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The numerical approach of data collaboration is extended to address the mutual consistency of experimental
observations. The analysis rests on the concept of a dataset, which represents an organization of pertinent
experimental observations, their uncertainties, and mechanistic knowledge of the subject of interest. The
numerical foundation of data collaboration lies in constrained optimization, utilizing solution mapping tools
and robust control algorithms. A rigorous measure of dataset consistency is developed, and Lagrange multipliers
are used to identify factors that influence consistency. The new analysis is demonstrated on a real-world
example, taken from the field of combustion. In performing the consistency test, the new procedure identifies
two major outliers of the dataset, which were corrected upon re-examination of the raw experimental data.
The results of the analysis suggest a sequential procedure with step-by-step identification of outliers and
inspection of the causes. Altogether, the new numerical approach offers an important tool for assessing
experimental observations and model building.

1. Introduction a mathematical model and a set of experimental observations

The understanding of a variety of natural phenomena and for the model responses, determine the best-fit parameter values,
industrial processes is reliant on knowledge of the chemical Usually those that produce the smallest deviations of the model
reaction mechanisms and kinetics. Endeavors in such cases begiRredictions from the measurements. The validity of the model
with identification of the under|ying reaction pathways and and the identification of outliers is then determined using

fundamental mechanisms. When sufficient data accumulate, thenalysis of variance. The difficulty involved in the application
interest often shifts to practical applications, motivating the Of standard statistical methods lies in the fact that chemical

development of mechanistic models. kinetics models are stated in the form of differential equations
The “textbook” approach to the development of mechanistic that do not possess a closed-form solution. Further complications
reaction models consists of conjecturing the reaction mechanism,result from the highly “ill-structured” character of the best-fit
expressing it in a suitable mathematical form, and comparing objective function, with long and narrow valleys and multiple
the predictions of the constructed model to available experi- local minima, resulting in an ill-conditioned optimization that
mental observations. Typically, such comparisons result in lacks a unique solutioh?
mixed outcomes: some show a reasonably close agreementand The best-fit optimization problem for general, nonlinear
some do not. In the latter case, the apparent inconsistencydynamic models has been addressed with a series of numerical
obtained between the model and the experiment is argued tomethods: “direct” gradient searélf,gradient search based on
imply either that the model is inadequate or that the experiment sensitivities] solution mapping;#-1° genetic algorithmsl-2and
(or, rather, its interpretation) is incorrect. . _ Monte Carlo technique’!®In some cases, it was coupled with
In some areas, such as heterogeneous catalysis and biochemigagistical inference and estimation of confidence regieia.
cal systems, the fundamental reaction mechanisms are largelyrecent developments also include formulation of the problem
unknown and establishing them form the challenge of the current;, the form of error propagation: given uncertainty ranges for

research. Yet, in other fields, such as atmospheric chemistry nq el parameters, estimate the intervals of variations for model
and the combustion of small hydrocarbons such as methane, o jictionst3 14

there is a broad consensus in regard to the reaction pathway All of the af tioned thod tally Vi th
underlying the mechanisms. Thus, any inadequacy of the kinetic or the alorementioned methods essentially view the
problem as a two-step process: estimation of model parameters

models essentially rests in their parameter values. In thef fit lected set of . tal data. foll d b
following discussion, we assume the latter situation. rom Titting a selected set ol experimental data, Tollowed by
exercise of the obtained model, either as validation against an

If the kinetic parameters of such a “known” mechanism were o~ ; . " .
known exactly, then a direct comparison of model prediction additional set of experiments or making predictions outside the

with a given experiment, within its uncertainties, would €*Perimentally accessible conditions.

decisively indicate whether that experiment is consistent or Recently, we have pursued a different approach, which we
inconsistent with the model. In reality, however, the model call data collaboration!>1¢In this approach, we focus not on
parameters themselves have uncertainties that must be includeg@parametrization of the parameter uncertainty region, which the

in the analysis. aforementioned methods engage in and rely upon, but rather
In principle, the parameter identification of chemical kinetic on transferring the uncertainties of the “raw” (experimental) data
models can be posed as a classical statistical infeferdggven into the modeldirectly. Doing so allows one to harvest

substantially more of the information content of the d&agtand
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myf@me.berkeley.edu. approach is anchored in the concept afedasetthat unites all
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the pertinent experimental data and the mechanistic knowledge(ODESs) that describe the time evolution of all chemical species.
for a given system, and numerical analysis based on combinationThe ODE formulation is based on reaction-rate laws (such as
of solution mapping and optimization techniques used and Mass Actiod® or Michaelis-Menterd®) that contain either
advanced by robust control thedryThis numerical methodol-  physical or empirical parameters. Their values could be entirely
ogy avoids the unnecessary overconstraining of model param-unknown, but usually they are known within some bounding
eters that plagues many other techniques due to inherentintervals that have been established in prior studies or estimated
correlations among parameters, and allows one to explore moretheoretically. Experience sho®® that, for an individual
closely the truefeasible regionof the parameter space in a experimentE, only a small subset of model parameters has a
computationally efficient manner. measurable influence on the propeity. We denote such a

The present work expands further on these ideas. Within the subset aste, and we refer to the parameters contained within
framework of a dataset, we develop a numerical measure of 4¢ as active variables for experimentE. For instance, the
dataset consistency, which provides a combined way to examineignition time of a methaneair mixture is primarily determined
system uncertainties that originate from either rate parametersby a dozen or so kinetic parameters, and the influence of the
and/or experimental observations. The analysis of datasetrest of the parameters (above 600 in the case of the GRI-Mech
consistency is assisted by Lagrange multipliers, which gauge modef?) is largely within the noise and, for all practical
the sensitivity of the consistency measure to the datasetpurposes, can be safely negleét&t(e.g., by fixing them at
uncertainties. We begin with a brief description of the concepts their respective “literature” values). This phenomenon is termed
and methodology of data collaboration, followed by mathemati- effect sparsity'22

cal formulation of the problem; we then present new mathemati- e will designate an individual active variableX§sand use
cal developments on dataset consistency and conclude with a; ¢ R to refer to a specific value of. Individual dataset units
realistic demonstration of the method. may (and usually do) have different sets of active variables.
Thus, X; might be an active variable for one experiment but

