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Recently, a novel, neural-networks-based method, the DFT-NEURON method, was developed to improve
the accuracy of first-principles calculations and was applied to correct the systematic deviations of the calculated
heats of formation for small-to-medium-sized organic molecules (Hu, L. H.; Wang, X. J.; Wong, L. H.;
Chen, G. H.J. Chem. Phys2003 119 11501). In this work, we examine its theoretical foundation and
generalize it to adopt any other statistical correction approaches, in particular, the multiple linear regression
method. Both neural-networks-based and multiple-linear-regression-based correction approaches are applied
to calculate the Gibbs energies of formation, ionization energies, electron affinities, and absorption energies
of small-to-medium-sized molecules and lead to greatly improved calculation results as compared to the
conventional first-principles methods. For instance, after the neural networks correction (multiple linear
regression correction), the root-mean-square (RMS) deviations of the calculated standard Gibbs energy of
formation for 180 organic molecules are reduced from 12.5, 13.8, and 22:3nktal to 4.7 (5.4), 3.2 (3.5),

and 3.0 (3.2) kcamol™! for B3LYP/6-31G(d), B3LYP/6-311G(3df,2p), and B3LYP/6-31tG(d,p)
calculations, respectively, and the RMS deviation of the calculated absorption energies of 60 organic molecules
is reduced from 0.33 eV to 0.09 (0.14) eV for the TDDFT/B3LYP/6-31G(d) calculation. In general, the
neural networks correction approach leads to better results than the multiple linear regression correction
approach. All these demonstrate that the statistical-correction-based first-principles calculations yield excellent
results and may be employed routinely as predictive tools in materials research and design.

I. Introduction about the XC functional of time-dependent density-functional

) o ) theory (TDDFT). It is a common practice to employ the standard
_ First-principles quantum mechanical methods have becomey ¢ nctional of DFT such as gradient-corrected BP86, BLYP,
indispensable research tools in chemistry, condensed-matter,: g3 yp for TDDFT calculations. This often results in poor
physics, materials science, and molecular blolbgﬁxperl- _ calculated excited-state propertfeall of these contribute to
mentalists rely increasingly on these methods to interpret their e giscrepancies between calculated and measured results. One
experimental flndlngs. Despite their successes, f|rst-pr_|nc_|ples of the Holy Grails in computational science is to predict the
quantum mechanical methods are often not quantitatively pronerties of matter prior to the experiments. To achieve this,
accurate enough to predict the results of experimental measureyye myst eliminate the systematic deviations of the calculation
ments, in particular, on large systems. This is caused by the eg s and reduce the numerical uncertainties to the limit of
inherent approximations adopted in first-principles methods. -hemical accuracy (i.e., -2 kcatmol~! for energies). G2 and
Because of the computational costs, electron correlation hasgs methods produce root-mean-square (RMS) deviations of less
always been a difficult obstacle for ab initio molecular orbital {han 2 kcaimol-! for various thermochemical properties of
calculations. For instance, highly accurate full configuration small molecule& For medium-to-large-sized molecules, the
interaction (FCI) calculations have been limited to very small yeyiations from the experimental data remain quite significant

molecules’ Basis sets cannot cover an entire physical space, anq often substantially beyond the limit of chemical accuracy.
and this introduces inherent computational erfdrspractice, Alternatives must be sought.

limited by the computational resources, we often adopt inad-
equate basis sets for medium-to-large molecules. Effective core
potential (ECP) is frequently used to approximate the relativistic
effects, which leads inevitably to approximated results for heavy-
element-containing systems. Accuracy of a density-functional
theory (DFT) is determined by the exchange-correlation (XC)
functional? The exact XC functional is, however, unknown. All
DFT calculations employ the approximated XC functional,
which lead to further calculation errors. Much less is understood

Despite the various approximations that first-principles
guantum mechanical calculations adopt, the calculated results
capture the essence of physics. For instance, although their
absolute values may not agree well with the experimental data,
the calculated results of different molecules often have the same
relative tendency as their experimental counterparts. To predict
a physical property of a material, it may thus be sufficient to
correct the corresponding raw value from the first-principles
calculation. The discrepancy between the calculated and mea-
sured results depends on the characteristic physical or chemical
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Figure 1. The universal computing machine. Figure 2. The simplest universal computing machine.

may be evaluated via conventional first-principles methods. In ties of the system. Once a complete description of the system
other words, a quantitative relationship exists between the js given, the output is determined uniquely. The complete
experimental and calculated properties. Although it is exceed- description is not unique, however. For example, it can be the
ingly difficult to be determined from the first-principles, the ground-state electron density or the multipole moments of the
quantitative relationship can be obtained empirically. Statistical system. According to the Hohenberg and Kohn thectemce
methods such as linear regression and neural networks may behe electron density is given, all physical properties of the system
employed to determine this relationship. Recently, we developedcan thus be determined uniquely. There are different ways to
a neural-networks-based approach, DFT-NEURON, to determinedescribe the system of interest. Different sets of physical
the quantitative relationship between the experimental Standal’ddescriptors may be adopted to Specify the same molecule or
heat of formation and a set of physical descriptors for small- system. The kernel may vary depending on the choice of
to-medium-sized organic moleculg3he resulting RMS devia-  physical descriptors. With the proper selection of descriptors,
tion was reduced from 21.4 to 3.1 keabol* for the B3LYP/ the kernel can be rather simple and its computational cost trivial.
6-311+G(d,p) calculation and from 12.0 to 3.3 kaabl™* for Depicted in Figure 2 is the simplest kernel. The objective is to
the BBI__YP/6-313:LG(3df,2p) calculation after neural networks  evaluate the exact valuy of the propertyA of the system. If
corrections. Aex is one of the physical descriptors, the kernel is simply

In this work, we examine the theoretical foundation of the
DFT-NEURON method and subsequently generalize it to 1
encompass all statistical methodologies. Both multiple linear 0
regression (MLR) and neural networks are used to improve the K, = 0
DFT calculation results on Gibbs energy of formatidG¢°), ..
ionization energy (IP), electron affinity (EA), and optical 0
absorption energy. In section I, a general theoretical framework
is established for the statistical correction approach to improve as shown in Figure 2.

