Theoretical Study on the Thermochemistry of Chlorinated and Fluorinated Germanes and Their Radical Fragments

Liming Wang[†] and Jingsong Zhang^{*,‡}

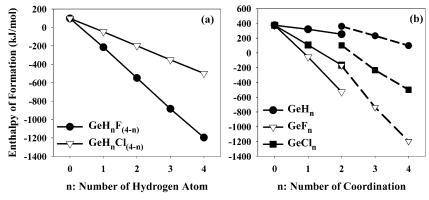
Department of Chemistry, University of California, Riverside, California 92521 Received: July 5, 2004; In Final Form: August 30, 2004

The structures, vibrational frequencies, enthalpies of formation, and dissociation energies of germane, chlorinated and fluorinated germanes, and their radical fragments have been examined with density functional theory and quantum chemistry ab initio methods. The theoretical vibrational frequencies of the germanes at the B3LYP/6-31G(2df,p) level are in good agreement with the experimental data, but those of the germyl radicals largely disagree with the previous experimental assignments. The G3//DFT enthalpies of formation of GeH₄, GeCl₄, and GeCl₂ are within two times of the experimental uncertainties, while that of GeF₄ differs with the experiment by ~ 10 kJ/mol. The calculated enthalpies of formation of the Ge-containing radicals have a large discrepancy with the available experimental data (which have large uncertainties). The bond dissociation energies of the Ge species and their trends with the F/Cl substitutions are evaluated at the G3 level as well. For dissociation of partially substituted F/Cl-germanes and germyl radicals, a propensity of diatomic elimination of H₂ or HF/HCl over single bond breaking is suggested, based on the low-energy barriers of the diatomic eliminations relative to the bond breakage to form Ge-containing radicals.

1. Introduction

Germane and its halogen substitutions have attracted considerable attention because of their potential roles in semiconductor productions.^{1–5} For example, a SiH₄/GeH₄/H₂ mixture is commonly used as the precursor for growth of SiGe microcrystal; GeCl₄ has been proposed for deposition of germanium and growth of Si_{1-x}Ge_x heterostructures on silicon surfaces;⁶ GeF₄ is introduced as a guest molecule to reduce germanium-related dangling bond density in thin films in plasma-enhanced chemical vapor deposition (CVD) processes, in which GeF_x (x = 1-3) radicals are involved;^{7.8} HCl is added to a SiH₂Cl₂/GeH₄ mixture for controlling growth of Si and SiGe,⁹ etc.

The structural and thermodynamic parameters of simple germanes and their fragment radicals are important for understanding the CVD processes, and yet they are largely unknown in spite of decades of experimental and theoretical studies. The enthalpies of formation of gaseous Ge compounds are mostly derived based on those of the solid-state Ge compounds by using classical thermochemistry methods, as the standard state of germanium is crystal (cr) and the enthalpies of formation of some solid-state Ge compounds, such as $GeO_2(s)$, are known with precision. For example, $\Delta_{d}H_{298}^{\circ}(\text{GeH}_{4}, \text{g})$ has been determined to be 90.4 \pm 2.1 kJ/mol from the heat of decomposition of GeH₄(g) to Ge(s) + 2H₂,¹⁰ $\Delta_{f}H_{298}^{\circ}(\text{GeF}_{4}, \text{ g}) = -1190.3 \pm$ 0.8 kJ/mol from F₂-bomb calorimetry,^{11,12} and $\Delta_{H_{298}^{\circ}}$ (GeCl₄, g) = -494.8 ± 2.7 kJ/mol from the third-law analysis of the equilibrium constant of $GeO_2(s) + 2Cl_2 = GeCl_4 + O_2$.¹³ No measurements are available for the partially F/Cl-substituted germanes.


The classical thermodynamics has also been utilized to obtain the enthalpies of formation and bond dissociation energies (BDEs) of several fragment radicals of germanes. The enthalpy of formation of GeCl₂ has been determined from the chemical equilibrium $Ge(s) + GeCl_4(g) = 2GeCl_2(g)$. The enthalpy change of reaction at 723 K was first found to be 146.0 ± 2.1 kJ/mol;¹⁴ with this value and $\Delta_{t}H_{298}^{o}(\text{GeCl}_{4}, g) = -510$ kJ/mol, Uy et al.¹⁵ obtained $\Delta_{f}H_{298}^{\circ}(GeCl_2, g)$ of -170 ± 4 kJ/ mol,¹⁶ and $\Delta_{H_{298}^{\circ}}$ (GeCl₂, g) can be revised to -162.8 ± 4 kJ/ mol with a new ΔH_{298}^{o} (GeCl₄, g) of -494.8 ± 2.7 kJ/mol.¹³ Two values of $\Delta_{f} H^{\circ}(GeF_{2}, g)$ have been published from the same group.^{17,18} From the chemical equilibrium between CaF₂-(g) and Ge, Ehlert et al. obtained a value in the range of -430to -506 kJ/mol;¹⁷ from the enthalpy of formation of GeF₂(cr) $(-747.3 \pm 4.2 \text{ kJ/mol}, 298.15 \text{ K})^{19}$ and the enthalpy of sublimation of GeF₂(cr) (85.8 kJ/mol, 298.15 K), Adams et al. obtained $\Delta_{\mu}H^{\circ}_{298}(\text{GeF}_2, \text{ g}) = -572.8 \text{ kJ/mol.}^{18} D(\text{Ge-Cl}) =$ 387.0 ± 9.6 kJ/mol was determined from the gas-phase chemical equilibrium of GeCl, CuCl, Ge, and Cu.²⁰ $D(H_3Ge-H) = 346$ \pm 10 kJ/mol and D(H₂IGe-H) = 332 \pm 10 kJ/mol were derived from kinetic studies on the reaction between iodine and GeH₄ and GeH₃I.^{21,22} $D(H_3Ge-H) \le 326$ kJ/mol was also estimated from HF infrared chemiluminescence in the reaction of the F atom with GeH₄,²³ and it was revised to \sim 339 kJ/mol.²⁴

Photodissociation and photoionization with high-resolution light sources are other experimental methods for the determination of the bond dissociation energies and ionization energies. Up to now, the most precise determination of $D_0(H_3Ge-H) =$ 343.1 ± 8.4 kJ/mol is from the photoionization study;²⁴ and the ionization energies and bond dissociation energies of other GeH_x species are also obtained in the photoionization study. These experimental values of the GeH_x system from the photoionization study are reliable for testing the theoretical calculations. There have been a few photoionization and electron-bombardment studies on the substituted germanes, attempting for the BDEs of the germanes and fragment

^{*} Address correspondence to this author. Fax: (951) 827-4713. E-mail: jingsong.zhang@ucr.edu.

[†] Present address: Department of Chemistry, University of Leeds, Leeds LS2 9JT, UK.

[‡] Also at Air Pollution Research Center, University of California, Riverside, CA, 92521.

Figure 1. Enthalpies of formation of (a) $\text{GeH}_n\text{F}_{(4-n)}$ and $\text{GeH}_n\text{Cl}_{(4-n)}$ and (b) GeH_n , GeF_n , and GeCl_n at 0 K at the G3//DFT level of theory (singlet GeX₂ connects to the solid lines, and triplet GeX₂ to the dash lines).

radicals.^{25–27} However, the low-energy resolution (due to the spectral resolution of the light sources and the sensitivity of ion detection) has limited the reliability and accuracy of these measurements.

