# Cage Isomers of N<sub>14</sub> and N<sub>16</sub>: Nitrogen Molecules That Are Not a Multiple of Six

# **Douglas L. Strout\***

Department of Physical Sciences, Alabama State University, Montgomery, Alabama 36101

Received: August 4, 2004

Molecules consisting entirely or predominantly of nitrogen are the focus of much research for their potential as high energy density materials (HEDM). Recent theoretical predictions on cage stability for  $N_{12}$ ,  $N_{18}$ ,  $N_{24}$ ,  $N_{30}$ , and  $N_{36}$  indicate that the most thermodynamically stable isomer has 3-fold symmetry ( $D_{3h}$  or  $D_{3d}$  symmetry point group). Such molecules have a triangle—pentagon bonding group on each end with a band of hexagons around the midsection. However, the existence of this symmetric isomer depends on the number of nitrogen atoms being a multiple of six. In the current study stability trends are addressed for two molecule sizes where this symmetric option does not exist, namely,  $N_{14}$  and  $N_{16}$ . Isomer energies for these molecules are calculated using Hartree—Fock theory, density functional theory (B3LYP), and perturbation theory (MP4) along with the correlation-consistent basis sets of Dunning. At each molecule size the most stable cage is identified, and the structural features leading to cage stability are discussed.

### Introduction

Nitrogen molecules have been the subjects of many recent studies because of their potential as high energy density materials (HEDM). An all-nitrogen molecule N<sub>x</sub> can undergo the reaction  $N_x \rightarrow (x/2) N_2$ , a reaction that can be exothermic by 50 kcal/mol or more per nitrogen atom.<sup>1,2</sup> To be a practical energy source, however, a molecule  $N_x$  would have to resist dissociation well enough to be a stable fuel. Theoretical studies<sup>3-7</sup> have shown that numerous  $N_x$  molecules are not sufficiently stable to be practical HEDM, including cyclic and acyclic isomers with eight to twelve atoms. Cage isomers of  $N_8$  and  $N_{12}$  have also been  $shown^{7-10}\,by$  theoretical calculations to be unstable. Experimental progress in the synthesis of nitrogen molecules has been very encouraging, with the  $N_5^+$  and  $N_5^$ ions having been recently produced<sup>11,12</sup> in the laboratory. Those experimental successes have sparked theoretical studies<sup>13,14</sup> on other potential all-nitrogen molecules, and future developments in experiment and theory will further broaden the horizons of all-nitrogen research.

The stability properties of  $N_x$  molecules have also been extensively studied in a computational survey<sup>15</sup> of various structural forms with up to 20 atoms. Cyclic, acyclic, and cage isomers have been examined to determine the bonding properties and energetics over a wide range of molecules. A more recent computational study<sup>16</sup> of cage isomers of N<sub>12</sub> examined the specific structural features that lead to the most stable molecules among the three-coordinate nitrogen cages. Those results showed that molecules with the most pentagons in the nitrogen network tend to be the most stable, with a secondary stabilizing effect due to triangles in the cage structure. A recent study<sup>17</sup> of larger nitrogen molecules N24, N30, and N36 showed significant deviations from the pentagon-favoring trend. Each of these molecule sizes has fullerene-like cages consisting solely of pentagons and hexagons, but a large stability advantage was found for molecules with fewer pentagons, more triangles, and an overall structure more cylindrical than spheroidal. A theoretical study<sup>18</sup> of cages of N<sub>18</sub> also showed a preference for cylindrical molecules, and each of these studies (on N12, N18, N<sub>24</sub>, N<sub>30</sub>, and N<sub>36</sub>) revealed that the most stable cage isomer at



**Figure 1.**  $N_{14}$  isomer 0360 ( $D_{3h}$  point group symmetry).

each molecule size is cylindrical with a 3-fold axis of symmetry  $(D_{3d} \text{ or } D_{3h} \text{ point group})$ .

