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A popular class of interionic pair potentials for simulation of the properties of condensed-phase SiO2 uses
two calibrations: first-principles electronic structure results for a small cluster and experimental crystalline
data. The clusters are argued to be broadly valid prototypes for the local structural and bonding behavior of
condensed-phase SiO2. This approach introduces an issue: the extent to which there is prototypical computed
behavior for small silicates irrespective of cluster size, symmetry constraints, methodological refinement,
and accuracy of implementation (basis set). By extension, the issue of commonality vs diversity in small
silicates arises. We address those issues by comparative study of 12 systems containing one or two Si atoms
in combination with H, O, and bare protons. We use several different levels of theoretical refinement and
various basis sets. Though some chemical trends are clear, there is no clear single prototype for condensed-
phase SiO2 (including no clear preference to tetrahedral symmetry). We find a wide diversity of bond lengths,
bond angles, and interaction energies and significant methodological consequences that go largely ignored in
the potential-fitting literature.

Overview

In the molecular dynamics (MD) simulation of condensed-
phase properties, the most popular technique is to remove the
explict quantum mechanical behavior of the electrons by use
of an interionic potential.1,2 The technologically and scientifi-
cally important case of SiO2 is an example.3 Among the several
widely used parametrized interactions,4,5 we focus on the so-
called TTAM6 and BKS7,8 potentials. There are hundreds of
citations to use of these potentials, a sign of the extent to which
they are viewed in the materials simulation community as
successful.9 This success is intriguing for chemical physics
because the BKS and TTAM parametrization schemes share
an important assumption at the molecular level, namely, the
critical role of properties of a small, terminated SimOn cluster
computed from quantum chemical methods.

The issues in potential parametrization are well-summarized
by Brenner.10 For the BKS and TTAM interactions, a pairwise
functional form is stipulated. Of course, three-body interactions
are known to be important,5,11,12but that is not the issue at hand.
Rather, our focus is on the molecular inputs to a popular two-
body form. The procedure used by both BKS and TTAM is to
find parameter sets that fit the potential to Hartree-Fock results
for the structure and energetics of a particular terminated SimOn

cluster. TTAM and BKS use different terminations of SiO4.
From among those parameter sets, the one that yields the best
fit to a selected set of calculated crystalline properties is chosen.
Details differ, but this is the essential scheme.

Implicit in this calibration procedure is the assumption that
a single, well-chosen, small, terminated cluster is the prototype
for the local structural and bonding behavior of condensed-phase
SiO2. The essential reasoning is that tetrahedral behavior
dominates. Such reasoning raises questions as to the extent to
which there is prototypical computed behavior for small silicates
more or less irrespective of cluster size, symmetry constraints,
methodological refinement, and accuracy of implementation

(basis set). By extension, the issue of commonality vs diversity
in small silicates arises.

Elsewhere, we will treat the role of first-principles crystalline
calculations in lieu of parametrization to experimental crystalline
data13 and present the MD results for a sample system based
on various parametrizations from purely computed inputs.14 Here
we focus exclusively on candidates for prototype molecules and
clusters. We study the effects of cluster size, ionicity, termina-
tion, choice of approximation [restricted Hartree-Fock (RHF),
second-order many-body perturbation theory (MBPT(2)), coupled
cluster theory], basis set quality, and other technical choices.
In the materials simulation community, the prevailing view
seems to be that these technical aspects do not have major
significance for the parametrized potential. We show otherwise
in quite specific ways. The essential outcome is this: while there
are undeniable (and unsurprising) chemical trends in families
of clusters, the use of a low-level quantum mechanical treatment
of a single small cluster in a small basis is not justifiable as a
meaningful prototype.

Potential and Parameters

The published parameters have significant implications for
the issue of molecular prototypes. The TTAM and BKS
potentials have the same form. For ionsi, j with relative
displacementr ij the pairwise potential (in eV) is

Because of their forms, these are called Coulomb, Buckingham,
and van der Waals terms, respectively. The notation differs
deliberately from the original papers to provide a common basis
for comparison.κ is the conversion from electrons2 per Å to
eV (≈14.402); hence, theQi are in units of electron charge
magnitude.

