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Recently, a novel, neural-networks-based method, the DFT-NEURON method, was developed to improve
the accuracy of first-principles calculations and was applied to correct the systematic deviations of the calculated
heats of formation for small-to-medium-sized organic molecules (Hu, L. H.; Wang, X. J.; Wong, L. H.;
Chen, G. H.J. Chem. Phys.2003, 119, 11501). In this work, we examine its theoretical foundation and
generalize it to adopt any other statistical correction approaches, in particular, the multiple linear regression
method. Both neural-networks-based and multiple-linear-regression-based correction approaches are applied
to calculate the Gibbs energies of formation, ionization energies, electron affinities, and absorption energies
of small-to-medium-sized molecules and lead to greatly improved calculation results as compared to the
conventional first-principles methods. For instance, after the neural networks correction (multiple linear
regression correction), the root-mean-square (RMS) deviations of the calculated standard Gibbs energy of
formation for 180 organic molecules are reduced from 12.5, 13.8, and 22.3 kcal‚mol-1 to 4.7 (5.4), 3.2 (3.5),
and 3.0 (3.2) kcal‚mol-1 for B3LYP/6-31G(d), B3LYP/6-311+G(3df,2p), and B3LYP/6-311+G(d,p)
calculations, respectively, and the RMS deviation of the calculated absorption energies of 60 organic molecules
is reduced from 0.33 eV to 0.09 (0.14) eV for the TDDFT/B3LYP/6-31G(d) calculation. In general, the
neural networks correction approach leads to better results than the multiple linear regression correction
approach. All these demonstrate that the statistical-correction-based first-principles calculations yield excellent
results and may be employed routinely as predictive tools in materials research and design.

I. Introduction

First-principles quantum mechanical methods have become
indispensable research tools in chemistry, condensed-matter
physics, materials science, and molecular biology.1,2 Experi-
mentalists rely increasingly on these methods to interpret their
experimental findings. Despite their successes, first-principles
quantum mechanical methods are often not quantitatively
accurate enough to predict the results of experimental measure-
ments, in particular, on large systems. This is caused by the
inherent approximations adopted in first-principles methods.
Because of the computational costs, electron correlation has
always been a difficult obstacle for ab initio molecular orbital
calculations. For instance, highly accurate full configuration
interaction (FCI) calculations have been limited to very small
molecules.3 Basis sets cannot cover an entire physical space,
and this introduces inherent computational errors.4 In practice,
limited by the computational resources, we often adopt inad-
equate basis sets for medium-to-large molecules. Effective core
potential (ECP) is frequently used to approximate the relativistic
effects, which leads inevitably to approximated results for heavy-
element-containing systems. Accuracy of a density-functional
theory (DFT) is determined by the exchange-correlation (XC)
functional.2 The exact XC functional is, however, unknown. All
DFT calculations employ the approximated XC functional,
which lead to further calculation errors. Much less is understood

about the XC functional of time-dependent density-functional
theory (TDDFT). It is a common practice to employ the standard
XC functional of DFT such as gradient-corrected BP86, BLYP,
or B3LYP for TDDFT calculations. This often results in poor
calculated excited-state properties.5 All of these contribute to
the discrepancies between calculated and measured results. One
of the Holy Grails in computational science is to predict the
properties of matter prior to the experiments. To achieve this,
we must eliminate the systematic deviations of the calculation
results and reduce the numerical uncertainties to the limit of
chemical accuracy (i.e., 1-2 kcal‚mol-1 for energies). G2 and
G3 methods produce root-mean-square (RMS) deviations of less
than 2 kcal‚mol-1 for various thermochemical properties of
small molecules.6,7 For medium-to-large-sized molecules, the
deviations from the experimental data remain quite significant
and often substantially beyond the limit of chemical accuracy.
Alternatives must be sought.

Despite the various approximations that first-principles
quantum mechanical calculations adopt, the calculated results
capture the essence of physics. For instance, although their
absolute values may not agree well with the experimental data,
the calculated results of different molecules often have the same
relative tendency as their experimental counterparts. To predict
a physical property of a material, it may thus be sufficient to
correct the corresponding raw value from the first-principles
calculation. The discrepancy between the calculated and mea-
sured results depends on the characteristic physical or chemical
properties of the material. These properties include predomi-
nantly the calculated property of interest, and to a lesser degree,
other related properties of the material. These related properties
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may be evaluated via conventional first-principles methods. In
other words, a quantitative relationship exists between the
experimental and calculated properties. Although it is exceed-
ingly difficult to be determined from the first-principles, the
quantitative relationship can be obtained empirically. Statistical
methods such as linear regression and neural networks may be
employed to determine this relationship. Recently, we developed
a neural-networks-based approach, DFT-NEURON, to determine
the quantitative relationship between the experimental standard
heat of formation and a set of physical descriptors for small-
to-medium-sized organic molecules.8 The resulting RMS devia-
tion was reduced from 21.4 to 3.1 kcal‚mol-1 for the B3LYP/
6-311+G(d,p) calculation and from 12.0 to 3.3 kcal‚mol-1 for
the B3LYP/6-311+G(3df,2p) calculation after neural networks
corrections.

In this work, we examine the theoretical foundation of the
DFT-NEURON method and subsequently generalize it to
encompass all statistical methodologies. Both multiple linear
regression (MLR) and neural networks are used to improve the
DFT calculation results on Gibbs energy of formation (∆Gf°),
ionization energy (IP), electron affinity (EA), and optical
absorption energy. In section II, a general theoretical framework
is established for the statistical correction approach to improve
first-principles calculation results. In section III, the standard
Gibbs energies of formation∆Gf°’s at 298 K of 180 small- or
medium-sized organic molecules used in ref 8, the IPs for 85
molecules in the G2 test set, and the EAs for 58 molecules in
the G2 test set are evaluated via B3LYP calculations, and the
absorption energies of 60 selected heterocyclic conjugated
organic molecules5 are calculated via the B3LYP/TDDFT
method. All of these calculated values are then corrected by
the MLR- and neural-networks-based correction approaches. The
resulting linear regression expansions and neural networks are
examined and analyzed in section IV. Discussion and conclu-
sions are given in section V.