first-principles calculation results. In section 111, the standard Becaus@‘ex is usua”y unknown’ a different kern&l other
Gibbs energies of formatioAG;*’s at 298 K of 180 small- or  thanK, is needed to evaluate the propeftyAlthough its exact
medium-sized organic molecules used in ref 8, the IPs for 85 ya|ye is difficult to compute, the existing quantum mechanical
molecules in the G2 test set, and the EAs for 58 molecules in methods can be employed to obtain its approximate vAlde
the G2 test set are evaluated via B3LYP calculations, and the(j.e. A, = A,y + 0A). We adoptA.y as one of the physical
absorption energies of 60 selected heterocyclic conjugateddescriptors, and the resulting keriélshould thus be slightly

organic moleculés are calculated via the B3LYP/TDDFT gifferent fromKo if |0A| is sufficiently small. We may express
method. All of these calculated values are then corrected by K as follows:

the MLR- and neural-networks-based correction approaches. The

resulting linear regression expansions and neural networks are A, = K(A,) = Ky(A.) + KAL)

examined and analyzed in section IV. Discussion and conclu-

sions are given in section V. OK(A,,) = —OA

Il. Methodology where 6K(A, B, C, ..., D) is the functional deviation from

As stated in ref 8, the basic assumptions of the DFT- Ko(A, B, C, ...,D), and its functional form is to be determined.
NEURON method are the following: (1) There is a quantitative As long as|dA| is small enough and(A, B, C, ..., D) is a
relationship between the experimental measured property andwell-behaved function of physical descriptors 8, C, ..., D)
the characteristic physical descriptors of the system, and (2)around [ALJ= A, 60K may be determined accurately via
the primary descriptor is the calculated value of the property of statistical methods. In other words, if thgss of a sufficient
interest. We will discuss and derive the theoretical foundation number of molecules are determined (by experiments), then
for the DFT-NEURON method and its basic assumptions kere. dK(A, B, C, ..., D) can be derived accurately by statistical

All numerical computations of physical properties can be methods, such as linear regression and neural networks. The
represented by the universal computing model (UCM) depicted analysis presented here validates the basic assumptions of the
in Figure 1, where the input is a description of the system, the DFT-NEURON metho8l and expands it to include any other
kernel performs the calculations, and the output is the propertiesstatistical correction approaches.
of interest. For instance, the description can be the number of Having examined the theoretical foundation of the DFT-
electrons, the number of nuclei, the charge, and the position of NEURON method or any other statistical correction approach
an individual nucleus; the kernel can be the Sdimger equation to improve first-principles calculation results, we will generalize
or the Kohn-Sham equation; and the output can be any proper- it to calculateAG;°, IP, EA, and absorption energy. Besides
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Figure 4. The flowchart of a DFT-NEURON calculation.
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: . Property randomly into five subsets of equal size. Four of them are used
Dlése:’;lilgg ' to train the neural network, and the remaining one is used to
. / evaluate its prediction. This procedure is repeated five times in
rotation. The number of hidden neurons is varied to yield the

optimal training results. Once the structure of the neural network
and synaptic weights are determined, the neural network can
be used to correct the raw first-principles calculation results.
This is illustrated in Figure 4. The calculated property of interest
Figure 3. The structure of our neural network. and other closely related molecular properties are used as

physical descriptors and are input to the neural network. The
the neural networks correction, we will employ the MLR  corrected property of interest is given at the outpilits very
correction approach to correct the systematic errors of the DFT ¢close to the rescalede, for a successful DFT-NEURON
calculations. calculation.

Similar to ref 8, we adopt the three-layer architecture for our  For the MLR correction, the corrected physical property of
neural networks (See Figure 3) This architecture includes an interest’z7 is expressed in terms of the physica] descrip)Qrs
input layer consisting of input from the physical descriptots ( Xo, ..., andXy as
X, ..., Xm) and a bias, a hidden layer containing a number of
hidden neuronsYg, ..., Yy), and an output layer that outputs the m
corrected value for the property of interest (see Figure 3). The Z=Cy+ ) CX
numbers of descriptors and hidden neurons are to be determined. i=
The most important issue is to select the proper physical
descriptors, which are to be used as the input for the neuralwhereCi (i =0, 1, ...,m) are the coefficients to be determined.
network. If we are interested in determining the experimental  To determine the values @o, Cy, Cy, ..., andCr, we adopt
Aex Of the propertyA, the first-principles calculated valug the similar 5-fold cross-validation procedure employed to train
of A is set as the primary descriptor, as we have discussedthe neural networks.
already. Other physical descriptors are selected according to o ) ]
their correlations td\. If it is related closely tdA, a property is  !ll. Application for Calculating Gibbs Energy of
chosen as a physical descriptor; otherwise, it is not. The physical-ormation, lonization Potential, Electron Affinity, and
properties, such as the number of atoms, the number of hydrogerfA\b~°'0rlOtlon Energy
atoms, the number of electrons, the number of valence electrons, A Gibbs Energy of Formation. We used the same 180
total energy, zero point energy (ZPE), the highest occupied molecule$s-17 as in ref 8 to train, validate, and test a neural
molecular orbital (HOMO) energy, the lowest unoccupied network to calculate the standard Gibbs energy of formation
molecular orbital (LUMO) energy, the HOMELUMO energy ~ AGy° for small-to-medium-sized molecules. These molecules
gap, mass, the number of double bonds, the number of triple contain elements such as H, C, N, O, F, S, Cl, and Br. The
bonds, dipole moment, quadrupole moment, or the number of heaviest molecule contains 14 heavy atoms, and the largest
conjugated rings, have been chosen as the other physicakontains 32 atoms. The detailed experiment@t°(298 K) and
descriptors depending on the property of interest. The bias is the differences between the calculated and experimental values
set to 1. The synaptic weightsMy's) connect the input  for 180 compounds are collected in the Supporting Information.

