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We present the surface generalized born (S-GB) method, based on expansion of energy in a surface integral
series. The method can be parametrized for simultaneous reproduction of the reaction field energy for small
molecules as well as macromolecules. For a set of 195 small molecules, our S-GB model gives a root mean
square (rms) of 0.13 kcal/mol relative to the rigorous polarizable continuum model (PCM).

Introduction and Theory

The solvation/desolvation energy is a key component in the
characterization of various biological processes, such as protein-
ligand interactions and protein folding. Thus, it is not surprising
that a broad diversity of solvation models, primarily focused
on electrostatic solute charge screening by solvents, exists today.
They range from rigorous solutions of proper electrostatic
problems to fast empirical models.

One end of this spectrum is represented by the Poisson-
Boltzmann (PB) method and the polarizable continuum model
(PCM).1 These approaches provide a rigorous solution to the
electrostatic problem of solute charges in a dielectric cavity,
formed by the bulk solvent around the solute. The solution can
be obtained on a 3D grid or, alternatively, the formalism of
surface charges can be exploited (PCM). Being rigorous, these
methods are very slow, which precludes their utilization in
molecular mechanics and molecular dynamics simulations of
large biomolecules. The other end of the spectrum is represented
by empirical methods.2 The high speed of calculation allows
their use in docking and MD/MC protein simulations, but the
physical origin and accuracy of such methods are questionable.

An interesting compromise in speed and accuracy is the
generalized born (GB) approximation.3,4 This approach reduces

the problem of determination of the polarization energy,Gpol,
of a point charge system in a dielectric cavity to finding the
“self-polarization energy”,Gi

self, of each charge, which means
the polarization energy of the charge in the same dielectric cavity
as the whole system, but with other charges absent:

Here, the Born radii of atoms,Ri, are inversely proportional to
their self-polarization energy,Gi

self:

andc is an empirical coefficient, which is equal to 4 in Still’s
original paper3 or 8 in a recent parametrization;5 qi are atomic
charges,rij is the distance between chargesqi and qj, andεin

andεout are the dielectric constants inside and outside the cavity,
respectively.

Equation 1, although empirical, gives a surprisingly accurate
approximation to the rigorous PB results. It was shown6 that in* Corresponding author. E-mail: vladimir.sulimov@algodign.com.
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the case of the exact Born radii,Ri, defined by eq 2 where the
Gi

self values were calculated by the rigorous PB method, the
GB polarization energy obtained from eq 1 differed from the
exact PB polarization energy by<1%.

However, the problem of finding the correct Born radii,Ri

(i.e., self-polarization energies,Gi
self), still exists. Of course,

they can be calculated by the PB method or the PCM, but this
vitiates the point of the GB method and thus only has interest
for the calibration of other, faster methods. A more straight-
forward way is to use the following approximate expression:

where Dh ) qrj/|r|3 is the electric displacement vector, ap-
proximated by the Coulomb field of theith atom, and the
integration is performed over the volume outside the dielectric
cavity. Equation 3 is exact for spherical cavities. For other
cavities, it is only an approximation, but it works quite well
and is often referred to as the Coulomb approximation forRi:

From the computational point of view, it is reasonable to
change the integration volume,V, in eq 4 and integrate over
the volume,W, inside the dielectric cavity, excluding the volume
in the sphere of radiusRi

es over theith atom, which gives

Here, theRi
es radius is the electrostatic radius for the particular

atom. The set of differentRi
esvalues for each atom type can be

used to build the dielectric cavity in the PB and GB methods.
Hence, the Born radii can be calculated by eq 5 using

numerical volume integration, as was done by Scarci et al.7

Several attempts were made to substitute numerical volume
integration by analytical techniques, involving summation over
atoms, but the results usually were less satisfactory.

Ghosh et al.8 used the Green formula

to reformulate eq 4 in terms of surface integration instead of
volume integration:

The advantage of this surface GB method (S-GB) is that surface
numerical integration is usually faster than volume integration;
also, the surface integration scales better with increasing system
size, which is important in the case of large macromolecules.

