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A theory of magnetic nuclear relaxation, providing a calculation of the correlation functions of complex
motion of methyl groups is presented. The complex motion consists of jumps over the barrier (classical
motion) and jumps through the barrier (tunneling). The Schro¨dinger equation has been applied in the calculation
of the rate constant of tunneling jumps through the barrier. The equations for the spectral densitiesJis

m(ω),
whereω ) (ωI ( ωT), andω ) (mωI), wherem ) 1 or 2,ωI is the resonance angular frequency, andωT is
the angular frequency of the tunnel splitting, are derived. These spectral densities concern the motion of spin
pairs inside methyl groups (“intra”) and outside methyl groups (“inter”). The calculated spectral densities are
applied to analyze the temperature dependencies of the spin-lattice relaxation rate in solids containing methyl
groups. A wide regime of temperatures from 0 K up to themelting point is considered. The temperature at
which the tunneling process ceases is discussed. The theory proposed explains the different temperature
dependencies ofT1 for CH3COOK obtained in the experiments caused by small amounts of CH3COOH or
water impurities. The theoretical equations derived in this paper are compared to those known in the literature.

1. Introduction

The first to investigate the mechanism of reorientation of CH3

groups in solids by NMR were Powles and Gutowsky.1 Andrew
et al.2 found that even at liquid helium temperatures the second
moment of NMR line in trimethylbenzene does not reach the
value predicted for the rigid molecule. Eades et al.3,4 and also
Allen5 reported that NMR spectra of a number of compounds
containing methyl groups measured at liquid helium tempera-
tures are often narrow, indicating rotational motion of the methyl
groups. The spin-lattice relaxation time (T1) of a number of
molecules with low potential barriers of methyl groups is long
at its minimum value and much longer than any value consistent
with the classical theory of 3-fold hindered rotation. The NMR
relaxation study performed by Stejskal et al.6,7 and Clough8

confirmed that the tunneling mechanism is plausible for the CH3

group reorientations. The paper9 is a review work on the
developments in the field of methyl group tunneling.

Haupt10 proposed the spin-lattice relaxation theory of methyl
group tunneling. The general Haupt equation for protons (1/T1)
will be applied throughout this paper (with the relaxation
efficiency factor (δ2) equal to1/2). However, the expressions
for the spectral densities, taken by Haupt, will be revised. These
spectral densities will be calculated for the proposed model of
complex motion.

The temperature dependence of the spin-lattice relaxation
time (T1) enables a determination of the correlation time (τc)
(or correlation times if there are more independent stochastic
motions) over a wide temperature range. The fact that the
correlation time follows simple Arrhenius behavior with a single
activation energy at the high-temperature limit (EH) and E01

activation energy at low temperatures was anticipated by a
number of authors.9-24 The authors11,12introduced the following

phenomenological expression for the temperature dependence
of the correlation time (τc):

The apparent activation energy (EL) has been identified with
E01 ) EV1 - EV0, the energy difference between the ground and
first excited torsional states of the CH3 rotator. The activation
energy (EH) corresponds to the high-temperature classical limit,
namely, the barrier height minus the zero point energy. Equation
1 is based on the assumption that at diminishing temperatures
the classical dynamics, namely, thermally activated hindered
C3 reorientation, evolves smoothly into the quantum low-
temperature dynamics. However, eq 1 does not imply that a
methyl group can undergo the classical motion which is complex
(for example,C3 hindered rotation about the symmetry axis of
the group andC3′ rotation about the symmetry axis of the
molecule).25,26 Moreover, this equation is inserted into the
spectral density equation for the single motion. Woessner27

proved that it is not the total correlation time but the total
spectral density of a complex motion consisting of a number
of independent motions modulating simultaneously the dipolar
Hamiltonian, which has to be calculated.