II. Methodology

As stated in ref 8, the basic assumptions of the DFT-
NEURON method are the following: (1) There is a quantitative
relationship between the experimental measured property and
the characteristic physical descriptors of the system, and (2)
the primary descriptor is the calculated value of the property of
interest. We will discuss and derive the theoretical foundation
for the DFT-NEURON method and its basic assumptions here.8

All numerical computations of physical properties can be
represented by the universal computing model (UCM) depicted
in Figure 1, where the input is a description of the system, the
kernel performs the calculations, and the output is the properties
of interest. For instance, the description can be the number of
electrons, the number of nuclei, the charge, and the position of
an individual nucleus; the kernel can be the Schro¨dinger equation
or the Kohn-Sham equation; and the output can be any proper-

ties of the system. Once a complete description of the system
is given, the output is determined uniquely. The complete
description is not unique, however. For example, it can be the
ground-state electron density or the multipole moments of the
system. According to the Hohenberg and Kohn theorem,9 once
the electron density is given, all physical properties of the system
can thus be determined uniquely. There are different ways to
describe the system of interest. Different sets of physical
descriptors may be adopted to specify the same molecule or
system. The kernel may vary depending on the choice of
physical descriptors. With the proper selection of descriptors,
the kernel can be rather simple and its computational cost trivial.
Depicted in Figure 2 is the simplest kernel. The objective is to
evaluate the exact valueAex of the propertyÂ of the system. If
Aex is one of the physical descriptors, the kernel is simply

as shown in Figure 2.
BecauseAex is usually unknown, a different kernelK other

thanK0 is needed to evaluate the propertyÂ. Although its exact
value is difficult to compute, the existing quantum mechanical
methods can be employed to obtain its approximate valueAcal

(i.e., Aex ) Acal + δA). We adoptAcal as one of the physical
descriptors, and the resulting kernelK should thus be slightly
different fromK0 if |δA| is sufficiently small. We may express
K as follows:

where δK(A, B, C, ..., D) is the functional deviation from
K0(A, B, C, ..., D), and its functional form is to be determined.
As long as|δA| is small enough andK(A, B, C, ..., D) is a
well-behaved function of physical descriptors (A, B, C, ..., D)
around 〈Â〉 ) Aex, δK may be determined accurately via
statistical methods. In other words, if theAex’s of a sufficient
number of molecules are determined (by experiments), then
δK(A, B, C, ..., D) can be derived accurately by statistical
methods, such as linear regression and neural networks. The
analysis presented here validates the basic assumptions of the
DFT-NEURON method8 and expands it to include any other
statistical correction approaches.

Having examined the theoretical foundation of the DFT-
NEURON method or any other statistical correction approach
to improve first-principles calculation results, we will generalize
it to calculate∆Gf°, IP, EA, and absorption energy. Besides

Figure 1. The universal computing machine. Figure 2. The simplest universal computing machine.

Aex ) K(Acal) ) K0(Acal) + δK(Acal)

δK(Acal) ) -δA
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the neural networks correction, we will employ the MLR
correction approach to correct the systematic errors of the DFT
calculations.

Similar to ref 8, we adopt the three-layer architecture for our
neural networks (see Figure 3). This architecture includes an
input layer consisting of input from the physical descriptors (X1,
X2, ..., Xm) and a bias, a hidden layer containing a number of
hidden neurons (Y1, ...,Yn), and an output layer that outputs the
corrected value for the property of interest (see Figure 3). The
numbers of descriptors and hidden neurons are to be determined.
The most important issue is to select the proper physical
descriptors, which are to be used as the input for the neural
network. If we are interested in determining the experimental
Aex of the propertyÂ, the first-principles calculated valueAcal

of Â is set as the primary descriptor, as we have discussed
already. Other physical descriptors are selected according to
their correlations toÂ. If it is related closely toÂ, a property is
chosen as a physical descriptor; otherwise, it is not. The physical
properties, such as the number of atoms, the number of hydrogen
atoms, the number of electrons, the number of valence electrons,
total energy, zero point energy (ZPE), the highest occupied
molecular orbital (HOMO) energy, the lowest unoccupied
molecular orbital (LUMO) energy, the HOMO-LUMO energy
gap, mass, the number of double bonds, the number of triple
bonds, dipole moment, quadrupole moment, or the number of
conjugated rings, have been chosen as the other physical
descriptors depending on the property of interest. The bias is
set to 1. The synaptic weights (Wxij ’s) connect the input
descriptors (Xi’s) and the hidden neurons (Yj’s), while Wyj’s
connect the hidden neurons and the outputZ. The outputZ is
related to the input (Xi) as follows:

where Sig(V) ) [1 + exp(-RV)]-1 and R is a parameter that
controls the switch steepness of sigmoidal function Sig(V). In
our neural network, we adoptR ) 4. The error back-propagation
learning procedure10 is used to optimize the values ofWxij and
Wyj (i ) 1,...,m; andj ) 1,...,n). The output value is scaled to
lie between 0 and 1, and all input values are scaled to lie between
0.1 and 0.9 except for the bias.

All experimental data for a particular property of interest are
randomly divided into a training set and a testing set. To ensure
the reliability of a neural network, a 5-fold cross-validation
procedure is adopted.11-14 The training set is divided further

randomly into five subsets of equal size. Four of them are used
to train the neural network, and the remaining one is used to
evaluate its prediction. This procedure is repeated five times in
rotation. The number of hidden neurons is varied to yield the
optimal training results. Once the structure of the neural network
and synaptic weights are determined, the neural network can
be used to correct the raw first-principles calculation results.
This is illustrated in Figure 4. The calculated property of interest
and other closely related molecular properties are used as
physical descriptors and are input to the neural network. The
corrected property of interest is given at the output.Z is very
close to the rescaledAex for a successful DFT-NEURON
calculation.

