
Consistency of a Reaction Dataset

Ryan Feeley, Pete Seiler, Andrew Packard,* and Michael Frenklach*
Department of Mechanical Engineering, UniVersity of California, Berkeley, California 94720-1740

ReceiVed: June 8, 2004; In Final Form: August 12, 2004

The numerical approach of data collaboration is extended to address the mutual consistency of experimental
observations. The analysis rests on the concept of a dataset, which represents an organization of pertinent
experimental observations, their uncertainties, and mechanistic knowledge of the subject of interest. The
numerical foundation of data collaboration lies in constrained optimization, utilizing solution mapping tools
and robust control algorithms. A rigorous measure of dataset consistency is developed, and Lagrange multipliers
are used to identify factors that influence consistency. The new analysis is demonstrated on a real-world
example, taken from the field of combustion. In performing the consistency test, the new procedure identifies
two major outliers of the dataset, which were corrected upon re-examination of the raw experimental data.
The results of the analysis suggest a sequential procedure with step-by-step identification of outliers and
inspection of the causes. Altogether, the new numerical approach offers an important tool for assessing
experimental observations and model building.

1. Introduction

The understanding of a variety of natural phenomena and
industrial processes is reliant on knowledge of the chemical
reaction mechanisms and kinetics. Endeavors in such cases begin
with identification of the underlying reaction pathways and
fundamental mechanisms. When sufficient data accumulate, the
interest often shifts to practical applications, motivating the
development of mechanistic models.

The “textbook” approach to the development of mechanistic
reaction models consists of conjecturing the reaction mechanism,
expressing it in a suitable mathematical form, and comparing
the predictions of the constructed model to available experi-
mental observations. Typically, such comparisons result in
mixed outcomes: some show a reasonably close agreement and
some do not. In the latter case, the apparent inconsistency
obtained between the model and the experiment is argued to
imply either that the model is inadequate or that the experiment
(or, rather, its interpretation) is incorrect.

In some areas, such as heterogeneous catalysis and biochemi-
cal systems, the fundamental reaction mechanisms are largely
unknown and establishing them form the challenge of the current
research. Yet, in other fields, such as atmospheric chemistry
and the combustion of small hydrocarbons such as methane,
there is a broad consensus in regard to the reaction pathways
underlying the mechanisms. Thus, any inadequacy of the kinetic
models essentially rests in their parameter values. In the
following discussion, we assume the latter situation.

If the kinetic parameters of such a “known” mechanism were
known exactly, then a direct comparison of model prediction
with a given experiment, within its uncertainties, would
decisively indicate whether that experiment is consistent or
inconsistent with the model. In reality, however, the model
parameters themselves have uncertainties that must be included
in the analysis.

In principle, the parameter identification of chemical kinetic
models can be posed as a classical statistical inference:1-3 given

a mathematical model and a set of experimental observations
for the model responses, determine the best-fit parameter values,
usually those that produce the smallest deviations of the model
predictions from the measurements. The validity of the model
and the identification of outliers is then determined using
analysis of variance. The difficulty involved in the application
of standard statistical methods lies in the fact that chemical
kinetics models are stated in the form of differential equations
that do not possess a closed-form solution. Further complications
result from the highly “ill-structured” character of the best-fit
objective function, with long and narrow valleys and multiple
local minima, resulting in an ill-conditioned optimization that
lacks a unique solution.2,4

The best-fit optimization problem for general, nonlinear
dynamic models has been addressed with a series of numerical
methods: “direct” gradient search,5,6 gradient search based on
sensitivities,7 solution mapping,4,8-10 genetic algorithms,11,12and
Monte Carlo techniques.7,13 In some cases, it was coupled with
statistical inference and estimation of confidence regions.7,8,13

Recent developments also include formulation of the problem
in the form of error propagation: given uncertainty ranges for
model parameters, estimate the intervals of variations for model
predictions.13,14

All of the aforementioned methods essentially view the
problem as a two-step process: estimation of model parameters
from fitting a selected set of experimental data, followed by
exercise of the obtained model, either as validation against an
additional set of experiments or making predictions outside the
experimentally accessible conditions.

Recently, we have pursued a different approach, which we
call data collaboration.15,16 In this approach, we focus not on
parametrization of the parameter uncertainty region, which the
aforementioned methods engage in and rely upon, but rather
on transferring the uncertainties of the “raw” (experimental) data
into the model directly. Doing so allows one to harvest
substantially more of the information content of the data16 and
determine more-realistic bounds on model predictions.15 Our
approach is anchored in the concept of adatasetthat unites all
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the pertinent experimental data and the mechanistic knowledge
for a given system, and numerical analysis based on combination
of solution mapping and optimization techniques used and
advanced by robust control theory.17 This numerical methodol-
ogy avoids the unnecessary overconstraining of model param-
eters that plagues many other techniques due to inherent
correlations among parameters, and allows one to explore more
closely the truefeasible regionof the parameter space in a
computationally efficient manner.

The present work expands further on these ideas. Within the
framework of a dataset, we develop a numerical measure of
dataset consistency, which provides a combined way to examine
system uncertainties that originate from either rate parameters
and/or experimental observations. The analysis of dataset
consistency is assisted by Lagrange multipliers, which gauge
the sensitivity of the consistency measure to the dataset
uncertainties. We begin with a brief description of the concepts
and methodology of data collaboration, followed by mathemati-
cal formulation of the problem; we then present new mathemati-
cal developments on dataset consistency and conclude with a
realistic demonstration of the method.

2. Data Collaboration

2.1. Dataset. Let E denote a physical experiment (for
example, a flow reactor or a laminar premixed flame) andYe a
property of interest that is measured in this experiment (e.g.,
the intensity of scattered light or a peak concentration). The
value ofYe is designatedye, and the experimentally measured
value is de. We assume the experimental uncertainty is not
necessarily symmetric aboutde, and, thus, the deviation of the
measured value fromye has lower and upper bounds, namelyle
e ye - de e ue.

We associate with experimentE a dataset unit, (de, ue, le,
Me), which consists of the measured value, the reported
uncertainty in the measurement (upper bound and lower bound),
and a mathematical model, respectively. Adatasetis a collection
of dataset units{(de, ue, le, Me)}. In the following, we denote a
dataset unit asUe, the dataset asD, and the set of indicese as
E; i.e., Ue ) (de, ue, le, Me) andD ) {Ue}e∈E. The modelMe

is defined as the functional relation between the model
parameters and the prediction forYe. Discussion of the model
definition follows.