However, the geometry of those cages depends on the number of nitrogen atoms being a multiple of six, since each cage has a triangle at each end with rings of six nitrogen atoms in between. Which nitrogen cage is most stable when the number of atoms is not a multiple of six? In the current study, cage isomers of N<sub>14</sub> and N<sub>16</sub> will be examined to determine which cage is the most stable and to determine the structural features that tend to stabilize cages at those sizes. The preferred arrangements of triangles, squares, pentagons, and hexagons for N<sub>14</sub> and N<sub>16</sub> are necessarily different from those studied previously. For each size a variety of cages will be studied that meet the following required mathematical boundaries (n<sub>3</sub>, n<sub>4</sub>, n<sub>5</sub>, and n<sub>6</sub> refer to the number of three-, four-, five-, and sixmembered polygons, respectively)

$$3n_3 + 2n_4 + n_5 = 12$$
 (Euler's Theorem) (1)

 $n_3 + n_4 + n_5 + n_6 = (x/2) + 2$ 

[x = number of atoms composing the cage] (2)

The total number of polygons  $(n_3 + n_4 + n_5 + n_6)$  in each cage is 9 for N<sub>14</sub> and 10 for N<sub>16</sub>.



Figure 2.  $N_{14}$  isomer 1251 ( $C_s$  point group symmetry).



Figure 3.  $N_{14}$  isomer 2223 ( $C_2$  point group symmetry).



Figure 4.  $N_{14}$  isomer 2142 ( $C_2$  point group symmetry).

# **Computational Details**

Geometry optimizations were carried out using Hartree–Fock theory as well as the B3LYP density functional method.<sup>19,20</sup> (Some of the B3LYP optimizations are dissociative, a problem previously documented for other nitrogen cages.) Single energy points are carried out using fourth-order perturbation theory<sup>21</sup> (MP4(SDQ)). The basis sets are the correlation-consistent



**Figure 5.**  $N_{14}$  isomer 3033 ( $C_{3v}$  point group symmetry).



Figure 6.  $N_{14}$  isomer 0441 ( $C_{2\nu}$  point group symmetry).



**Figure 7.**  $N_{14}$  isomer 1332 ( $C_1$  point group symmetry).

double- $\zeta$  (cc-pVDZ) and triple- $\zeta$  (cc-pVTZ) sets<sup>22</sup> of Dunning. All calculations in this study are carried out using the Gaussian 98 quantum chemistry software package.<sup>23</sup>

#### **Results and Discussion**

Ten cage isomers of  $N_{14}$  are shown in Figures 1–10. Relative energies of these molecules are shown in Table 1. General trends



Figure 8.  $N_{14}$  isomer 0522 ( $C_{2v}$  point group symmetry).



**Figure 9.**  $N_{14}$  isomer 0603 ( $D_{3h}$  point group symmetry).



Figure 10.  $N_{14}$  isomer 2304 ( $C_{2v}$  point group symmetry).

are evident that correspond to previous studies of  $N_{12}$  and  $N_{18}$ . For example, higher numbers of pentagons ( $n_5$ ) yield more stable molecules, as the 0360, 1251, and 2142 isomers are among the most stable. (The stability of the 2223 isomer is exceptional and will be addressed later.) Also, between two isomers of equal  $n_5$ , the one with the most triangles ( $n_3$ ) is generally the most stable, as seen by comparing 2142 versus 0441, 2223 versus

TABLE 1: Relative Energies (in kcal/mol) for Cage Isomers of  $N_{14}$  (calculations with cc-pVDZ basis set)

|      | HF    | B3LYP | MP4//HF | MP4//B3LYP |
|------|-------|-------|---------|------------|
| 0360 | 0.0   | 0.0   | 0.0     | 0.0        |
| 1251 | -4.8  | -1.9  | -5.5    | -6.0       |
| 2223 | -5.2  | -1.4  | -9.1    | -10.1      |
| 2142 | +8.3  | а     | +3.5    | а          |
| 3033 | +19.9 | +15.6 | +15.5   | +12.6      |
| 0441 | +34.6 | +36.2 | +34.7   | +34.5      |
| 1332 | +40.7 | а     | +37.6   | а          |
| 0522 | +71.2 | +67.7 | +69.3   | +69.5      |
| 0603 | +78.9 | +78.5 | +76.1   | +74.2      |
| 2304 | +87.2 | а     | +81.5   | а          |