For the MLR correction, the corrected physical property of
interest,Z, is expressed in terms of the physical descriptorsX1,
X2, ..., andXm as

whereCi (i ) 0, 1, ...,m) are the coefficients to be determined.
To determine the values ofC0, C1, C2, ..., andCm, we adopt

the similar 5-fold cross-validation procedure employed to train
the neural networks.

III. Application for Calculating Gibbs Energy of
Formation, Ionization Potential, Electron Affinity, and
Absorption Energy

A. Gibbs Energy of Formation. We used the same 180
molecules15-17 as in ref 8 to train, validate, and test a neural
network to calculate the standard Gibbs energy of formation
∆Gf° for small-to-medium-sized molecules. These molecules
contain elements such as H, C, N, O, F, S, Cl, and Br. The
heaviest molecule contains 14 heavy atoms, and the largest
contains 32 atoms. The detailed experimental∆Gf°(298 K) and
the differences between the calculated and experimental values
for 180 compounds are collected in the Supporting Information.
As in ref 8, we divide these molecules randomly into a training
set containing 150 molecules and a testing set containing 30
molecules. To calculate∆Gf° of a moleculeAxBy, we need to
calculate its∆Hf° and its entropyS° at 298 K.∆Gf° at 298 K
can be thus evaluated as

where∆H°f(AxBy, 298 K) is the standard enthalpy of formation
of AxBy at 298 K,S°(AxBy, 298 K) is the entropy ofAxBy at 298
K, and S°(A, 298 K) andS°(B, 298 K) are, respectively, the
standard entropies of speciesA andB whose values are given
in ref 18. Three slightly different approaches are used in the
calculations. In approaches A and B, the geometry optimization
and ZPE calculation are carried out at the B3LYP/6-31G(d)
level19 while the total energy is calculated at the B3LYP/
6-31G(d) and B3LYP/6-311+G(3df,2p) levels, respectively. In

Figure 3. The structure of our neural network.

Z ) ∑
j)1

n

Wyj Sig(∑
i)1

m

WxijXi)

Figure 4. The flowchart of a DFT-NEURON calculation.

Z ) C0 + ∑
i)1

m

CiXi

∆Gf°(AxBy, 298 K)) ∆H°f(AxBy, 298 K)- 298.15×
{S°(AxBy, 298 K)- [xS°(A, 298 K)+ yS°(B, 298 K)]}
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approach C, the geometry optimization, total energy, and ZPE
calculation are all carried out at the B3LYP/6-311+G(d,p) level.

The raw calculated∆Gf° values for approaches A, B, and C
are compared to their experimental data in Figure 5a-c,
respectively. The vertical coordinates are the experimental
∆Gf°’s, and the horizontal coordinates are the raw calculated
values. The dashed line is where the vertical and horizontal
coordinates are equal (i.e., where the B3LYP calculations and
experiments would have the perfect match). The raw calculated
values are mostly below the dashed line (i.e., most raw∆Gf°
values are larger than the experimental data). Compared to the
experimental measurements, the RMS deviations of the three
approaches A, B, and C are 12.5, 13.8, and 22.3 kcal‚mol-1,
respectively. Approach C has a larger deviation than the other
two approaches. The RMS deviation of approach B is slightly
larger than that of approach A. This is because of the unscaled
ZPE values used in the raw DFT calculation.

There are clearly systematic deviations between the calculated
and measured∆Gf°’s. Pople and co-workers6,7 used the scaled
ZPE values to compute the total energy. They found that the
best agreement to the experimental enthalpies for the G2 test

set is obtained with a scaling factor of 0.94 for B3LYP/
6-311+G(3df,2p) calculations.7 Adopting their strategy, we can
reduce the RMS deviation for the 180 organic molecules to 9.3
kcal‚mol-1 for approach B. To reduce further the RMS deviation
between the experiment and the calculation, we employ the
MLR and the neural networks correction approaches.

The key issue is to determine the appropriate physical
descriptors. As discussed in section II, the raw calculated∆Gf°
contains the essence of the exact value and is thus the obvious
choice for the primary descriptor. We observe that the molecular
size affects the accuracy of the calculation. The more atoms a
molecule has, the worse the calculated∆Gf° is. This is consistent
with general observation in the field.7 The total number of atoms
of the molecule,Nt, is thus chosen as the second possible
descriptor. ZPE is an important parameter in calculating∆Gf°,
whose raw calculated value is often scaled.7 It is thus taken as
the third physical possible descriptor. Finally, the hydrogen atom
is much lighter than the heavy atoms. The number of hydrogen
atoms in a molecule,NH, is selected as the fourth and last
possible descriptor to account for the distinctive contribution
from hydrogen atoms.

Figure 5. Calculated∆Gf° versus experimental∆Gf° values for all 180 compounds. Parts a, b, and c are for raw calculated∆Gf° values from
approaches A, B, and C, respectively. Parts d, e, and f are for neural-networks-corrected∆Gf°’s for approaches A, B, and C, respectively. Triangles
(4) are for the training set, and crosses (×) are for the testing set. Insets are the histograms for the differences between the experimental and
calculated∆Gf°’s. All values are in the units of kcal‚mol-1.
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The 150 molecules in the training set are divided randomly
into five subsets of equal size.∆Gf° is the primary physical
descriptor and is thus always adopted.Nt, ZPE, andNH are
selected for different statistical correction procedures. For the
DFT-NEURON approach, we find that a hidden layer containing
two neurons yields the best overall results.

The RMS deviations of MLR and neural networks corrections
are listed in Table 1 for different procedures (I, II, III, and IV)
with different descriptors. Both the MLR and neural networks
corrections yield greatly improved∆Gf°’s over the raw DFT
calculation results, while the neural networks correction ap-
proach gives slightly better results than the MLR correction
approach. Procedure IV results in the smallest RMS deviations
compared to the other three procedures I, II, and III. This is
expected, because it has all four physical descriptors. Approach
A with either the MLR or neural networks correction gives
relatively large RMS deviations, because its basis set is the least
sophisticated.