Bias

descriptors Xi’'s) and the hidden neuron#(ts), while Wy's As in ref 8, we divide these molecules randomly into a training
connect the hidden neurons and the outuThe outputZ is set containing 150 molecules and a testing set containing 30
related to the input);) as follows: molecules. To calculatAGs® of a moleculeAB,, we need to

. o calculate itsAH;° and its entropy&’ at 298 K.AG® at 298 K
. can be thus evaluated as
Z= ZWx Sig() Wx;X)
1= = AGf"(AXBy, 298 K)= AH;’(AXBy, 298 K) — 298.15x

where Sig) = [1 + exp(~av)]~! anda is a parameter that {S(AB,, 298 K) — [XS(A, 298 K) + yS'(B, 298 K)}}
controls the switch steepness of sigmoidal function Sidh
our neural network, we adopt= 4. The error back-propagation ~whereAH{A,By, 298 K) is the standard enthalpy of formation
learning procedufé@ s used to optimize the values % and of ABy at 298 K,S’(ABy, 298 K) is the entropy ofA,By at 298
Wy (i =1,...,m; andj = 1,...,n). The output value is scaled to K, and S°(A, 298 K) andS’(B, 298 K) are, respectively, the
lie between 0 and 1, and all input values are scaled to lie betweenstandard entropies of specidsand B whose values are given
0.1 and 0.9 except for the bias. in ref 18. Three slightly different approaches are used in the
All experimental data for a particular property of interest are calculations. In approaches A and B, the geometry optimization
randomly divided into a training set and a testing set. To ensureand ZPE calculation are carried out at the B3LYP/6-31G(d)
the reliability of a neural network, a 5-fold cross-validation level® while the total energy is calculated at the B3LYP/
procedure is adopted:14 The training set is divided further ~ 6-31G(d) and B3LYP/6-314G(3df,2p) levels, respectively. In
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Figure 5. CalculatedAG® versus experimentahGs° values for all 180 compounds. Parts a, b, and c are for raw calcule@tvalues from
approaches A, B, and C, respectively. Parts d, e, and f are for neural-networks-coft&etsdor approaches A, B, and C, respectively. Triangles

(a) are for the training set, and crosses) (are for the testing set. Insets are the histograms for the differences between the experimental and
calculatedAG:°’s. All values are in the units of kcahol™.

approach C, the geometry optimization, total energy, and ZPE set is obtained with a scaling factor of 0.94 for B3LYP/
calculation are all carried out at the B3LYP/6-31G&(d,p) level. 6-3114-G(3df,2p) calculationd Adopting their strategy, we can
The raw calculatedG¢° values for approaches A, B, and C reduce the RMS deviation for the 180 organic molecules to 9.3
are compared to their experimental data in Figure-&a kcakmol~* for approach B. To reduce further the RMS deviation
respectively. The vertical coordinates are the experimental between the experiment and the calculation, we employ the
AGs°’s, and the horizontal coordinates are the raw calculated MLR and the neural networks correction approaches.
values. The dashed line is where the vertical and horizontal The key issue is to determine the appropriate physical
coordinates are equal (i.e., where the B3LYP calculations and descriptors. As discussed in section I, the raw calculAt€gf
experiments would have the perfect match). The raw calculatedcontains the essence of the exact value and is thus the obvious
values are mostly below the dashed line (i.e., most ABy° choice for the primary descriptor. We observe that the molecular
values are larger than the experimental data). Compared to thesize affects the accuracy of the calculation. The more atoms a
experimental measurements, the RMS deviations of the threemolecule has, the worse the calculate@;® is. This is consistent
approaches A, B, and C are 12.5, 13.8, and 22.3- ki, with general observation in the fieldlhe total number of atoms
respectively. Approach C has a larger deviation than the otherof the molecule,N;, is thus chosen as the second possible
two approaches. The RMS deviation of approach B is slightly descriptor. ZPE is an important parameter in calculafifg®,
larger than that of approach A. This is because of the unscaledwhose raw calculated value is often scaldtis thus taken as
ZPE values used in the raw DFT calculation. the third physical possible descriptor. Finally, the hydrogen atom
There are clearly systematic deviations between the calculatedis much lighter than the heavy atoms. The number of hydrogen
and measuredG°’s. Pople and co-worke?d used the scaled  atoms in a moleculelNy, is selected as the fourth and last
ZPE values to compute the total energy. They found that the possible descriptor to account for the distinctive contribution
best agreement to the experimental enthalpies for the G2 testfrom hydrogen atoms.
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TABLE 1: RMS Deviations of MLR and Neural Networks have performed the same error analysis for B3LYP/6-G{d)
Corrections® and B3LYP/6-313#G(d,p) AG°s and have reached a similar
AP B cb conclusion. Moreover, the deviations for large molecules are
DFT- DET- DET- of the same magnitude as those for small molecules. The DFT-
MLR NEURON MLR NEURON MLR NEURON NEURON method does not discriminate against large molecules,
< 5g 50 a1 37 60 50 unlike most other calculations that yield worse results for large
R 4.9 3.7 3.6 4.9 4.3 molecules than for small ones.
e 55 4.8 3.7 35 3.2 3.0 B. lonization Potential. We apply the MLR and neural
Vi 54 4.7 3.5 32 3.2 3.0 networks correction approaches to improve the calculated IPs

aAll data are in the units of kcahol L. b A, B, and C denote of small molecules or atoms. We took 85 atoms and molecules
approaches A, B, and C, respectively. DFT calculatedAG® and from the G2-1 and G2-2 test sétbecause their measured IPs
ZPE as descriptoré.ll: DFT calculatedAGs® and N as descriptors.  are well-documented. They consisted of 18 atoms and 67 small
°lli: DFT calculatedAGy*, N, and ZPE as descriptorslv: DFT molecules. B3LYP/6-31+G(3df,2p) is employed to calculate
calculatedAG®, N, ZPE, andNy as descriptors. their IPs. In the calculation, the unscaled ZPEs are used. The
calculated and experimental values are listed in Table 2. The

__The 150 molecules in the training set are divided randomly g5 geviation of raw calculated IPs from their experimental
into five subsets of equal sizAG° is the primary physical counterparts is 4.9 kcahol L,

descriptor anql Is thus al_vva}ys adopté‘!‘* ZPE, andN, are We divide these species randomly into a training set contain-
selected for different statistical correction procedures. For the .

¥ ! . ..~ ~ing 70 species and a testing set containing 15 species. The
DFT. NEURON_ approach, we find that a hidden layer containing calculated IP is the primary descriptor. The IP is mainly
two neurons yields the best overall results.