. ) not another. We denote the list of active variables for experiment
2.1. Dataset.Let E denote a physical experiment (for £ 55 o~ The union over alle € & form the dataset active

example, a flow reactor or a laminar premixed flame) dpd variables, ¥ = Ug.4e. We will denote the total number of
property o.f interest that is .measured in this experiment (€-9-1 gataset active variables asand vectox € R" represents dataset
the intensity of scattered light or a peak concentration). The active variable values. Associated with a vectox are the

value ofYe is designatede, and the experimentally measured 5 e extracted from that correspond to the active variable
value isde. We assume the experimental uncertainty is not . @

necessarily symmetric abod§, and, thus, the deviation of the .
measured vaiue from has lower and upper bounds, namkly In the context of tuning model parameters (e.g., rate constants)
< Vo—de < U ' through optimization, the initial conditions of ODE integration
— Je e — e . -
We associate with experimete a dataset unit (de, Ue, le (pressure, temperature, etc.) for a dataset ld@_lare fixed to
SR d those of experimerf. The only changes occurring from run to

Me), which consists of the measured value, the reporte th in th | f optimizati iabl h
uncertainty in the measurement (upper bound and lower bound),run are those n the vajues of optimization variables (suc ' as
pre-exponential factors of rate coefficients, activation energies,

and a mathematical model, respectivelyd@aseis a collection . " . .
b v ratios of rate coefficients, and enthalpies of formation). Thus,

of dataset unit§(de, Ue, le, Mg)}. In the following, we denote a . . .
dataset unit ag/, the dataset as), and the set of indicesas Lh‘?[ modeIMel of thefdtﬁtasett.umf/e repbrlesen;s the re.:%'gls(;"p
& ie., Ze= (do Ue los Me) and & = { %o} eerc. The modelMe etween values of the active variables of experi n

model predictions foe. In other words,Me(xe) replacesye,

2. Data Collaboration

is defined as the functional relation between the model . dingl. < M T4 < hich ties toaether the dat
parameters and the prediction fé. Discussion of the model yielding le = Me(Xe) e = Ue, WNICH lies fogether the data,
definition follows. the model, and the uncertainty.

The creation and organization of a dataset is guided by the 2.2. Initial Hypercube and Feasible RegionWe further
system in question, for instance, the formation of nitrogen oxides @ssume that prior information on the possible values of the
in the combustion of natural gas, the concentration levels of dataset active variables is available. For instance, the value of
ozone in the atmosphere, or transmembrane signaling in bacteriafctivation energy computed quantum-mechanically will have
chemotaxis. A Sing|e experiment cannot provide Comp|ete an Uncertalnty that is associated with that CalCUIat|0n, or there

information on such a system, but rather probes its particular could be several experimental studies, each reporting a different
aspect. A collection of such individual “bits” of pertinent value for the same rate constant. This prior information can be

information (i.e., dataset units) forms a dataset. The more €xpressed as the confinement of possible values of the active

extensive and diverse the collection, the more complete is the variables to am-dimensional *hypercube’? = {x € R" o; =<
understanding of the systethThe unifying principle, the one % =< fj}, wherea; and/5; are the lower and upper bounds xn
that determines the “pertinence” of a given experiment to a given for j =1, 2, ...,n. Each edge of the hypercubgrepresents the
dataset, is a presumption that there exists a single chemicalPresumed interval ophysically allowedvalues of the corre-
kinetics model, common to all dataset units, that is expected to SPonding active variable, either the estimated uncertainty or a
predictY. when exercised at the conditions of experiménin range that contains the differing values.
other words, it is presumed that a broad consensus exists (at Some parameter values drawn frafimay result in model
least tentatively) regarding the necessary reaction steps of thepredictions that lie outside the experimentally determined ranges.
system and, hence, the mathematical structure of the unifyingIn other words, not everx € % predicts all experimental
kinetic model is known, and that this mathematical model is observations of the dataset within their specified uncertainties.
sufficient, in principle (with the “right” choice of parameter The collection of parameter values that are both contained in
values), to predict all experimental observations included in the the hypercube and satisfy < Me(Xe) — de < Ue fOr everye e
dataset. & form thefeasible region. 7. A point x that is not contained
For a known chemical reaction system, the mathematical form in 7, has been eliminated from consideration as a possible value
of the kinetic model is a set of ordinary differential equations for the dataset active variables by either the prior information,
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through theo and 8 bounds of%, or by the experimental = TABLE 1: Example Dataset 9 = {%4,%,,73}

observations of the dataset, through intervelst le, de + Ue). @ Me(Xe) de le Ue

Itis in this manner that experimental ob.servatlons increase our—_——— e o 075  —025 025
knowledge of the kinetic parameters: an experiment may ._5 (X0, X5} %o — i+ 1 0.7 025 025
eliminate portions of the hypercub& from consideration, e=3 {le Xa} X +¥%—01 06 —025 025

thereby decreasing the uncertainty in the values of the kinetic
parameters. Further discussion and illustration of the feasible ynits in the dataset (i.e., the size 6J. In accord with this
region and its character can be found in ref 16. notation, we refer to the four collections of inequalities in eq 1
2.3. Methodology.Our approach casts a given problem as a a5 theo-, -, I-, andu-constraints.
constrained optimization over the feasible region, drawn onthe  The values ofx, §, |, andu affect the consistency of a dataset.
entire knowledge content of a dataset. It combines solution |ndeed, a consistent dataset may become inconsistent with a
mapping (SM), which is used to generate edthand robust  decrease in the intervals of active variables (affectirand)
control (RC) techniques, which are used to solve the constrainedand/or in the levels of experimental error (affectingnd u).
optimizations. The mathematical details can be found in ref 17. The present status, even in better established fields, is such that
Briefly, optimization of a general-form objective function subject  the o andg values are not well-established and thos¢ afid
to general-form constraints is known to be a “hard” numerical  are seldom documented. Given this situation, we can consider
problem (see ref 16 and references therein). However, it tumnsyajyes ofl andu to be very tentative, and by varying them,
out that, if the constraints (and the objective function) can be answer questions such as, “at what level of the experimental
expressed as polynomials, one can employ recent RC techniquegrror does the dataset become inconsistent?” In fact, this very

to develop computationally efficient algorithms of optimization.
This is the essence of our approach.

We develop quadratic approximations for each dataset-unit
modelMe, using the SM methodologi??identification of active

question leads us to the definition of a consistency measure, as
described in the next subsections.

3.2. Pairwise ConsistencyBefore discussing our final results
of how we determine if a dataset is consistent, we introduce a

parametersie via sensitivity analysis and development of a simpler, easier-to-visualize test. In this test, we consider pairs
quadratic response surface via computer experiments arrangegf dataset units#e, #4) for e, f (not necessarily distinct) in the

according to a factorial desigi?? The new developments for

index setd. For each pair, we compute the minimum level of

the problem of dataset consistency, along with the necessaryyncertainty, U;, that leaves the two-element dataset; =

details, are given in the next section.