In the following, we will examine the DFT-NEURON results
with procedure IV in detail. The neural-networks-corrected
∆Gf°’s versus the experimental measured values are plotted in
Figure 5d-f for the three approaches A, B, and C, respectively.
The vertical coordinates are the experimental∆Gf°’s, and the
horizontal coordinates are the neural-networks-corrected∆Gf°’s.
The dashed line is again where the vertical and horizontal
coordinates are equal. After the neural networks correction, the
RMS deviations are reduced from 12.5, 13.8, and 22.3 kcal‚mol-1

to 4.7, 3.2, and 3.0 kcal‚mol-1 for approaches A, B, and C,
respectively. Although the raw B3LYP/6-31G(d) results have
RMS values of the same magnitude as the raw B3LYP/
6-311+G(3df,2p) results, the neural-networks-corrected values
for B3LYP/6-311+G(3df,2p) agree much better with the
measured values than those of the B3LYP/6-31G(d). This
implies that the 6-31G(d) basis set is not appropriate. In the
insets of Figure 5a-f, we plot the histograms for the deviations
of various approaches. Obviously, the raw calculated∆Gf°’s
have large systematic deviations, while the neural-networks-
corrected ∆Gf°’s have virtually no systematic deviations.
Moreover, the remaining numerical deviations are greatly
reduced. This can be further demonstrated by the error analysis
performed for the B3LYP/6-311+G(3df,2p)∆Gf°’s of all 180
molecules. For the training set, the RMS deviations before and
after the neural networks correction are 14.0 and 3.2 kcal‚mol-1,
respectively, while for the testing set, they are 13.1 and 3.1
kcal‚mol-1, respectively. For the MLR correction, the RMS
deviations of the training and testing sets are reduced to 3.5
and 3.0 kcal‚mol-1, respectively. The consistency between the
testing and training sets implied that the neural network results
can indeed predict the measured∆Gf° with good accuracy. We

have performed the same error analysis for B3LYP/6-31+G(d)
and B3LYP/6-311+G(d,p) ∆Gf°s and have reached a similar
conclusion. Moreover, the deviations for large molecules are
of the same magnitude as those for small molecules. The DFT-
NEURON method does not discriminate against large molecules,
unlike most other calculations that yield worse results for large
molecules than for small ones.

B. Ionization Potential. We apply the MLR and neural
networks correction approaches to improve the calculated IPs
of small molecules or atoms. We took 85 atoms and molecules
from the G2-1 and G2-2 test sets,6 because their measured IPs
are well-documented. They consisted of 18 atoms and 67 small
molecules. B3LYP/6-311+G(3df,2p) is employed to calculate
their IPs. In the calculation, the unscaled ZPEs are used. The
calculated and experimental values are listed in Table 2. The
RMS deviation of raw calculated IPs from their experimental
counterparts is 4.9 kcal‚mol-1.

We divide these species randomly into a training set contain-
ing 70 species and a testing set containing 15 species. The
calculated IP is the primary descriptor. The IP is mainly
determined by the interaction among valence electrons, and the
core electrons change little before and after the ionization. The
number of valence electrons,Nve, is thus set as the second
physical descriptor. Because radicals are encountered, the
multiplicity gs is selected as the third physical descriptor. The
HOMO-LUMO energy gapEg is chosen as the fourth and last
physical descriptor. Once again, we find that two hidden neurons
yield the best overall results for the DFT-NEURON method.

The RMS deviations for the MLR and neural networks
corrections are reduced to 3.6 and 3.0 kcal‚mol-1, respectively.
The deviations from the experimental values for the MLR- and
neural-networks-corrected IPs for all 85 atoms or molecules are
tabulated in Table 2. Those belonging to the testing set are
identified. The RMS deviations for the training and testing sets
for the MLR correction are 3.6 and 3.5 kcal‚mol-1, respectively,
while they are all 3.0 kcal‚mol-1 for the DFT-NEURON
method. These validate the resulting MLR and neural networks
correction approaches. The histograms for the deviations of raw
calculated and the MLR- and neural-networks-corrected results
are plotted in Figure 6a-c, respectively. The maximum positive
and negative deviations for the raw calculated IPs are 12.7 and
-13.0 kcal‚mol-1, respectively. In Figure 6b, the maximum
positive and negative deviations are reduced to 8.4 and-9.8
kcal‚mol-1, respectively, while in Figure 6c, they are 7.4 and
-6.6 kcal‚mol-1, respectively. The DFT-NEURON method
results in slightly better IPs than the MLR correction approach.

C. Electron Affinity. We apply the MLR and neural
networks correction approaches to improve the raw calculated
EA. We employed 11 atoms and 47 molecules in the calculation,
which we took from the G2-1 and G2-2 test sets.6 Their
experimental EAs are available and are well-documented in ref
6. We employ B3LYP/6-311+G(3df,2p) to compute their EAs.
The raw calculated and experimental EAs are listed in Table 3.
The RMS deviation between the raw calculation and measured
EAs is 3.5 kcal‚mol-1.

We divide these species randomly into a training set contain-
ing 50 species and a testing set containing 8 species. Besides
the primary physical descriptor, the raw calculated EA, the
number of valence electronsNve, spin multiplicity gs, and the
HOMO-LUMO energy gapEg are chosen as the other physical
descriptors just as we chose for the IPs. Two hidden neurons
are adopted for the neural network. After the MLR and neural
networks correction, the RMS deviations are reduced to 3.1 and
1.7 kcal‚mol-1, respectively. The DFT-NEURON approach