The experimental enthalpies of formation are known accurately only for GeH₄, GeF₄, GeCl₄, and GeCl₂, and several measurements for only a few Ge-containing radicals have large uncertainties. The lack of experimental thermodynamic and kinetic data for the Ge compounds has hampered a better understanding of the precursors and their chemistry in the CVD processes, and it is desirable to determine these properties from the first principle calculations. Quantum chemistry calculations have been able to provide reasonably accurate estimations on the structural and thermodynamic parameters,²⁸ and to clarify the gas-phase reaction mechanisms in the CVD and etching processes.^{29–31} The $D(H-GeH_3)$ has been determined to be 354.8 kJ/mol at the G1 level by Binning and Curtiss,³² 354.5 kJ/mol at the G2 level by Mayer et al.,³³ 350.5 kJ/mol at the RCCSD(T)-CBS level (with scalar relativistic effect and spinorbital effects included) by Ricca and Bauschlicher,³⁴ and 339.3 kJ/mol at the QCISD(T)/GCM+/ECP level by Morgon and Riveros.35 The Dirac-HF calculation has obtained the reaction energy of $\text{GeH}_4 \rightarrow \text{GeH}_2 + \text{H}_2$ of 195.4 kJ/mol.³⁶ The BDEs of GeX_{2.4} (X = F, Cl) have been attempted with DFT methods.³⁷ There have been several spectroscopic and theoretical studies on the singlet-triplet separations of the germylene radicals.³⁸⁻⁴⁹ In this work, theoretical studies with the density functional method and high-level ab initio methods are carried out on the structural and thermodynamic properties of germane, its F/Cl substitutions, and their fragment radicals. The results are compared with the available experimental data and theoretical values.

2. Computational Details

All quantum chemistry calculations are performed with the Gaussian 98 program.⁵⁰ Geometries of germanes and their radicals are optimized at B3LYP and MP2(Full) levels of theory with 6-31G(2df,p) basis sets. Zero-point energy (ZPE) corrections are calculated from the B3LYP/6-31G(2df,p) vibrational frequencies with a scale factor of 0.9854.⁵¹ The newly developed 6-31G(d) basis set with the 3d-shell included as the valence shell for germanium is employed here.⁵² All the B3LYP and MP2(Full) geometries are subjected to G3 single-point calculations^{53,54} (denoted G3//DFT and G3//MP2 here) with high-level correction parameters (in mhartree) of A = 6.688, B = 3.007, C = 6.763, and $D = 1.107.^{51}$ The enthalpies of formation are determined by the atomization energy procedure.⁵⁵ The enthalpies of formation and their thermal corrections [H^{298,15}-H⁰] of

H, F, and Cl atoms are taken from the JANAF-NIST table.⁵⁶ The $\Delta_f H_0^{\circ}$ (Ge, g) of 373.8 \pm 8 kJ/mol and the thermal correction of 4.623 kJ/mol for Ge(cr) from the CRC handbook⁵⁷ are used in this study.

3. Results and Discussion

The geometry parameters, vibrational frequencies, G3 energies and enthalpies of formation, and bond dissociation energies (BDEs) of the title species are listed in Tables 1-4, respectively. The variations of enthalpies of formation and BDEs upon F/Cl substitution are depicted in Figures 1 and 2.

3.1. Geometry and Vibrational Frequencies. Most experimental geometries are obtained from the spectroscopic studies, and are limited to GeX and several germylene radicals for which rotationally resolved spectra have been recorded. These values are summarized in Table 1.

MP2(FU) and B3LYP predict similar geometries, with the MP2(FU) bond lengths systematically shorter than the B3LYP ones, up to 0.06 Å in GeCl₃. Experimental bond lengths, if available, are usually in between. For example, the r(Ge–H) of GeH is 1.564 Å by MP2(FU), 1.588 Å from experiment, and 1.604 Å by B3LYP. These values for Ge–F are 1.736, 1.745, and 1.752 Å, respectively. Similar trends are expected for other species. Despite the bond length differences, the G3 energies based on the MP2(FU) and B3LYP geometries are in close agreement, within a maximum difference of 1.2 kJ/mol (for GeF₄). Discussions in the following will be based on the G3//DFT calculations unless otherwise stated.

The theoretical vibrational frequencies are listed in Table 2 along with the available experimental values. Vibrational spectra are available for most of the germanes concerned here from IR and Raman spectroscopy.⁵⁸⁻⁶³ Photolysis of chlorogermanes in matrix has been used to produce the radicals and to study their IR absorption spectra.⁶⁴⁻⁶⁶ The calculated B3LYP/6-31G(2df,p) vibrational frequencies of germanes agree well with the experimentally observed transitions, with the Ge-H stretching frequencies usually overestimated by about 1-2%. However, our calculation results cast doubt on some of the assignments for several radicals. For example, the calculations support the experimental assignments for GeH₄ and the GeH₂ radical, but they are not consistent with those for the GeH₃ radical. The 850 cm⁻¹ experimental transition can be assigned to the deformation mode of GeH₃, while the 928, 1813, and 1839 cm⁻¹ transitions observed in the experiment do not match with the calculated frequencies of GeH₃.⁶⁶ The calculations agree with the experimental assignments for GeCl3 and GeCl2,64 but disagree with the assignments for the GeH₂Cl radical. The observed transition at 385 cm⁻¹ may correspond to the

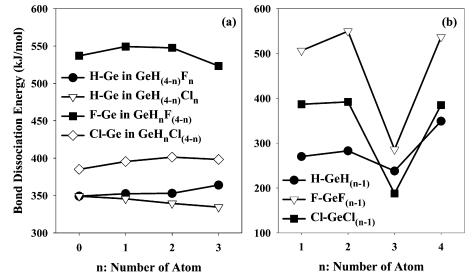


Figure 2. Bond dissociation energies (in kJ/mol) in (a) F- and Cl-substituted germanes and (b) GeH_n, GeF_n, and GeCl_n at 0 K at the G3//DFT level of theory.

TABLE 1: Geometrical Parameters at the MP2(FU) and B3LYP (in parentheses) Levels of Theory and Available Experimenta
Values (in curly braces) ^a