The creation and organization of a dataset is guided by the
system in question, for instance, the formation of nitrogen oxides
in the combustion of natural gas, the concentration levels of
ozone in the atmosphere, or transmembrane signaling in bacterial
chemotaxis. A single experiment cannot provide complete
information on such a system, but rather probes its particular
aspect. A collection of such individual “bits” of pertinent
information (i.e., dataset units) forms a dataset. The more
extensive and diverse the collection, the more complete is the
understanding of the system.16 The unifying principle, the one
that determines the “pertinence” of a given experiment to a given
dataset, is a presumption that there exists a single chemical
kinetics model, common to all dataset units, that is expected to
predictYe when exercised at the conditions of experimentE. In
other words, it is presumed that a broad consensus exists (at
least tentatively) regarding the necessary reaction steps of the
system and, hence, the mathematical structure of the unifying
kinetic model is known, and that this mathematical model is
sufficient, in principle (with the “right” choice of parameter
values), to predict all experimental observations included in the
dataset.

For a known chemical reaction system, the mathematical form
of the kinetic model is a set of ordinary differential equations

(ODEs) that describe the time evolution of all chemical species.
The ODE formulation is based on reaction-rate laws (such as
Mass Action18 or Michaelis-Menten19) that contain either
physical or empirical parameters. Their values could be entirely
unknown, but usually they are known within some bounding
intervals that have been established in prior studies or estimated
theoretically. Experience shows9,20 that, for an individual
experimentE, only a small subset of model parameters has a
measurable influence on the propertyYe. We denote such a
subset asXe, and we refer to the parameters contained within
Xe as actiVe Variables for experimentE. For instance, the
ignition time of a methane-air mixture is primarily determined
by a dozen or so kinetic parameters, and the influence of the
rest of the parameters (above 600 in the case of the GRI-Mech
model20) is largely within the noise and, for all practical
purposes, can be safely neglected9,20 (e.g., by fixing them at
their respective “literature” values). This phenomenon is termed
effect sparsity.21,22

We will designate an individual active variable asXj and use
xj ∈ R to refer to a specific value ofXj. Individual dataset units
may (and usually do) have different sets of active variables.
Thus, Xj might be an active variable for one experiment but
not another. We denote the list of active variables for experiment
E as Xe. The union over alle ∈ E form the dataset active
variables,X ) ∪e∈EXe. We will denote the total number of
dataset active variables asn, and vectorx ∈ Rn represents dataset
active variable values. Associated with a vectorx, xe are the
values extracted fromx that correspond to the active variable
setXe.

In the context of tuning model parameters (e.g., rate constants)
through optimization, the initial conditions of ODE integration
(pressure, temperature, etc.) for a dataset unitUe are fixed to
those of experimentE. The only changes occurring from run to
run are those in the values of optimization variables (such as
pre-exponential factors of rate coefficients, activation energies,
ratios of rate coefficients, and enthalpies of formation). Thus,
the modelMe of the dataset unitUe represents the relationship
between values of the active variables of experimentE and
model predictions forYe. In other words,Me(xe) replacesye,
yielding le e Me(xe) - de e ue, which ties together the data,
the model, and the uncertainty.

2.2. Initial Hypercube and Feasible Region.We further
assume that prior information on the possible values of the
dataset active variables is available. For instance, the value of
activation energy computed quantum-mechanically will have
an uncertainty that is associated with that calculation, or there
could be several experimental studies, each reporting a different
value for the same rate constant. This prior information can be
expressed as the confinement of possible values of the active
variables to ann-dimensional “hypercube”,H ) {x ∈ Rn: Rj e
xj e âj}, whereRj andâj are the lower and upper bounds onxj

for j ) 1, 2, ...,n. Each edge of the hypercubeH represents the
presumed interval ofphysically allowedvalues of the corre-
sponding active variable, either the estimated uncertainty or a
range that contains the differing values.

Some parameter values drawn fromH may result in model
predictions that lie outside the experimentally determined ranges.
In other words, not everyx ∈ H predicts all experimental
observations of the dataset within their specified uncertainties.
The collection of parameter values that are both contained in
the hypercube and satisfyle e Me(xe) - de e ue for everye ∈
E form thefeasible region, FD. A point x that is not contained
in FD has been eliminated from consideration as a possible value
for the dataset active variables by either the prior information,
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through theR and â bounds ofH, or by the experimental
observations of the dataset, through intervals (de + le, de + ue).
It is in this manner that experimental observations increase our
knowledge of the kinetic parameters: an experiment may
eliminate portions of the hypercubeH from consideration,
thereby decreasing the uncertainty in the values of the kinetic
parameters. Further discussion and illustration of the feasible
region and its character can be found in ref 16.

2.3. Methodology.Our approach casts a given problem as a
constrained optimization over the feasible region, drawn on the
entire knowledge content of a dataset. It combines solution
mapping (SM), which is used to generate eachMe, and robust
control (RC) techniques, which are used to solve the constrained
optimizations. The mathematical details can be found in ref 17.
Briefly, optimization of a general-form objective function subject
to general-form constraints is known to be a “hard” numerical
problem (see ref 16 and references therein). However, it turns
out that, if the constraints (and the objective function) can be
expressed as polynomials, one can employ recent RC techniques
to develop computationally efficient algorithms of optimization.
This is the essence of our approach.

We develop quadratic approximations for each dataset-unit
modelMe, using the SM methodology:4,8,9identification of active
parametersXe via sensitivity analysis and development of a
quadratic response surface via computer experiments arranged
according to a factorial design.3,22 The new developments for
the problem of dataset consistency, along with the necessary
details, are given in the next section.

3. Dataset Consistency

3.1. Problem Formulation. Given a dataset, we are now
interested in determining whether the data it contains are
mutually consistent. This interest is motivated by practical
questions such as establishing whether a given reaction model
is in agreement with the available experimental observations,
recognizing data outliers, or identifying the source of disagree-
ment between the model and experiment. The framework
outlined below develops quantitative measures to address such
questions in rigorous terms.

We begin by introducing the following definition: a dataset
D (together with its corresponding prior information) is said to
be inconsistentif there is no single pointx in the hypercubeH
that satisfiesle e Me(xe) - de e ue for all e in E. Otherwise,
the dataset isconsistent. In other words, the dataset is
inconsistent if the feasible region is empty. The mathematical
development that follows is aimed, in essence, at determining
whether the feasible region for the constraints implied by a given
dataset is empty or not.

The dataset constraints are represented by four sets of
inequalities:

By the definition established in the aforementioned discussion,
the dataset is inconsistent if no singlex satisfies all of these
constraints. To condense the notation, we form vectorsr )
(R1, R2, ...,Rn)T, â ) (â1, â2, ..., ân)T, l ) (le1, le2, ..., lem)T, and
u ) (ue1, ue2, ..., uem)T, wherem denotes the number of dataset

units in the dataset (i.e., the size ofE). In accord with this
notation, we refer to the four collections of inequalities in eq 1
as ther-, â-, l-, andu-constraints.

The values ofr, â, l, andu affect the consistency of a dataset.
Indeed, a consistent dataset may become inconsistent with a
decrease in the intervals of active variables (affectingr andâ)
and/or in the levels of experimental error (affectingl and u).
The present status, even in better established fields, is such that
the r andâ values are not well-established and those ofl and
u are seldom documented. Given this situation, we can consider
values ofl and u to be very tentative, and by varying them,
answer questions such as, “at what level of the experimental
error does the dataset become inconsistent?” In fact, this very
question leads us to the definition of a consistency measure, as
described in the next subsections.