<sup>*a*</sup> Geometry optimization failed.

| TABLE 2:    | Relative | Energies        | of N <sub>14</sub> | Cage I  | somers v  | vith |
|-------------|----------|-----------------|--------------------|---------|-----------|------|
| cc-pVDZ and | nd cc-pV | <b>FZ</b> Basis | Sets (e            | nergies | in kcal/ı | mol) |

| -    | -     |       |          |          |
|------|-------|-------|----------|----------|
|      | HF/DZ | HF/TZ | B3LYP/DZ | B3LYP/TZ |
| 0360 | 0.0   | 0.0   | 0.0      | 0.0      |
| 1251 | -4.8  | -4.5  | -1.9     | -1.9     |
| 2223 | -5.2  | -4.6  | -1.4     | -1.5     |
| 2142 | +8.3  | +8.9  | а        | а        |
| 3033 | +19.9 | +21.5 | +15.6    | +16.1    |
| 0441 | +34.6 | +34.2 | +36.2    | +35.8    |
| 1332 | +40.7 | +40.7 | а        | а        |
| 0522 | +71.2 | +70.4 | +67.7    | +66.9    |
| 0603 | +78.9 | +78.0 | +78.5    | +77.6    |
| 2304 | +87.2 | +87.4 | а        | а        |
|      |       |       |          |          |

<sup>a</sup> Geometry optimization failed.



Figure 11.  $N_{16}$  isomer 2062 ( $C_2$  point group symmetry).

0522, and 3033 versus 1332. One difference between  $N_{14}$  and the multiples of six from previous studies is the lack of a single dominant isomer for  $N_{14}$ . For  $N_{12}$ , the 2060 isomer is clearly most stable, and the 2063 isomer is easily the most stable for  $N_{18}$ . However, for  $N_{14}$  the four most stable isomers all have energies within 13 kcal/mol of each other, and the two most stable are within four kcal/mol of each other. The inability of  $N_{14}$  to form the highly symmetric cages as in the previous studies, along with the triangle–pentagon substructures that stabilize  $N_{12}$ ,  $N_{18}$ ,  $N_{24}$ , etc., leads to the lack of a single energetically dominant isomer. Table 2 shows that basis set effects are not substantial for  $N_{14}$ , as HF and B3LYP energy results with the larger cc-pVTZ basis set do not appreciably differ from the cc-pVDZ results.

The 12  $N_{16}$  cages under consideration in this study are shown in Figures 11–19. Relative energies of these cages are shown in Table 3. Unlike the  $N_{14}$  cages, the  $N_{16}$  cages have a single



Figure 12.  $N_{16}$  isomer 0280 ( $D_{4h}$  point group symmetry).



Figure 13.  $N_{16}$  isomer 2143 ( $C_1$  point group symmetry).

TABLE 3: Relative Energies (in kcal/mol) for Cage Isomers of  $N_{16}$  (calculations with cc-pVDZ basis set)

|       | HF     | B3LYP  | MP4//HF | MP4//B3LYP |
|-------|--------|--------|---------|------------|
| 2062  | 0.0    | 0.0    | 0.0     | 0.0        |
| 0280  | +17.0  | +17.3  | +21.4   | +21.7      |
| 2143  | +40.9  | +34.6  | +38.6   | +38.8      |
| 2224A | +41.2  | +38.9  | +36.7   | +36.4      |
| 2224B | +49.8  | +48.2  | +45.9   | +45.5      |
| 1252A | +50.6  | а      | +51.7   | a          |
| 1252B | +54.1  | а      | +53.0   | a          |
| 0361  | +54.3  | а      | +57.1   | а          |
| 1333  | +93.3  | а      | +92.7   | а          |
| 4006A | +117.6 | +97.4  | +108.9  | +105.8     |
| 4006B | +122.3 | +101.8 | +112.1  | +109.2     |
| 0604  | +135.2 | +126.3 | +135.9  | +135.3     |

<sup>a</sup> Geometry optimization failed.