Uij )
κQiQj

rij
+ Rij exp[-âij rij] -

γij

rij
6
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Despite qualitatively different parametrization procedures,
both TTAM and BKS arrived atQSi ) 2.4 andQO ) -1.2.
(Shell models15,16are compelled by their properties to haveQSi

) 4.0, which is physically and chemically implausible.) Unlike
BKS, all the TTAM parameters are determined atom by atom,
so that the TTAM interaction parametrization is additive:

with Ai, Bi, and Ci the atomic parameters for atomi. Im-
mediately, the TTAM Si-Si parameters for the Buckingham
and van der Waals terms are nonzero, while in BKS they vanish
by design.

Table 1 gives the parameters corresponding to published
values for the two potentials. Leaving aside the built-in
difference in Si-Si interactions, the Si-O and O-O interactions
differ oddly. While the fitted chargesQSi andQO are identical
for the two potentials, the BKS Si-O Buckingham prefactor is
68% larger than the TTAM value, yet the BKS O-O prefactor
is smaller than TTAM by 21%. The Si-O van der Waals
parameters differ by almost a factor of 2. Taken together, one
sees that the two potentials would describe thesamemolecule
rather differently.

For clusters of SiO2 interacting in a simulation, clearly the
two potentials are quite close for large intercluster separation.
At small Si-Si separations matters are different. The TTAM
Si-Si interaction is more repulsive by about 190 eV at 1 Å but
lessrepulsive, by about 0.35 eV, at 2 Å. (The artifactual hole
at the origin can be ignored; usually it is suppressed in MD
without loss of realism by such techniques as adding a highly
repulsive, extremely short-ranged interaction such asr-24.)

Appraisal of the BKS Approach

BKS used a hydrogen-terminated cluster: H4SiO4. This
termination gives a structure that differs dramatically from the
TTAM cluster; compare with the next section. Because of the
attraction to a neighbor oxygen, BKS found that their cluster
had an Si-O-H bond angle of 119.92° in a quasi-cyclic
geometry (see Figure 1 in ref 8). In addition, though they
allowed D2d distortions (oxygens bent toward one another
pairwise), BKS nonetheless arrived at an equilibrium cluster
with a tetrahedral core:∠O-Si-O ) 109.47°. Both results
contradict the findings of a much earlier study of H4SiO4 aimed
at understanding silica and silicates.17 That work, at roughly
the same level of theoretical refinement except for a lower
quality basis set, gave a nontetrahedral SiO4 core, a bond length
0.025 Å longer than BKS found, and∠Si-O-H ) 108.8°. Also
note that though BKS designate the tetrahedral O-Si-O

configuration as the “optimized geometry” (ref 8, p 5069, Table
1), they also make a somewhat cryptic remark slightly before
introducing that table: “We use the optimized geometries of
the TO4 clusters as starting point of the deformations.” In this
case “T” is Si. But that would not give SiO4 but SiO4

4-, which
is nowhere mentioned in ref 8. A page later those authors also
remark that the O-O potential function they were parametrizing
“...enforces a tetrahedral arrangement of the oxygen atoms
around the central silicon atom.” It will be recognized im-
mediately that tetrahedral symmetry for the SiO4 core is crucial
for parametrizing a pairwise potential: if the SiO4 core is not
tetrahedral, then there are two simultaneous optimum O-O
distances to be fit by a potential that has only one minimum.

Our sense of the prevailing view in the MD community is
that computational methods used on the parametrizing clusters
is believed to have relatively little impact on the eventual MD
results. This idea may have been reinforced by the methodologi-
cal comparison in the second BKS paper.8 Though BKS studied
methodological impacts by comparing XR (an older, very simple
one-parameter DFT approximation), MBPT(2), and RHF, their
limited comment downplayed the quite visible differences they
found. See their Figure 3 and related discussion. A difficulty
they apparently did not notice is that their heteronuclear cluster
will not separate properly to its consituent atoms in either RHF
or any local or gradient-corrected approximate DFT (including
XR). This flaw is significant for fitting of the 1/r6 term in the
potential.