T ] determined by the interaction among valence electrons, and the
The RMS deviations of MLR and neural networks CoITections  core electrons change little before and after the ionization. The
are listed in Table 1 for different procedures (I, Il, Ill, and IV)  number of valence electrondlye, is thus set as the second
with different descriptors. Both the MLR and neural networks physical descriptor. Because radicals are encountered, the
corrections yield greatly improvedGe®'s over the raw DFT  multiplicity gs is selected as the third physical descriptor. The
calculation results, while the neural networks correction ap- HOMO-LUMO energy garE, is chosen as the fourth and last
proach gives slightly better results than the MLR correction physical descriptor. Once again, we find that two hidden neurons
approach. Procedure IV results in the smallest RMS deviations yield the best overall results for the DFT-NEURON method.
compared to the other three procedures |, I, and lll. This is ~ The RMS deviations for the MLR and neural networks
expgcted_, because it has all four physical descriptor_s. Approa‘:hcorrections are reduced to 3.6 and 3.0 kwall -1, respectively.
A with either the MLR or neural networks correction gives  The deviations from the experimental values for the MLR- and
relatively large RMS deviations, because its basis set is the leastygra)-networks-corrected IPs for all 85 atoms or molecules are
sophisticated. tabulated in Table 2. Those belonging to the testing set are
In the following, we will examine the DFT-NEURON results  identified. The RMS deviations for the training and testing sets
with procedure IV in detail. The neural-networks-corrected for the MLR correction are 3.6 and 3.5 kaabl~2, respectively,
AG¢*’s versus the experimental measured values are plotted inwhile they are all 3.0 kcamol~* for the DFT-NEURON
Figure 5d-f for the three approaches A, B, and C, respectively. method. These validate the resulting MLR and neural networks
The vertical coordinates are the experimet&:°’s, and the correction approaches. The histograms for the deviations of raw
horizontal coordinates are the neural-networks-corretted’s. calculated and the MLR- and neural-networks-corrected results
The dashed line is again where the vertical and horizontal are plotted in Figure 6ac, respectively. The maximum positive
coordinates are equal. After the neural networks correction, the and negative deviations for the raw calculated IPs are 12.7 and
RMS deviations are reduced from 12.5, 13.8, and 22.3 kot —13.0 kcalmol™?, respectively. In Figure 6b, the maximum
to 4.7, 3.2, and 3.0 kcahol™! for approaches A, B, and C, positive and negative deviations are reduced to 8.4-a8®
respectively. Although the raw B3LYP/6-31G(d) results have kcalFmol™?, respectively, while in Figure 6c, they are 7.4 and
RMS values of the same magnitude as the raw B3LYP/ —6.6 kcatmol™, respectively. The DFT-NEURON method
6-31H-G(3df,2p) results, the neural-networks-corrected values results in slightly better IPs than the MLR correction approach.
for B3LYP/6-31H-G(3df,2p) agree much better with the C. Electron Affinity. We apply the MLR and neural
measured values than those of the B3LYP/6-31G(d). This networks correction approaches to improve the raw calculated
implies that the 6-31G(d) basis set is not appropriate. In the EA. We employed 11 atoms and 47 molecules in the calculation,
insets of Figure 5af, we plot the histograms for the deviations which we took from the G2-1 and G2-2 test set$heir
of various approaches. Obviously, the raw calculate&gt®’s experimental EAs are available and are well-documented in ref
have large systematic deviations, while the neural-networks- 6. We employ B3LYP/6-311G(3df,2p) to compute their EAs.
corrected AG*’s have virtually no systematic deviations. The raw calculated and experimental EAs are listed in Table 3.
Moreover, the remaining numerical deviations are greatly The RMS deviation between the raw calculation and measured
reduced. This can be further demonstrated by the error analysisEAs is 3.5 kcalmol™™.

performed for the B3LYP/6-3HG(3df,2p)AG’s of all 180 We divide these species randomly into a training set contain-
molecules. For the training set, the RMS deviations before anding 50 species and a testing set containing 8 species. Besides
after the neural networks correction are 14.0 and 3.2 kaaf?, the primary physical descriptor, the raw calculated EA, the

respectively, while for the testing set, they are 13.1 and 3.1 number of valence electrors,, spin multiplicity gs, and the
kcalmol™, respectively. For the MLR correction, the RMS HOMO—-LUMO energy gafE, are chosen as the other physical
deviations of the training and testing sets are reduced to 3.5descriptors just as we chose for the IPs. Two hidden neurons
and 3.0 kcalmol™1, respectively. The consistency between the are adopted for the neural network. After the MLR and neural
testing and training sets implied that the neural network results networks correction, the RMS deviations are reduced to 3.1 and
can indeed predict the measur@;° with good accuracy. We 1.7 kcatlmol™!, respectively. The DFT-NEURON approach
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TABLE 2: Experimental lonization Potentials and the Differences between the Calculated and Experimental Valués

species expt deviatiof  deviatiod  deviatiorf species expt deviatiof deviatio  deviatiorf

Li 124.3 5.2 2.3 3.0 BGl 267.5 —9.6 —4.6 —4.6
Be 214.9 —4.7 —6.0 —5.8 BoFa 278.3 —13.0 -5.0 —3.6
Bf 191.4 10.1 7.1 3.3 (0/9] 317.6 —0.8 1.0 3.2
C 259.7 6.6 1.1 0.1 GF 263.3 —-1.5 1.6 0.9
N 335.3 3.1 —5.3 —4.1 COSs 257.7 0.3 2.7 3.3
O 313.9 12.7 6.8 4.1 GS 232.2 —-0.8 2.0 15
F 401.7 7.9 3.6 -1.7 ChH 239.7 0.2 —4.6 —4.2
Na 118.5 6.5 3.6 4.7 CH 227.0 2.4 0.2 —2.6
Mg 176.3 1.9 0.9 2.3 s (A7) 187.2 2.3 2.4 —-0.1
Al 138.0 0.9 -15 2.4 GHa(cyclopropend)  223.0 —6.6 -3.7 -2.5
Si 187.9 —-0.8 —5.5 —-3.5 CH~=C=CH;,' 223.5 —5.5 —2.6 -0.9
P 241.9 —2.5 —-9.8 1.0 secCgHy 170.0 0.0 2.3 —-0.1
S 238.9 4.3 —0.6 -0.1 GHe 213.2 —-4.4 3.0 4.0
Cl 299.1 2.3 —-0.7 —-3.2 CN 313.6 9.8 7.2 3.6
CH, 291.0 —-3.6 —-4.1 -0.4 CHO 187.7 8.0 7.4 4.2
NH3 234.8 0.3 0.5 2.2 FCOH (A) 174.2 3.2 3.5 1.0
OH 300.0 5.2 2.1 —-0.5 CHO (?A") 247.3 -3.3 —-3.8 —6.6
OH, 291.0 0.0 —-0.4 1.8 CHOH 250.2 —-5.9 —-4.0 —2.7
FHf 369.9 1.4 0.1 2.4 CHF 287.6 —-4.0 —-25 0.1
SiH, 253.7 —-2.1 2.2 0.9 CHS 216.2 —-2.1 —-0.3 -1.6
PH 234.1 0.3 —4.4 —-3.9 CHSH 173.8 3.1 34 0.9
PH,f 226.5 2.3 0.1 —2.7 CHSH 217.7 —2.6 —-0.3 0.6
PHf 227.6 —-0.9 —0.6 1.1 CHCI 258.7 —-3.1 —-1.3 0.0
SH 239.1 2.1 —-0.2 -3.0 GHsOHf 241.4 —8.5 —4.5 —-3.2
SH, (?By)f 241.4 —1.4 —-1.2 —-0.2 CHCHO 235.9 —-35 —-0.1 0.1
SH; (%A)) 294.7 —-3.0 —-34 —-3.2 CHOF 261.5 4.6 —-0.9 -0.9
CIH 294.0 —-0.2 —0.6 1.1 GH.S (thiirane) 208.7 —2.8 0.9 1.7
CoH,f 262.9 —-3.5 —-2.9 -1.1 NCCN 308.3 —7.6 —-5.0 —4.8
CoHy 242.4 -5.0 —3.6 —2.4 GH40 (furan) 203.6 —-2.3 3.9 5.0
co 323.1 3.9 3.7 5.3 15N (pyrrole) 189.3 26 3.8 5.3
N, (% cation) 359.3 6.1 54 7.4 Bls 223.7 —4.6 —-3.6 —-2.0
N2 (?IT cation)  385.1 -0.8 —1.7 —-0.6 NH' 311.1 4.4 -1.3 —4.1