3.2. Pairwise Consistency.Before discussing our final results
of how we determine if a dataset is consistent, we introduce a
simpler, easier-to-visualize test. In this test, we consider pairs
of dataset units (Ue, Uf) for e, f (not necessarily distinct) in the
index setE. For each pair, we compute the minimum level of
uncertainty,uef, that leaves the two-element datasetDef )
{Ue,Uf} consistent:

If this thresholduncertaintyuef does not exceed the reported
uncertainty bounds of the corresponding two dataset units, i.e.,
if uef < -le, ue, -lf, uf, then the two-element datasetDef is
consistent, or, in other words, the two dataset unitsUe andUf

are mutually consistent with each other. Continuing in this
manner, we calculateuef for each pair of dataset units in the
dataset, i.e., for alle, f in E. If at least one of the two-element
datasets is pairwise inconsistent, the entire dataset is inconsistent.
The converse is not true; i.e., even if all two-element datasets
are pairwise consistent, it does not necessarily imply that the
entire dataset is consistent. We demonstrate such a case with
the following numerical example.

Consider a dataset containing three dataset units, the contents
of which are listed in Table 1. The prior information isRj ) 0,
âj ) 1 for j ) 1, 2. In other words,H is the unit square. This
example dataset exhibits pairwise consistency. Indeed,u1,2 )
u1,3 ) 0.025 andu2,3 ) 0, which are well below the allowable
uncertainties of(0.25 in the three dataset units. However, the
dataset comprised of all three dataset units is inconsistent. The
three shaded regions in Figure 1 depict, for each dataset unit,
the set of points that lead to model predictions within the
experimental uncertainties. In other words, the three displayed
regions are the feasible regions for the singleton datasets:D1

) {U1}, D2 ) {U2}, andD3 ) {U3}, respectively. It is easily
seen that any two of these regions overlap, implying pairwise
consistency. Yet, the three regions share no common points and
hence have an empty intersection, as illustrated in Figure 2.
Consequently the entire datasetD123 ) {U1,U2,U3} is incon-
sistent. This example demonstrates that the entire dataset must
be considered to determine consistency. A technique that
addresses this is described next.

TABLE 1: Example Dataset D ) {U1,U2,U3}
Xe Me(xe) de le ue

e ) 1 {X2} x2 0.75 -0.25 0.25
e ) 2 {X1, X2} x2 - x1 + 1 0.7 -0.25 0.25
e ) 3 {X1, X2} x1 + x2 - 0.1 0.6 -0.25 0.25

uef ) the minimum value ofu such that the constraints

|Me(xe) - de| e u and|Mf(xf) - df| e u

are satisfied by some valuex in H

from the prior information onH:

{-xj e -Rj (for j ) 1, 2, ...,n)
xj e âj

and from the data set units:

{-Me(xe) + de e -le (for eache in E)
Me(xe) - de e ue

(1)
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3.3. Measure of Dataset Consistency.We have defined a
dataset to be consistent if there is at least onex ∈ H such that,
for eache, Me(xe) is contained in the interval [le + de, ue + de].
To determine if a dataset is consistent and quantify the degree
of consistency, we compute the smallest such intervals that
contain Me(xe) for some x ∈ H. This is accomplished by
introducing flexibility into thel- and u-constraints by adding
to eachle and subtracting from eachue a slack variableγ. Let
CD denote the largestγ for which some valuex satisfies both
the r- and â-constraints and theflexible l- and u-constraints,
i.e.,

Defined in this way, CD values greater than zero imply that the
r-, â-, l-, andu-constraints introduced in eq 1 are satisfied, so
the dataset is consistent. The magnitude of CD provides a
measure of the relative consistency (or inconsistency) of the

dataset, with larger values of CD indicating enhanced consis-
tency. For this reason, we refer to CD as the consistency measure
of the datasetD.

Solving the proposed optimization for the consistency mea-
sure is not easy. We require the global maximum ofγ, which
makes the problem computationally complex. Often, the best
one can do is to compute two bounds, CD and Ch D, that satisfy
CD e CD e Ch D. As a consequence of bounding the value of
the consistency measure, we are left with three scenarios: a
value of CD g 0 implies thatD is consistent; a value of Ch D <
0 implies thatD is inconsistent; and lastly, if CD < 0 e Ch D,
the consistency test is inconclusive. When the consistency test
is conclusive, constrained optimization techniques, together with
the concept of a dataset, allow us to rigorously determine if the
individual experiments that comprise the dataset are mutually
consistent with each other, within the proposed kinetic model.

3.4. Threshold Uncertainty. In the development of the
dataset consistency measure, we view the uncertainty boundsl
and u as fixed quantities (specified experimentally) and ask
whether the dataset is consistent at this uncertainty level.
Alternatively, we could consider the experimental uncertainties
as variable quantities and compute the level at which the dataset
switches from being consistent to inconsistent. We refer to this
transition point as thethreshold uncertainty. Mathematically,
for each experimentE, the threshold uncertainty is defined as
lthresh,e ) le + CD anduthresh,e ) ue - CD, with the bounds on
CD translating into bounds on the threshold uncertainties,lthresh,e

) le + CD, lhthresh,e ) le + Ch D, uthresh,e ) ue - Ch D, andujthresh,e

) ue - CD.
It is pertinent to mention that the threshold uncertainties, along

with dataset consistency, may change with the variation inr
andâ. One may repeat the uncertainty analysis with new values
of r andâ or perform sensitivity analysis, which is developed
in the remainder of this section, to assess the possible effect.

3.5. Lagrange Multipliers. The consistency measure of a
dataset is dependent onr, â, l, and u. As mentioned in the
problem formulation subsection, even for highly researched
systems, these values may be and usually are tentative.
Therefore, it is useful to estimate the dependence of the
introduced consistency measure on the nominal values of these
bounds. We gauge this dependence using Lagrange multipliers,
which reveal the sensitivity of the solution of an optimization
problem (in our case, CD) to the constraints. A technical
discussion of these methods lies outside the scope of this paper;
the relevant development for the consistency question is given
in the Appendix.

The key result used in the present work is the following. Let
r̃, ẫ, let l̃ and ũ denote bounds that possibly differ from the
nominal values, and let CD̃ represent the resulting consistency
measure. If we perturb the values of the uncertainty and
parameter bounds from their nominal values, the change in the
consistency measure is upper-bounded by a linear function of
the perturbations. Specifically, the deviation in the consistency
measure,∆CD ) CD̃ - CD, satisfies

where∆Rj ) R̃j - Rj and similar relationships exist for∆âj,
∆le, and ∆ue. The scalarsλj

(R), λj
(â), λe

(l), and λe
(u) are the

Lagrange multipliers. Their values are determined by the

Figure 1. Feasible regions (shaded) for the three dataset units of the
example dataset.