Moreover, well before the BKS papers, there was published
evidence that procedure does matter.17-19 The methods used in
those papers were similar to BKS (except that the earlier work
did not use a pseudopotential). The earlier papers reported
equilibrium cluster conformations and dimensions that differed
substantially from the BKS results. Though cited in BKS, the
disparities apparently went undiscussed until now. Note also
that the latter Lasaga and Gibbs paper argues that treatment of
electron correlation (i.e., approximations more refined than RHF)
is not needed. We find otherwise.

We investigated the impact of (a) degree of inclusion of
electron correlation and (b) basis set size upon the optimized
geometry and lowest vibrational frequencies for the BKS cluster,
H4SiO4. The study involved three levels of refinement, RHF
(as used by both BKS and TTAM), MBPT(2), which includes
some electron correlation, and coupled-cluster single and double
excitations plus noniterative (perturbative) triple excitations
[CCSD(T)], the most thoroughly correlated calculations. CCSD-
(T) is essentially the state of the art for accurate computational
quantum chemistry today.20 In all of the correlated calculations
the core orbitals were frozen.

BKS8 used a 6-31G* basis21 with the core pseudopotential
of Barthelat et al.22 The smallest basis set we used is the 6-31G*
set used by BKS. An important distinction is that we did all-
electron calculations throughout (no pseudopotentials). We also
used two larger basis sets, 6-311G**23 and, for the coupled
cluster calculations, aug-cc-pVDZ.24 For all these calculations
we used the ACES-II code.25 Table 2 shows H4SiO4 equilibrium
geometric parameters from the various calculations as compared
to the BKS values. We constrained the molecule to haveD2d

symmetry rather than theTd symmetry that emerged from the
BKS methodology. The equilibrium Si-O bond length ranges
over 1.622-1.675 Å as the basis sets and methods are changed,
quite a substantial deviation for parametrization of a potential.
In particular, for the highest level of theoretical refinement and
largest basis set, CCSD(T)/cc-aug-pVDZ, we find a bond length
of 1.675 Å compared to their 1.625 Å. The O-Si-O bond

TABLE 1: Parameters for the TTAM and BKS Potentials
for Silicaa

Rij âij γij

Si-Si TTAM 8.7235× 108 15.2207 23.30
Si-Si BKS 0 0 0
Si-O TTAM 10721.5 4.7959 70.7343
Si-O BKS 18003.8 4.8738 133.538
O-O TTAM 1756.90 2.8464 214.736
O-O BKS 1388.773 2.760 175.00

a Rij is in eV, âij in Å-1, andγij in eV Å6.

Rij ) (Bi + Bj) exp[Ai + Aj

Bi + Bj
]

âij ) 1
Bi + Bj

γij ) CiCj (2)
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angles range over roughly 100°-120°, also a substantial
deviation from the tetrahedral value determined by BKS.

A possible reason for the discrepancy in H4SiO4 equilibrium
geometries is that BKS used a pseudopotential. This speculation
is consistent with the discrepancy between their results and an
earlier all-electron RHF/STO-3G calculation.17 We did not
pursue the matter except to do an all-electron calculation at about
the same level of approximation as BKS, RHF with a 6-31G*
basis set. The result is∠O-Si-O ) 103.3°, still substantially
away from the BKS value but closer to the RHF/STO-3G
107.1°.17 Again, for the highest quality approximation and
largest basis set, we get 100.3° (the smaller angle) and cannot
find a way, except for outright constraint, to get 109.47°. The
shift from equilibrium to tetrahedral O-Si-O bond angle
introduces a spurious strain energy of 2.9 eV. Such a large shift
obviously is a substantive issue for parametrization of any
potential.