2 278.3 11.9 8.4 6.8 N 256.9 4.5 1.9 —-0.3
P, 242.8 5.3 6.1 51 bH, 221.1 -1.0 0.7 0.3
S 215.8 4.4 1.8 1.9 DH,f 175.5 6.6 6.8 4.5
Cl, 265.2 =27 —-0.8 —-2.3 HOF 293.1 —-1.2 0.3 0.3
CIF 291.9 -0.9 0.7 —0.6 SiH (*A1) 211.0 —2.4 —-25 —3.6
sc 261.3 2.4 2.9 25 Sid 187.6 1.0 -0.7 —2.6
H 313.6 1.5 —-3.7 -29 SkH,f 189.1 —-4.0 —-25 —-2.3
He 567.0 7.8 1.2 0.3 Sily 186.6 —4.5 —2.4 2.2
Ne 497.2 4.8 —0.6 —-3.4 SiHs 175.5 1.2 1.5 —0.6
Ar 363.4 1.0 —2.8 1.1 SiHs 224.6 —5.3 —-3.0 —-0.8
BF; 358.8 —9.8 —-5.9 -3.0

a All data are in the units of kcahol™. ® Experimental data are taken from ref‘@ifferences between the raw calculated and experimental IPs.
d Differences between the calculated and experimental IPs for-DFIR calculation.© Differences between the calculated and experimental IPs
for DFT-NEURON calculationf Molecules belong to the testing set.

generated better results than the MLR correction approach. TheTDDFT/CIS and TDDFT/RPA methods yield relatively accurate
detailed results are tabulated in Table 3. The RMS deviations results upon linear regression fit. The BLYP functional approach
for the DFT-NEURON training and testing sets are 1.7 and 1.8 was employed in their TDDFT calculations. We employ the
kcalmol™1, respectively, which justifies the validity of the = TDDFT/B3LYP calculation to evaluate the absorption energies
resulting neural network. For MLR correction, the RMS of the same 60 organic molecules. The raw calculated absorption
deviations of the training and testing sets are 2.9 and 4.3 energies are subsequently corrected by the DFT-NEURON
kcalmol™1, respectively. The histograms of the deviations for method and the MLR correction approaches.
the raw DFT, MLR, and neural networks correction approaches Geometry optimization is performed at the B3LYP/
are plotted in Figure 7ac, respectively. 6-31G(d) level for each of the 60 organic molecules. The
D. Absorption Energy. So far, the MLR and neural networks  TDDFT/B3LYP/6-31G(d) calculation is employed to determine
correction approaches have only been employed to calculatethe excited-state energies and their oscillator strengths. The
the ground-state properties of molecules or atoms. In principle, calculated excitation energy with the largest oscillator strength
the method can be applied to compute the excited-stateis chosen as the optical gap of the molecule and compared to
properties as well. As the first application for the excited-state the experimental counterp@mResults and comparisons are listed
properties, we generalize the MLR and neural networks cor- in Table 4. For most of our calculations, the lowest-energy
rection approaches to calculate the optical absorption energiedransition possesses the largest oscillator strength. In some rare
of organic molecules. cases where the oligomers have only one repeat unit, the lowest
Marks et aP evaluated the absorption energies of 60 transitions may not have the largest oscillator strengths. In such
heterocyclic organic molecules using ZINDO/CIS, ZINDO/RPA, a case, we choose a low-lying transition with the largest
HF/CIS, HF/RPA, TDDFT/TDA, and TDDFT/RPA calcula-  oscillator strength whose energy is within 1 eV from the lowest
tions. The largest molecule contains 82 atoms, of which 48 are excited-state energy. The calculated and measured absorption
heavy atoms and the rest are H atoms. They concluded thatenergies and their differences are listed in Table 4. The RMS
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10F T T T T T ] TABLE 3: Experimental Electron Affinities (EAs) and the