Several attempts were made to go beyond the Coulomb
approximation. Ghosh et al.8 used an empirical correction in
their S-GB method to enhance the correspondence between the
Coulomb approximation (eq 4) and PB-calculated radii,Ri. The
most successful approach was introduced by Lee et al.5 They
used what they call a “correction term” to improve the Coulomb
approximation result (eq 4):

Here, the integration volume is outside the cavity,R0 is a small
offset which slightly enhances the accuracy, and the constant
P ≈ 2(2)1/2 is needed to obtain the exact result in the case of a
spherical cavity. In fact, the term

is not actually a correction, because its value is comparable with
the unmodified value. The Coulomb term

even has the opposite sign compared to the unmodified eq 4.
Thus, eq 8 has no clear origin as a Coulomb approximation
correction. Nonetheless, this approach gives the best cor-
respondence of calculatedRi with the exact PB values (cor-
relation coefficient, 0.9996), but the reason for such high
accuracy is not clear. The original method of Lee et al.5 was
formulated and implemented in the CHARMM package (version
c30b2, GBMV methods) using a numerical grid volume
integration and several analytical approaches to define the
standard molecular volume.

On the other hand, as pointed out above, the surface
integration technique possesses some advantages, and it would
be interesting to formulate and test a method with equivalent
or higher accuracy compared to the volume method of eq 8,
but based on surface integration, which we do here.

Formulation and Implementation of S-GB Method
We propose the Surface GB method, based on the calculation

of surface integrals of type

These integrals have the proper dimension (inverse length), so
we can attempt to expand the self-polarization energy of unit
charge as a sum of such integrals:

Then, theGi
self values are used to calculateRi by eq 2. Certainly,

the summation in eq 10 should be stopped after a reasonable
number of terms. TheAn coefficients can be determined by
fitting the results from the S-GB calculations of eq 10 to the
exact PCM solution on the same surface.

We utilize our own procedure to build the solvent excluded
surface (SES)9 used in S-GB and PCM calculations. This
procedure employs secondary rolling of the surface10 and
guarantees smoothing of the surface, which is necessary to
calculate the PCM energy for molecules of an arbitrary size
(including proteins). It is known that the SES provides the
closest fit of results obtained by continuum solvation methods
to experimental results.5

We also use our own iteration procedure to find the solution
of PCM equations. This procedure is similar to one described
by Chudinov et al.11 and is applied to surface elements (tesserae)
constructed on the basis of a triangular grid built on the SES.
It was shown that the PCM solution error depends linearly on
the triangle size (the length of the longest triangle side), which
is an adjustable parameter. We choose the triangle size to be
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0.02 nm. Arbitrary shift of the 0.02 nm triangular grid along
the SES results in solution variations within 0.3 kcal/mol for
large molecules (∼0.02% of the total molecule reaction field
energy). We believe that this accuracy is sufficient for most
PCM applications. In the remainder of this paper, all PCM and
GB solutions are made on the SES grid with a triangle size
0.02 nm. Other parameters, used in building the SES, are either
Bordner et al.12 or Bondi’s13 set of atomic radii,Ri

es, and values
of 0.14 and 0.04 nm for the first and second rolling radii,9

respectively.
In Table 1, we present the correlation of individual integrals,

In, as well as the values of S-GBGi
self calculated from eq 10

relative to the PCM-calculated self-polarization energies for the
first 600 atoms in the PDB file (1QS4 code in the Protein Data
Bank)14 of a typical protein, HIV integrase. TheAn coefficients
were determined by a least-squares procedure to minimize the
difference between the PCM and S-GB results over the 600
integrase atoms using Bordner et al.12 radii, Ri

es.
We choose to take the first four integrals in eq 10, because

more integrals do not appear to increase the accuracy (see Table
1). We call this the four-integral model. The values of the
coefficientsA0 and A4-A7 calculated as described above are
shown in the first data line of Table 2.

The coincidence of the exact self-polarization energy with
the four-integral model is shown in Figure 1. For comparison,
in Figure 2, we present the results for onlyI4 integral fitting,
which is equivalent to the Coulomb approximation. In these
calculations, we use theRi

es radii from Bondi.13 It is clear that
the four-integral model gives much better results and also
eliminates the nonlinear behavior seen with the Coulomb
approximation. This nonlinear behavior is a characteristic feature
of the Coulomb approximation, manifested in all molecular
systems, because the Coulomb approximation cannot simulta-
neously fit the cases of buried atoms with lowGi