3. Dataset Consistency

3.1. Problem Formulation. Given a dataset, we are now
interested in determining whether the data it contains are
mutually consistent. This interest is motivated by practical

questions such as establishing whether a given reaction mode

is in agreement with the available experimental observations,
recognizing data outliers, or identifying the source of disagree-
ment between the model and experiment. The framework

outlined below develops quantitative measures to address such

questions in rigorous terms.

We begin by introducing the following definition: a dataset
& (together with its corresponding prior information) is said to
be inconsistentf there is no single poink in the hypercubez”
that satisfiede < Mg(Xe) — de < Ue for all ein &. Otherwise,
the dataset isconsistent In other words, the dataset is
inconsistent if the feasible region is empty. The mathematical
development that follows is aimed, in essence, at determining
whether the feasible region for the constraints implied by a given
dataset is empty or not.

The dataset constraints are represented by four sets o
inequalities:

from the prior information orvz:
{—xj = —o (forj=1,2,..,n)
% = p;
and from the data set units:
{—Me(xg +d, < —l, (for eachein &)

Mo(Xg) — dg = U,
By the definition established in the aforementioned discussion,
the dataset is inconsistent if no singlesatisfies all of these
constraints. To condense the notation, we form vectors
(01, 2, - 0n)T, B = (B1, B2 -0 Br)T, | = (leyy ley - le)T, @nd
U = (Ug, Ue,, .., Us,)T, wherem denotes the number of dataset

@)

{ 7%, 24} consistent:

Ues = the minimum value ofi such that the constraints
IM(Xe) — del = uand|M(x) — di| < u
are satisfied by some valwein 97"

|If this thresholduncertaintyues does not exceed the reported
uncertainty bounds of the corresponding two dataset units, i.e.,
if Ut < —lg Ug, —lf, Us, then the two-element datasels is
consistent, or, in other words, the two dataset uditgand 74
are mutually consistent with each other. Continuing in this
manner, we calculatees for each pair of dataset units in the
dataset, i.e., for ak, fin &. If at least one of the two-element
datasets is pairwise inconsistent, the entire dataset is inconsistent.
The converse is not true; i.e., even if all two-element datasets
are pairwise consistent, it does not necessarily imply that the
entire dataset is consistent. We demonstrate such a case with
the following numerical example.

Consider a dataset containing three dataset units, the contents
of which are listed in Table 1. The prior informationds= 0,

fBJ- =1forj =1, 2. In other wordsZis the unit square. This

example dataset exhibits pairwise consistency. Indeggl=

u; 3= 0.025 andu, 3 = 0, which are well below the allowable
uncertainties oft0.25 in the three dataset units. However, the
dataset comprised of all three dataset units is inconsistent. The
three shaded regions in Figure 1 depict, for each dataset unit,
the set of points that lead to model predictions within the
experimental uncertainties. In other words, the three displayed
regions are the feasible regions for the singleton datasets:
={7}, D= {7}, andUs3 = { 73}, respectively. It is easily
seen that any two of these regions overlap, implying pairwise
consistency. Yet, the three regions share no common points and
hence have an empty intersection, as illustrated in Figure 2.
Consequently the entire dataséti,s = { 74, %%, 7/3} is incon-
sistent. This example demonstrates that the entire dataset must
be considered to determine consistency. A technique that
addresses this is described next.
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U U dataset, with larger values of/Jndicating enhanced consis-
[ | tency. For this reason, we refer tg,@s the consistency measure
of the dataset/.

Solving the proposed optimization for the consistency mea-
sure is not easy. We require the global maximuny ofvhich
makes the problem computationally complex. Often, the best
one can do is to compute two bounds; @d C,, that satisfy
Cy = Cy = Cy. As a consequence of bounding the value of
the consistency measure, we are left with three scenarios: a
value of C, > 0 implies that is consistent; a value of £<
0 implies that™ is inconsistent; and lastly, if €< 0 < C,
the consistency test is inconclusive. When the consistency test
is conclusive, constrained optimization techniques, together with
the concept of a dataset, allow us to rigorously determine if the
individual experiments that comprise the dataset are mutually
consistent with each other, within the proposed kinetic model.

3.4. Threshold Uncertainty. In the development of the

0 . dataset consistency measure, we view the uncertainty béunds
0 0.5 1 i " o .
. andu as fixed quantities (specified experimentally) and ask
! whether the dataset is consistent at this uncertainty level.
Figure 1. Feasible regions (shaded) for the three dataset units of the Alternatively, we could consider the experimental uncertainties
example dataset. as variable quantities and compute the level at which the dataset
switches from being consistent to inconsistent. We refer to this
transition point as théhreshold uncertaintyMathematically,
for each experimerk, the threshold uncertainty is defined as
linreshe = le + C and Uihreshe = Ue — Cy, With the bounds on
Cy translating into bounds on the threshold uncertaintigsshe
0.6 = le + Cu, linreshe = le T Cu, Uthreshe = Ue — Cos, andUgnresh,e
= U — Co.

Itis pertinent to mention that the threshold uncertainties, along
with dataset consistency, may change with the variatioa in
andp. One may repeat the uncertainty analysis with new values

1

0.8

X
2

0.4

0.2 of o andp or perform sensitivity analysis, which is developed
in the remainder of this section, to assess the possible effect.
% 05 ' 3.5. Lagrange Multipliers. The consistency measure of a

x dataset is dependent an g, I, andu. As mentioned in the
! problem formulation subsection, even for highly researched

Figure 2. Overlay of the feasible regions for the three dataset units of systems, these values may be and usually are tentative
the example dataset. Any two of the regions overlap, implying pairwise Th S ; '

; i T erefore, it is useful to estimate the dependence of the
consistency. However, the three regions do not have a pointin ComMmON;; - troduced consistency measure on the nomiﬁal values of these
thus, the datase® = { 74, 74,7/} is inconsistent. Yy

bounds. We gauge this dependence using Lagrange multipliers,
3.3. Measure of Dataset ConsistencyVe have defined a which reveal the sensitivity of the solution of an optimization
dataset to be consistent if there is at leastore? such that, ~ Problem (in our case, ¢ to the constraints. A technical
for eache, M«(xe) is contained in the intervald+ de, Us + dd. discussion of these methods lies outside the scope of this paper;
To determine if a dataset is consistent and quantify the degreethe relevant development for the consistency question is given
of consistency, we compute the smallest such intervals thatin the Appendix.