The purpose of this paper is to calculate the temperature
dependencies of spectral densities for a complex motion
consisting of Arrhenius-type jumps over the barrier (correlation
time τc

(H)) and tunnel jumps through the barrier (correlation
time τc

(T)) in a three-minimum potential of a methyl group. The
Schrödinger equation will be used to derive the correlation time
τc

(T). A wide temperature regime, from the liquid helium
temperature up to the melting points, is taken into account.

It will be shown that not only the motion characterized by
the correlation timeτc

(T) but also two stochastic processes
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determined by the correlation timesτc
(H) and τc

(T) govern the
proton NMR relaxation processes at low temperatures. The
classical motion characterized byτc

(H) (Arrhenius dependence)
takes place over the whole temperature range. The theoretical
equations known in the literature used to study the methyl group
dynamics will be discussed and compared with the equations
given in the present paper.

The calculated spectral densities of the complex motion will
be applied in the analysis of the experimental temperature
dependencies of the proton spin-lattice relaxation time (T1) of
the CH3COOK molecule. Protons in this molecule belong only
to the methyl group, but this group is in the crystal lattice and
cannot be treated as an isolated methyl group. This fact has
been revealed in two different experimental temperature de-
pendencies ofT1 for the same CH3COOK polycrystalline
substance.16,18

2. The Model of Motion

The methyl group undergoes a complex stochastic motion
(Figure 1a) made of two components, namely, the classical
motion and the tunneling through the potential barrier. The
correlation time of the classical (Arrhenius type), thermally

activated hindered rotation about the symmetry axis of the
methyl group is

where the activation energy (EH) equals the value of the
hindering potential minus the value of the ground-state vibra-
tional level. The value ofEH (potential barrier per one mole of
particles) for the methyl group varies from very few to over a
dozen kJ/mol. The preexponential factorτc0

(H) characterizes the
rate of the motion. This value is in the range from 10-14 to
10-17 s.

According to classical mechanics, to overcome a potential
barrier, the particles must have a kinetic energy greater than
the height of the barrier. However, according to quantum
mechanics, there is a possibility of overcoming a potential barrier
by particles whose kinetic energy is lower than the barrier, by
the process of tunneling.28

Let us consider the motion of a particle in the field of forces
with the rectangular barrier. The particle with the energyE is
to overcome a potential barrier of heightU0 and widthL from
the side of area I (Figure 1). The height of the potential (U0) is
constant forx in the range (0< x < L), so in the second area,
II. U0 ) 0 for x < 0 (area I) andx > L (area III) (Figure 1).

The solution of the problem of motion of particles through a
potential barrier can be found in the following Schro¨dinger
equation

which also is

in areas I and III. Equation 4 changes into

in area II.
The general solutions of eqs 4 and 5 are

where

and

wherem is the mass of the particle.
The amplitude of the wave in area III is equal toAIII , and

this wave transmits through the barrier (U0). However, the

Figure 1. Schematic representation of the motion in the periodic triple
potential well (a) and the energy-level scheme of the two lowest
torsional statesV0 andV1 of a methyl rotor in an applied magnetic
field (b). 1/τc

(H) and 1/τc
(T) are the rate constant classical jumps across

the barrier and tunneling jumps through the barrier. TheV0 andV1
states exhibit a tunnel splitting (ωT) into states with the symmetryA
andE. The solid arrows indicate the allowed transitions, and the dashed
arrows indicate the forbidden transitionspωI andp2ωI.
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(H) ) τc0

(H) exp(EH/RT) (2)
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quantityBIII describes the amplitude of the wave expanding in
the negative direction of thex axis, too.BIII ) 0 because the
wave in this area does not propagate in thex direction. Two
waves propagate in area I, the wave of amplitudeAI (approach-
ing wave) and the wave of amplitudeBI (reflected wave). The
ratio

can be interpreted as the ratio of an intensity of the stream of
particles after jumps through the barrier (U0) over an intensity
of the stream of particles approaching the barrier (U0). The value
D can be also interpreted as a probability of the tunneling of
the particles through the barrier (U0). Frequently, the coefficient
D is called the coefficient of transmittance or coefficient of
transparency of the barrier.