species	sym	Ge-H	Ge-X	H–Ge–H	H–Ge–X	X-Ge-X
	sym		Ge A	11 00 11		A Ge A
Ge-H		1.564 (1.604)				
Ge-F		{1.588}	1 726 (1 752)			
Ge-F			1.736 (1.752) {1.745}			
Ge-Cl			2.148 (2.198)			
¹ GeH ₂	C_{2v}	1.559 (1.596)	2.140 (2.190)	91.9 (90.4)		
Genz	C2v	$\{1.591\}^{48}$		${91.2}^{48}$		
³ GeH ₂	C_{2v}	1.508 (1.544)		119.9 (119.5)		
¹ GeHF	C_s	1.573 (1.616)	1.737 (1.753)	(11)()	94.8 (94.6)	
³ GeHF	$C_s \\ C_s$	1.521 (1.572)	1.728 (1.745)		113.7 (112.6)	
¹ GeF ₂	C_{2v}		1.727 (1.742)			97.8 (98.1)
-	20		$\{1.7320\}^{82}$			$\{97.148\}^{82}$
³ GeF ₂	C_{2v}		1.719 (1.744)			112.2 (113.2)
¹ GeHCl	C_s	1.563 (1.603)	2.154 (2.207)		94.3 (93.7)	
³ GeHCl	C_s	1.517 (1.565)	2.123 (2.176)		115.5 (114.4)	
¹ GeCl ₂	C_{2v}		2.152 (2.206)			100.2 (100.7)
³ GeCl ₂	C_{2v}		2.120 (2.187)			117.6 (119.8)
GeH ₃	C_{3v}	1.510 (1.540)		111.9 (110.7)		
GeH ₂ F	C_s	1.518 (1.555)	1.729 (1.743)	113.5 (112.6)	106.2 (105.6)	
GeHF ₂	C_s	1.528 (1.573)	1.717 (1.733)		107.5 (106.3)	104.3 (104.2)
GeF ₃	C_{3v}		1.706 (1.723)			106.6 (106.4)
GeH ₂ Cl	C_s	1.515 (1.549)	2.131 (2.179)	112.9 (111.7)	107.5 (106.2)	
GeHCl ₂	C_s	1.521 (1.561)	2.123 (2.176)		108.0 (106.6)	108.4 (108.5)
GeCl ₃	C_{3v}		2.118 (2.177)			108.7 (108.8)
GeH ₄	T_d	1.510 (1.534)				
GeH ₃ F	C_{3v}	1.510 (1.533)	1.728 (1.738)	112.3 (112.4)	106.4 (106.4)	
GeH ₂ F ₂	G	1.515 (1.530)	1.713 (1.723)	118.5 (119.0)	108.1 (108.0)	105.2 (105.2)
GeHF ₃	C_{3v}	1.496 (1.519)	1.698 (1.708)		112.2 (112.2)	106.6 (106.5)
GeF ₄	T_d	1 505 (1 500)	1.685 (1.694)	111 7 (111 0)	105 1 (105 0)	
GeH ₃ Cl	C_{3v}	1.507 (1.532)	2.133 (2.174)	111.7 (111.8)	107.1 (107.0)	100 0 (100 0)
GeH ₂ Cl ₂	C	1.504 (1.529)	2.117 (2.158)	115.6 (116.0)	108.2 (108.0)	108.2 (108.8)
GeHCl ₃	C_{3v}	1.501 (1.526)	2.105 (2.145)		110.4 (110.2)	108.5 (108.7)
GeCl ₄	T_d		2.095 (2.136)			

^a Bond lengths in Å and bond angles in deg.

calculated 402 cm⁻¹ of GeH₂Cl, while those observed at 685, 715, 734, 1810, and 1856 cm⁻¹ cannot be matched to the theoretical values here.⁶⁵

3.2. Germanium Hydrides (GeH_x, x = 1-4). As the previous experimental and theoretical studies have obtained accurate and reliable BDEs only for the GeH_x system, it is worthwhile to examine the performance of the G3 method on this system first. From the photoionization studies, Ruscic et al. obtained the 0 K BDEs of the Ge–H bond to be <357.7, >236.0, <288.3, and >224.7 kJ/mol from GeH₄ to GeH,

respectively.²⁴ At the RCCSD(T)-CBS level with scalar relativistic effects and spin—orbital effects included, Ricca et al. calculated BDEs of 350.5, 238.9, 286.4, and 269.9 kJ/mol correspondingly.³⁴ A previous G2 study obtained BDE(GeH₃— H) of 354.5 kJ/mol.³³ Our G3//DFT values of 349.1, 237.5, 282.9, and 270.5 kJ/mol (Table 4) are in excellent agreement with Ricca et al.'s theoretical results, but with much less computational demand. The G3 calculations are also consistent with the experimental BDEs by Ruscic et al.,²⁴ which were obtained from the measurements of adiabatic ionization poten-

 TABLE 2: Vibrational Frequencies (in cm⁻¹) at the B3LYP/

 6-31G(2df,p) Level, Compared with the Available

 Experimental Values

species	frequencies (in cm ⁻¹)
GeH	1875 (exptl: 1834)
GeF	710 (exptl: 666)
GeCl	390 (exptl: 408)
¹ GeH ₂	935, 1903, 1912 (exptl: 920, 1864, 1887 ⁶⁶)
³ GeH ₂	817, 2026, 2117
¹ GeHF	702, 775, 1830
³ GeHF	545, 710, 1852
${}^{1}\text{GeF}_{2}$	250, 689, 709 (exptl: 265, 677, 707 60) (exptl: 263.9 47)
³ GeF ₂ ¹ GeHCl	197, 661, 704 (exptl: 192.4, 673.1 ⁴⁷) 386, 724, 1878 (exptl: 439, 706, 1862 ⁶⁵)
³ GeHCl	396, 532, 1909
¹ GeCl ₂	152, 374, 393 (exptl: 160, 391.2 ⁴⁶) (exptl: 356/362,
00012	383/388 ⁶⁴)
³ GeCl ₂	$108, 346, 394 \text{ (exptl: } 118, 393^{-46}\text{)}$
GeH ₃	701, 855, 855, 2090, 2137, 2137 (exptl: 850, 928/920,
	1813, 183966)
GeH ₂ F	627, 697, 721, 834, 2017, 2081
GeHF ₂	236, 613, 616, 717, 725, 1913
GeF ₃	209, 209, 260, 703, 739, 739
GeH ₂ Cl	calcd: 402, 585, 654, 830, 2042, 2101
aa	exptl: 385, 685, 715, 734, 1810, 1856 ⁶⁵
GeHCl ₂	135, 389, 404, 569, 632, 1993 126, 126, 150, 262, 401, 401 (cm/d), 256/262, 282/28864
GeCl ₃	126, 126, 159, 362, 401, 401 (exptl: 356/362, 383/388 ⁶⁴)
GeH ₄	calcd: 821, 821, 821, 926, 926, 2149, 2158, 2158, 2158 exptl: 819, 819, 819, 931, 931, 2106, 2114, 2114, 2114 ⁶¹
	exptl: 812/820, 2097, 2106, 2134 ⁶⁶
GeH ₃ F	calcd: 634, 634, 723, 869, 871, 871, 2157, 2169, 2169
Gerry	exptl: 643, 643, 689, 859, 874, 874, 2121, 2132, 2132 ⁶²
GeH ₂ F ₂	calcd: 243, 586, 634, 737, 748, 801, 858, 2181, 2199
	exptl: 596, 720, 720, 813.5, 860.0, 2154.5, 2174.4 58
GeHF ₃	calcd: 228, 228, 281, 695, 695, 749, 783, 783, 2242
GeF ₄	calcd: 200, 200, 267, 267, 267, 736, 823, 823, 823
	exptl: 203, 203, 273, 273, 273, 735, 800, 800, 800 ⁶¹
GeH ₃ Cl	calcd: 410, 588, 588, 841, 871, 871, 2164, 2179, 2179
	exptl: 422, 602, 602, 848, 874, 874, 2120, 2129, 2129 ⁶²
	exptl: 414. 601/612, 839/842/844, 866/782,
C II CI	2104/2116/2139, 2151 65
GeH ₂ Cl ₂	calcd: 145, 411, 424, 512, 644, 774, 849, 2173, 2193
	exptl: 414, 429, 537, 773/780/787, 840/845/867, 1996/2000, 2112/2125 ⁶⁴
GeHCl ₃	calcd: 139, 139, 176, 403, 433, 433, 703, 703, 2201
0011013	exptl: 414/417, 439/444/454/455, 699/700/714/720/723,
	2139/2160 ⁶⁴
GeCl ₄	calcd: 121, 121, 165, 165, 165, 380, 443, 443, 443
	exptl: 125, 125, 171, 171, 171, 397, 459, 459, 459 ⁶³

tials (IPs) and fragment ion appearance energies. The photoionization studies have obtained two close values for the IP of GeH₄: ≤ 10.52 eV by Ruscic et al.²⁴ and 10.54 eV by Wu et al.,⁶⁷ compared to our G3//DFT value of 10.45 eV. The G3// DFT IPs of GeH₃ and GeH₂ are 8.05 and 9.19 eV, compared to Ruscic et al.'s values of ≤ 7.94 and ≤ 9.25 eV.²⁴ Furthermore, the G3//DFT predicts the appearance energies of GeH₃⁺ and GeH₂⁺ from photoionization of GeH₄ to be 11.66 and 10.78 eV, which are within the experimental uncertainty ($\leq 11.65_7 \pm 0.01$ and $\leq 10.77_2 \pm 0.009$ eV²⁴).

