1977, p 663; Vol. 2.

(7) Aziz, R. A.; Slaman, M. JChem. Phys1989 130, 187.

(8) Aziz, R. A.; Slaman, M. JJ. Chem. Phys199Q 92, 1030.

J. Phys. Chem. A, Vol. 108, No. 47, 20040385

(9) Dham, A. K.Mol. Phys.1989 67, 1291.

(10) Dham, A. K.; Meath, W. J.; Aziz, R. A.; SlamaM. J. Chem.
Phys.199Q 142 173.

(11) Hirschfelder, J. O. Ch.; Curtiss, F.; Bird, R. Bolecular Theory
of Gases and Liquidslohn Wiley and Sons: New York, 1954.

(12) Barker, J. F.; Leonard, P. J.; Pompe, JAChem. Physl966 44,
4206.

(13) Vompe, A. G.; Martynov, G. AJ. Chem. Phys1997 106, 6095.

(14) Nicolas, J. J. Gabbins, K. E.; Street, W. B.; Tildesley, CMadl.
Phys 1979 37, 1429.

(15) Duh, M.; Henderson, Dl. Chem. Physl996 104, 6743.

(16) Lotfi, F.; Vrabec, Fisher, Mol. Phys.1979 76, 1319.

(17) Panagiotopous, A. 2nt. J. Thermophysl994 15, 1057.