The ratio

characterizes the probability of the reflection of the particle from
the barrier (U0) (coefficient of reflection). The sum of transmit-
tance (D) and reflection (R) is equal to 1.

For a wide rectangular barrier (µL . 1), the following
equation holds

For the barriers that are more complicated in shape, the value
of D obeys

wherex1 andx2 are the coefficients of the beginning and end
of the barrier for a given value ofE.

Importantly, the probability of the tunneling of the particle
through the barrier decreases exponentially with the widening
of the potential barrier and also with the increase in the square
root of (U0 - E). This probability assumes reasonable values
only in the microscopic world. It is equal to zero for the
macroscopic objects (high value ofL and big value ofm).

D ) D0 whenE ) U0. Also D ≈ D0e
-(2L/p)x2m(U0-E) whenE

, U0. The value under the square root in eqs 13 and 14 is
negative forE > U0.

The energy

characterizes the thermal energy of the Avogadro number of
particles,Cp is the molar specific heat, andT is temperature on
the Kelvin scale.EH ) NAU0 (in joules per mole) (eq 2) concerns
the potential barrier per 1 mol of particles. The value of exp
[ - x(EH-CpT)] equals 1 forEH ) CpTtun (Figure 3).Ttun is
the characteristic temperature at which this event take place.
Above the temperatureTtun, the probability of tunneling is zero.
The arrow in Figure 3 shows the temperatureTtun. The plot in
Figure 3 reveals that the value of the coefficientD (probability
of tunneling) significantly increases at temperatures below the

characteristic temperature whenCpTtun ) EH. Interestingly,
before cessation of the tunneling, the probability of tunneling
increases. The rate constant of motion and the probability of
motion have the same meaning. The correlation time character-
izing a given motion is inversely proportional to the rate constant
of a given motion. For the rotation about theC3 axis in the
triple equivalent minima potential, the rate constant (k3) is related
to the correlation time (τc) as follows:

Therefore, eq 13 can be explicitly applied as the correlation
time of tunneling:

where

and

The value ofB in eq 19 depends on the mass of the tunneling
particle and on the width of the potential barrier. If the mass of
the tunneling proton ism ) 1.67 × 10-27 kg and the barrier
width isL ) 1.78 Å (proton-proton distance in methyl group),
then the value ofB is 0.25(xJ)-1. The preexponential factor
τ0

(T) (eq 17) characterizes the rate of the tunneling motion. This

D )
|AIII |2

|AI|2
(11)

R )
|BI|2

|AI|2
(12)

D ) D0e
-2L/px2m(U0-E) (13)

D ) D0e
-2L/p∫x1

x2x2m(U0-E)dx (14)

NAE ) CpT (15)

Figure 2. U0 and L stand for the height and width of the potential
barrier. The Roman numbers denote the area before, through, and after
the potential barrier.

Figure 3. Illustration of the temperature dependence described by the
equationD ) exp(-x(EH-E), whereE ) CpT, EH ) 5.03 kJ/mol,
andCp ) 121.5 J/mol. The arrow shows the temperatureT ) EH/Cp

(41.4 K).

τc ) 1
3k3

(16)

τc
(T) ) τ0

(T)eBx(EH-CpT) (17)

τc0
(T) ) 1

3D0
(18)

B ) 2L
p x2m

NA
(19)
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value is known to be in the range from 10-6 s (deuterons) to
10-9 s (protons).

Usually,9-24 the correlation time of methyl group tunneling
is assumed to follow the exponential temperature dependence
as

The activation energy for the tunneling motion is found to be
comparable with the value ofE01, the energy difference between
the ground and the first excited torsional levels of the methyl
group. Equation 20 has been assumed by intuition.

The character of the temperature dependence of the correlation
time of τc

(T) following from eq 17 is different than that from eq
20. The correlation time given in eq 17 deviates into shorter
values from the linear dependence ln(τc

(T)) versus (1000/T) just
before reaching of the temperatureTtun. Then, forT > Ttun, the
probability of tunneling is zero.