TABLE 1: RMS Deviations of MLR and Neural Networks
Correctionsa

Ab Bb Cb

MLR
DFT-

NEURON MLR
DFT-

NEURON MLR
DFT-

NEURON

Ic 5.8 5.0 4.1 3.7 6.0 5.0
II d 5.6 4.9 3.7 3.6 4.9 4.3
III e 5.5 4.8 3.7 3.5 3.2 3.0
IV f 5.4 4.7 3.5 3.2 3.2 3.0

a All data are in the units of kcal‚mol-1. b A, B, and C denote
approaches A, B, and C, respectively.c I: DFT calculated∆Gf° and
ZPE as descriptors.d II: DFT calculated∆Gf° andNt as descriptors.
e III: DFT calculated∆Gf°, Nt, and ZPE as descriptors.f IV: DFT
calculated∆Gf°, Nt, ZPE, andNH as descriptors.
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generated better results than the MLR correction approach. The
detailed results are tabulated in Table 3. The RMS deviations
for the DFT-NEURON training and testing sets are 1.7 and 1.8
kcal‚mol-1, respectively, which justifies the validity of the
resulting neural network. For MLR correction, the RMS
deviations of the training and testing sets are 2.9 and 4.3
kcal‚mol-1, respectively. The histograms of the deviations for
the raw DFT, MLR, and neural networks correction approaches
are plotted in Figure 7a-c, respectively.

D. Absorption Energy. So far, the MLR and neural networks
correction approaches have only been employed to calculate
the ground-state properties of molecules or atoms. In principle,
the method can be applied to compute the excited-state
properties as well. As the first application for the excited-state
properties, we generalize the MLR and neural networks cor-
rection approaches to calculate the optical absorption energies
of organic molecules.

Marks et al.5 evaluated the absorption energies of 60
heterocyclic organic molecules using ZINDO/CIS, ZINDO/RPA,
HF/CIS, HF/RPA, TDDFT/TDA, and TDDFT/RPA calcula-
tions. The largest molecule contains 82 atoms, of which 48 are
heavy atoms and the rest are H atoms. They concluded that

TDDFT/CIS and TDDFT/RPA methods yield relatively accurate
results upon linear regression fit. The BLYP functional approach
was employed in their TDDFT calculations. We employ the
TDDFT/B3LYP calculation to evaluate the absorption energies
of the same 60 organic molecules. The raw calculated absorption
energies are subsequently corrected by the DFT-NEURON
method and the MLR correction approaches.

Geometry optimization is performed at the B3LYP/
6-31G(d) level for each of the 60 organic molecules. The
TDDFT/B3LYP/6-31G(d) calculation is employed to determine
the excited-state energies and their oscillator strengths. The
calculated excitation energy with the largest oscillator strength
is chosen as the optical gap of the molecule and compared to
the experimental counterpart.5 Results and comparisons are listed
in Table 4. For most of our calculations, the lowest-energy
transition possesses the largest oscillator strength. In some rare
cases where the oligomers have only one repeat unit, the lowest
transitions may not have the largest oscillator strengths. In such
a case, we choose a low-lying transition with the largest
oscillator strength whose energy is within 1 eV from the lowest
excited-state energy. The calculated and measured absorption
energies and their differences are listed in Table 4. The RMS

TABLE 2: Experimental Ionization Potentials and the Differences between the Calculated and Experimental Valuesa

species exptb deviationc deviationd deviatione species exptb deviationc deviationd deviatione

Li 124.3 5.2 2.3 3.0 BCl3 267.5 -9.6 -4.6 -4.6
Be 214.9 -4.7 -6.0 -5.8 B2F4 278.3 -13.0 -5.0 -3.6
Bf 191.4 10.1 7.1 3.3 CO2 317.6 -0.8 1.0 3.2
C 259.7 6.6 1.1 0.1 CF2 263.3 -1.5 1.6 0.9
N 335.3 3.1 -5.3 -4.1 COS 257.7 0.3 2.7 3.3
O 313.9 12.7 6.8 4.1 CS2 232.2 -0.8 2.0 1.5
F 401.7 7.9 3.6 -1.7 CH2 239.7 0.2 -4.6 -4.2
Na 118.5 6.5 3.6 4.7 CH3 227.0 2.4 0.2 -2.6
Mg 176.3 1.9 0.9 2.3 C2H5 (2A′) 187.2 2.3 2.4 -0.1
Al 138.0 0.9 -1.5 -2.4 C3H4(cyclopropene)f 223.0 -6.6 -3.7 -2.5
Si 187.9 -0.8 -5.5 -3.5 CH2dCdCH2

f 223.5 -5.5 -2.6 -0.9
P 241.9 -2.5 -9.8 1.0 sec-C3H7 170.0 0.0 2.3 -0.1
S 238.9 4.3 -0.6 -0.1 C6H6 213.2 -4.4 3.0 4.0
Cl 299.1 2.3 -0.7 -3.2 CN 313.6 9.8 7.2 3.6
CH4 291.0 -3.6 -4.1 -0.4 CHO 187.7 8.0 7.4 4.2
NH3 234.8 0.3 0.5 2.2 H2COH (2A) 174.2 3.2 3.5 1.0
OH 300.0 5.2 2.1 -0.5 CH3O (2A′) 247.3 -3.3 -3.8 -6.6
OH2 291.0 0.0 -0.4 1.8 CH3OH 250.2 -5.9 -4.0 -2.7
FHf 369.9 1.4 0.1 2.4 CH3F 287.6 -4.0 -2.5 0.1
SiH4 253.7 -2.1 -2.2 0.9 CH2S 216.2 -2.1 -0.3 -1.6
PH 234.1 0.3 -4.4 -3.9 CH2SH 173.8 3.1 3.4 0.9
PH2

f 226.5 2.3 0.1 -2.7 CH3SH 217.7 -2.6 -0.3 0.6
PH3

f 227.6 -0.9 -0.6 1.1 CH3Cl 258.7 -3.1 -1.3 0.0
SH 239.1 2.1 -0.2 -3.0 C2H5OHf 241.4 -8.5 -4.5 -3.2
SH2 (2B1)f 241.4 -1.4 -1.2 -0.2 CH3CHO 235.9 -3.5 -0.1 0.1
SH2 (2A1) 294.7 -3.0 -3.4 -3.2 CH3OF 261.5 4.6 -0.9 -0.9
ClH 294.0 -0.2 -0.6 1.1 C2H4S (thiirane) 208.7 -2.8 0.9 1.7
C2H2