3.3. Enthalpies of Formation. The enthalpies of formation of the germanium species are calculated by using the atomization energy procedure,⁵⁵ and the results are listed in Table 3, along with the limited experimental data. Note that the uncertainty of ± 8 kJ/mol in $\Delta_f H_0^{\circ}$ (Ge, g) is transferred to the G3//DFT $\Delta_f H_{298}^{\circ}$ values of all the Ge-containing species in this work. Thus the enthalpies of formation obtained here from the atomization procedure should be considered as the more probable values, instead of the exact prediction. To improve the theoretical $\Delta_f H_{298}^{\circ}$ values, a more accurate $\Delta_f H^{\circ}$ (Ge, g) is desirable. A possible approach is via a high-resolution photoionization/

fragmentation study of GeF₄, which is the only gaseous Ge compound with a highly accurate and reliable enthalpy of formation, using an advanced synchrotron light source and photoionization and mass spectrometry methods.⁶⁸⁻⁷⁰

As mentioned in the introduction, the accurate experimental $\Delta_f H_{298}^{\circ}$ is available only for GeH₄ (90.4 ± 2.1 kJ/mol),¹⁰ GeF₄ (-1190.3 ± 0.8 kJ/mol),^{11,12} GeCl₄ (-494.8 ± 2.7 kJ/mol),¹³ and GeCl₂ (-162.8 ± 4 kJ/mol).¹⁶ Our G3//DFT $\Delta_f H_{298}^{\circ}$ values for these species are 87.2, -1199.6, -500.4, and -166.9 kJ/mol, respectively. The agreements for GeH₄, GeCl₄, and GeCl₂ are within twice of the experimental uncertainties, while the G3//DFT $\Delta_f H_{298}^{\circ}$ of GeF₄ differs with the experiment by ~10 kJ/mol. At the same level, the predicted $\Delta_f H_{298}^{\circ}$ of SiF₄ is about 5.0 kJ/mol lower than the experimental value, and the deviation for CF₄ is less than 1 kJ/mol.⁵¹ The large deviation for GeF₄ might be due to the reduction of atomization energy caused by the exclusion of the scalar relativistic effect that is only partially accounted for by the high-level correction.⁵⁴

The experimental data on the enthalpies of formation for other Ge species are limited. As mentioned before, the values for several free radicals have been measured, but with large uncertainties. The theoretical results from the G3 calculations, however, should be reliable based the good performance of the G3 model calculations on GeH_x, GeF₄, GeCl₄, and GeCl₂. For the enthalpy of formation of $GeF_2(g)$, the large discrepancy between G3 (-529.5 kJ/mol, 298.15 K) and experiment (-430 to -506, or -573 kJ/mol^{17,18}) is out of the theoretical uncertainty range. In the first experimental study, Ehlert et al obtained -506 kJ/mol for enthalpy of formation of GeF₂(g), which was detected as GeF_2^+ with the appearance potential of $11.6 \pm 0.3 \text{ eV}$.¹⁷ In the later study of GeF₂(cr) sublimation from the same group, GeF_2^+ was detected with an appearance potential of 12.9 ± 0.3 eV.¹⁸ Our calculated IPs of GeF₂ at the G3//DFT level (adiabatic: 11.6 eV; vertical: 11.9 eV⁷¹) indicate that the GeF_2^+ observed in the later study might come from dissociation of other parent ions, possibly $(GeF_2)_2^+$. The experimental $\Delta_f H^{\circ}(GeF_3)$ of -753 kJ/mol was obtained from the appearance energies of F^- and GeF_3^- from electron bombardment of GeF₄ and an estimation on the electronic excitation energy of GeF₃ from the spectroscopic data of CF₃ and SiF₃;²⁶ the experimental value is close to the G3//DFT value of -738.5 kJ/mol (298 K). $\Delta_{\mu}H^{\circ}_{298}(\text{GeCl}_3, \text{ g})$ of -268 ± 50 kJ/mol estimated by Gurvich et al.⁷² has a large uncertainty, and it is reasonably close to the G3//DFT value of -234.4 kJ/ mol at 298 K.

The trends of the enthalpies of formation are shown in Figure 1. The enthalpies of formation of $\text{GeH}_n\text{F/Cl}_{(4-n)}$ decrease approximately linearly with the successive substitution of Ge-H bonds with Ge-F/Cl bonds (Figure 1a). The linearity is less perfect for the first and last F substitutions, with $[\Delta_t H_0^{\circ}(\text{GeH}_4)]$ $-\Delta_{e}H_{0}^{o}(\text{GeH}_{3}\text{F})$] = 312.7 kJ/mol, followed by 333.8, 334.8, and 311.4 kJ/mol. The linearity is better in the GeH_nCl_(4-n) series with $\Delta(\Delta_e H_0^{\circ})$ of 145.8, 152.2, 152.2, and 147.6 kJ/mol. The variation of the enthalpy of formation in GeX_n (X = H, F, and Cl) reflects the changes from sp³ hybridization of the Ge atom in GeX₄, GeX₃, and triplet GeX₂ to the nearly localized p orbital of the Ge atom in singlet GeX_2 , GeX, and $Ge(^{3}P)$. The enthalpy of formation decreases approximately linearly with additional coordination within the same hybridization (Figure 1b). Similar trends have been observed in the previous theoretical studies on SiH_nX_(4-n) (X = F, Cl, OH), 73-76 with larger average decrease in the enthalpy of formation upon subsequent substitution of about 413 kJ/mol for F substitution and 176 kJ/mol for Cl substitution.

TABLE 3: ZPEs, Thermal Corrections, Total Energies, and Enthalpies of Formation (G3//DFT)^a