The fact that the spectral density of tunneling motion is zero
at high temperatures has been noted also for the tunneling of
the hydrogen bonded proton in solids consisting of hydrogen
bonded tautomers.29

The stochastic molecular motions in the ground and first
excited torsional states do not have the same rates. Therefore,
the correlation timesτc

(T) andτc
(H) for separateV0 andV1 states

have to be defined separately. Assuming that eqs 2 and 17 define
(τc

(H))V0 and (τc
(T))V0, the respective correlation times forV1 can

be defined as

wherek′ . 1.

The value ofk′ . 1 indicates a faster rate of tunneling in the
first excited torsional state than in the ground state. A value of
∼30 for k′ has been established for the rate (τc

(T))V1
-1 of the

proton transfer in the hydrogen bond.30-32

3. Proton Spin-Lattice Relaxation Rate

The proton relaxation rate (1/T1) is governed by the stochastic
molecular motions which introduces time dependence into the
interaction Hamiltonian through modulation of the dipole-
dipole interactions. Usually, the dipolar perturbation Hamiltonian
is considered for a two-spin system. Since spinsi ands belong
to the molecule, which undergoes stochastic motions, the
coordinates (Ris, υis, æis) are random functions of time.Ris is
the distance between spinsi ands. υis andæis are the polar and
azimuth angles, respectively, describing the orientation of the
internuclear vector in the laboratory frame with thez axis in
the direction of the external magnetic field (B0). When the two
spins belong to the same group in the molecule, the internuclear
distance (Ris) becomes constant. The distanceRis between the
spins belonging to different groups of the same molecule can
change with changes inυis andæis because of the reorientation
of one of the spins (Figure 4).

The perturbation dipolar HamiltonianHis′(t) contains the
functionsFis

0(t), Fis
1(t), andFis

2(t) which are random in time:33

wheredc
is(t) ) γIγJpRIs

-3(t) is the dipolar coupling constant.
The spin-lattice relaxation rate can be found by summing

up the transition probabilities within the spin energy levels in
a magnetic field. If the spin system can always be described by
a spin temperature, then it is possible to use the general
formula.33

The transition probability per unit time (wmm′) from an initial
state|m> to a final state|m′> can be written as

where

and

Kmm′(τ) are correlation functions of the matrix elements (æm|His′(t)-
|æm′), andJmm′(ωmm′) are the spectral densities of these correla-
tion functions. æm and æm′ are the eigenfunctions, which
correspond to the states|m> and |m′>. H′is(t) is the random
part of the dipolar Hamiltonian (perturbation Hamiltonian).

Two types of dipolar interactions should be distinguished:
the “intra” interactions within an isolated methyl group and the
“inter” interactions with other protons of the molecule and with
protons of different molecules (Figure 4).

The resulting equation for the spin-lattice relaxation in
substances, in which each pair of homonuclear spins with the
quantum number1/2 can be treated as an isolated two-spin

τc
(T) ) τc0

(T) exp(E01/RT) (20)

(τc
(H))V1 ) τc0

(H) exp[(EH - E01)/RT] (21)

( 1

(τc
(T)))V1

) k′( 1

(τc
(T)))V0

(22)

Figure 4. The Ris(inter) distance between theith proton outside the
methyl group and thesth proton belonging to this methyl group assumes
the valuesRis(A), Ris(B), andRis(C) when the methyl group undergoes
C3 hindered rotation.ΘAB

is , ΘBC
is , ΘAC

is are the angles of theRis(inter)
jumps. TheRis(intra) distance referring to the dipolar interaction of
two methyl protons becomes constant during the methyl group rotation.