Figure 2. Overlay of the feasible regions for the three dataset units of
the example dataset. Any two of the regions overlap, implying pairwise
consistency. However, the three regions do not have a point in common;
thus, the datasetD ) {U1,U2,U3} is inconsistent.

CD ) maximum value ofγ subject to the constraints:

{-xj e -Rj (for j ) 1, 2, ...,n)
xj e âj

-Me(xe) + de e -le - γ (for eache in E)
Me(xe) - de e ue - γ

(2) ∆CD e Ch D - CD + ∑
j)1

n

(λj
(R)∆Rj + λj

(â)∆âj) +

∑
e∈E

(λe
(l)∆le + λe

(u)∆ue) (3)
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optimization procedure and satisfyλj
(R), λe

(l) e 0 andλj
(â), λe

(u) g
0. These inequalities are intuitive: for instance, in accord with
λj

(R) being negative, a decrease inRj should increase the
consistency measure, because more parameters values are
allowed. The inequalities describingλj

(â), λe
(l), and λe

(u) follow
similar reasoning.

Equation 3 suggests two applications of the Lagrange
multipliers, which we describe in the following two subsections.
First, the Lagrange multipliers indicate the local sensitivity of
the consistency measure to components of the nominal bounds
r, â, l, andu. Second, when the dataset is provably inconsistent
by our methods, i.e., Ch D < 0, the nonzero Lagrange multipli-
ers identify conflicting bounds. The latter we reference hereafter
as theglobal outcome.

3.6. Local Sensitivity. In determining CD, the bounds CD
and Ch D are computed. When these bounds are close to each
other, CD ≈ Ch D, and eq 3 reduces to

It is useful to condense the notation by defining two column
vectors, the array of boundst ) (R1, ..., Rn, â1, ..., ân, le1, ...,
lem, ue1, ..., uem)T and the array of Lagrange multipliersλ )
(λ1

(R), ..., λn
(R), λ1

(â), ...)T. In the new notation, eq 4 becomes

where∆t ) t̃ - t. Based on our experience (e.g., with the GRI-
Mech dataset discussed in the next section), eq 5 approximately
holds with equality when each component of∆t is small, i.e.,

Equation 6 approximates how small perturbations about the
nominal valuet affect the consistency measure. Therefore, the
components ofλ indicate the local sensitivity of the consistency
measure to the corresponding components oft.

The components oft provide estimates of the experimental
uncertainties and of intervals that contain the parameter values.
If a dataset is inconsistent and its consistency measure is highly
sensitive to only a few components oft, it is not unreasonable
to question if these components oft are realistic bounds on the
corresponding measurement uncertainties or parameter bounds
from the prior information. Perhaps the dataset would be
consistent if more-judicious bounds were used. Consequently,
the corresponding experimental results and components of prior
information should be examined first before questioning the
ODE kinetic model that generated the dataset unit modelsMe.
On the other hand, if the dataset is inconsistent and none of the
elements oft stand out as having a strong influence on the
consistency measure, the possibility that the ODE kinetic model
is the source of the inconsistency deserves more-careful scrutiny.

3.7. Global Outcome.The components ofλ provide more
information than just an indication of local sensitivity. In contrast
to the experience with reaction kinetics, where a zero local
sensitivity does not necessarily indicate a reaction is unimpor-
tant,4 in the present case, it has global implications: forfinite
changes to components oft whereλ is zero, the consistency
measure is less than Ch D. Consequently, constraints associated
with the zero components ofλ can be completely ignored
without improving consistency.

To develop this global result, we form a new dataset from
D by allowing the components ofr and l to which CD has

zero local sensitivity to be arbitrarily negative and letting the
components ofâ andu to which CD has zero local sensitivity
be arbitrarily large. Specifically, a new datasetD̃ is generated
from D by setting

(Here, we use the convention 0‚ ∞ ) 0, and note that the
maximum in eq 2 must be replaced with a supremum whenx
is allowed to take unbounded values.) By this construction of
D̃, we have effectively eliminated each constraint in eq 2 to
which the consistency measure has zero local sensitivity.D̃
may then be viewed as a “smaller” dataset thanD, obtained
after eliminating from the original dataset the information to
which the consistency measure is insensitive.

The following inequality, which we call theglobal result, is
proven in the Appendix:

In terms of the threshold uncertainties, eq 8 translates to

wherel̃thresh,e andũthresh,e are the threshold uncertainties for the
datasetD̃. The relationships in eqs 8 and 9 indicate there is a
limit to how much the consistency measure (or the threshold
uncertainties) can improve if all constraints to which the original
consistency measure CD is insensitive are removed. Although
these two equations hold in generality, they are of foremost
interest when the dataset is provably inconsistent (Ch D < 0).
We demonstrate the utility of eq 9 by focusing on the upper
boundsu; the interpretation for the lower boundsl is analogous.

Suppose the dataset is provably inconsistent. Then, for each
e, ue < uthresh,e. Equation 9 indicates that, upon eliminating all
constraints to which CD is insensitive, the threshold uncertainties
ũthresh,e are still larger than the acceptable uncertaintiesue. This
means that a problem must exist in the constraints that
correspond to the nonzero Lagrange multipliers, because ef-
fectively eliminating the remaining constraints will not bring
the threshold uncertainties down to an acceptable level. The
key result can be summarized as follows. The removal of all
constraints corresponding to the zero components ofλ from a
provably inconsistent dataset leaves CD still negative. The source
of the inconsistency thus lies with the remaining constraints.

4. Test Case

4.1. GRI-Mech Dataset. We demonstrate the outlined
methodology on a real-world example, the GRI-Mech 3.0
dataset,20 which is taken from the field of combustion chemistry.
It is a collaborative data repository for the development of
detailed kinetic models for pollutant formation in the combustion
of natural gas and was used in our previous studies.15,16

∆CD j ∑
j)1

n

(λj
(R)∆Rj + λj

(â)∆âj) + ∑
e∈E

(λe
(l)∆le + λe

(u)∆ue) (4)

∆CD j λT∆t (5)

∆CD ≈ λT∆t (6)

R̃j ) {-∞ (if λj
(R) ) 0)

Rj (otherwise)

ẫj ) {∞ (if λj
(â) ) 0) (for j ) 1, 2, ...,n)

âj (otherwise)

l̃ e ) {-∞ (if λe
(l) ) 0)

le (otherwise)

ũe ) {∞ (if λe
(u) ) 0) (e in E)

ue (otherwise)
(7)

CD e CD̃ e Ch D (8)

l̃ thresh,e e lhthresh,e (for all e in E) (9a)

uthresh,e e ũthresh,e (for all e in E) (9b)
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The GRI-Mech 3.0 dataset is composed of 77 dataset units,
each of which represents an individual observation or a
“representation” for a group of them; e.g., an average of several
observations or a temperature dependence for a series of
measurements. The experimental apparatuses include shock
tubes, flow reactors, stirred reactors, and laminar premixed
flames. The properties of interest (Ye) of the dataset units include
species concentrations, ignition delays, laminar flame velocities,
shifts in peak positions, etc.