	ZPE	$H^{298}-H^{0}$	G3//DFT	G3//MP2	$\Delta_{f}H^{\circ}$	$\Delta_f H_{298}^\circ$	$\Delta_f H^\circ$ (exptl)
Н	0.0	6.2	-0.50092	-0.50092	216.04	218.00	
F	0.0	6.5	-99.68589	-99.68589	77.28	79.39	
Cl	0.0	6.3	-459.99262	-459.99262	119.62	121.30	
Ge(g)	0.0	7.4	-2076.37975	-2076.37975	373.8	376.6	
H ₂	26.3	8.7	-1.16713	-1.16709	-1.9	-1.7	0
F ₂	6.3	8.8	-199.42840	-199.42859	5.9	5.8	0
Cl_2	3.2	9.2	-920.07368	-920.07354	7.0	7.1	0
HF	24.2	8.7	-100.40249	-100.40248	-273.0	-272.9	-273.25
HCl	17.4	8.7	-460.65587	-460.65590	-90.5	-90.7	-92.31
GeH	11.0	8.7	-2076.98369	-2076.98361	319.4	319.2	
GeF	4.2	9.0	-2176.25863	-2176.25851	-55.3	-55.4	
GeCl	2.3	9.5	-2536.51990	-2536.51970	106.6	106.9	
¹ GeH ₂	28.0	10.1	-2077.59237	-2077.59223	252.5	249.5	
³ GeH ₂	29.2	10.1	-2077.55172	-2077.55170	359.2	356.3	
¹ GeHF	19.5	10.5	-2176.86441	-2176.86432	-114.9	-117.7	
³ GeHF	18.3	10.7	-2176.79189	-2176.79178	75.5	73.0	
¹ GeF ₂	9.7	11.8	-2276.15382	-2276.15376	-527.9	-529.5	-572.8
³ GeF ₂	9.2	12.1	-2276.01791	-2276.01809	-171.1	-172.4	
¹ GeHCl	17.6	11.1	-2537.12405	-2537.12375	51.1	48.7	
³ GeHCl	16.7	11.3	-2537.05846	-2537.05831	223.3	221.2	
¹ GeCl ₂	5.4	13.3	-2996.66190	-2996.66164	-165.5	-166.9	-162.9
³ GeCl ₂	5.0	13.6	-2996.55944	-2996.55940	102.5	102.3	
GeH ₃	51.7	10.6	-2078.18377	-2078.18382	231.0	224.2	
GeH ₂ F	41.1	11.1	-2177.43375	-2177.43385	-78.5	-84.9	
GeHF ₂	28.4	12.7	-2276.69282	-2276.69299	-411.8	-416.8	
GeF ₃	16.8	14.9	-2375.94823	-2375.94856	-735.5	-738.5	-753
GeH ₂ Cl	39.0	11.7	-2537.69556	-2537.69552	81.8	75.9	
GeHCl ₂	24.3	14.2	-2997.21088	-2997.21081	-76.6	-80.4	
GeCl ₃	9.3	17.8	-2345.72570	-2345.72575	-233.7	-234.4	-268 ± 50
GeH ₄	76.3	10.8	-2078.81766	-2078.81768	97.9	87.2	90.3 ± 2
GeH ₃ F	65.4	11.5	-2178.06887	-2178.06900	-214.8	-225.0	
GeH ₂ F ₂	53.0	13.0	-2277.32811	-2277.32831	-548.6	-557.5	
GeHF ₃	39.4	15.2	-2376.58777	-2376.58807	-883.4	-890.3	
GeF ₄	25.8	17.5	-2475.83847	-2475.83892	-1194.8	-1199.6	-1190.2 ± 0
GeH ₃ Cl	63.0	12.1	-2538.32818	-2538.32807	-47.9	-57.7	11,0.2 ± 0
GeH ₂ Cl ₂	47.9	14.6	-2997.84111	-2997.84100	-200.1	-207.8	
GeHCl ₃	31.4	17.9	-3457.35407	-3457.35406	-352.3	-357.0	
GeCl ₄	14.4	21.5	-3916.86488	-3916.86498	-498.9	-500.4	-495.8

^{*a*} ZPE, thermal correction to 298 K and enthalpies of formation are in kJ/mol; G3 energies in hartree (ZPE included; HLC parameters (in mhartree): A = 6.688, B = 3.007, C = 6.763, D = 1.107; the 6-31G(d) basis sets using five Cartesian components for d functions); experimental values are taken from the JANAF table for HF and HCl; see text for details of the experimental values of the Ge-containing species.

The singlet-triplet (S-T) separation of the germylene radicals is an important parameter to assess their reactivity, and has been subject to several theoretical studies at theoretical levels of Hartree-Fock, DFT, CAS-MCSCF, MRSDIS(+Q), CCSD-(T), etc. $^{38-40,42-45,77}$ The ground states of the germylene radicals are all singlet. The transition from the singlet ground state to the triplet excited state has been observed by laser-induced fluorescence spectroscopy for GeF₂ ($T_{00} = 30582.1 \text{ cm}^{-1} =$ $365.85 \text{ kJ/mol}^{46}$ and GeCl_2 ($T_{00} = 22315 \text{ cm}^{-1} = 266.95 \text{ kJ/mol}^{46}$ mol),⁴⁷ compared to the calculated G3//DFT values of 356.8 and 268.4 kJ/mol, respectively. The S-T splittings of GeH₂, GeHF, and GeHCl at the G3//DFT level are 106.7, 190.4, and 172.2 kJ/mol, respectively. The previous calculations, all using effective core potential, obtained smaller S-T separations than our G3 values. For example, the previous MRCISD(+O) and CCSD(T) studies on GeF₂ predicted the S-T splitting between 330 and 350 kJ/mol,45,77 below the experimental value. However, the previous DFT calculations with nonlocal functional for exchange-correlation energy predicted the S-T separations of GeF₂ and GeCl₂ that agreed with the experiments,⁴⁴ and in the present study, the B3LYP/6-31G(2df,p) calculations provide the S-T separations (GeH₂: 112.0 kJ/mol; GeHF: 190.8 kJ/mol; GeF2: 352.3 kJ/mol; GeHCl: 172.4 kJ/mol; GeCl2: 264.7 kJ/ mol) that are in close agreement with G3.

3.4. Bond Dissociation Energies (BDEs). The calculated BDEs have, in principle, higher accuracy and less uncertainty

than the calculated enthalpies of formation from atomization energy procedure [whose uncertainty is due to that of $\Delta_f H_0^{\circ-}$ (Ge, g)]. The calculated dissociation energies are listed in Table 4. The agreement among our G3//DFT BDEs, the previous theoretical results, and the experimental data for the GeH_x system have been demonstrated in Section 3.2. Experimental data besides those of GeH_x are limited. The experimental BDE of GeCl is determined to be 387.0 \pm 9.6 kJ/mol from the gasphase equilibrium of GeCl, CuCl, Ge, and Cu.²⁰ Our G3//DFT value of 386.8 kJ/mol at 0 K is in agreement with this experimental value. The study on GeF₂ and GeF¹⁷ has been discussed in the previous section.

The dissociation energies of Ge–H in the germanes show different trends upon F and Cl substitutions (Figure 2a). Small increases in Ge–H BDE for fluorogermanes are often attributed to the large electronegativity of fluorine and electron withdrawing from the Ge–H bonds, while small decreases of Ge–H BDE in chlorogermanes are attributed to the high polarizability of the Cl atom and electron returning back to the Ge–H bonds via hyperconjugation (for example, Ge–H BDE in GeH₃I is $332 \pm 10 \text{ kJ/mol}$,²¹ compared to 349.1 kJ/mol in GeH₄ from G3//DFT). These effects can be understood by the natural bond orbital analysis.⁷⁸ The H atom in GeH₄ is negatively charged by -0.181e. The F substitution increases the negative charges on the H atoms (-0.233e in GeH₃F, -0.260e in GeH₂F₂, and -0.270e in GeHF₃) and the positive charge on the central Ge