self values and
atoms exposed to solvent with highGi

self values.
It is also interesting to test our S-GB model for a particular

force field andRi
es radii parametrization. We chose the recent

parametrization of Bordner et al.12 for the MMFF force field.15

This parametrization is a good case, because it is derived by a
variant of the PCM and formulated for the popular MMFF force
field, which is applicable to a wide variety of organic molecules.
Unlike the previous examples, the Bordner et al. parametrization
utilizes anεin value that is different from unity. The results of
the S-GB four-integral model for the self-polarization energy
of HIV integrase atoms are shown in Figure 3. The correlation
coefficient is practically the same as that in Figure 1, while the
root mean square (rms) and maximal deviation are approxi-
mately 2-fold less, which is expected because in this case the
S-GB polarization energy corresponds not to transferring the
molecule to vacuum but to media withεin ) 2.21. Importantly,

TABLE 1: Correlation of Gi
self(PCM) with Individual Integrals, I n, and with Energy from eq 10a

n
correlation ofIn

with Gi
self(PCM)

correlation ofGi
self(S-GB)

with Gi
self(PCM)

maximal deviation ofGi
self(S-GB)

from Gi
self(PCM), kcal/mol

rms deviation ofGi
self(S-GB)

from Gi
self(PCM), kcal/mol

4 -0.981 83 0.981 83 11.65 2.27
5 -0.999 19 0.999 60 2.10 0.34
6 -0.997 26 0.999 63 2.42 0.32
7 -0.991 16 0.999 70 1.75 0.29
8 -0.984 92 0.999 70 1.75 0.29
9 -0.979 36 0.999 70 1.75 0.29

a The Gi
self(S-GB) values are calculated using theAn coefficients optimized for the first 600 atoms in the PDB file of HIV integrase and using

the Ri
es radii of Bordner et al.12

TABLE 2: Parameters and Performance of Several Models forGi
self Calculation Based on Linear Combinations of VariousI n

Integralsa

rms forGi
self, kcal/mol, calculated using theRi

es radii from:

model no. A4 A5 A6 A7 A0 Bondi13 Bordner et al.12

1 -0.739 13.526 -19.992 13.113 1.166 0.59 0.32
2 1.881 * * * -0.131 4.35 2.71
3 -0.449 6.326 * * 1.921 0.69 0.39
4 0.437 * 5.315 * 0.483 0.75 0.43
5 0.732 * * 4.911 -0.411 0.96 0.56
6 * 5.119 * * 1.488 1.13 0.62
7 * 3.118 2.697 * 1.185 0.65 0.37
8 * 3.904 * 1.895 -0.136 0.64 0.37
9 * * 13.064 -7.137 1.825 0.74 0.42

a An asterisk indicates that the corresponding integral was not used in the model. The units ofA0 are kcal/mol, and the units ofA4-A7 are
(kcal‚nm)/mol. The rms was calculated over the first 400 atoms in the PDB file of HIV integrase (Bondi set ofRi

es) or over all 2374 atoms of the
HIV integrase catalytic domain (Bordner et al. set ofRi

es).

Figure 1. Plot of the rigorous atomic self-polarization energies (cal-
culated by the PCM) vs the four-integral S-GB values for the first 400
atoms in the PDB file of HIV integrase. Partial atomic charges are 1
au, and theRi

es radii are taken from Bondi.13 The dielectric coefficient
is εin ) 1 inside the cavity and isεout ) 78.39 outside. The coefficients
A0 andA4-A7 used to calculate the S-GB values by eq 10 are listed in
the first data line of Table 2. The correlation coefficient is 0.999 736.
The maximal deviation is 3.42 kcal/mol, and the rms is 0.59 kcal/mol.

Letters J. Phys. Chem. A, Vol. 108, No. 43, 20049325



the coefficientsA0 and A4-A7 used for this calculation were
the same as those previously optimized for the SES built using
the BondiRi

es radii. Hence, these results suggest that the four-
integral model has universal properties, and its performance does
not depend on any particularRi

esradii parametrization, the media
dielectric constant, or the method of building the SES.

We summarize the performance of our model and several
other models in Table 2. Here, the first model is our four-integral
model; the second model is the Coulomb approximation (I4

integral only); model 3 utilizes theI5 integral in addition toI4

and is thus the surface correlate of the volume method of Lee
et al.5 mentioned above; and model 5 corresponds to another
variant presented by Lee et al.5 It is clear in model 3 that theI5

integral is not just a correction to the Coulomb integral,I4,
because theA5 coefficient is much larger than theA4 coefficient.
Several other models based on linear combinations of just two
integrals are also shown in the table. Interestingly, the most
accurate of all the two-integral models, model 8, does not
include the Coulomb integral at all.