The overall kinetic model is comprised of 325 reversible
“elementary” reactions among 53 chemical species. This model
is presumed to be complete enough to simulate, in a physically
plausible manner, the experiments of the dataset units. In other
words, it is presumed that the reaction mechanism, and, hence,
its formulation as an ODE system, is known and that the
uncertainty of the model predictions arises solely from uncer-
tainty in the values of the model parameters.

There are more than 650 total parameters: reaction rate
constants, their activation energies, species thermodynamic and
transport properties, as well as instrumental constants, i.e.,
absorption coefficients and the like. Not all of these are active
or assumed to be active in the present dataset. Only a fraction
of them, specifically 102, are considered as the overall set of
the dataset active parameters. Their selection is based on the
following considerations.

Each dataset unit model represents a parametrization of the
overall ODE model for the specific conditions of that particular
dataset unit. Namely, the numerical response of the kinetic
model for the conditions of the dataset unit is expressed as a
simple algebraic function (a quadratic polynomial in our case)
of parameters active at these conditions. The latter are deter-
mined by a screening sensitivity analysis and consideration of
their uncertainty ranges. For instance, the rate constant of the
reaction H+ O2 f OH + O, although making the top of the
list on the sensitivity chart, is excluded from the active parameter
list, because its value is sufficiently well-known. On the other
hand, the rate constant of the reaction CH3 + HO2 f OH +
CH3O, which has a relatively low sensitivity, is an active
parameter, because of its large range of uncertainty. The union
of all active parameters comprise the 102-member set of the
dataset active parameters.

4.2. Consistency Analysis.For simplicity in demonstration
of the technique, and in light of insufficient records of
experimental uncertaintiesl and u, even for such a well-
documented case as GRI-Mech 3.0, an artificial but realistic
uniform level of experimental uncertainties-le ) ue ) constant
for all e in E, was used in the present analysis (hence,-lthresh,e

) uthresh,e for all e). For -le ) ue ) 0.087, the GRI-Mech 3.0
dataset is consistent. For uncertainty levels of<0.083, the
dataset is inconsistent. In the following, we describe how this
was determined and how insights provided by these results
happened to identify a “typo” in the original data entry. We
begin by discussing the pairwise consistency and CD measure
developed previously. We then identify the contributing factors
to the dataset inconsistency and conclude with the specific
implications of the consistency analysis for the GRI-Mech 3.0
dataset.

4.2.1. Pairwise Consistency. We begin by examining the
pairwise consistency of the GRI-Mech dataset. The results of
the test are displayed in Figure 3. The height of each bar
protruding from the (e,f) coordinates of theu ) 0 plane
represents the minimum level of uncertainty for which the two-
element dataset{Ue,Uf} is consistent. For many pairs, this
height is negligibly small, indicating that there are valuesx in

H for which Me(xe) is essentiallyde andMf(xf) is essentiallydf.
The two “walls” alonge,f ) 25 occur because|M25(x25) - d25|
g 0.008 for every valuex in H; therefore,uef must be at least
0.008 for any pair{Ue,Uf} that containsU25. Another note-
worthy feature in Figure 3 is the emergence of a few large peaks.
One of them is for the{U57,U58} pair, showing that an
uncertainty level of at least 0.082 (10-fold larger than that for
the “wall”) is required for this pair of dataset units to be mutually
consistent. The extreme magnitude of these few outstanding
peaks signals a possible cause for concern regarding the affected
experiments, and, as will be shown below, this concern is not
without a reason.

4.2.2. Consistency Measure. We now turn to the analysis of
consistency of the GRI-Mech dataset as a whole. Consistency
of the dataset is determined by the sign of its consistency
measure CD. For the given case of the GRI-Mech 3.0 dataset
with -le ) ue ) 0.08 for alle in E, the computed bounds are
CD ) -0.0065 and Ch D ) -0.0033, indicating that the
consistency measure CD is contained in the interval [-0.0065,
-0.0033]. Because CD is negative, the dataset is inconsistent
at the 0.08 level of experimental uncertainty. In the present case,
the threshold uncertainty lies in the interval [0.08- Ch D, 0.08
- CD] ) [0.0833, 0.0865]. This implies that, for an uncertainty
level of <0.0833, the dataset is inconsistent, and for an
uncertainty level of>0.0865, it is consistent.

4.2.3. Lagrange Multipliers. Having determined that the GRI-
Mech 3.0 dataset becomes inconsistent at-le ) ue ) 0.083,
we examine what causes this inconsistency. We ask the
following question: Do all or most of the dataset units contribute
more or less equally to the inconsistency of the dataset as a
whole, or is there, among the dataset units, a single experiment
or a small group of them that brings about this outcome? The
numerical apparatus presented in the previous section allows
us to answer all such questions.

Our analysis is based on the use ofλ, which is the vector of
Lagrange multipliers. The components of this vector are shown
in Figure 4. The top two panels of Figure 4 display sensitivities
of the consistency measure CD, with respect to the components
of r andâ, and the two bottom panels show values with respect
to those ofl andu. Examination of these sensitivity values leads
to the following observations.

First, we note that most components ofλ are zero. This is in
accord with the effect sparsity,3,21which states that usually only
a small number of model parameters have a significant effect
on model responses. This phenomenon has been observed in

Figure 3. Threshold uncertainty levelsuef calculated for eachDef )
{Ue,Uf} pair of the GRI-Mech dataset units. The highest peak isu57,58,
flaggingU57 and/orU58 as possible outliers from a pairwise perspective.
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numerous sensitivity studies of the role played by individual
reactions of (large) chemical reaction networks. The present
results show that this also seems to be the case for the error
analysis. Furthermore, the global nature of the sensitivity implies
that, for the consistency measure to improve (increase), modi-
fications must be made to components ofr, â, l, andu that
correspond to the nonzero components ofλ. Because most
components ofλ are zero, only a small number of uncertainty
bounds might improve dataset consistency upon revision.

Our next observation is that the sensitivity values in the top
two panels are very smallsmuch smaller than those in the
bottom panels. Evidently, the prior information (i.e., the size
of the initial hypercube and, in turn, the presumed knowledge
of the model active parameters) does not have a significant
influence on the consistency measure in the present case. As a
numerical test, we recomputed CD and Ch D with a 10%
enlargement of the prior information intervals. This modification
increased Ch D from -0.0033 to -0.0010. Although an im-
provement, as judged by the increase in the value of Ch D, the
dataset remained inconsistent, because Ch D is still negative.
Thus, from the low sensitivity to all components ofr andâ,
we conclude that the uncertainties in the model parameters are
unlikely to dominate the present inconsistency in the GRI-Mech
dataset.