contain Mg(xe) for somex e 7 This is accomplished by The key result used in the present work is the following. Let
introducing flexibility into thel- and u-constraints by adding & /8, let] and i denote bounds that possibly differ from the
to eachle and subtracting from eaaly a slack variable. Let nominal values, and let Crepresent the resulting consistency
C., denote the largest for which some value satisfies both ~ measure. If we perturb the values of the uncertainty and
the a- and #-constraints and thélexible I- and u-constraints, parameter bounds from their nominal values, the change in the
ie., consistency measure is upper-bounded by a linear function of
the perturbations. Specifically, the deviation in the consistency

C,, = maximum value of/ subject to the constraints: measureAC, = C; — Cy, satisfies

X = (forj=1,2,..,n) |

X =B AC,<C,—C,+ Z(l-(“)Aa- +1PAB) +

“Mx) +d, < —I,— y (foreachein&) @ R A B I

Me(Xg) = e = U~y Z(AS)AIe +2%Au) (3)

ecd

Defined in this way, G values greater than zero imply that the

a-, -, |-, andu-constraints introduced in eq 1 are satisfied, so WhereAo; = & — oj and similar relationships exist faxs;,

the dataset is consistent. The magnitude of @ovides a Al and Aue. The scalarsi®, A?, 20, and A are the
measure of the relative consistency (or inconsistency) of the Lagrange multipliers. Their values are determined by the
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optimization procedure and satistﬁ?), <o and/lj(ﬂ), A9 > zero local sensitivity to be arbitrarily negative and letting the
0. These inequalities are intuitive: for instance, in accord with components off andu to which C, has zero local sensitivity
/lj(“) being negative, a decrease i should increase the be arbitrarily large. Specifically, a new datasets generated
consistency measure, because more parameters values arfiom & by setting
allowed. The inequalities describint”, 29, and A% follow

—oo (if 4% =0)

o; (otherwise)
o (if ' =0) (forj=1,2,..,n)

the consistency measure to components of the nominal bounds ﬂj (otherwise)
a, f, 1, andu. Second, when the dataset is provably inconsistent _ —00 (if 20 =
e o _ (if 4" =0)
by our methods, i.e., € < 0, the nonzero Lagrange multipli- le= | (otherwise)
ers identify conflicting bounds. The latter we reference hereafter ¢ _
as theglobal outcome e (#2¥=0) (ein &
3.6. Local Sensitivity.In determining G, the bounds C te Us (otherwise)
and C, are computed. When these bounds are close to each
other, C, ~ Cy, and eq 3 reduces to

similar reasoning. & =
Equation 3 suggests two applications of the Lagrange ]
multipliers, which we describe in the following two subsections. [

First, the Lagrange multipliers indicate the local sensitivity of =

()

(Here, we use the convention-0c = 0, and note that the
maximum in eq 2 must be replaced with a supremum when
is allowed to take unbounded values.) By this construction of
&), we have effectively eliminated each constraint in eq 2 to
which the consistency measure has zero local sensitivity.
may then be viewed as a “smaller” dataset thdnobtained
after eliminating from the original dataset the information to
which the consistency measure is insensitive.

The following inequality, which we call thglobal result is
proven in the Appendix:

n
AC, = Z(ﬂf%aj + /1}ﬂ>Aﬂj) + Z(/l,g')meJr AYAU) (4)
£ ,

eco

It is useful to condense the notation by defining two column
vectors, the array of bounds= (o, ..., an, B1, -y By legy ooy
le,s Uey, ..., Ug,)T and the array of Lagrange multiplieds =
89,29, 29 Y. In the new notation, eq 4 becomes

®)

whereAt =t — t. Based on our experience (e.g., with the GRI-
Mech dataset discussed in the next section), eq 5 approximatel
holds with equality when each componentAtfis small, i.e.,

(6)

Equation 6 approximates how small perturbations about the
nominal valuet affect the consistency measure. Therefore, the
components of indicate the local sensitivity of the consistency
measure to the corresponding components of

ACW = lTAt Cw = Cf/) = Cw (8)

yIn terms of the threshold uncertainties, eq 8 translates to

(forallein &) (9a)

(9b)

Ithreshe =1 threshe

AC,, ~ i'At - .
v Uthreshe = Uthresne (for all ein &)

WhereTthjeshe andUireshe are the threshold uncertainties for the
dataset”. The relationships in eqs 8 and 9 indicate there is a
limit to how much the consistency measure (or the threshold

The components of provide estimates of the experimental uncertainties) can improve if all constraints to which the original

uncertainties and of intervals that contain the parameter values CONSistency measure,ds insensitive are removed. Although

If a dataset is inconsistent and its consistency measure is highly_these two equations hold n generallty_, they_arg of foremost
sensitive to only a few components ifit is not unreasonable interest when the datasgt is provably inconsistery (€0).

to question if these componentstare realistic bounds on the W& demonstrate the utility of eq 9 by focusing on the upper
corresponding measurement uncertainties or parameter boung@oundsu; the Interpretation for the 'OYVef bo_undls analogous.
from the prior information. Perhaps the dataset would be Suppose the dataset is provably inconsistent. Then, for each
consistent if more-judicious bounds were used. Consequently,& Ye = Utresre. Equation 9 indicates that, upon eliminating all
the corresponding experimental results and components of priorcOnstraints to which Cis insensitive, the threshold uncertainties
information should be examined first before questioning the Uthreste are still larger than the acceptable uncertaintied his
ODE kinetic model that generated the dataset unit models

means that a problem must exist in the constraints that
On the other hand, if the dataset is inconsistent and none of thecorespond to the nonzero Lagrange multipliers, because ef-
elements oft stand out as having a strong influence on the

fectively eliminating the remaining constraints will not bring

consistency measure, the possibility that the ODE kinetic model the threshold uncertainties down to an acceptable level. The

is the source of the inconsistency deserves more-careful scrutiny.key result can be summarized as follows. The removal of all

3.7. Global Outcome.The components af provide more  constraints corresponding to the zero components foém a
information than just an indication of local sensitivity. In contrast Provably inconsistent dataset leaves dlill negative. The source
to the experience with reaction kinetics, where a zero local of the inconsistency thus lies with the remaining constraints.

sensitivity does not necessarily indicate a reaction is unimpor-

tant? in the present case, it has global implications: ffoite 4. Test Case

changes to components biwhere4 is zero, the consistency

4.1. GRI-Mech Dataset. We demonstrate the outlined

measure is less than/CConsequently, constraints associated methodology on a real-world example, the GRI-Mech 3.0

with the zero components of can be completely ignored
without improving consistency.

dataset® which is taken from the field of combustion chemistry.
It is a collaborative data repository for the development of

To develop this global result, we form a new dataset from detailed kinetic models for pollutant formation in the combustion

& by allowing the components af and| to which C; has

of natural gas and was used in our previous stuthié%.
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The GRI-Mech 3.0 dataset is composed of 77 dataset units,
each of which represents an individual observation or a
“representation” for a group of them; e.g., an average of several
observations or a temperature dependence for a series of
measurements. The experimental apparatuses include shock
tubes, flow reactors, stirred reactors, and laminar premixed %
flames. The properties of interedt) of the dataset units include
species concentrations, ignition delays, laminar flame velocities,
shifts in peak positions, etc.