Another measure of the appropriateness of a given potential
is to examine the restoring forces for small deviations from
equilibrium. We use the first few vibrational frequencies of the
molecule to assess this fundamental effect. Table 3 shows the
dependence of those frequencies upon changes in basis sets and
methods. Again, there is substantial variation with respect to
basis set and method, a factor of 1.48. This factor corresponds
to reference force constants differing by more than a factor of
2, a variation that would be reflected in the resulting BKS-like
parametrization. Note that these variations from what BKS found
are irrespective of the additional dependence upon choice of a
pseudopotential, something neither we nor they tested. Also,
note that we find generally lower frequencies than the RHF/
STO-3G value17 for this cluster.

The fact that no combination of level of theoretical refinement
and basis set gives a tetrahedral geometry led us to consider a
“tetrahedrally constrained” BKS cluster. “Tetrahedrally con-
strained” is shorthand for two constraints: (i) the SiO4 core is
required to have∠O-Si-O ) 109.47°; (ii) the terminating Hs
are required to lie in the quasi-cyclic pattern used by BKS. The
Si-O-H angle was not constrained to the BKS value (∠Si-
O-H ) 119.92°) but optimized. The result is 113.5°. Under
these conditions, we still find a significant difference between

the small basis RHF results of BKS and the present large basis,
highly correlated calculations [CCSD(T)]. The main point is
that the BKS value of the Si-O bond length is substantially
too short: 1.63 Å vs 1.6806 Å for the tetrahedrally constrained
system (and almost as short with respect to 1.6753 Å for the
unconstrained case).

Appraisal of the TTAM Approach

TTAM used a SiO4
4- + 4e+ cluster (an SiO44- neutralized

by four point positive charges, each a distance 1.65 Å radially
outside the corresponding oxygen). No basis functions were
centered on the point charges. TTAM attempted to motivate
the choice as having a geometry common to both silica and its
melt. The bare charges pose a technical problem for the most
refined approximation, CCSD(T). We did treat theTd deforma-
tion (uniform expansion or contraction of the Si-O bond length)
near the equilibrium structure for the TTAM cluster and their
basis set within the RHF and MBPT(2) approximations using
the Q-Chem code.26 The MBPT(2) value for the equilibrium
Si-O bond length is 1.64 Å. TTAM do not quote their result
for the equilibrium Si-O bond length, but it appears to be about
1.63 Å. Just as with BKS, the differences betweeen the TTAM
values and the present ones occur mostly for two reasons: our
use of more refined methods and our allowing for full geometry
optimization.

Turning to basis sets, TTAM6 used a Si (12s8p2d)/[5s3p2d]
basis and a (9s6p)/[3s,3p] basis for O.27 Using their basis set
(in the Q-Chem code26), we obtain a frequency of 2565 and
2608 cm-1 for the frequency of tetrahedral deformation mode
from RHF and MBPT(2) calculations, respectively. With the
somewhat larger 6-311G** basis set, these shift to 2789 and
2762 cm-1, respectively. Again it is apparent that changes in
the vibrational frequency of this magnitude would correspond
to considerable variation in the parametrization.

Determination of Effective Ionic Charge

Regarding effective charges, BKS rationalizedQSi ) 2.4 from
the fact that a fit of the potential to their cluster results alone
gives a value of 2.2 “in reasonable agreement with the Mulliken
value” (they found 1.8). TTAM also appealed to Mulliken
populations in their determination ofQSi. There are two
problems with this rationalization. Mulliken population analyses
are notoriously sensitive to basis set effects (noted by TTAM
as one reason for choosing a non-Mulliken value ofQSi).
Second, different clusters have different populations. The latter
issue is so obvious that we have not bothered to study it.