. (a) Z. B3LYP Differences between Calculated and Experimental Valués
. o 7 zZ species expt  deviatiorf deviatiorf deviatiort
7 77 C 29.1 2.2 0.9 1.2
4r 7 . 0 33.7 3.3 3.0 -1.2
5L i F 78.4 1.3 1.8 0.3
% ll Si 31.9 -15 -2.8 -24
o O @m%{ . “M l 7 P 17.2 4.4 3.7 -11
2 10k b) 7 B3LYP MLR S 47.9 2.6 2.2 0.7
3 sl - | cl 83.4 15 1.8 -0.3
IS CH 28.6 2.4 0.8 2.5
g 6fF % . CH, 15.0 2.8 1.6 1.6
s 4l ” 77 i CH, 1.8 0.1 -1.8 0.2
5 ol 7 7 i NH 8.8 1.2 0.0 0.9
-g A 4 Kﬂlﬁlﬁ NH, 17.8 —-1.8 —-3.2 —-1.6
5 84—+ ¥ — OH 422 -1.7 -2.5 -0.4
Z 14l ] B3LYP-NEURON SiH 29.4 -0.6 23 -11
12k . ] SiH,f 25.9 0.9 -1.1 -2.2
10 Lk 7 i SiH4 325 0.1 -11 0.8
8| 7. 4 PH 23.8 1.3 0.3 -0.4
6| - - 4 PH, 29.3 -0.6 -1.9 -0.1
4 - HS 54.4 -0.9 —-1.6 0.9
2+ - O, 10.1 1.9 1.1 1.3
0 ! 2 ) 4] i 2 L NO 0.5 7.1 5.2 4.5
-10 5 0 5 10 CN 89.0 4.4 4.9 -0.3
- -1 PO 25.1 3.0 15 1.6
- . Deviation (Theory Exp?.)/.KcaI.moI s, 383 01 04 08
Figure 6. Histograms for the deviations of the B3LYP/ Clyf 55.1 105 9.8 3.2
6-311+G(3df,2p)-calculated IP for all 85 species. Parts a, b, and c are | jf 14.3 —1.4 -36 —22
for the raw calculated, the MLR-corrected, and the neural-networks- g 6.4 29 0.8 1.6
corrected IPs, respectively. Na 12.6 0.9 -13 0.2
Al 10.2 -1.3 —-3.6 -3.1
- Cf 75.5 2.1 2.4 0.1
C,0 52.8 0.5 0.5 —-0.2
7] Ck 4.1 6.2 4.5 0.2
m NCO 83.2 —-2.0 —-1.6 —4.2
NO, 52.4 —-1.0 —-1.5 —-0.8
7] O3 48.5 12.4 11.7 3.8
OF 52.4 0.1 -0.3 1.7
SO, 25.5 6.5 5.2 2.1
8 S,Of 43.3 5.4 4.4 —-1.5
5 CH 68.5 2.5 2.4 3.1
8 i C;H3 15.4 0.2 -1.3 —-0.6
g _ H,C=C=Cf 41.4 3.3 2.0 -1.9
8 | H3;C=C=CH 20.6 2.6 1.5 2.0
‘s CH,CHCH, 10.9 1.0 -0.4 —-1.0
E %%% 7 HCO 7.2 0.6 —-1.2 -1.2
N HCF 125 5.2 3.3 0.1
£ 22, ea . CHO 362  —16 24 —08
z 222 B3LYP-NEURON i CH:S 43.1 -1.1 -1.8 -0.1
| CH,S 10.7 4.9 2.9 —-0.6
CH,CN 35.6 0.6 —-0.2 1.1
7 CH,NC 24.4 1.5 0.4 1.0
7] CHCO 54.2 —-1.8 -2.1 —-0.6
T CH,CHO 42.1 0.2 —-0.4 0.9
N CH3CO 9.8 —-0.6 —2.0 -3.3
e R R CHsCH,0 39.5 -0.2 -0.7 0.3
o 2 4 6 8 0 12 CHsCH,S 45.0 -1.4 -1.9 1.1
Deviation (Theory - Expt.)/Kcal.mol” LiH 7.9 2.3 —0.2 -11
. . o HNO 7.8 6.9 4.9 1.3
Figure 7. Histograms for the deviations of the B3LYP/ HO, 24.9 25 -35 25

6-3114+-G(3df,2p)-calculated EA values for all 58 species. Parts a, b,

and c are for the raw calculated, the MLR-corrected, and the neural- Al data are in the units of kcahol ™. ® Experimental data are taken
networks-corrected EAs, respectively. from ref 6. ¢ Differences between the raw calculated and experimental
EAs. ¢ Differences between the calculated and experimental EAs for
DFT—MLR calculation.® Differences between the calculated and
experimental EAs for DFT-NEURON calculatiohMolecules belong

to the testing set.

deviation between our calculated and measured absorption
energies is 0.33 eV. It is less than that of ref 5, because we
employed the B3LYP functional approach rather than BLYP.
The B3LYP calculation reproduces the experimental data betterincreasing number of repeating units. The largest negative
than the BLYP calculation for heterocyclic organic molecules. deviation is—0.50 eV (molecule 30, see Table 4). The largest
This is different from the calculations on aromatic hydrocarbon positive deviation is 0.84 eV (molecule 36). Among molecules
radical cations, pyrene, perylene, and poly&é.There are 25—30, the experimental absorption energies red-shift slightly
clearly systematic deviations between calculated and measuredas the number of repeating units increases. These oligomers do
absorption energies. The calculated deviation increases with amot have good conjugated structures, as the optimized geometries
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TABLE 4: The Structure, Experimental Absorption Energies and the Differences between the Calculated and Experimental
Values of 60 Molecules (All Data Are in the Units of eV)

No. Structures Expt." Deviation’ Deviation® Deviation’
1 s 5.10 0.83 0.32 0.21
2 m 411  -0.08 -0.11 -0.13
3 16 (1) 350 -0.23 -0.07 -0.04
4 318  -0.34 -0.07 -0.07
5 298  -041 -0.08 -0.12
6 287  -049 -0.12 -0.19
7 H 5.96 0.80 0.08 0.02
8 w 449 025 0.05 0.06
9 - (nzl_ll; 7 3.91 0.02 0.02 0.09
10 338  -0.17 0.00 0.12
11% 325  -0.34 -0.10 0.07
12 o 5.93 0.58 -0.07 -0.14
13 w 4.40 0.17 0.01 0.01
14 12-15 (n=1-4) 3.78 -0.07 -0.02 0.03
15 343 -0.20 -0.02 0.04
16% \S ) 4.90 0.47 0.10 0.06
MeO 16 OMe
17* MeO, OMe 376 -0.20 -0.12 -0.11
18 W 3.19 -0.18 0.04 0.04
19 s\, ® 296 033 0.02 -0.08
17-19 (n=0-2)
20 OMe MeO 381  -0.03 0.00 -0.01
21 W 323 -0.11 0.08 0.09
22 n 299  -0.24 0.04 0.00
23 B0 283 -0.32 0.02 -0.07
24 Ny 5.58 0.46 -0.08 -0.10
o
MeO 24 OMe
25 4.96 0.01 -0.26 -0.23
26 Me 4.58 0.08 -0.12 0.02
27 W 444  -023 -0.32 -0.15
28 2530 mert 8 435 -0.28 -0.34 -0.06
29 434 042 -0.45 -0.08
30 432 -0.50 -0.52 0.03
31 4.82 0.50 0.15 0.09
3% 3.87 0.03 0.02 0.03
33 A 3.10 0.03 0.22 0.18
31-33 (n=1-3)
34% s 438 0.31 0.11 0.02
2
S\_/S
34
35% Vs J 3.83 0.28 0.23 0.19
\ /
O\_/O