f 262.9 -3.5 -2.9 -1.1 NCCN 308.3 -7.6 -5.0 -4.8
C2H4 242.4 -5.0 -3.6 -2.4 C4H4O (furan) 203.6 -2.3 3.9 5.0
CO 323.1 3.9 3.7 5.3 C4H5N (pyrrole)f 189.3 -2.6 3.8 5.3
N2 (2Σ cation) 359.3 6.1 5.4 7.4 B2H4 223.7 -4.6 -3.6 -2.0
N2 (2Π cation) 385.1 -0.8 -1.7 -0.6 NH* 311.1 4.4 -1.3 -4.1
O2 278.3 11.9 8.4 6.8 NH2 256.9 4.5 1.9 -0.3
P2 242.8 5.3 6.1 5.1 N2H2 221.1 -1.0 0.7 0.3
S2 215.8 4.4 1.8 1.9 N2H3

f 175.5 6.6 6.8 4.5
Cl2 265.2 -2.7 -0.8 -2.3 HOF 293.1 -1.2 0.3 0.3
ClF 291.9 -0.9 0.7 -0.6 SiH2 (1A1) 211.0 -2.4 -2.5 -3.6
SCf 261.3 2.4 2.9 2.5 SiH3f 187.6 1.0 -0.7 -2.6
H 313.6 1.5 -3.7 -2.9 Si2H2

f 189.1 -4.0 -2.5 -2.3
He 567.0 7.8 1.2 0.3 Si2H4 186.6 -4.5 -2.4 -2.2
Ne 497.2 4.8 -0.6 -3.4 Si2H5 175.5 1.2 1.5 -0.6
Ar 363.4 1.0 -2.8 1.1 Si2H6 224.6 -5.3 -3.0 -0.8
BF3 358.8 -9.8 -5.9 -3.0

a All data are in the units of kcal‚mol-1. b Experimental data are taken from ref 6.c Differences between the raw calculated and experimental IPs.
d Differences between the calculated and experimental IPs for DFT-MLR calculation.e Differences between the calculated and experimental IPs
for DFT-NEURON calculation.f Molecules belong to the testing set.
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deviation between our calculated and measured absorption
energies is 0.33 eV. It is less than that of ref 5, because we
employed the B3LYP functional approach rather than BLYP.
The B3LYP calculation reproduces the experimental data better
than the BLYP calculation for heterocyclic organic molecules.
This is different from the calculations on aromatic hydrocarbon
radical cations, pyrene, perylene, and polyene.20,21 There are
clearly systematic deviations between calculated and measured
absorption energies. The calculated deviation increases with an

increasing number of repeating units. The largest negative
deviation is-0.50 eV (molecule 30, see Table 4). The largest
positive deviation is 0.84 eV (molecule 36). Among molecules
25-30, the experimental absorption energies red-shift slightly
as the number of repeating units increases. These oligomers do
not have good conjugated structures, as the optimized geometries

Figure 6. Histograms for the deviations of the B3LYP/
6-311+G(3df,2p)-calculated IP for all 85 species. Parts a, b, and c are
for the raw calculated, the MLR-corrected, and the neural-networks-
corrected IPs, respectively.

Figure 7. Histograms for the deviations of the B3LYP/
6-311+G(3df,2p)-calculated EA values for all 58 species. Parts a, b,
and c are for the raw calculated, the MLR-corrected, and the neural-
networks-corrected EAs, respectively.

TABLE 3: Experimental Electron Affinities (EAs) and the
Differences between Calculated and Experimental Valuesa

species exptb deviationc deviationd deviatione

C 29.1 2.2 0.9 1.2
O 33.7 3.3 3.0 -1.2
F 78.4 1.3 1.8 0.3
Si 31.9 -1.5 -2.8 -2.4
P 17.2 4.4 3.7 -1.1
S 47.9 2.6 2.2 0.7
Cl 83.4 1.5 1.8 -0.3
CH 28.6 2.4 0.8 2.5
CH2 15.0 2.8 1.6 1.6
CH3 1.8 0.1 -1.8 0.2
NH 8.8 1.2 0.0 0.9
NH2 17.8 -1.8 -3.2 -1.6
OH 42.2 -1.7 -2.5 -0.4
SiH 29.4 -0.6 -2.3 -1.1
SiH2

f 25.9 0.9 -1.1 -2.2
SiH3

f 32.5 0.1 -1.1 0.8
PH 23.8 1.3 0.3 -0.4
PH2 29.3 -0.6 -1.9 -0.1
HS 54.4 -0.9 -1.6 0.9
O2 10.1 1.9 1.1 1.3
NO 0.5 7.1 5.2 4.5
CN 89.0 4.4 4.9 -0.3
PO 25.1 3.0 1.5 1.6
S2 38.3 0.1 -0.4 -0.8
Cl2f 55.1 10.5 9.8 3.2
Li f 14.3 -1.4 -3.6 -2.2
B 6.4 2.9 0.8 1.6
Na 12.6 0.9 -1.3 0.2
Al 10.2 -1.3 -3.6 -3.1
C2

f 75.5 2.1 2.4 0.1
C2O 52.8 0.5 0.5 -0.2
CF2 4.1 6.2 4.5 0.2
NCO 83.2 -2.0 -1.6 -4.2
NO2 52.4 -1.0 -1.5 -0.8
O3 48.5 12.4 11.7 3.8
OF 52.4 0.1 -0.3 1.7
SO2 25.5 6.5 5.2 2.1
S2Of 43.3 5.4 4.4 -1.5
C2H 68.5 2.5 2.4 3.1
C2H3 15.4 0.2 -1.3 -0.6
H2CdCdCf 41.4 3.3 2.0 -1.9
H3CdCdCH 20.6 2.6 1.5 2.0
CH2CHCH2 10.9 1.0 -0.4 -1.0
HCO 7.2 0.6 -1.2 -1.2
HCF 12.5 5.2 3.3 0.1
CH3O 36.2 -1.6 -2.4 -0.8
CH3Sf 43.1 -1.1 -1.8 -0.1
CH2S 10.7 4.9 2.9 -0.6
CH2CN 35.6 0.6 -0.2 1.1
CH2NC 24.4 1.5 0.4 1.0
CHCO 54.2 -1.8 -2.1 -0.6
CH2CHO 42.1 0.2 -0.4 0.9
CH3CO 9.8 -0.6 -2.0 -3.3
CH3CH2O 39.5 -0.2 -0.7 0.3
CH3CH2S 45.0 -1.4 -1.9 -1.1
LiH 7.9 2.3 -0.2 -1.1
HNO 7.8 6.9 4.9 1.3
HO2 24.9 -2.5 -3.5 -2.5