On the other hand, the peak sensitivities in the two bottom
panels are large. The two largest peaks are the sensitivities of
the consistency measure, with respect to the lower boundl57 of
the experimental uncertainty of dataset unit 57 and the upper
boundu58 of the experimental uncertainty of dataset unit 58
(bottom left and right panels of Figure 4, respectively). These
same two dataset units surfaced in the pairwise test. Both facts
gave us reason to suspectU57 and/orU58 as possible outliers.
It turned out, as described next, this suspicion was justified.

4.3. Resolution of the Inconsistency.The two suspected
experimental values are both reaction times to reach half of the
maximum in OH concentration determined in the shock tube
oxidation of methane.20 The dataset unitU57 designates the
experimental target labeled “OH.1a” for the initial conditions
of 0.1% methane-0.2% oxygen-argon mixture at a pressure
of 1 atm and a temperature of 2000 K, andU58 designates the
target labeled “OH.1b” for the same mixture at a temperature
of 2200 K. The respective experimental values20 ared57 ) 970
andd58 ) 218µs. These were not actual measurements but two
“representative” points, at 2000 and 2200 K, extrapolated from

a fit to a series of measurements performed over a range of
temperatures.23

When the initial results of the GRI-Mech consistency analysis
became known, we contacted the researchers24 who originated
the data ford57 andd58. The only information we provided was
that the results had been flagged by our analysis, giving no
indication of which direction the measurements might be in
error. Re-examination of the original observations led the
researchers to modify the fit with new extrapolated values of
d57 ) 700 andd58 ) 255µs.24 The directions of these changes,
the decrease ind57, and the increase ind58 are precisely those
indicated by the signs of the sensitivity values:λ57

(l) ) -0.4643
andλ58

(u) ) 0.4805.
We repeated the consistency analysis using the revised values

of d57 andd58, one at a time and then both together. The results
are displayed in Figures 5-7 and Table 2. The increased
consistency measures and the corresponding decrease in the
threshold uncertainties listed in Table 2 both indicate that the
revision improves the consistency of the GRI-Mech 3.0 dataset.
When bothd57 andd58 are updated, CD becomes strictly positive,
indicating that the dataset initially inconsistent at-le ) ue )
0.08 for each indexe becomes consistent. Another way of
looking at this result is to note that the threshold uncertainty,
i.e., the level of experimental uncertainty at which CD changes
its sign, decreases from the initial average of 0.0849 to 0.0673,
which is a 20% improvement in the dataset consistency.

Figure 4. Lagrange multipliers computed for the nominal GRI-Mech
dataset;λ57

(l) and λ58
(u) have significantly larger magnitudes than the

remaining components ofλ, indicating the dataset consistency measure
is most sensitive tol57 andu58.

Figure 5. Lagrange multipliers after modifyingd57. λ58
(u) remains

relatively large, butλ57
(l) and λ57

(u) are zero, indicating that the consis-
tency measure is no longer sensitive to the uncertainty bounds ofU57.

Figure 6. Lagrange multipliers after modifyingd58, but leavingd57 at
the nominal value. Now, both theλ57

(l) and λ58
(u) peaks have decreased

and additional sensitivity peaks have developed.
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A closer examination of Figures 5-7 reveals some interesting
trendssthe type of trends that may assist the researcher in
gaining a deeper understanding of the data and the model.
Removing the primary source of inconsistency by revising the
two dataset units reduced the maximum values of sensitivities
to experimental uncertaintiesl andu (compare bottom panels
of Figures 4-7). Updating only one dataset unit, namelyd57 of
U57, increased the sensitivities to parameter bounds,r and â
(compare top panels of Figures 4 and 5). Comparing Figures 5
and 6, we notice that updatingd58 alone has a deeper improve-
ment than updatingd57 alone, and updating the two together
more resembles the former case, thereby hinting at a bigger
problem with d58. After the dataset is updated, the peak
sensitivities decrease and the number of (now smaller) peaks
increases, which implies that the dataset consistency measure
becomes less sensitive to individual constraints. This indicates
that the consistency level of the dataset no longer hinges on a

few outliers; instead, the dependence becomes distributed over
the content of the dataset.

4.4. Sequential Analysis.The aforementioned observations
suggest a possible approach to dataset analysis through sequen-
tial identification and removal of the top outliers. Figure 8
depicts several steps of such analysis for the GRI-Mech 3.0
dataset. Shown are intervals of threshold uncertainties obtained
in the following sequential steps: the original dataset; removing
U58 from the dataset; removingU58 and U2, identified to be
the next top outlier at this stage; removingU58, U2, andU22;
and so on, as indicated in the figure.

The results in Figure 8 seem to exhibit the effect sparsity:
after several steps, with a significant decline at each step, the
threshold uncertainty begins to level off. Such an outcome
implies that the consistency of the dataset can be dramatically
improved by revisiting just a few dataset units. Whether this
eventually identifies a possible error in data summary and
transfer, revisiting the experimental conditions, performing new
experiments, or modifying the kinetic model will be determined
on a case-by-case basis. The important result of the present study
is that our analysis identifies a specific direction to follow for
improving dataset consistency and provides an estimate of the
extent of possible improvement.

4.5. Computational Details.It is pertinent to mention the
computational expense of our method. The MATLAB program-
ming language was used to develop software that implements
the techniques described in this work. Using a 1.7 GHz Pentium
IV processor, 8.5 min of CPU time were needed to produce the
information for Figure 3 and 45 s of CPU time were needed to
obtain the upper and lower bounds on CD and the accompanying
sensitivities. The data in the former required a significantly
longer time to produce because the solution of an optimization
was required to determineuef for each pair of dataset units.

5. Summary

We have demonstrated that the technique of data collaboration
that we developed recently15,16can be extended to determine if
a collection of related experimental results are consistent with
each other, within a specified chemical kinetics model. A key
requirement for our analysis is the formulation of a dataset,
which entails creation of dataset units from experimental
observations and a common kinetic model. A dataset unit should
consist of the measured observation, uncertainty bounds on the
measurement, and a model that transforms active parameter
values into a prediction for the measurement. Organized in this
manner, the dataset can be subjected to rigorous numerical
analysis, addressing questions of practical significance.

The technique of data collaboration rests on optimization
constrained to a set of assertions. In this work, these assertions
are the confinement of model parameters to the hypercubeH
and the requirement that the model predictions remain within
the experimentally determined bounds. The new development
presented in this paper is the use of constrained optimization
to rigorously determine dataset consistency. Lagrange multiplier
methods determine the sensitivity of the dataset consistency to
the experimental results and prior information, providing
researchers with insights into the quality of the data and the
model.