35
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TABLE 4 (Continued)

No. Structures Expt.' Deviation’ Deviation® Deviation’
36 N 5.58 0.84 0.21 0.23
37% () 5.93 0.53 -0.12 -0.07
38 590 0.5 -0.10 -0.03
o o)
36- 38 (n—2 4) -
* -
39 N O 3.45 0.01 0.10 0.14
40 < O 3.60 -0.05 0.03 0.10
41 M 3.32 -0.14 0.03 0.01
42 3.43 -0.14 0.01 0.00
43 3.63 -0.18 -0.08 0.07
44* 3.01 -0.21 0.05 -0.01
45 2.89 -0.21 0.09 0.07
46 2.73 -0.28 0.07 0.03
47 3.15 -0.25 0.00 0.07
48 2.98 -0.20 0.07 0.00
49 2.69 -0.24 0.11 0.07

50 vt s\ 4.11 0.02 -0.06 0.01
51 m M;ﬁ 346 -0.12 0.00 0.03

52 50-53 (n=1-4) 3.21 -0.33 -0.10 -0.13
53 2.95 -0.33 -0.04 -0.07
54 Mes 4.07 0.05 -0.03 0.07
55 343 -0.10 0.01 0.01
56 3.09 -0.24 -0.02 -0.01
57 AR 3.09 -0.21 0.01 0.00
58 2.71 -0.11 0.17 0.14
aVIYA
Me S \ / ) S Mes
57-58 (n=1-2)
59 3.05 -0.21 0.02 -0.02
60 2.88 -0.34 -0.04 -0.05

59-60 (n=1-2)

2 Experimental data are taken from ref®Differences between the raw calculated and experimental valiiferences between calculated
and experimental values for DFIMLR calculation.? Differences between calculated and experimental values for DFT-NEURON calculation.
* Molecules belong to the testing set.



Density-Functional Theory Calculation J. Phys. Chem. A, Vol. 108, No. 40, 2008523

7kayB3LYP ]
6 & Training set A)Axs a A
X Testing set A
5F /A( X & Deviation 7
AAAA/’& E 16 1
ar WX i i
M S
S 3t g 5 .
3o @ oty
® 2l : : | 04,00 04 95
£ 7 U4b) BALYP-MLR ]
5 - -
® 6 A Training set p B 7
w X  Testing set
S 5 A% & Deviation .
O s
g & , 16
5 4 2 §12 u
8 i
< 3t 54 N
E . 2 olcoom
=P e \ . . 04 00 ,04
[} U T T T .-
g 7 Kc) BBLYP-NEURON .
S 6 4 Training set - 7
X Testing set
3 S M
Figure 8. Two different possible structures of molec@e (a) Dimeric s 7
imeri 4 €12 v u
structure. (b) Nondimeric structure. M % ?
> 8 /

H A i
have dimeric structures with their average dihedral angles lying 3r E g4 EE amﬁj
between 45.0and 70.0 (see Figure 8a). Their excited-state by P . R
energies red-shift slightly compared to their nondimeric isomers 2 3 4 5 6 7

(with average dihedral angles of 39,5%ee Figure 8b). We
emphasize that the calculated properties of excited states d(_:'pengigure 9. Calculated absorption energy versus experimental absorption

on the reliability of geometry _Opt'm'zat'on' . energyAex for all 60 compounds. Parts a, b, and c are for raw B3LYP/

The raw calculated absorption eneryis versus the experi-  RPA, and MLR- and neural-networks-corrected B3LYP/RPA results,
mental measuredex's are shown in Figure 9a. The vertical respectively. TrianglesA) are for the training set, and crosses @re
coordinate is the experimental,, and the horizontal coordinate  for the testing set. Insets are the histograms for the differences between
is the calculated\. The dashed line is where the vertical and the experimental and calculated absorption energies. All values are in
horizontal coordinates are equal. units of ev.

To employ the MLR or neural networks correction approach
to improve the raw calculatel, we need to identify the relevant
physical descriptors. As discussed in section Il, the raw
calculatedA is the primary descriptor. For the same set of

Calculated Absorption Energy (eV)

raw, MLR-corrected and neural-networks-corrected absorption
energies, respectively. Compared to the raw calculated results,
the neural-networks-corrected values are much closer to the
oligomers, when the number of repeating units is small (for _experimental values for _bOth t_ra_inin_g af‘d testing Sets. More
importantly, the systematic deviation in Figure 9a is eliminated.

example, 1 or 2), the raw calculated absorption energies are_ " .
higher than the experimental counterparts, and when the number! NiS can be further demonstrated by the error analysis performed

of repeating units is large, the calculated absorption energiesIor "’r‘]” %0 mo!ecule’\sl. In E'QULe 9, thedl_nsgtt)s are ﬂf‘te hlstogramls
red-shift strongly compared to their experimental counterparts, 1" the deviations. Note that the error distribution after the neura

In other words, the oligomer size correlates strongly with the networks correction is ,Of an approximate Gau55|an-t.ype. For
deviation between the raw andA., The number of electrons the raw _T_DDFT (_:alculat|on, the deV|a_1t|ons of smaller ohgome_rs
Neis thus taken as the second physical descriptor. The oscillatord® POSitive, while those of large oligomers are negative with
strengthOs is a measure of absorption magnitude and is selecteqthe magnitude increasing W_lth increasing molecular size. After
as the third and last descriptor. We divide the 60 molecules the neural networks corregtlon, the calculgtgd absorppon ener-
randomly into a training set (50 molecules) and a testing set 91€S Of 1arge and small oligomers have similar magnitudes of
(10 molecules), and the training set is further divided into five deviations.

subsets of equal size for the cross-validation.

Similarly, two hidden neurons yield the overall best results
for the neural networks correction approach. The differences In Table 5, we list the values of synaptic weigh&; and
between calculated and experimental absorption energies forWy; for the four neural networks employed. FAG:°, we list
the MLR and neural networks correction results are tabulated the synaptic weights for approach B. To identify the significance
in Table 4. After the MLR and neural networks corrections, of a particular physical descriptoX; in correcting the raw
RMS deviations of the TDDFT/B3LYP calculations are reduced calculated results, we compute the partial derivatd& ax;).
from 0.33 to 0.14 and 0.09 eV, respectively. For the neural In Table 6, we tabulate the resulting/oX; for the four neural
networks correction approach, RMS deviations for the training networks. The derivatives are computedXat= 0.5. For all
and testing sets are 0.09 eV, while those of the MLR correction casesgZ/9X; has the maximum magnitude, akgcorresponds
are 0.15 and 0.11 eV, respectively. Figures-8are for the to the calculated properties of interest or the primary descriptor.