a All data are in the units of kcal‚mol-1. b Experimental data are taken
from ref 6. c Differences between the raw calculated and experimental
EAs. d Differences between the calculated and experimental EAs for
DFT-MLR calculation.e Differences between the calculated and
experimental EAs for DFT-NEURON calculation.f Molecules belong
to the testing set.
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TABLE 4: The Structure, Experimental Absorption Energies and the Differences between the Calculated and Experimental
Values of 60 Molecules (All Data Are in the Units of eV)
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TABLE 4 (Continued)

a Experimental data are taken from ref 5.b Differences between the raw calculated and experimental values.c Differences between calculated
and experimental values for DFT-MLR calculation.d Differences between calculated and experimental values for DFT-NEURON calculation.
* Molecules belong to the testing set.
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have dimeric structures with their average dihedral angles lying
between 45.0° and 70.0° (see Figure 8a). Their excited-state
energies red-shift slightly compared to their nondimeric isomers
(with average dihedral angles of 39.5°, see Figure 8b). We
emphasize that the calculated properties of excited states depend
on the reliability of geometry optimization.

The raw calculated absorption energy∆’s versus the experi-
mental measured∆ex’s are shown in Figure 9a. The vertical
coordinate is the experimental∆ex, and the horizontal coordinate
is the calculated∆. The dashed line is where the vertical and
horizontal coordinates are equal.

To employ the MLR or neural networks correction approach
to improve the raw calculated∆, we need to identify the relevant
physical descriptors. As discussed in section II, the raw
calculated∆ is the primary descriptor. For the same set of
oligomers, when the number of repeating units is small (for
example, 1 or 2), the raw calculated absorption energies are
higher than the experimental counterparts, and when the number
of repeating units is large, the calculated absorption energies
red-shift strongly compared to their experimental counterparts.
In other words, the oligomer size correlates strongly with the
deviation between the raw∆ and∆ex. The number of electrons
Ne is thus taken as the second physical descriptor. The oscillator
strengthOs is a measure of absorption magnitude and is selected
as the third and last descriptor. We divide the 60 molecules
randomly into a training set (50 molecules) and a testing set
(10 molecules), and the training set is further divided into five
subsets of equal size for the cross-validation.

Similarly, two hidden neurons yield the overall best results
for the neural networks correction approach. The differences
between calculated and experimental absorption energies for
the MLR and neural networks correction results are tabulated
in Table 4. After the MLR and neural networks corrections,
RMS deviations of the TDDFT/B3LYP calculations are reduced
from 0.33 to 0.14 and 0.09 eV, respectively. For the neural
networks correction approach, RMS deviations for the training
and testing sets are 0.09 eV, while those of the MLR correction
are 0.15 and 0.11 eV, respectively. Figures 9a-c are for the

raw, MLR-corrected and neural-networks-corrected absorption
energies, respectively. Compared to the raw calculated results,
the neural-networks-corrected values are much closer to the
experimental values for both training and testing sets. More
importantly, the systematic deviation in Figure 9a is eliminated.
This can be further demonstrated by the error analysis performed
for all 60 molecules. In Figure 9, the insets are the histograms
for the deviations. Note that the error distribution after the neural
networks correction is of an approximate Gaussian-type. For
the raw TDDFT calculation, the deviations of smaller oligomers
are positive, while those of large oligomers are negative with
the magnitude increasing with increasing molecular size. After
the neural networks correction, the calculated absorption ener-
gies of large and small oligomers have similar magnitudes of
deviations.

IV. Analysis

In Table 5, we list the values of synaptic weightsWxij and
Wyj for the four neural networks employed. For∆Gf°, we list
the synaptic weights for approach B. To identify the significance
of a particular physical descriptorXi in correcting the raw
calculated results, we compute the partial derivative (∂Z/∂Xi).
In Table 6, we tabulate the resulting∂Z/∂Xi for the four neural
networks. The derivatives are computed atXi ) 0.5. For all
cases,∂Z/∂X1 has the maximum magnitude, andX1 corresponds
to the calculated properties of interest or the primary descriptor.

Figure 8. Two different possible structures of molecule27. (a) Dimeric
structure. (b) Nondimeric structure.

Figure 9. Calculated absorption energy versus experimental absorption
energy∆ex for all 60 compounds. Parts a, b, and c are for raw B3LYP/
RPA, and MLR- and neural-networks-corrected B3LYP/RPA results,
respectively. Triangles (4) are for the training set, and crosses (×) are
for the testing set. Insets are the histograms for the differences between
the experimental and calculated absorption energies. All values are in
units of eV.
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For IP, EA, or absorption energy,|∂Z/∂X1| is significantly larger
than|∂Z/∂X2|, |∂Z/∂X3|, or |∂Z/∂X4|, which indicates that the raw
calculated IP, EA, and absorption energy are indeed the most
important physical descriptors in determining the exact values
of IP, EA, and absorption energy, respectively. For∆Gf°,
|∂Z/∂X2| and |∂Z/∂X3| are slightly larger than one-half of
|∂Z/∂X1|. However,∂Z/∂X3 has the opposite sign of∂Z/∂X2 and
∂Z/∂X4. Nt, NH, and ZPE are highly correlated and are ap-
proximately proportional to each other.|∂Z/∂X2 + ∂Z/∂X3 +
∂Z/∂X4| ≈ 0.23, which is much less than|∂Z/∂X1| ≈ 1.44 for
∆Gf°. This verifies that the raw calculated∆Gf° is much more
important than the other three descriptors. All of these confirm
that the calculated value captures the essence of the property
of interest and that the other physical descriptors provide finer
tuning. Note that the derivatives with respect toNve are very
small for IP and EA. This indicates thatNve is not an important
physical descriptor for improving the calculated IP or EA and
may thus be neglected. Indeed, we employ the 4-2-1 neural
networks for IP and EA by employing only the physical
descriptors IP/EA,gs, andEg, and find that their resulting RMS
deviations are 3.3 and 1.9 kcal‚mol-1, respectively, which are
virtually the same as those of the 5-2-1 neural network.