TABLE 4: Dissociation Energies (kJ/mol) at the G3//DFT Level at 0 K $\,$

dissociation	BDE	dissociation	BDE
$GeH \rightarrow Ge + H$	270.5		
$GeF \rightarrow Ge + F$	506.7	$GeCl \rightarrow Ge + Cl$	387.3
$GeH_2 \rightarrow GeH + H$	282.9	$GeH_2 \rightarrow Ge + H_2$	119.5
$GeHF \rightarrow GeH + F$	511.6	GeHCl → GeH + Cl	387.4
$GeHF \rightarrow GeF + H$	275.4	$GeHCl \rightarrow GeCl + H$	270.8
$GeHF \rightarrow Ge + HF$	215.5	$GeHCl \rightarrow Ge + HCl$	231.3
$GeF_2 \rightarrow GeF + F$	549.7	$GeCl_2 \rightarrow GeCl + Cl$	392.0
$GeF_2 \rightarrow Ge + F_2$	906.9	$\text{GeCl}_2 \rightarrow \text{Ge} + \text{Cl}_2$	547.0
$GeH_3 \rightarrow GeH_2 + H$	237.5	$GeH_3 \rightarrow GeH + H_2$	86.5
$GeH_2F \rightarrow GeHF + H$	180.1	$GeH_2Cl \rightarrow GeHCl + H$	186.0
$GeH_2F \rightarrow GeH_2 + F$	408.9	$GeH_2Cl \rightarrow GeH_2 + Cl$	290.6
$GeH_2F \rightarrow GeH + HF$	125.4	$GeH_2Cl \rightarrow GeH + HCl$	147.1
$GeH_2F \rightarrow GeF + H_2$	21.7	$GeH_2Cl \rightarrow GeCl + H_2$	23.0
$GeHF_2 \rightarrow GeF_2 + H$	100.5	$GeHCl_2 \rightarrow GeCl_2 + H$	126.7
$GeHF_2 \rightarrow GeHF + F$	374.8	$GeHCl_2 \rightarrow GeHCl + Cl$	247.9
$GeHF_2 \rightarrow GeH + F_2$	717.6	$GeHCl_2 \rightarrow GeH + Cl_2$	403.5
$GeHF_2 \rightarrow GeF + HF$	83.9	$GeHCl_2 \rightarrow GeCl + HCl$	92.4
$GeF_3 \rightarrow GeF_2 + F$	285.9	$GeCl_3 \rightarrow GeCl_2 + Cl$	187.7
$GeF_3 \rightarrow GeF + F_2$	686.4	$\text{GeCl}_3 \rightarrow \text{GeCl} + \text{Cl}_2$	347.9
$GeH_4 \rightarrow GeH_3 + H$	349.1	$GeH_4 \rightarrow GeH_2 + H_2$	253.1
$GeH_3F \rightarrow GeH_3 + F$	523.3	$GeH_3Cl \rightarrow GeH_3 + Cl$	398.2
$GeH_3F \rightarrow GeH_2F + H$	352.4	$GeH_3Cl \rightarrow GeH_2Cl + H$	345.6
$GeH_3F \rightarrow GeH_2 + HF$	195.2	$GeH_3Cl \rightarrow GeH_2 + HCl$	209.9
$GeH_3F \rightarrow GeHF + H_2$	98.7	$GeH_3Cl \rightarrow GeHCl + H_2$	97.9
$GeH_2F_2 \rightarrow GeH_2F + F$	547.6	$GeH_2Cl_2 \rightarrow GeH_2Cl + Cl$	401.3
$GeH_2F_2 \rightarrow GeHF_2 + H$	352.9	$GeH_2Cl_2 \rightarrow GeHCl_2 + H$	339.4
$GeH_2F_2 \rightarrow GeH_2 + F_2$	807.4	$GeH_2Cl_2 \rightarrow GeH_2 + Cl_2$	460.1
$GeH_2F_2 \rightarrow GeF_2 + H_2$	19.5	$GeH_2Cl_2 \rightarrow GeCl_2 + H_2$	32.1
$GeH_2F_2 \rightarrow GeHF + HF$	161.6	$GeH_2Cl_2 \rightarrow GeHCl + HCl$	161.1
$GeHF_3 \rightarrow GeF_3 + H$	363.9	$GeHCl_3 \rightarrow GeCl_3 + H$	334.5
$GeHF_3 \rightarrow GeHF_2 + F$	549.3	$GeHCl_3 \rightarrow GeHCl_2 + Cl$	395.5
$GeHF_3 \rightarrow GeF_2 + HF$	83.6	$GeHCl_3 \rightarrow GeCl_2 + HCl$	95.9
$GeHF_3 \rightarrow GeHF + F_2$	773.0	$GeHCl_3 \rightarrow GeHCl + Cl_2$	411.6
$GeF_4 \rightarrow GeF_3 + F$	536.9	$\text{GeCl}_4 \rightarrow \text{GeCl}_3 + \text{Cl}$	385.0
$GeF_4 \rightarrow GeF_2 + F_2$	673.7	$\text{GeCl}_4 \rightarrow \text{GeCl}_2 + \text{Cl}_2$	340.8

atom (0.723e in GeH₄, 1.375e in GeH₃F, 1.885e in GeH₂F₂, and 2.313e in GeHF₃). Therefore, the Ge-H bond(s) in $GeH_{(4-n)}F_n$ become more polarized and stronger with F substitution (Figure 2a). The Cl substitution, on the other hand, keeps the charge on the H atoms nearly constant $(-0.181e \text{ in GeH}_4,$ -0.188e in GeH₃Cl, -0.185e in GeH₂Cl₂, and -0.179e in GeHCl₃), and increases a smaller amount of the positive charge on the central Ge atom (0.723e, 1.022e, 1.250e, and 1.434e, correspondingly), resulting in slightly decreasing Ge-H BDE in $\text{GeH}_{(4-n)}\text{Cl}_n$ with Cl substitution (Figure 2a). The increase of the positive charge on the Ge atom upon F/Cl substitution increases the polarity of the Ge-F/Ge-Cl bonds, as well as the electrostatic repulsion between the negatively charged halogen atoms. The Ge-F BDE increases from GeH₃F (523.3 kJ/mol) to GeH₂F₂ (547.6 kJ/mol) to GeHF₃ (549.3 kJ/mol), and decreases from GeHF₃ to GeF₄ (536.9 kJ/mol) (Figure 2a). The Ge-Cl BDE increases from GeH₃Cl (398.2 kJ/mol) to GeH₂Cl₂ (401.3 kJ/mol) and decreases from GeH₂Cl₂ to GeHCl₃ (395.5 kJ/mol) to GeCl₄ (385.0 kJ/mol). In addition, due to the increased bond polarity, the Ge-H and Ge-X bond lengths decrease upon F/Cl substitution.

The variation of BDEs upon the number of coordination is shown in Figure 2b. The dip for the germyl radicals is the reflection of change of hybridization. For GeF₂, breaking the first Ge-F bond requires more energy than the second one, presumably due to the higher polarity of Ge-F bonds in GeF₂ than in GeF. The change is mild in GeCl₂ and GeH₂ where the bonds are less polarized.

It has often been assumed in early data analysis that the average bond strengths of the GeX_3 species is the average of those of GeX_4 and GeX_2 . This approach could be a source of

error for many of the previous studies because of the different hybridization of GeX₂. The G3//DFT calculations show that this assumption would cause an error of 18.5 kJ/mol per Ge–H bond (263.7 kJ/mol for GeH₃ versus 282.2 kJ/mol for the average of GeH₄ and GeH₂), 41.9 kJ/mol per Ge–F bond (447.3 kJ/mol versus 489.2 kJ/mol for the average), and 32.9 kJ/mol per Ge– Cl bond (322.2 kJ/mol versus 355.1 kJ/mol for the average). The G3//DFT calculations, however, indicate that it is sound to approximate the average bond strength of GeX₃ to the average bond strength of ¹GeX₂, ³GeX₂, and GeX₄ (263.7 versus 267.5 kJ/mol for H, 447.3 versus 454.2 kJ/mol for F, and 322.2 versus 330.2 kJ/mol for Cl).

3.5. Dissociations of Substituted Germanes. As in their silicon analogues, the single bond dissociations of germanes except GeF₄ are not the most energetically favored dissociation channels. Eliminations of H₂ and HF/HCl usually require less energy, but with energy barriers.