dominant isomer, namely, the 2062 isomer. At the MP4 level of theory, every cage isomer is at least 20 kcal/mol less stable than the 2062 isomer. The 2062 isomer of N<sub>16</sub> is very much like the 2063 isomer of N<sub>18</sub> in this regard. Although the N<sub>16</sub> does not have the highly symmetric substructure in which each triangle is surrounded by three pentagons, the N<sub>16</sub> 2062 isomer does have two pentagons around each triangle, which is less advantageous than three but still stabilizing. The N<sub>16</sub> 2062 isomer also has an elongated, roughly cylindrical structure that has also been shown to be energetically favorable. Since 0280 isomer is the second most stable, the N<sub>16</sub> is also showing the pentagon-favoring general trend seen for N<sub>14</sub> and previously studied nitrogen cages. However, N<sub>16</sub> has a pair of isomers,



**Figure 14.** (a)  $N_{16}$  isomer 2224A ( $C_2$  point group symmetry). (b)  $N_{16}$  isomer 2224B ( $C_{2h}$  point group symmetry).

| TABLE 4: For Each N <sub>14</sub> or N <sub>16</sub> Cage, the Maximum |
|------------------------------------------------------------------------|
| Distance (MaxR) from the Center of Mass of the Cage to an              |
| Atom in the Cage (based on HF/cc-pVDZ geometries,                      |
| distances in angstroms)                                                |

| N <sub>14</sub> cages |      | N <sub>16</sub> cages |      |
|-----------------------|------|-----------------------|------|
| cage name             | MaxR | cage name             | MaxR |
| 0360                  | 1.74 | 2062                  | 2.37 |
| 1251                  | 2.07 | 0280                  | 1.92 |
| 2223                  | 2.39 | 2143                  | 2.27 |
| 2142                  | 2.11 | 2224A                 | 2.50 |
| 3033                  | 1.91 | 2224B                 | 2.52 |
| 0441                  | 1.94 | 1252A                 | 2.13 |
| 1332                  | 1.97 | 1252B                 | 2.14 |
| 0522                  | 1.92 | 0361                  | 1.90 |
| 0603                  | 2.17 | 1333                  | 2.04 |
| 2304                  | 1.92 | 4006A                 | 1.95 |
|                       |      | 4006B                 | 2.19 |
|                       |      | 0604                  | 2.07 |

2224A and 2224B, that seem to have exceptional stability despite a small number of pentagons.

How can the apparent exceptional stability of  $N_{14}$  2223 and  $N_{16}$  2224A/2224B be understood? Previous studies of nitrogen cages have demonstrated the stability of cylindrical structures over spherical ones due to the favorability of structures that



**Figure 15.** (a)  $N_{16}$  isomer 1252A ( $C_s$  point group symmetry). (b)  $N_{16}$  isomer 1252B ( $C_s$  point group symmetry).



Figure 16.  $N_{16}$  isomer 0361 ( $C_{3v}$  point group symmetry).

permit pyramidalization of three-coordinate nitrogen. For each cage in this study ( $N_{14}$  and  $N_{16}$ ) Table 4 shows the distance from the center of mass of the molecule to the atom that is farthest from the center of mass. This "maximum radius" (denoted MaxR in Table 4) gives a qualitative measure of the structure of the molecule to distinguish spherical molecules from elongated ones. The HF/cc-pVDZ geometries are used to calculate MaxR. A roughly spherical molecule would have the smallest MaxR because all of the atoms are more or less the same distance from the molecule's center. The most elongated molecules have the largest MaxR values. Table 4 shows that the exceptional molecules 2223, 2224A, and 2224B are the







**Figure 18.** (a)  $N_{16}$  isomer 4006A ( $T_d$  point group symmetry). (b)  $N_{16}$  isomer 4006B ( $D_{2h}$  point group symmetry).

longest molecules in this study for their respective molecule sizes. Therefore, the strain of the triangles and squares in these molecules is most likely being offset by advantageous pyramidalization of the nitrogen atoms. This explains the stability of 2223, 2224A, and 2224B despite the apparent contradiction of previously established trends.