Fis
0(t) ) dc

is(t)[3 cos2 ϑis(t) - 1] (23a)

Fis
1(t) ) dc

is(t) sinϑis(t) cosϑis(t) exp(iæis(t)) (23b)

Fis
2(t) ) dc

is(t) sin2
ϑis(t) exp(i2æis(t)) (23c)

1

T1

)

∑
mm′

wmm′(Em - Em′)
2

∑
m

Em
2

(24)

wmm′ ) 1

p2
Jmm′(ωmm′) (25)

Jmm′(ωmm′) ) ∫-∞

+∞
Kmm′(τ) exp(-iωmm′τ) dτ (26)

Kmm′(τ) ) 〈(æm|His′(t)|æm′)(æm|His′(t + τ)|æm′)* 〉 (27)
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system (inter contribution, “EE” contribution), contains spectral
densities at frequenciesω1 and 2ωI:33

Jis
m(ωI) andJis

m(2ωI) are the spectral densities of the autocorre-
lation functions, that is,

wherem ) 1 or 2 andFis
m(t) are given in eqs 23b and c.

The 1/T1 relaxation forN number of spins in a molecule is
determined by the sum of dipolar interactions.1 If the i spins
numbered 1, 2, or 3 belong to the methyl group and thes spins
to another proton, then the resulting equation is

The values of (T1)EE on the low-temperature side of the
minimum depend on the resonance frequency (ωI). (T1)EE is long
at minimum value due to the long proton-proton distances
(longer than those inside a methyl group). This contribution to
the relaxation rate can cause the appearance of a separate
maximum of the relaxation rate whenωT . ωI. (1/T1)EE can be
calculated accurately only for protons belonging to the same
molecule. Even the changes of theRis(inter) (Figure 4) vector
can be taken into account. However, when spini belongs to
the methyl group and spins to the neighboring molecule (for
example, to the protonated impurity), (1/T1)EE can be estimated
only when this maximum is well separated from the maximum
of the intramolecular contribution ((1/T1)AE).

The protons belonging to the CH3 group under rotation in
the triple symmetric potential cannot be treated as an isolated
spin pair. The spin energy levels in a magnetic field for a purely
3-fold potential barrier of the CH3 rotator and for the two lowest
torsional states were calculated by Haupt.10 The motions (jumps
over the barrier and jumps through the barrier) of methyl protons
in a triple potential (Figure 1a) induce the transitions between
the spin states marked in Figure 1b by solid line arrows. The
spin-lattice relaxation of an isolated CH3 group is determined
only byA T E transitions. The symmetry conserving transitions
Ea T Eb are forbidden by the spin selection rules and do not
contribute to the spin relaxation of single methyl groups in
compliance with Haupt’s10 finding. It should be emphasized that
spin levels in a magnetic field (B0) are known from the literature
for the three protons of a rotating methyl group, while the
probabilities of transitions between these levels are usually
calculated for dipole-dipole interactions in the spin pairs.
Therefore, the random functions used to calculate spectral
densities belong to the two-spin perturbation Hamiltonian.

The resulting equation for the relaxation rate (1/T1)AE (intra
contribution, “AE” contribution) has been obtained by Haupt
et al.10,11 The value (1/T1)AE refers to the relaxation of two
protons at the distanceRis(intra) (Figure 4).

If the methyl spin system can always be described by a spin
temperature (which is a crude approximation in the present case),
then the spin-lattice relaxation rate can be determined by
summing up the transition probabilities (eq 24) within the
manifold of levels, as illustrated in Figure 1b.

When given that spini of a methyl group interacts with two
s spins of another methyl group, the dipolar interactions sum
up. ForNstotal number of spins in a moleculeswhere three
spins numbered from 1 to 3 belong to a methyl group, the
resulting equation is

where ωI is the Larmor frequency andωT is the torsional
tunneling splitting.

WhenωT ) 0, eq 31 is reduced to the well-known equation
describing the relaxation of three moving spins in the molecule
with N number of spins.