The overall kinetic model is comprised of 325 reversible _
“elementary” reactions among 53 chemical species. This model we“ﬁ:\%
is presumed to be complete enough to simulate, in a physically 60
plausible manner, the experiments of the dataset units. In other
words, it is presumed that the reaction mechanism, and, hence, dataset un
its formulation as an ODE system, is known and that the dataset unit
uncertainty of the model predictions arises solely from uncer- Figure 3. Threshold uncertainty levels; calculated for eache; =
tainty in the values of the model parameters. { %e, 24} pair of the GRI-Mech dataset units. The highest peakisa

There are more than 650 total parameters: reaction rateflagging 74;and/or4gas possible outliers from a pairwise perspective.
constants, their activation energies, species thermodynamic and
transport properties, as well as instrumental constants, i.e., % for which Me(Xe) is essentiallyde andM(xy) is essentiallyd.
absorption coefficients and the like. Not all of these are active The two “walls” alonge,f = 25 occur becaus@/,s(X2s) — das|
or assumed to be active in the present dataset. Only a fraction= 0.008 for every valu& in .%; thereforeues must be at least
of them, specifically 102, are considered as the overall set of 0.008 for any paif 7%, 74} that contains?/s. Another note-
the dataset active parameters. Their selection is based on thevorthy feature in Figure 3 is the emergence of a few large peaks.
following considerations. One of them is for the{ 747, /%5 pair, showing that an

Each dataset unit model represents a parametrization of theuncertainty level of at least 0.082 (10-fold larger than that for
overall ODE model for the specific conditions of that particular the “wall’) is required for this pair of dataset units to be mutually
dataset unit. Namely, the numerical response of the kinetic consistent. The extreme magnitude of these few outstanding
model for the conditions of the dataset unit is expressed as aPeaks signals a possible cause for concern regarding the affected
simple algebraic function (a quadratic polynomial in our case) experiments, and, as will be shown below, this concern is not
of parameters active at these conditions. The latter are deter-without a reason.
mined by a screening sensitivity analysis and consideration of 4.2.2. Consistency Measure. We now turn to the analysis of
their uncertainty ranges. For instance, the rate constant of theconsistency of the GRI-Mech dataset as a whole. Consistency
reaction H+ O, — OH + O, although making the top of the of the dataset is determined by the sign of its consistency
list on the sensitivity chart, is excluded from the active parameter measure G. For the given case of the GRI-Mech 3.0 dataset
list, because its value is sufficiently well-known. On the other with —le = u. = 0.08 for alle in &, the computed bounds are
hand, the rate constant of the reactions=CHHO, — OH + Cy = —0.0065 and G = —0.0033, indicating that the
CH50, which has a relatively low sensitivity, is an active consistency measureJs contained in the intervaH0.0065,
parameter, because of its large range of uncertainty. The union—0.0033]. Because £is negative, the dataset is inconsistent
of all active parameters comprise the 102-member set of the at the 0.08 level of experimental uncertainty. In the present case,

0.08-,

0.06-,

0.04.]

002

dataset active parameters. the threshold uncertainty lies in the interval [0.68C.;, 0.08

4.2. Consistency AnalysisFor simplicity in demonstration ~ — €v] = [0.0833, 0.0865]. This implies that, for an uncertainty
of the technique, and in light of insufficient records of level of <0.0833, the dataset is inconsistent, and for an
experimental uncertainties and u, even for such a well-  uncertainty level of~0.0865, it is consistent.

documented case as GRI-Mech 3.0, an artificial but realistic ~ 4.2.3. Lagrange Multipliers. Having determined that the GRI-
uniform level of experimental uncertaintiese = U = constant Mech 3.0 dataset becomes inconsistent-ht= ue = 0.083,
for all ein &, was used in the present analysis (her€i@yeshe we examine what causes this inconsistency. We ask the
= Ughreshe fOr all €). For —le = ue = 0.087, the GRI-Mech 3.0  following question: Do all or most of the dataset units contribute
dataset is consistent. For uncertainty levels<d#.083, the more or less equally to the inconsistency of the dataset as a
dataset is inconsistent. In the following, we describe how this Whole, or is there, among the dataset units, a single experiment
was determined and how insights provided by these resultsor a small group of them that brings about this outcome? The
happened to identify a “typo” in the original data entry. We numerical apparatus presented in the previous section allows
begin by discussing the pairwise consistency andn@asure  us to answer all such questions.
developed previously. We then identify the contributing factors ~ Our analysis is based on the uselpfvhich is the vector of
to the dataset inconsistency and conclude with the specific Lagrange multipliers. The components of this vector are shown
implications of the consistency analysis for the GRI-Mech 3.0 in Figure 4. The top two panels of Figure 4 display sensitivities
dataset. of the consistency measure,Qwith respect to the components
4.2.1. Pairwise Consistency. We begin by examining the of a.andf, and the two bottom panels show values with respect
pairwise consistency of the GRI-Mech dataset. The results of to those of andu. Examination of these sensitivity values leads
the test are displayed in Figure 3. The height of each bar to the following observations.
protruding from the €f) coordinates of theu = 0 plane First, we note that most componentsicdire zero. This is in
represents the minimum level of uncertainty for which the two- accord with the effect sparsi#? which states that usually only
element datasef 74,74} is consistent. For many pairs, this a small number of model parameters have a significant effect
height is negligibly small, indicating that there are valuas on model responses. This phenomenon has been observed in
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Figure 5. Lagrange multipliers after modifyingls;. A( remains
relatively large, butt!) and 1% are zero, indicating that the consis-

remaining components &f indicating the dataset consistency measure tency measure is no longer sensitive to the uncertainty boundéof

is most sensitive tds; and usg.

o ) o 6X 10° 6X _I_U-_'1 i
numerous sensitivity studies of the role played by individual
reactions of (large) chemical reaction networks. The present 4 4
results show that this also seems to be the case for the error  -A'% AP
2 2

analysis. Furthermore, the global nature of the sensitivity implies ﬁ" My

that, for the consistency measure to improve (increase), modi- M Fp— ohul ,ll L. “, -

fications must be made to componentsogfg, |, andu that 0 70' 40 60 80 100 o 20 a0 60 %0 100
correspond to the nonzero componentsiofBecause most Parameter number Parameter number

components of are zero, only a small number of uncertainty
bounds might improve dataset consistency upon revision.