It is known that the initial decomposition step of SiH₄/GeH₄ is SiH₄/GeH₄ \rightarrow SiH₂/GeH₂ + H₂ in high-temperature pyrolysis.^{79,80} At the G3//DFT level (Table 4), the GeH₄ \rightarrow GeH₂ + H₂ channel requires only 153.1 kJ/mol, and the energy barrier for this GeH₂ + H₂ channel is 207.8 kJ/mol by G3//DFT. Both are far below the energy of 349.1 kJ/mol required for the GeH₃ + H dissociation channel. For the halogen-substituted germanes, the strong Ge-F and H-F/H-Cl bonds favor the dissociation channels with the H₂ product, followed by the HF/HCl product when available. The product channels with the lowest dissociation energies and energy barrier heights (*E*_a) are

GeH₃F → GeHF + H₂:

$$\Delta_r H_0^\circ = 98.7 \text{ kJ/mol}, E_a = 235.5 \text{ kJ/mol}$$

GeH₂F₂ → GeF₂ + H₂:

$$\Delta_r H_0^\circ = 19.5 \text{ kJ/mol}, E_a = 304.2 \text{ kJ/mol}$$

 $GeHF_3 \rightarrow GeF_2 + HF:$

$$\Delta_r H_0^\circ = 83.6 \text{ kJ/mol}, E_a = 224.8 \text{ kJ/mol}$$

GeH₃Cl → GeHCl + H₂:

$$\Delta_r H_0^\circ = 97.9 \text{ kJ/mol}, E_a = 224.4 \text{ kJ/mol}$$

$$GeH_2Cl_2 \rightarrow GeCl_2 + H_2:$$

 $\Delta_r H_0^\circ = 32.1 \text{ kJ/mol}, E_a = 265.4 \text{ kJ/mol}$

GeHCl₃ → GeCl₂ + HCl:

$$\Delta_r H_0^\circ = 95.9 \text{ kJ/mol}, E_a = 188.8 \text{ kJ/mol}$$

where the enthalpy changes of reaction are calculated at the G3//DFT level, and the energy barrier heights are at the B3LYP/ 6-31G(2df,p) level. All the energy barrier heights are far below the Ge-H bond strengths in germanes (~350 kJ/mol); therefore the diatomic eliminations would be favored over the bond breakages. This is partially the reason for using SiH₂Cl₂ in Si-CVD processes.⁸¹ The propensity to dissociation into H₂ or HF/ HCl channels holds true for most of the germyl and germylene radicals as well. For example, the dissociation GeH₂X \rightarrow GeX + H₂ has a small energy threshold (21.7 kJ/mol for GeH₂F and 23.0 kJ/mol for GeH₂Cl).

4. Conclusion

The present work provides a systematic theoretical study on the structures, vibrational frequencies, enthalpies of formation, and dissociation energies of germane, fluorogermanes, chlorogermanes, and their fragment radicals. While the B3LYP/6-31G(2df,p) vibrational frequencies of the germanes agree with the observed experimental values in the gas phase and matrix spectra, the calculations cast some doubts on the previous experimental assignments for several germyl radicals. The G3// DFT calculations on the GeH_x system, which up to now has the most accurate experimental measurements and theoretical calculations, can provide reliable bond dissociation energies, ionization potentials, and cation appearance potentials, and are in good agreement with the experimental data (within the experimental uncertainties) and the previous theoretical studies. The G3//DFT enthalpies of formation of GeH₄, GeCl₄, and GeCl₂ and the singlet-triplet separation of GeCl₂ fall within twice of the experimental uncertainties, while the G3//DFT enthalpy of formation of GeF₄ and singlet-triplet separation of GeF₂ differ with the experimental values by about 10 kJ/ mol. For the Ge-containing free radicals, only a few experimental enthalpies of formation (with large uncertainties) are available; the G3//DFT enthalpies of formation of the Ge radicals should be more reliable compared with the currently available experimental values, and can be useful in reaction mechanism studies of the Ge radicals.

The bond dissociation energies of germane, fluorogermanes, chlorogermanes, and their fragment radicals, as well as the trends of BDEs with the F/Cl substitutions, are examined. The Ge–H BDE in GeH_(4-n)F_n increases with the F substitution, while that in GeH_(4-n)Cl_n decreases with the Cl substitution. For dissociation of the partially substituted F/Cl germanes and germyl radicals, diatomic elimination of H₂ or HF/HCl is preferred over single bond breaking due to the low-energy barriers of the diatomic eliminations relative to the bond breakage to the atom and Ge-containing radicals.

Acknowledgment. We acknowledge support from San Diego Supercomputer Center, National Science Foundation (CHE-0111635 and CHE-0416244), and the Alfred P. Sloan Foundation. L.W. wishes to thank the computing support from the Cherry L. Emerson Center for Scientific Computation of Emory University.

References and Notes

(1) Pierson, H. O. *Handbook of chemical vapor deposition*, 2nd ed.; Noyes Publications/William Andrew Publishing, LLC: New York, 1999.

- (2) Hanna, J.; Shimizu, K. J. Organomet. Chem. 2000, 611, 531.
 (3) Campo, A.; Cardinaud, C.; Turban, G. J. Vac. Sci. Technol. B 1995,
- 13, 235.
 - (4) Yagi, S.; Takahashi, N. Appl. Phys. Lett. 1992, 61, 2677.
- (5) Lloret, A.; Oria, M.; Seoudi, B.; Abouaf-Marguin, L. Chem. Phys. Lett. 1991, 179, 329.
- (6) Coon, P. A.; Wise, M. L.; George, S. M. Surf. Sci. **1992**, 278, 383.
- (7) Shirai, H.; Fukuda, Y.; Nakamura, T.; Azuma, K. *Thin Solid Films* **1999**, *350*, 38.
- (8) Ferreiro, A.; Pontcharra, J. D. P. d.; Jaussaud, C. Vacuum 1989, 39, 775.
- (9) Hartmann, J. M.; Champay, F.; Loup, V.; Rolland, G.; Semeria, M. N. J. Cryst. Growth **2002**, 241, 93.
- (10) Gunn, S. R.; Green, L. G. J. Phys. Chem. 1961, 65, 779.
- (11) Adams, G. P.; Charlu, T. V.; Margrave, J. L. J. Chem. Eng. Data 1970, 15, 42.

(12) O'Hare, P. A. G.; Johnson, J.; Klamecki, B.; Mulvihill, M.; Hubbard, W. N. J. Chem. Thermodyn. 1969, 1, 177.

- (13) Rau, H. J. Chem. Thermodyn. 1984, 16, 287.
- (14) Sedgwick, T. O. J. Electrochem. Soc. 1965, 112, 496.
- (15) Uy, O. M.; Muenow, D. W.; Margrave, J. L. J. Chem. Soc., Faraday Trans. 1969, 65, 1296.
 - (16) Evans, D. F.; Richards, R. E. J. Chem. Soc. 1952, 1292.

(17) Ehlert, T. C.; Margrave, J. L. J. Chem. Phys. 1964, 41, 1066.

- (18) Adams, G. P.; Margrave, J. L.; Steiger, R. P.; Wilson, P. W. J. Chem. Thermodyn. 1971, 3, 297.
- (19) Adams, G. P.; Margrave, J. L.; Wilson, P. W. J. Chem. Thermodyn. 1970, 2, 741.