The capability of the new numerical analysis was demon-
strated on a real-world example, the GRI-Mech 3.0 dataset.20

TABLE 2: Results of GRI-Mech Dataset Update: Upper and Lower Bounds

nominal dataset d57 update d58 update d57 andd58 update

CD (u ) 0.08) [-0.0065,- 0.033] [-0.0017, 0.0085] [0.0084, 0.0213] [0.0056, 0.0198]
uthresh [0.0833, 0.0865] [0.0715, 0.0817] [0.0587, 0.0716] [0.0602, 0.0744]

Figure 7. Lagrange multipliers after modifying bothd57 and d58.
Overall, the sensitivity levels have decreased and the consistency
measure is now sensitive to a larger number of dataset units. This
implies that the dataset consistency measure is no longer dominated
by just a few outliers.

Figure 8. Ranges of the threshold uncertainty (vertical bars) computed
by sequential and cumulative elimination of dataset units from the
dataset. At each step, the listed dataset unit, which is the one that most
inhibits dataset consistency, is removed. The lower and upper bounds
of the range are the threshold uncertainty levels at which the dataset
can be proven to become inconsistent, Ch D < 0, or consistent, CD g 0,
respectively.
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As it actually happened, unintentionally and unexpectedly, the
new procedure immediately identified two major outliers of the
dataset, which were subsequently corrected upon re-examination
of the raw experimental data. The results of the analysis suggest
a sequential procedure with step-by-step identification of outliers
and inspection of the causes. Altogether, the new numerical
approach offers an important tool for assessing experimental
observations and model building.

Acknowledgment. The material is based upon work sup-
ported by the National Science Foundation, under Grant No.
CTS-0113985.

Appendix

The consistency measure CD of a dataset is defined by
constrained optimization. Below, we derive the relationship
between the consistency measure and perturbations to the
constraints. Most importantly, we provide results specific to
quadratic models.

1. Determination of CD. Express the constraints from the
prior informationx ∈ H as f j

(R)(x) e 0 andf j
(â)(x) e 0, where

To express the constraints from the experimental data, define

for eache ∈ E. Obviously,f e
(l)(x,γ) e 0 is the same asγ + le

e Me(xe) - de, and the analogous relationship is true for
f e

(u)(x,γ) e 0. With this notation,

We compute a lower bound, CD, by attempting to solve eq A3
using nonlinear optimization software, with the resulting (local)
maximum yielding a lower bound on CD. An upper bound,
Ch D, is generated by the Lagrange dual to eq A3:

where

and

The optimalν value gives the Lagrange multipliers discussed
in the main text,ν ) argminL(ν). The objective functionL(ν)
in eq A4, which is called the Lagrangian, is a convex function
of ν; however, for eachν, evaluating the Lagrangian requires
the solution of a maximization, so this function may be difficult

to evaluate. This presents an obstacle because the reason to
compute an upper bound in the first place is to avoid solving a
difficult problem. However, the maximization that determines
L(ν) is unconstrained, so this function can be readily evaluated
in special cases. An instance of this is treated in the next
subsection, where each constraint function, e.g.,f j

(R)(x), is
quadratic in its arguments.

2. Quadratic Models.For quadratic models, eq A4 is readily
solved. In this case, for eache ∈ E, there exist a symmetricn
× n matrix Ae, ann × 1 vectorbe, and a scalarce such thatMe

is of the formMe(xe) ) xTAex + 2be
Tx + ce. The constraints

f e
(l)(x,γ) e 0 are then

Similarly, f e
(u)(x,γ) e 0 becomes

We use the following procedure to express the prior informa-
tion constraints. Fixε > 0. Observe that, forj ) 1, 2, ...,n, Rj

e xj e âj is equivalent to the two constraintsRj e xj e âj + ε

andRj - ε e xj e âj, which, in turn, are equivalent to

Let Z e
(l), Z e

(u) for e ∈ E, andZ j
(R), Z j

(â) (for j ) 1, ...,n) denote
the (2+ n) × (2 + n) symmetric matrixes associated with the
quadratic functions in eqs A5, A6, and A7. LetZ0 be the
symmetric matrix that satisfies

Using these matrixes, eq A4 may be expressed as

where

Recall that, for a symmetric (1+ n) × (1 + n) matrix M,
maxx∈Rn[x

1]T M[x
1] e 0 if and only if M is negative semidefinite

(denotedM e 0). Hence, eq A9 is equivalent to

f j
(R)(x) ) -xj + Rj (for j ) 1, 2, ...,n) (A1a)

f j
(â)(x) ) xj - âj (j ) 1, 2, ...,n) (A1b)

f e
(l)(x,γ) ) γ + le - Me(xe) + de (A2a)

f e
(u)(x,γ) ) Me(xe) - de - ue + γ (A2b)

CD ) max
x,γ

γ, subject to

{f j
(R)(x) e 0, f j

(â)(x) e 0 (for j ) 1, 2, ...,n)

f e
(l)(x,γ) e 0, f e

(u)(x,γ) e 0 (for e∈ E)
(A3)

Ch D ) min
-νj

(R),νj
(â),-νe

(l),νe
(u)g0

L(ν)

L(ν) ) max
x,γ

{γ - ∑
j)1

n

(-νj
(R) f j

(R)(x) + νj
(â) f j

(â)(x)) -

∑
e∈E

(-νe
(l) f e

(l)(x,γ) + νe
(u) f e

(u)(x,γ))}

ν ) (ν1
(R), ...,νn

(R), ν1
(â), ...,νn

(â), νe1

(l), ...,νem

(l), νe1

(u), ...,νem

(u)) (A4)

[1γx ]T[-ce + de + le 0.5 -be

0.5 0 0
-be

T 0 -Ae
][1γx ]e 0 (A5)

[1γx ]T[ce - de - ue 0.5 be

0.5 0 0
be

T 0 Ae
][1γx ] e 0 (A6)

(Rj - xj)(âj + ε - xj) e 0 (j ) 1, 2, ...,n) (A7a)

(Rj - ε - xj)(âj - xj) e 0 (j ) 1, 2, ...,n) (A7b)

[1γx ]T

Z0[1γx ]) γ (A8)

Ch D ) min
-νj

(R),νj
(â),-νe

(l),νe
(u)g0

L(ν)

L(ν) ) max
x,γ [1γx ]T

Z0 - ∑
j)1

n

(-νj
(R) Zj

(R) + νj
(â) Zj

(â)) -

∑
e∈E

(-νe
(l) Ze

(l) + νe
(u) Ze

(u)) [1γx ] (A9)

Ch D ) min
-νj

(R),νj
(â),-νe

(l),νe
(u)g0;F

F subject toZ(ν) e 0

Consistency of a Reaction Dataset J. Phys. Chem. A, Vol. 108, No. 44, 20049581



where

This type of problem is called a semidefinite program (SDP)
and is readily solved with special-purpose convex programming
algorithms.25

The value ofε used inZj
(R) and Zj

(â) should be small. Note
that

where the dimension of the zero elements is determined by the
index j. Large values ofε have a tendency to makeZ(ν) more
“positive” by contributing to the off-diagonal terms, so larger
values ofF are needed to ensure thatZ(ν) remains negative
semidefinite. This results in an unnecessarily large upper bound
on CD; thus, the chosen value ofε should be small. However,
for very small values ofε, Zj

(R) ≈ Zj
(â); thus, the values ofλj

(R)

and λj
(â) become unreliable indicators of the constraint sensi-

tivity, because ther- and â-constraints are represented by
virtually identical matrixes. Our experience has been that a value
of ε ) 0.05(âj - Rj) provides accurate sensitivities without
noticeably increasing Ch D from the value achieved forε ) 0.