0.4 0.4
Our next observation is that the sensitivity values in the top D 4 ()
two panels are very smatmuch smaller than those in the A 0.2 A 0.2 T
bottom panels. Evidently, the prior information (i.e., the size 2 57 2 58
o : ol I J syl e |
of the initial hypercube and, in turn, the presumed knowledge ) PP TP RPN O s s
0 20 40 60 0 20 40 60

of the model active parameters) does not have a significant
influence on the consistency measure in the present case. As

numerical test, we recomputed Cand C, with a 10%

enlargement of the prior information intervals. This modification

increased G from —0.0033 to —0.0010. Although an im-
provement, as judged by the increase in the value of tGe
dataset remained inconsistent, becausg i€ still negative.
Thus, from the low sensitivity to all components @fand f,

Dataset unit number Dataset unit number

Ta—igure 6. Lagrange multipliers after modifyindss, but leavingds; at
the nominal value. Now, both the) and 1) peaks have decreased

and additional sensitivity peaks have developed.

a fit to a series of measurements performed over a range of

temperature$?

When the initial results of the GRI-Mech consistency analysis

we conclude that the uncertainties in the model parameters arebecame known, we contacted the researéherso originated
unlikely to dominate the present inconsistency in the GRI-Mech the data foidsy anddss. The only information we provided was

dataset.

that the results had been flagged by our analysis, giving no

On the other hand, the peak sensitivities in the two bottom indication of which direction the measurements might be in
panels are large. The two largest peaks are the sensitivities oferror. Re-examination of the original observations led the

the consistency measure, with respect to the lower bbyrod

researchers to modify the fit with new extrapolated values of

the experimental uncertainty of dataset unit 57 and the upperds7 = 700 anddss = 255us24 The directions of these changes,
boundusg of the experimental uncertainty of dataset unit 58 the decrease ids7, and the increase idsg are precisely those
(bottom left and right panels of Figure 4, respectively). These indicated by the signs of the sensitivity valueﬂ?7 = —0.4643
same two dataset units surfaced in the pairwise test. Both factsgnd ,155‘3 = 0.4805.

gave us reason to suspett; and/or /g as possible outliers.
It turned out, as described next, this suspicion was justified.

4.3. Resolution of the InconsistencyThe two suspected

We repeated the consistency analysis using the revised values
of dsy anddsg, one at a time and then both together. The results
are displayed in Figures-5/ and Table 2. The increased

experimental values are both reaction times to reach half of the consistency measures and the corresponding decrease in the
maximum in OH concentration determined in the shock tube threshold uncertainties listed in Table 2 both indicate that the

oxidation of methané? The dataset unit//s; designates the

revision improves the consistency of the GRI-Mech 3.0 dataset.

experimental target labeled “OH.1a” for the initial conditions When bothds; anddsg are updated, Cbecomes strictly positive,

of 0.1% methane0.2% oxyger-argon mixture at a pressure
of 1 atm and a temperature of 2000 K, args designates the

indicating that the dataset initially inconsistent-at = ue =
0.08 for each indexe becomes consistent. Another way of

target labeled “OH.1b” for the same mixture at a temperature looking at this result is to note that the threshold uncertainty,

of 2200 K. The respective experimental vaktemreds; = 970

i.e., the level of experimental uncertainty at which €hanges

anddsg = 218us. These were not actual measurements but two its sign, decreases from the initial average of 0.0849 to 0.0673,
“representative” points, at 2000 and 2200 K, extrapolated from which is a 20% improvement in the dataset consistency.
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TABLE 2: Results of GRI-Mech Dataset Update: Upper and Lower Bounds
nominal dataset ds7 update dsg update ds7 anddsg update

C., (u=0.08)

Uthresh

[-0.0065,— 0.033]

[0.0833, 0.0865] [0.0715, 0.

A closer examination of FiguresY reveals some interesting
trends—the type of trends that may assist the researcher in
gaining a deeper understanding of the data and the model.
Removing the primary source of inconsistency by revising the
two dataset units reduced the maximum values of sensitivities
to experimental uncertaintidsandu (compare bottom panels
of Figures 4-7). Updating only one dataset unit, nameky of
/57, increased the sensitivities to parameter boundand 8
(compare top panels of Figures 4 and 5). Comparing Figures 5
and 6, we notice that updatirfys alone has a deeper improve-
ment than updatingls; alone, and updating the two together
more resembles the former case, thereby hinting at a bigger

[-0.0017, 0.0085]

[0.0084, 0.0213]
[0.0587, 0.0716]

[0.0056, 0.0198]

0817] [0.0602, 0.0744]

few outliers; instead, the dependence becomes distributed over
the content of the dataset.

4.4. Sequential AnalysisThe aforementioned observations
suggest a possible approach to dataset analysis through sequen-
tial identification and removal of the top outliers. Figure 8
depicts several steps of such analysis for the GRI-Mech 3.0
dataset. Shown are intervals of threshold uncertainties obtained
in the following sequential steps: the original dataset; removing
/(55 from the dataset; removing/ss and 7%, identified to be
the next top outlier at this stage; removidgs, 7/, and 2/5;
and so on, as indicated in the figure.

The results in Figure 8 seem to exhibit the effect sparsity:

problem with dsg. After the dataset is updated, the peak after several steps, with a significant decline at each step, the
sensitivities decrease and the number of (now smaller) peaksthreshold uncertainty begins to level off. Such an outcome
increases, which implies that the dataset consistency measurémplies that the consistency of the dataset can be dramatically
becomes less sensitive to individual constraints. This indicatesimproved by revisiting just a few dataset units. Whether this
that the consistency level of the dataset no longer hinges on aeventually identifies a possible error in data summary and
transfer, revisiting the experimental conditions, performing new
experiments, or modifying the kinetic model will be determined
on a case-by-case basis. The important result of the present study
is that our analysis identifies a specific direction to follow for
improving dataset consistency and provides an estimate of the
extent of possible improvement.