It is important to go further and compare the whole reaction
field energy calculated by our four-integral S-GB model and the
more rigorous PCM. This comparison for a set of 195 small
molecules12 is shown in Figure 4. The difference between the
S-GB model and the PCM (rms of 0.13 kcal/mol) is much
smaller than the difference of the PCM from experimental results
(rms of 0.716 kcal/mol12). The S-GB method is also about 5-fold
more accurate than the volume method of Lee et al.5 on this set
(rms of 0.79 kcal/mol relative to the PCM). Thus, our S-GB
method gives excellent results for small molecules, despite the
fact that it is parametrized on a macromolecule (HIV integrase
protein). It therefore seems that eq 10 is universal and the
performance of the four-integral S-GB model does not depend
on cavity shape.

Along these lines, Table 3 presents the reaction field energies
and their differences for two systems of a protein, ligand, and
complex, again using the valuesA0 and A4-A7 derived from

TABLE 3: Solvent Reaction Field Energy Calculated with Various Methods for Protein-Ligand Binding

complex energy, calculated for:
PCM energy,

kcal/mol
S-GB energy,

kcal/mol
Still analytical GB
energy, kcal/mol

benzamidine-trypsin complexGc -2165.58 -2098.04 -1584.51
ligandGl -69.98 -69.92 -69.44
proteinGp -2105.66 -2037.12 -1529.21
difference: Gc - (Gl + Gp) 10.06 9.00 14.4

4-aminobenzamidine-trypsin complexGc -2180.65 -2112.40 -1575.57
ligandGl -84.90 -84.50 -71.29
proteinGp -2103.63 -2033.57 -1529.11
difference: Gc - (Gl + Gp) 7.88 5.67 24.83

Figure 2. Plot of the rigorous atomic self-polarization energies
(calculated by the PCM) vs the one-integral S-GB values (Coulomb
approximation) for the first 400 atoms in the PDB file of HIV integrase.
Partial atomic charges are 1 au, and theRi

esradii are taken from Bondi.13

The dielectric coefficient isεin ) 1 inside the cavity and isεout ) 78.39
outside. The coefficientsA0 andA4 in eq 10 are listed in the second
data line of Table 2. The correlation coefficient is 0.989 984. The
maximal deviation is 14.10 kcal/mol, and the rms is 4.352 kcal/mol.

Figure 3. Plot of the rigorous atomic self-polarization energies (cal-
culated by the PCM) vs the four-integral S-GB values for the atoms of
the HIV integrase catalytic domain (2374 atoms). Partial atomic charges
are 1 au, and theRi

es radii are those of Bordner et al.12 The dielectric
coefficient isεin ) 2.21 inside the cavity and isεout ) 80.0 outside.
The coefficientsA0 andA4-A7 are the same as those for Figure 1. The
correlation coefficient is 0.999 707. The maximal deviation is 1.90 kcal/
mol, and the rms is 0.319 kcal/mol.

Figure 4. Deviations of S-GB energies from rigorous PCM reaction
field energies for a set of 195 small molecules. TheRi

es radii are taken
from Bordner et al.12 The dielectric coefficient isεin ) 2.21 inside the
cavity and isεout ) 80.0 outside. The coefficientsA0 andA4-A7 are
the same as those for Figure 1. The empirical coefficient,c, in eq 1 is
8. The correlation coefficient is 0.997, and the rms is 0.13 kcal/mol.
The grid-based volume integration method of Lee et al.5 gives a corre-
lation coefficient of 0.983 and a rms of 0.79 kcal/mol on the same set.
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HIV integrase. These energies play an important role in studying
protein-ligand interactions, and a maximal coincidence with the
rigorous PCM results is highly desirable. It is clear that our
S-GB method performs much better than the traditional analyti-
cal approach.

Conclusions

The fast and precise surface generalized born four-integral
method has been presented. Although its theoretical justification
is not completely clear and is currently under investigation, this
method performs very well in a variety of systems. Its accuracy
should allow the S-GB method to be used instead of the very
slow PCM and PB method in the modeling of various
biochemical processes where the solvation energy plays an
important role.
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