- (20) Hildenbrand, D. L.; Lau, K. H. Chem. Phys. Lett. 1996, 263, 145.
- (21) Noble, P. N.; Walsh, R. Int. J. Chem. Kinet. 1983, 15, 547.
- (22) Noble, P. N.; Walsh, R. Int. J. Chem. Kinet. 1983, 15, 561.
- (23) Kim, K. C.; Setser, D. W.; Bogan, C. M. J. Chem. Phys. **1974**, 60, 1837.
- (24) Ruscic, B.; Schwarz, M.; Berkowitz, J. J. Chem. Phys. **1990**, 92, 1865.
- (25) Harland, P. W.; Cradock, S.; Thynne, J. C. J. *Int. J. Mass Spectrom. Ion Phys.* **1972/1973**, *10*, 169.
- (26) Wang, J. L.-F.; Margrave, J. L.; Franklin, J. L. J. Chem. Phys. 1974, 60, 2158.
 - (27) Reed, K. J.; Brauman, J. I. J. Chem. Phys. 1974, 61, 4830.
- (28) Irikura, K. K.; Frurip, D. J. In *ACS Symposium*; American Chemical Society: Washington, DC, 1998; No. 677.
- (29) Allendorf, M. D.; Melius, C. F. Surf. Coat. Technol. 1998, 108-109, 191.
- (30) Timoshkin, A. Y.; Bettinger, H. F.; Schaefer, H. F. I. J. Cryst. Growth 2001, 222, 170.
- (31) Basch, H. Inorg. Chim. Acta 1996, 252, 265.
- (32) Binning, R. C.; Curtiss, L. A. J. Chem. Phys. 1990, 92, 1860.
- (33) Mayer, P. M.; Gal, J.-F.; Radom, L. Int. J. Mass Spectrom. Ion Proc. 1997, 167/168, 689.
- (34) Ricca, A.; Bauschlicher, C. W. J. J. Phys. Chem. A 1999, 103, 11121.
- (35) Morgon, N. H.; Riveros, J. M. Int. J. Mass Spectrom. 2001, 210, 173.
- (36) Dyall, K. G. J. Chem. Phys. 1992, 96, 1210.
- (37) Escalante, S.; Vargas, R.; Vela, A. J. Phys. Chem. A 1999, 103, 5590.
- (38) Barthalet, J.-C.; Roch, B. S.; Trinquier, G.; Satge, J. J. Am. Chem. Soc. 1980, 102, 4080.
 - (39) Balasubramanian, K. J. Chem. Phys. 1988, 89, 5731.
- (40) Benavides-Garcia, M.; Balasubramanian, K. J. Chem. Phys. 1992, 97, 7537.
- (41) Phillips, R. A.; Buenker, R. J. Chem. Phys. Lett. 1985, 118, 60.
 (42) Pettersson, L. G. M.; Schule, J. J. Mol. Struct. (THEOCHEM) 1990, 208, 137.
- (43) Cramer, C. J.; Dulles, F. J.; Storer, J. W.; Worthington, S. E. Chem. Phys. Lett. 1994, 218, 387.
- (44) Sicilia, E.; Toscano, M.; Mineva, T.; Russo, N. Int. J. Quantum Chem. 1997, 61, 571.
 - (45) Szabados, A.; Hargittai, M. J. Phys. Chem. A 2003, 107, 4314.
- (46) Karolczak, J.; Zhou, Q.; Clouthier, D. J.; Davis, W. M.; Goddard, J. D. J. Chem. Phys. **1993**, 98, 60.
- (47) Karolczak, J.; Grev, R. S.; Clouthier, D. J. J. Chem. Phys. 1994, 101, 891.

(48) Karolczak, J.; Harper, W. W.; Grev, R. S.; Clouthier, D. J. J. Chem. Phys. **1995**, 103, 2839.

- (49) Harper, W. W.; Clouthier, D. J. J. Chem. Phys. 1998, 108, 416.
 (50) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; S., R. E.; Pople, J. A. *Gaussian 98*; Gaussian, Inc.: Pittsburgh PA, 1998. (51) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 2001, 114, 108.
- L. A. J. Comput. Chem. 2001, 22, 976. (53) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.;
- Pople, J. A. J. Chem. Phys. **1998**, 109, 7764.
- (54) Curtiss, L. A.; Redfern, P. C.; Rassolov, V.; Kedziora, G.; Pople, J. A. J. Chem. Phys. **2001**, 114, 9287.
- (55) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. **1997**, 106, 1063.
- (56) Chase, M. W. J. J. Phys. Chem. Ref. Data 1998, Monograph 9, 1.
 (57) Lide, D. R. CRC Handbook of Chemistry and Physics, 81st ed.;
 CRC Press: New York, 2000/2001.
- (58) Drake, J. E.; Riddle, C. J. Chem. Soc. A 1969, 2114.
- (59) Smith, T. C.; Clouthier, D. J.; Sha, W.; Adam, A. G. J. Chem.
- Phys. 2000, 113, 9567.(60) Takeo, H.; Curl, R. F. J. J. Mol. Spectrosc. 1972, 43, 21.

(61) Armstrong, R. S.; Clark, R. J. H. J. Chem. Soc., Faraday Trans. 2
 1976, 72, 11.

- (62) Shimanouchi, T. J. Phys. Chem. Ref. Data **1972**, 6, 993.
- (63) Clark, R. J. H.; Mitchell, P. D. J. Chem. Soc., Faraday Trans. 1975, 71, 515.

- (64) Guillory, W. A.; Smith, C. E. J. Chem. Phys. 1970, 53, 1661.
- (65) Isabel, J.; Guillory, W. A. J. Chem. Phys. 1971, 55, 1197.
- (66) Smith, G. R.; Guillory, W. A. J. Chem. Phys. 1972, 56, 1423.
- (67) Wu, C. Y. R.; Zhen, F. Z.; Judge, D. L. J. Chem. Phys. 1993, 99, 1530.
- (68) Powis, I.; Baer, T.; Ng, C. Y. In Wiley Series in Ion Chemistry and Physics; John Wilet & Sons: New York, 1995.
- (69) Schlag, E. W. ZEKE Spectroscopy; Cambridge University Press: New York, 1998.
 - (70) Ng, C. Y. J. Electron Spectrosc. Related Phenom. 2000, 112, 31.
- (71) Wang, L.; Zhang, J. Unpublished.
 (72) Gurvich, L. V.; Veyts, I. V.; Alcock, C. B. *Thermodynamic* properties of individual substances, 4th ed.; Hemisphere: New York, 1989.
- (73) Ho, P.; Coltrin, M. E.; Binkley, J. S.; Melius, C. F. J. Phys. Chem. 1985, 89, 4647.
- (74) Ho, P.; Melius, C. F. J. Phys. Chem. 1990, 94, 5120.

(75) Schlegel, H. B. J. Phys. Chem. 1984, 88, 6254.

- (76) Allendorf, M. D.; Melius, C. F.; Ho, P.; Zachariah, M. R. J. Phys. Chem. 1995, 99, 15285.
- (77) Dai, D.; Al-Zahrani, M. M.; Balasubramanian, K. J. Phys. Chem. 1994, 98, 9233.
- (78) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F.; NBO Version 3.1.
- (79) Chambreau, S. D.; Wang, L.; Zhang, J. J. Phys. Chem. A 2002, 106, 5.
 - (80) Chambreau, S. D.; Zhang, J. Chem. Phys. Lett. 2002, 351, 171.
- (81) Ho, P.; Breiland, W. G.; Coltrin, M. E. In Silicon Chemistry; Corey, J. Y., Corey, E. R., Gaspar, P. P., Eds.; Ellis Horwood Limited: New York, 1988; p 405.
- (82) Takeo, H.; Curl, R. F. J.; Wilson, P. W. J. Mol. Spectrosc. 1971, 38, 464.