4.5. Computational Details.lIt is pertinent to mention the
computational expense of our method. The MATLAB program-
ming language was used to develop software that implements
the techniques described in this work. Using a 1.7 GHz Pentium
IV processor, 8.5 min of CPU time were needed to produce the

4} 41
(@) l(ﬁ)
2 34 49 54
Ul..l ]l.l.llﬁl|l il | I,

0. 20 40 60 80 100
Parameter number

. A
020 40 60 80 100
Parameter number

0.4/ 0.4
A 2 (0 information for Figure 3 and 45 s of CPU time were needed to
0.2/ 21 o 0.2} 2 57 obtain the upper and lower bounds on &nd the accompanying
) ’i" | ) 16 49| sensitivities. The data in the former required a significantly
e T Pt — longer time to produce because the solution of an optimization
O T Dt e was required to determing; for each pair of dataset units.

Figure 7. Lagrange multipliers after modifying bottls; and dss. 5. Summary
Overall, the sensitivity levels have decreased and the consistency ) )
measure is now sensitive to a larger number of dataset units. This We have demonstrated that the technique of data collaboration

implies that the dataset consistency measure is no longer dominatedthat we developed recenth!6can be extended to determine if
by just a few outliers. a collection of related experimental results are consistent with
each other, within a specified chemical kinetics model. A key

0.09 I requirement for our analysis is the formulation of a dataset,

0.08} which entails creation of dataset units from experimental
_ 58 observations and a common kinetic model. A dataset unit should
£ 007f 2 consist of the measured observation, uncertainty bounds on the
g - measurement, and a model that transforms active parameter
é 0.06r | | 30 values into a prediction for the measurement. Organized in this
3 | 69 16 manner, the dataset can be subjected to rigorous numerical
o 005 | | 3 60 19 o analysis, addressing questions of practical significance.
8 I [ 3 The technique of data collaboration rests on optimization
== 0.04 | [ 1|4 57 63 constrained to a set of assertions. In this work, these assertions

0.031 | | are the confinement of model parameters to the hypercabe

o and the requirement that the model predictions remain within

0.02— . l l , , . . the experimentally determined bounds. The new development

0o 2 4 6 8 10 12 14

S0 presented in this paper is the use of constrained optimization
_ Number of dataset units eliminated to rigorously determine dataset consistency. Lagrange multiplier

Figure 8. Ranges of the threshold uncertainty (vertical bars) computed methods determine the sensitivity of the dataset consistency to

by sequential and cumulative elimination of dataset units from the o experimental results and prior information, providing

dataset. At each step, the listed dataset unit, which is the one that mos L . .
inhibits dataset consistency, is removed. The lower and upper boundstresearchers with insights into the quality of the data and the

of the range are the threshold uncertainty levels at which the datasetM0del. ._ ) .
can be proven to become inconsistent, €0, or consistent, G = 0, The capability of the new numerical analysis was demon-
respectively. strated on a real-world example, the GRI-Mech 3.0 dafiset.
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As it actually happened, unintentionally and unexpectedly, the to evaluate. This presents an obstacle because the reason to
new procedure immediately identified two major outliers of the compute an upper bound in the first place is to avoid solving a
dataset, which were subsequently corrected upon re-examinatiordifficult problem. However, the maximization that determines
of the raw experimental data. The results of the analysis suggestL(v) is unconstrained, so this function can be readily evaluated
a sequential procedure with step-by-step identification of outliers in special cases. An instance of this is treated in the next
and inspection of the causes. Altogether, the new numerical subsection, where each constraint function, efé“),(x)’ is
approach offers an important tool for assessing experimental quadratic in its arguments.
observations and model building. 2. Quadratic Models. For quadratic models, eq A4 is readily
o solved. In this case, for eaghe &, there exist a symmetric

Acknowledgmer)t. The materlal is basgd upon work sup- . matrix A,, ann x 1 vectorbe, and a scalace such thaiVe
ported by the National Science Foundation, under Grant No. i of the form Me(xe) = XTAX + 2bX + ce. The constraints
CTS-0113985. 0 ¢

¢ (X,y) = 0 are then

Appendix

. . . 1 T _Ce+de+ le 0.5 _be 1

The consistency measure,Qof a dataset is defined by 05 0 0 <0 (A5)
constrained optimization. Below, we derive the relationship 4 .bT 0 - V=

between the consistency measure and perturbations to the X] [P Ae] |

constraints. Most importantly, we provide results specific to

quadratic models. Similarly, f )(x,y) < 0 becomes
1. Determination of Cy. Express the constraints from the
prior informationx € % asf (x) < 0 andf ¥(x) < 0, where 11fce—de— U, 0.5 b 11
. v| 05 0 oflyl=o (A6)
f90)=—x+0 (forj=1,2,..n (Ala) x| [or o Allx

P =x-8 (=12 ..n) (A1b) . o
We use the following procedure to express the prior informa-
To express the constraints from the experimental data, definetion constraints. Fix > 0. Observe that, fof =1, 2, ...,n, o
=< X =< fjis equivalent to the two constraints < X, < f; + €

fg)(x,y) =y +1,— MJx) + dg (A2a) andoj — € =< ¥ < f;, which, in turn, are equivalent to
FOMY) =Mox) = do— U+ (A2b) (=) +e—x)<0  (=1,2,..0) (A7a)
for eache € &. Obviously,f O(x,y) < 0 is the same ag + le (g —€e=x)B;—%) =0 (=1,2 ..,n) (A7b)
< Me(Xe) — de, and the analogous relationship is true for
f U(x,y) < 0. With this notation, Letz®,zVforee & andz®, Z? (forj = 1, ...,n) denote

the (2+ n) x (2 + n) symmetric matrixes associated with the
guadratic functions in eqs A5, A6, and A7. L&y be the

fj(a)(x) <0, fj(ﬁ)(x) <0 (forj=1,2,...n) symmetric matrix that satisfies

C,, = maxy, subject to
, s

A3
fOx,) <0, f¥x,y) <0 (foree &) A3 117 11
We compute a lower bound,/C by attempting to solve eq A3 v LV |FY (A8)
using nonlinear optimization software, with the resulting (local) X X
maximum yielding a lower bound on /£ An upper bound, . _
C., is generated by the Lagrange dual to eq A3: Using these matrixes, eq A4 may be expressed as
C,= min L(v C = '
9] —Vf“),vj(ﬁ):_”g),vg“)zo ( ) Cgﬂ *V](a),vj(ﬁwjlrjg)’vgu)zoL(V)
where
where
n
L(v) = maxy — Z(—vj(“) f @) + v £ Dx) — N L
Xy = L(V) =m y Z0 _ Z(_Vj((l) Zj(ﬂ») + ’V](ﬂ) Zj(ﬂ)) —
3 (- 1006+ 100} x| £
ecd; 1
and SR 4070y 29)
ecd X
v= (V(la), ...,VE:I), v(lﬁ), ...,’Vn(ﬁ), Vgl) vg:] v(eli), ...,v(u)) (A4)