To test for basis set effects on calculated charges, we adopted
the equilibrium geometry for the BKS and TTAM clusters as
determined by the richer basis RHF calculations. We then did
RHF calculations for all three basis sets and used the results as
input to both Mulliken and natural bond orbital28 (NBO)
population analyses. The NBO procedure is that implemented
in Q-Chem.26 Tables 4 and 5 show the results for the BKS and
TTAM clusters, respectively. The aforementioned sensitivity of
Mulliken populations to basis set selection is confirmed. By

TABLE 2: Dependence of Equilibrium H4SiO4 Geometries
upon Method and Basis Choicea

method/basis Si-O O-H O-Si-O H-O-Si

RHF/6-31G* 1.631 0.947 103.3 117.2
112.6

RHF/6-311G** 1.622 0.937 103.4 121.6
112.6

MBPT(2)/6-31G* 1.654 0.970 101.8 114.5
113.5

MBPT(2)/6-311G** 1.640 0.956 101.9 118.8
112.6

CCSD(T)/aug-cc-pVDZ 1.675 0.966 100.3 114.0
114.2

BKS 1.625 0.949 109.47 119.92

a Bond lengths in Å, angles in deg;D2d symmetry. For comparison,
the BKS published values8 are given.

TABLE 3: Dependence upon Method and Basis Set Choice
of Calculated Low-Lying Vibrational Frequencies (cm-1) for
D2d Symmetry H4SiO4

method/basis ν1 ν2 ν3

RHF/6-31G* 197 291 315
RHF/6-311G** 241 310 380
MBPT(2)/6-31G* 181 277 316
MBPT(2)/6-311G** 198 291 327
CCSD(T)/aug-cc-pVDZ 163 266 318

TABLE 4: RHF Mulliken and Natural Bond Orbital
Populations for the BKS Cluster H4SiO4 Calculated at the
Equilibrium Geometry from RHF/6-31G* Geometry in C1
Symmetry (R(Si-O) ) 1.629 Å)

basis Si (NBO) Si (Mulliken) O (NBO) O (Mulliken)

6-31G* 2.600 65 1.487 98 -1.170 43 -0.848 04
6-311G** 2.519 63 1.607 99 -1.127 09 -0.709 11
aug-cc-pVDZ 2.673 67 3.106 65 -1.188 34 -0.914 38
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comparison, the NBO approach gives a value that is stable
within about 4% forQSi. It is notable that the small basis sets
used by both TTAM and BKS do not characterizeQSi andQO

adequately.
We also investigated the TTAM cluster SiO4 + 4e+ and its

Td deformations at the SCF and MBPT(2) levels of method
refinement with the basis set used by TTAM. Table 6 displays
the change in the Mulliken population as a function of the Si-O
distance. Note that, even for the rather small range of Si-O
distances explored, 0.12 Å, the Si population varies by 0.12
electron, yet theQSi value used by TTAM does not occur in
that range.

Effects of Cluster Selection

With methodological effects clarified, we explored cluster
selection effects by studying a set of small SimOn and HqSimOn

clusters. These were picked on the basis of chemical plausibility
for relevance to the local environment in silica, either ordered
or disordered. The central outcome is that, treated at the highest
level of refinement [CCSD(T) with a large basis set (aug-cc-
pVDZ)], a moderately sized suite of physically plausible small
clusters gives a significant range of Si-O, Si-Si, and O-O
equilibrium bond lengths, bond angles, and low-lying vibrational
frequencies.

Table 7 shows the calculated equilbrium Si-O bond lengths
and O-Si-O bond angles. All are from CCSD(T) calculations
except for the TTAM cluster, discussed already, and H6Si2O7,
discussed below. We find bond lengths from 1.563 to 1.748 Å.
Calculated O-Si-O bond angles range over 87.1°-103.2° for

the optimized geometries. This variation illustrates clearly the
arbitrariness in determining even a large range of fitted
parameters from only one cluster.

As noted already, a crucial part of the energy surface for
potential fitting obviously is the neighborhood of the minimum.
That region is characterized by the lowest few harmonic
vibrational frequencies for each cluster. Table 8 shows that these
also vary widely between clusters. The lowest vibrational
frequencies go from 73 to 1140 cm-1 with several in the 70-
300 cm-1 range. Even that more restricted range corresponds
to an order-of-magnitude difference in harmonic restoring forces,
that is, qualitatively different behavior around the bottom of
the potential well.