For MLR correction, the partial correction coefficient mea-
sures the significance of each descriptor and is expressed as
follows

wherej ) 1, 2, ...,m

The largerVj is, the more important the descriptorXj is. In
Table 7, we tabulate the partial correction coefficients in the

MLR correction approach.X1 always has the maximum partial
correction coefficient for the MLR correction, which is con-
sistent with that of the neural networks correction approach.
For ∆Gf°, all four descriptors have very large partial correction
coefficients, which illuminates the fact that all four descriptors
are very important in correcting the raw∆Gf°.

V. Discussion and Conclusion

Compared to what we did in ref 8, we have greatly
generalized the DFT-NEURON method and its applications.
Besides the various ground-state properties, we have demon-
strated that it can be used to improve the calculated properties
of the excited states. The statistical correction approach
developed here can be further generalized. For instance, it can
be extended to construct the exchange-correlation functional
approach for DFT and TDDFT.22,23DFT maps a many-electron
problem onto an effective single-electron problem. The mapping
is exact if the exact exchange-correlation functional is known.
Unfortunately, only approximated exchange-correlation func-
tionals exist. Neural networks or linear regression fit can be
employed to construct accurate exchange-correlation functional
values by discovering regularities among the available experi-
mental data. Work along this direction is in progress.23

Although the MLR correction approach may improve the raw
calculated results, the DFT-NEURON method usually yields
better values. This is because the neural networks method is
much more versatile. The MLR correction approach works well
when the raw calculated results are very close to the exact
values. Unfortunately, this is often not the case. The raw
calculated values can deviate considerably from the experimental
values. Correction beyond the linear regression fit is thus
required. The neural networks method provides a better and
more general solution. Another important feature of the statisti-
cal-correction-based first-principles methods is that they do not
discriminate against large molecules, because the bias at the
raw calculation level has been corrected at the training stage.

So far, one neural network or MLR fit is to be trained, tested,
and determined for each property of interest. This is tedious
and time-consuming. We are working to construct a general
statistical correction model that improves the calculated energy
directly. Because all physical properties are ultimately deter-
mined by energy, this general statistical correction model could
be used to calculate accurately the properties other than energy
itself. We thus need to train only one statistical correction model,
instead of one model per physical property.

To summarize, we have developed the DFT-NEURON
method into any statistical-correction-based first-principles
method and expanded it to compute a variety of ground- and
excited-state properties of small-to-medium-sized molecules or
atoms. The accuracy of any statistical-correction-based first-
principles method can be systematically improved as more or
better experimental data are available. This combined first-
principles calculation and statistical correction approach is

TABLE 5: Optimized Values of Synaptic Weights Wxij
and Wyj

∆Gf° a IP EA ∆

Wx11 -0.426 -0.086 0.108 -1.451
Wx12 0.698 0.650 -0.708 0.617
Wx21 0.154 -0.032 -0.128 -0.419
Wx22 -0.277 0.001 -0.076 -0.089
Wx31 0.398 0.429 0.523 1.237
Wx32 0.001 0.145 0.359 0.243
Wx41 -0.051 -0.239 0.299 -0.729
Wx42 -0.405 -0.062 0.182 -0.396
Wx51 0.002 0.187 0.006
Wx52 0.393 -0.248 0.105
Wy1 -0.660 -0.834 1.622 -0.836
Wy2 1.601 1.781 -1.724 1.333

a Approach B.

TABLE 6: Derivatives of the Normalized Values of the
Observed Properties with Respect to the Normalized
Physical Descriptors

i Xi ∂∆Gf°/∂Xi
a Xi ∂(IP)/∂Xi Xi ∂(EA)/∂Xi Xi ∂∆/∂Xi

1 ∆Gf° 1.444 IP 1.315 EA 1.153 ∆ 1.767
2 Nt -0.872 Nve 0.017 Nve 0.024 Ne 0.232
3 ZPE 0.798 gs -0.153 gs -0.052 Os 0.262
4 NH -0.155 Eg -0.048 Eg 0.060

a Approach B.

Vj ) x1 - q/Qj

Qj ) ∑
i)1

n

[Yi - (C0 + ∑
k)1
k* j

m

CkXki)]
2

q ) ∑
i)1

n

[Yi - (C0 + ∑
k)1

m

CkXki)]
2

TABLE 7: The Partial Correction Coefficients in MLR for
Different Properties with Respect to the Normalized Physical
Descriptors

I Xi Vi
a Xi Vi

b Xi Vi
c Xi Vi

d

1 ∆Gf° 0.998 IP 1.000 EA 0.998 ∆ 0.999
2 Nt 0.998 Nve 0.710 Nve 0.190 Ne 0.331
3 ZPE 0.998 gs 0.731 gs 0.368 Os 0.065
4 NH 0.986 Eg 0.081 Eg 0.225

a The partial correction coefficients for∆Gf° in approach B.b The
partial correction coefficients for IP.c The partial correction coefficients
for EA. d The partial correction coefficients for absorption energy.
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potentially a powerful tool in computational science, and it may
open the possibility for first-principles methods to be employed
routinely as predictive tools in materials research and develop-
ment.
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