IV. Analysis
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TABLE 5: Optimized Values of Synaptic Weights Wx; TABLE 7: The Partial Correction Coefficients in MLR for
and Wy; Different Properties with Respect to the Normalized Physical
AGP @ P EA A Descriptors
. ra g b g .C g d

W —0.426  —0.086 0108  —1451 X W X W X VW X
Wxi2 0.698 0.650 —0.708 0.617 1 AG° 0998 IP 1.000 EA 0.998 A 0.999
W1 0.154 —0.032 —0.128 —0.419 2 N 0.998 N, 0.710 N, 0190 N 0.331
W —0.277 0.001 —0.076 —0.089 3 ZPE 0.998 g5 0.731 gs 0.368 Os 0.065
Wxa1 0.398 0.429 0.523 1.237 4 Ny 0.986 Ey 0.081 Ey 0.225
xvvfz 7882% 70021345 (?'23955) -0 922613 aThe partial correction coefficients faxGs° in approach B” The
Wxai —0.405 —0.062 0.182 —0.396 partial correction coefficients for IP.The partial correction coefficients
Wt 0.002 0.187 0.006 ' for EA. ¢ The partial correction coefficients for absorption energy.
W. 0.393 —0.248 0.105 . . .
Wﬁz —0.660 —0.834 1.622 —0.836 MLR correction approachX; always has the maximum partial
Wy, 1.601 1.781 —1.724 1.333 correction coefficient for the MLR correction, which is con-

sistent with that of the neural networks correction approach.

aA h B. i : ;
pproac For AG¢®, all four descriptors have very large partial correction

TABLE 6: Derivatives of the Normalized Values of the coefficients, which illuminates the fact that all four descriptors
Observed Properties with Respect to the Normalized are very important in correcting the ratG:°.
Physical Descriptors
i X AGRIX A X AIP)X: X A(EANIX X OAIIX; V. Discussion and Conclusion
1 AG? 1444 1P 1315 EA 1153 A 1767 Compared to what we did in ref 8, we have greatly
g EIPE —%877928 g‘ve 8-2%; g‘ve 8-82‘21 ge 8-323 generalized the DFT-NEURON method and its applications.

. s —U. s —U. s . H H _ . _
4 Ny 0155 E, -0048 E, 0060 Besides the various ground-state properties, we have demon

strated that it can be used to improve the calculated properties
& Approach B. of the excited states. The statistical correction approach
developed here can be further generalized. For instance, it can
be extended to construct the exchange-correlation functional
approach for DFT and TDDF#223DFT maps a many-electron
problem onto an effective single-electron problem. The mapping
is exact if the exact exchange-correlation functional is known.
Unfortunately, only approximated exchange-correlation func-
tionals exist. Neural networks or linear regression fit can be
employed to construct accurate exchange-correlation functional
values by discovering regularities among the available experi-
mental data. Work along this direction is in progréss.
Although the MLR correction approach may improve the raw
calculated results, the DFT-NEURON method usually yields

For IP, EA, or absorption energygZ/oX;]| is significantly larger
than|0Z/0X;|, |0Z/0X3|, or |0Z/9X4|, which indicates that the raw
calculated IP, EA, and absorption energy are indeed the most
important physical descriptors in determining the exact values
of IP, EA, and absorption energy, respectively. FoG;°,
|0Z/0X,| and |0Z/0Xs| are slightly larger than one-half of
|0Z/9X,|. However,0Z/0X3 has the opposite sign 6%/0X, and
02/0X4. Ny, Ny, and ZPE are highly correlated and are ap-
proximately proportional to each othgdz/oX; + 9Z/0X3 +
0Z/9X4| ~ 0.23, which is much less thddz/oX;| ~ 1.44 for
AGs°. This verifies that the raw calculate®G:°® is much more

tuning. Note that the derivatives with respectN@ are very
small for IP and EA. This indicates thile is not an important
physical descriptor for improving the calculated IP or EA and
may thus be neglected. Indeed, we employ the 4-2-1 neural
networks for IP and EA by employing only the physical
descriptors IP/EAgs, andEg, and find that their resulting RMS
deviations are 3.3 and 1.9 keaol™?, respectively, which are
virtually the same as those of the 5-2-1 neural network.

For MLR correction, the partial correction coefficient mea-
sures the significance of each descriptor and is expressed a
follows

values. Unfortunately, this is often not the case. The raw
calculated values can deviate considerably from the experimental

values. Correction beyond the linear regression fit is thus
required. The neural networks method provides a better and

more general solution. Another important feature of the statisti-
cal-correction-based first-principles methods is that they do not
discriminate against large molecules, because the bias at the
raw calculation level has been corrected at the training stage.

So far, one neural network or MLR fit is to be trained, tested,
nd determined for each property of interest. This is tedious
and time-consuming. We are working to construct a general
statistical correction model that improves the calculated energy

Vi=41-dQ directly. Because all physical properties are ultimately deter-

) mined by energy, this general statistical correction model could
wherej =1, 2, ...m be used to calculate accurately the properties other than energy

n m itself. We thus need to train only one statistical correction model,

_ _ 2 instead of one model per physical property.

Qj L [Yi = (Gt glckxki)] To summarize, we have developed the DFT-NEURON

k= | method into any statistical-correction-based first-principles

n m method and expanded it to compute a variety of ground- and
q=S1IY, - (C, + chxki)]Z excited-state properties of small-t(_)-medium-sizgd molecule_s or
& atoms. The accuracy of any statistical-correction-based first-

principles method can be systematically improved as more or
The largerV, is, the more important the descriptdyis. In better experimental data are available. This combined first-

Table 7, we tabulate the partial correction coefficients in the principles calculation and statistical correction approach is
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potentially a powerful tool in computational science, and it may (9) Hohenberg, P.; Kohn, WPhys. Re. 1964 136, B364.
open the possibility for first-principles methods to be employed __(10) Rumelhart, D. E.; Hinton, G. E.; Williams, R.Nature1986 323
routinely as predictive tools in materials research and develop-"" 11y Haykin, SNeural networks: a comprehensifoundationPrentice
ment. Hall: Upper Saddle River, NJ, 1999.
(12) Yao, X.; Zhang, X.; Zhang, R.; Liu, M.; Hu, Z.; Fan, Bomput.
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