Quadratic models provide an additional benefit. Consider a
case whereγ and the parameter vectorx are modeled as an (n
+ 1) × 1 random variableV. We can recast eq A3 as an
optimization over the random variableV, where the constraints
are only required to be satisfied in expected values. For example,
the constraintf j

(R)(x) e 0 is replaced with the constraint that
the expected value isE[f j

(R)(V)] e 0. This problem also may
be formulated as an SDP,25 and its solution provides the mean
and covariance of the optimalV. In the present context, this
interpretation is useful, because we may sample a distribution
with this mean and covariance to initialize the general con-
strained optimization that solves for CD.

3. Derivation of Equation 3. Using the notation of eq A3,
the consistency measure CD̃ ) CD + ∆CD, obtained after
perturbing the constraint bounds, is

For all ∆t, we have the following compact version of eq 3 from
the main text:

where the Lagrange multipliers (λ ) argminL(ν)) and the upper
bound on the nominal consistency measure (Ch D) are obtained
from eq A4. For proof of eq A13, take any (x,γ) that satisfies
the constraints in eq A12. From the definition of Ch D in eq A4,

Because (x,γ) satisfies the constraints in eq A12,f j
(R)(x) e

-∆Rj, f j
(â)(x) e ∆âj, f e

(l)(x,γ) e -∆le, and f e
(u)(x,γ) e ∆ue.

Also, -λj
(R), λj

(â), -λe
(l), andλe

(u) g 0. Consequently, Ch D g γ -
λT∆t. Maximizing both sides of this last equation over all (x,γ)
that satisfy the constraints in eq A12, soγ becomes CD̃ (CD̃ )
CD + ∆CD), yields

Algebraic manipulation then yields eq A13.
4. Derivation of Equation 8. Equation 8 indicates

whereD̃ is generated by making the following changes toD:

The left inequality in eq A14 is clear, because, to determine
CD̃, we maximizeγ over a larger set than that which is used in
determining CD. It remains to be seen that the right inequality
holds as well.

Define a sequence of datasets by making the following
modifications toD. For k ) 1, 2, 3, ..., generateD̃k by

Observe that, in the limit,D̃k approachesD. Because the
constraints in eq A12 become progressively weaker ask
increases, CD̃k e CD̃k+1 for all natural numbersk. Invoking eq
A13 and noting that theλT∆t term vanishes, we have CD̃k e

Ch D for all k. Consequently, the increasing sequence (CD̃k)k)1
∞

Z(ν) ) Z0 - [F 0
0 0]- ∑

j)1

n

(-νj
(R) Zj

(R) + νj
(â) Zj

(â)) -

∑
e∈E

(-νe
(l) Ze

(l) + νe
(u) Ze

(u)) (A10)

Zj
(R) ) [Rjâj + εRj 0 -0.5(Rj + âj + ε) 0

0 0 0 0
-0.5(Rj + âj + ε) 0 1 0
0 0 0 0

]
(A11a)

Zj
(â) ) [Rjâj - εâj 0 -0.5(Rj + âj - ε) 0

0 0 0 0
-0.5(Rj + âj - ε) 0 1 0
0 0 0 0

]
(A11b)

CD̃ ) max
x,γ

γ, subject to

{f j
(R)(x) e -∆Rj, f j

(â)(x) e ∆âj, (for j ) 1, 2, ...,n)

f e
(l)(x,γ) e -∆le, f e

(u)(x,γ) e ∆ue (for e∈ E)

(A12)

∆CD e Ch D - CD + λT∆t (A13)

Ch D ) L(λ) g γ - ∑
j)1

n

(-λj
(R) f j

(R)(x) + λj
(â) f j

(â)(x)) -

∑
e∈E

( -λe
(l) f e

(l)(x,γ) + λe
(u)f e

(u)(x,γ))

Ch D g CD + ∆CD - λT∆t

CD e CD̃ e Ch D (A14)

R̃j ) {-∞ (if λj
(R) ) 0)

Rj (otherwise)

ẫj ) {∞ (if λj
(â) ) 0) (for j ) 1, 2, ...,n)

âj (otherwise)

l̃ e ) {-∞ (if λe
(l) ) 0)

le (otherwise)

ũe ) {∞ (if λe
(u) ) 0) (for e in E)

le (otherwise)
(A15)

R̃jk ) {Rj - k (if λj
(R) ) 0)

Rj (otherwise)

ẫjk ) {âj + k (if λj
(â) ) 0) (for j ) 1, 2, ...,n)

âj (otherwise)

l̃ ek ) {le - k (if λe
(l) ) 0)

le (otherwise)

ũek ) {ue + k (if λe
(u) ) 0) (for e in E)

ue (otherwise)
(A16)
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converges, for example, tor e Ch D. In other words,
limkf∞CD̃k ) r e Ch D.

To conclude the proof, we will showr ) CD̃. By construc-
tion of D̃k and the definition of the consistency measure, CD̃k

e CD̃ for all k; thus,

For the reverse inequality, fixε > 0 and takex′ ∈ Rn, γ′ ∈ R
for which CD̃ - γ′ < ε, and

(We tacitly assumed that CD̃ was finite in choosingγ′; if CD̃ )
∞, one can show CDh must also be infinite, so eq A14 holds.)
The left-hand side of each inequality in eq A18 is finite, so we
may choose a natural numberK such that

This gives γ′ e CD̃K e r, where the left-hand inequality
follows because (x′,γ′) satisfies the constraints implied byD̃K,
and the right-hand inequality holds becauser is the limit of the
increasing sequence of CD̃k values. We chose aγ′ value for
which CD̃ - ε < γ′, so we have CD̃ - ε < r. The positive
constantε was arbitrary, so CD̃ e r. Combining the latter with
eq A17, we have CD̃ ) r, so CD̃ e Ch D as claimed. This
concludes the proof of eq A14.
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r e CD̃ (A17)

-x′j e -R̃j, x′j e ẫj (j ) 1, 2, ...,n)

-Me(x′e) + de e - l̃ e - γ′, Me(x′e) - de e ũe - γ′ (e in E)
(A18)

-x′j e -R̃jK (j ) 1, 2, ...,n) (A19a)

x′j e ẫjK (j ) 1, 2, ...,n) (A19b)

-Me(x′e) + de e - l̃ eK - γ′ (A19c)

Me(x′e) - de e ũeK - γ′ (for e in E) (A19d)
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