One subtlety in these results is the equilibrium structure of
H6Si2O7, namely the central Si-O-Si angle. As far back as
Newton and Gibbs,29 it had been recognized that the energy
barrier of the linear structure relative to bent (in the vicinity of
145°) is quite small, about 0.05 eV/atom or 1.25 kcal/mol. Figure
2 of Ross and Meagher30 or Figure 2b of Watanabe et al.11 gives
nice plots of the situation. The Si-O bond stretch has a
comparatively deep well, a good feature for parametrization.
Because the early results all were from small basis set RHF
calculations, while the Watanabe et al. data were from MBPT-
(2), we restudied the system with high-level correlated calcula-
tions. We find that the difference between linear (Cs) and bent
(C2V) configurations is of the reported size.

Specifically, CCSD(T) calculations with the cc-pVDZ data
set (the most accurate calculations affordable) yield an optimized
configuration that is bent (Si-O-Si angle 138.8°, Si-O
distance of 1.6506 Å) and lies 1.7 kcal/mol (0.074 eV/particle)
below the linear configuration. This is slightly more advanta-
geous energetically than the CCSD/cc-pVDZ result (1.4 kcal/
mol ) 0.061 eV/particle below, 140.8° angle, 1.647 Å Si-O
distance) and indistinguishable from the MBPT(2) results in the
same basis (1.7 kcal/mol) 0.074 eV/particle below, 138.6°,
1.6508 Å). Moreover, we also find that either the bent or linear
configurations can be made to be favored energetically by using
less extensive basis sets and/or less-refined approximations. An
illustration of how low the barrier is between bent and linear is
provided by the lowest three vibrational frequencies: they are
the same. When it comes to parametrization of a potential
therefore, we are free to parametrize to the Si-O stretch in the
linear configuration. The same choice, for the same reasons,
was made by both Wong-Ng et al.31 and Lindsay et al.32

However, we note that they reported much larger bent vs linear
energy differences, about 4 kcal/mol (0.17 eV/particle).

TABLE 5: RHF Mulliken and Natural Bond Orbital
Populations for the TTAM Cluster SiO4

4- + 4e+ at the
6-31G* Geometry

basis Si (NBO) Si (Mulliken) O (NBO) O (Mulliken)

6-31G* 2.601 2 1.650 70 -1.650 3 -1.412 67
6-311G** 2.555 28 2.013 68 -1.638 82 -1.503 42
aug-cc-pVDZ 2.742 87 2.718 38 -1.685 72 -1.679 60

TABLE 6: Mulliken Population as a Function of Si-O
Distance for the TTAM Cluster SiO4

4- + 4e+

method 1.58 Å 1.60 Å 1.62 Å 1.64 Å 1.66 Å 1.68 Å 1.70 Å

RHF/QSi 2.24 2.27 2.29 2.31 2.33 2.35 2.36
RHF/QO -1.56 -1.57 -1.57 -1.58 -1.58 -1.59 -1.59
MBPT(2)/QSi 2.24 2.27 2.29 2.31 2.33 2.35 2.36
MBPT(2)/QO -1.56 -1.57 -1.57 -1.58 -1.58 -1.59 -1.59

TABLE 7: Calculated Bond Lengths (Å) and Angles (deg)
for Various SimOn and HqSimOn Clustersa

cluster Si-O Si-Si O-O O-Si-O Si-O-Si

SiO 1.563
SiO2 1.557
Si2O2 (D2h) 1.748 2.534 2.408 87.1 92.9
Si2O4 (D2h) 1.716 2.442 2.410 89.2 136.8
Si3O3 (D3h) 1.721 3.200 2.697 103.2
H3SiOH 1.707
H2SiO 1.570
OSi(OH)2 1.659
H4Si2O6 1.714 89.0 91.0
H6Si2O7 (C2V) 1.651 111.5 138.8

1.678
H4SiO4 1.675 100.3
SiO4

4- + 4e+ 1.640 109.47

a CCSD(T) results with the aug-cc-pVDZ basis except for SiO4
4-

+ 4e+ which is from MBPT(2)/6-311G** and H6Si2O7 which is from
CCSD(T)/cc-pVDZ. Some symmetries are shown. For H6Si2O7, the first
Si-O distance is for terminal Os and the second is for the bridge. For
details, see text.