#### Conclusion

Despite the inability to form the highly symmetric structures that are available when the number of atoms is a multiple of six,  $N_{14}$  and  $N_{16}$  generally follow established trends for cages of three-coordinate nitrogen atoms. At these molecule sizes



Figure 19.  $N_{16}$  isomer 0604 ( $D_{2h}$  point group symmetry).

pentagons are still the dominant stabilizing features, with a secondary stabilizing effect from the triangles when the number of pentagons is equal between two isomers.  $N_{14}$  shows unique behavior in that several stable isomers are very close in energy. The behavior of  $N_{16}$  is closer to that of  $N_{18}$  because of structural similarities in the most stable isomer at each molecule size. In general, it is likely that the trends that apply when the number of atoms is a multiple of six also apply otherwise, with unique exceptions that vary with the size of the molecules.

Acknowledgment. The Alabama Supercomputer Authority is gratefully acknowledged for a grant of computer time on the Cray SV1 operated in Huntsville, AL. This work is also supported by the National Institutes of Health (NIH/NCMHHD grant 1P20MD000547-01). The taxpayers of the state of Alabama, in particular, and the United States, in general, are also gratefully acknowledged.

#### **References and Notes**

(1) Fau, S.; Bartlett, R. J. J. Phys. Chem. A 2001, 105, 4096.

- (2) Tian, A.; Ding, F.; Zhang, L.; Xie, Y.; Schaefer, H. F., III J. Phys. Chem. A 1997, 101, 1946.
- (3) Chung, G.; Schmidt, M. W.; Gordon, M. S. J. Phys. Chem. A 2000, 104, 5647.

(4) Strout, D. L. J. Phys. Chem. A 2002, 106, 816.

(5) Thompson, M. D.; Bledson, T. M.; Strout, D. L. J. Phys. Chem. A 2002, 106, 6880.

(6) Li, Q. S.; Liu, Y. D. Chem. Phys. Lett. 2002, 353, 204. Li, Q. S.; Qu, H.; Zhu, H. S. Chin. Sci. Bull. 1996, 41, 1184.

(7) Li, Q. S.; Zhao, J. F. J. Phys. Chem. A 2002, 106, 5367. Qu, H.;
Li, Q. S.; Zhu, H. S. Chin. Sci. Bull. 1997, 42, 462.

(8) Gagliardi, L.; Evangelisti, S.; Widmark, P. O.; Roos, B. O. *Theor. Chem. Acc.* **1997**, *97*, 136.

(9) Gagliardi, L.; Evangelisti, S.; Bernhardsson, A.; Lindh, R.; Roos, B. O. Int. J. Quantum Chem. 2000, 77, 311.

(10) Schmidt, M. W.; Gordon, M. S.; Boatz, J. A. Int. J. Quantum Chem. 2000, 76, 434.

(11) Christe, K. O.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. Angew. Chem., Int. Ed. 1999, 38, 2004.

(12) Vij, A.; Pavlovich, J. G.; Wilson, W. W.; Vij, V.; Christe, K. O. Angew. Chem., Int. Ed. **2002**, 41, 3051. Butler, R. N.; Stephens, J. C.; Burke, L. A. Chem. Commun. **2003**, 8, 1016.

(13) Fau, S.; Bartlett, R. J. J. Phys. Chem. A 2001, 105, 4096.

(14) Fau, S.; Wilson, K. J.; Bartlett, R. J. J. Phys. Chem. A 2002, 106, 4639.

(15) Glukhovtsev, M. N.; Jiao, H.; Schleyer, P. v. R. Inorg. Chem. 1996, 35, 7124.

(16) Bruney, L. Y.; Bledson, T. M.; Strout, D. L. Inorg. Chem. 2003, 42, 8117.

(17) Strout, D. L. J. Phys. Chem. A 2004, 108, 2555.

(18) Sturdivant, S. E.; Nelson, F. A.; Strout, D. L. J. Phys. Chem. A 2004, 108, 7087.

(19) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

(20) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

(21) Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.

(22) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.

(23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian* 98, Revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.