Recall that, for a symmetric ( n) x (1 + n) matrix M,
The optimalv value gives the Lagrange multipliers discussed mMeRn[i]T M[i] < 0if and only if Mis negative semidefinite
in the main texty = argminL(v). The objective functior.(v) (denotedM < 0). Hence, eq A9 is equivalent to
in eq A4, which is called the Lagrangian, is a convex function
of v; however, for eachv, evaluating the Lagrangian requires C,=

. min p  subjecttaZ(v) <0
the solution of a maximization, so this function may be difficult =D, —vQ vz 050
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where
0 n
Zv) =2y~ [g 0]— Z(—v}‘” Z9 + P 70 -
]:
> (v 20+ 7)) (A10)
ecd’

This type of problem is called a semidefinite program (SDP)

and is readily solved with special-purpose convex programming

algorithms?®

The value ofe used inZ® andZ” should be small. Note
that

o + eot 0 —0.5( +f+¢) 0
S _ |0 00 0
i —0.5(0; +B+€) 0 1 0
0 00 0
' (Al1a)
o — €f; 0 —05@;+B,—¢ 0
26 _ |0 00 0
i T [-0.50+ 5 —€ 0 1 0
0 00 0
(Al1b)

Feeley et al.

where the Lagrange multiplierd & argminL(v)) and the upper
bound on the nominal consistency measureg)(@re obtained
from eq A4. For proof of eq Al13, take any,f) that satisfies
the constraints in eq A12. From the definition ‘of,@ eq A4,

n
ComLzy = 3 AT+ 47 11709) -
J:

> (A T00xp) +2F P (x0)
eed

Because X,y) satisfies the constraints in eq A12%(x) <
—Aoy, FO0) = A, F0(x,y) = —Ale, andfP(x,y) = At
Also, =i, 2P, =39, andi{’ = 0. Consequently, = y —
ATAt. Maximizing both sides of this last equation over alt/)
that satisfy the constraints in eq A12, gbecomes G, (C;, =
Cy + ACy), yields

C,=C,+AC,—A"At

Algebraic manipulation then yields eq A13.
4. Derivation of Equation 8. Equation 8 indicates

c,<C,=C, (A14)

where the dimension of the zero elements is determined by the

indexj. Large values ot have a tendency to mak&v) more
“positive” by contributing to the off-diagonal terms, so larger
values ofp are needed to ensure thafty) remains negative

semidefinite. This results in an unnecessarily large upper bound

on Cy; thus, the chosen value efshould be small. However,
for very small values o€, ZI-(“) A Zj(ﬁ); thus, the values otj(a)

and/lj(ﬁ) become unreliable indicators of the constraint sensi-
tivity, because then- and f-constraints are represented by

virtually identical matrixes. Our experience has been that a value

of ¢ = 0.05@; — ;) provides accurate sensitivities without
noticeably increasing & from the value achieved far = 0.
Quadratic models provide an additional benefit. Consider a
case wherer and the parameter vectorx are modeled asnan (
+ 1) x 1 random variablev. We can recast eq A3 as an

where 7 is generated by making the following changeso

.
-
-]
ae=[

—oo (if A{ = 0)

o;  (otherwise)

o (if A7 =0) (forj=1,2,..n)
B; (otherwise)

—o (if AV =0)

le  (otherwise)

o (if A =0) (forein &)

le (otherwise)

(A15)

optimization over the random variable where the constraints ~ The left inequality in eq Al4 is clear, because, to determine
are only required to be satisfied in expected values. For example,C, We maximizey over a larger set than that which is used in

the constraint j(“)(x) < 0 is replaced with the constraint that determining C,. It remains to be seen that the right inequality
the expected value ig[f (V)] < 0. This problem also may
be formulated as an SII#’and its solution provides the mean
and covariance of the optimal. In the present context, this
interpretation is useful, because we may sample a distribution
with this mean and covariance to initialize the general con-
strained optimization that solves for,C

3. Derivation of Equation 3. Using the notation of eq A3,
the consistency measure;G= C, + AC, obtained after
perturbing the constraint bounds, is

C., = maxy, subject to
Xy
f9%) < ~Aq, P(x)<ag, (forj=1,2,..n)

fOx,y) < —Al, fY(x,y) < Au, (foree &)
(A12)

For all At, we have the following compact version of eq 3 from
the main text:

AC,<C,—C,+i'At (A13)

holds as well.
Define a sequence of datasets by making the following
modifications to%. Fork = 1, 2, 3, ..., generat&/ by

o — Kk (if A = 0)

o (otherwise)
n _ BTk (fAP=0) (forj=1,2,..n)
k18 (otherwise)
P le—k (if A0 = 0)
e (otherwise)
U, + Kk (if AW = in &
o, ={" (if Ag _0) (forein &) (AL6)
U (otherwise)

Observe that, in the limit& approaches”. Because the
constraints in eq Al2 become progressively weakerkas
increases, ¢, < C,,,, for all natural numberg. Invoking eq
A13 and noting that thdTAt term vanishes, we have L <
C,, for all k. Consequently, the increasing sequence,XC,
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converges, for example, to < C,. In other words,
[IM—eCs =1 = Coiy

To conclude the proof, we will show= C;,. By construc-
tion of & and the definition of the consistency measure, C
=< C;, for all k; thus,

r= C@ (A7)

For the reverse inequality, fix > 0 and takex' € R", ' € R
for which C;, — ' < ¢, and

—X < —8,X<p(=1,2,..n)

~M(x) +d, = T, — 7', My(x) — d, < T, — ' (ein &)
(A18)

(We tacitly assumed that Qwas finite in choosing’; if C;, =

0, one can show ¢ must also be infinite, so eq Al4 holds.)
The left-hand side of each inequality in eq A18 is finite, so we
may choose a natural numbiérsuch that

=X = =0y (i=1,2,...,n (Al19a)
X<PBx (=1,2..n) (A19b)
—M (X)) + do = =T — 7' (A19c)
M(Xg) — o < T — ' (forein & (A19d)

This givesy' < C; = r, where the left-hand inequality
follows becausex,y') satisfies the constraints implied by,
and the right-hand inequality holds because the limit of the
increasing sequence of:Cvalues. We chose @' value for
which C;, — ¢ < y', so we have ¢ — ¢ < r. The positive
constantk was arbitrary, so ¢ < r. Combining the latter with
eq Al7, we have § =r, so G, <= Cy as claimed. This
concludes the proof of eq A14.
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