TABLE 8: Calculated Lowest Three Vibrational
Frequencies (cm-1) for Various SimOn and HqSimOn Clustersa

cluster ν1 ν2 ν3

SiO 1140
SiO2 274 1337
Si2O2 (D2h) 130 554 644
Si2O2 (C1) 204 528 534
Si2O4 (D2h) 116 227 291
Si3O3 (D3h) 73 73 186
H3SiOH 198 683 715
H6Si2O7 (C2V) 46 66 213
H6Si2O7 (Cs) 46 66 213
H2SiO 671 673 978
OSi(OH)2 300 315 362
H4SiO4 (C1) 163 266 318

a Symmetries shown explicitly where relevant. All CCSD(T) with
aug-cc-pVDZ basis except SiO4

4- + 4e+ and H6Si2O7; see Table 7.
See text also.
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Discussion

The Si-O bond in the TTAM cluster plays an unusual and
subtle role in the TTAM parametrization. In particular, it is
involved with the determination of reasonableγSi-Si andγO-O

values. In the BKS parametrizationγSi-Si ) 0, andγO-O was
obtained from the crystalline part of their fitting procedure (γO-O

was set to zero in their cluster fitting). However, for the TTAM
parametrizationγSi-Si * 0, even though it comes in part from
a cluster with only one Si. This happens because in TTAMγij

) CiCj; recall eq 2. The initial range ofCSi comes from the
cluster Si-O interaction, while the final value is pinned down
from the crystal. But the RHF separated atom limit for a
heteronuclear bond is well-known to be wrong because of
spurious ionicity. Therefore, the crystalline calibration ofCSi

is forced to choose among values all of which represent spurious
behavior. A related problem (spurious ionicity from a common
Fermi level) causes DFT calculations to be too attractive at large
bond lengths. This behavior helps explain why BKS found (see
their Figure 3) the HF and XR Si-O separation energetics to
be close, which apparently helped convince them, incorrectly,
of the unimportance of method.

The variation of calculatedQSi and vibrational frequencies
νi with cluster constitution, method, and basis set is so large
that there seems no obvious way to fit the BKS-TTAM
potential form to all the systems. The difficulty in fact was
foretold in Table 1. TTAM and BKS get the sameQSi (hence
alsoQO), yet their other parameter values differ markedly despite
their being only two clusters involved. Even the procedure of
choosingQSi and then requiringQO ) -QSi/2 is arbitrary, since
starting with the cluster oxygen population and requiringQSi

) -2QO would lead to a different set of values for thesame
cluster calculation. For example, from Table 4 for the BKS
cluster,QSi ) 2.67 directly, while evaluation asQSi ) -2QO

gives 2.38.
The spread in the results also undercuts rather severely the

claim by TTAM that the use of a single cluster plus the
experimental configuration of the zero-pressure crystal consti-
tutes an “ab initio” procedure. More generally, there is no
evidence from this study that a single cluster can be considered
a prototype. Without regard to details of local behavior in
condensed-phase SiO2, a prototype cluster for potential fitting
at least ought to have computed properties that are robust with
respect to methodological changes and basis set choices. This
study shows that not even that minimalist requirement is met
by the clusters that are chemically obvious candidates for the
role of prototype. A more rational procedure might be to use a
family of clusters, all calculated at a high level of theoretical
refinement. However, this approach would introduce the ques-
tion of relative weighting of the clusters, not a matter for
discussion here.
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