The contribution of (1/T1)AE to the relaxation can be inde-
pendent of the resonance frequency (ωI) whenωT . ωI. (T1)AE

can be long at the minimum value because of a high value of
ωT. The methyl tunneling frequencies are typically in the range
100 GHzg ωT/2π g 4 kHz.34

The vibrational relaxation is much faster than the spin-lattice
relaxation. It is reasonable to assume that all molecules occupy
two torsional levels only.30-32 Therefore, the relaxation rate is

nV0 and nV1 are the fractions of molecules in the ground and
first excited states, respectively. (1/T1)(V0) and (1/T1)(V1) are the
relaxation rates of the molecules in the ground and first excited
torsional states, respectively. The values of (1/T1)(V0) and (1/
T1)(V1) are

where (1/T1)EE(V1), (1/T1)EE(V1), (1/T1)AE(V0), and (1/T1)AE(V0) are
given by eqs 30 and 31 with the spectral densities corresponding
to the motions at these levels.

4. Correlation Functions and Spectral Densities for the
Complex Motion of the Ris Vector Undergoing Classical
Hopping and Rotational Tunneling

A spin pair distanced byRis at low temperatures can undergo
stochastic jumps between three sites of potential energy minima
through a barrier (rotational tunneling). In such a case, the
tunneling accompanies the thermal jumps over the barrier. These
two stochastic processes modulate the interaction Hamiltonian
independently of each other. Each process has its own spectral
density determined by a different correlation time (eqs 2 and
17).

If the random functions (eqs 23a-c) can be written as a
product of functions, which are time dependent due to the
separate reorientations, the correlation function for the complex

( 1

T1
is)

EE

) 3
2
I(I + 1)[Jis

1(ωI) + Jis
2(2ωI)] (28)

Jis
m(ωI) ) ∫-∞

∞
〈Fis

m(t) Fis
m*(t + τ)〉 exp(-imωIτ) dτ (29)

( 1

T1
)

EE

)
3

2
I(I + 1)N-1∑

i)1

3

∑
s)4

N

[Jis
1(ωI) + Jis

2(2ωI)] (30)

( 1
T1

)
AE

) 3
4
I(I + 1)N-1

∑
i)1

3

∑
s)1

3

[Jis
1(ωI + ωT) + Jis

1(ωI - ωT) + Jis
2(2ωI + ωT) +

Jis
2(2ωI - ωT)] (31)

1
T1

) nV0( 1
T1

)
(V0)

+ nV1( 1
T1

)
(V1)

(32)

( 1
T1

)
(V0)

) ( 1
T1

)
AE(V0)

+ ( 1
T1

)
EE(V0)

(33)

( 1
T1

)
(V1)

) ( 1
T1

)
AE(V1)

+ ( 1
T1

)
EE(V1)

(34)
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motion can be calculated as a product of two correlation
functions.27

TheFis
m(t) function given in eqs 23a-c can be changed into the

product of the two functionsf (1)is
m (t) and f (2)is

m (t) in the follow-
ing way:

where r(t) ) 1. The value ofr(t) is a unit vector coincident
with Ris, that is,r(t) ) (Ris/|Ris|) (see eqs 1 and 2 in ref 33 or
eqs 58-63 in ref 34). Ther(t) value can also be time dependent
if, for example, the proton pair distance changes due to jumping
of one the protons (Figure 4).

Now, let us assume that the two spinsi ands separated by
Ris undergo jumps among the stable positions A, B, and C. Each
site, A, B, or C, is defined by the appropriate minimum in the
potential energy surface. The time dependence off (1)is

m (t) is due
to the classical jumps over the barrier, and the time dependence
of f (2)is

m (t) is due to incoherent tunneling. The time required to
perform a jump is considered negligible as compared with the
residence time in each equilibrium position. Thus, at any time,
a constant number of spin pairs can be found at sites A, B, or
C. The random functionsf (a)is

m (t), wherea ) 1 or 2, take one of
the three discrete valuesf (a)is

m (A), f (a)is
m (B), or f (a)is

m (C). There
are nine cases to consider: if the nucleuss is in A at t ) 0, it
can be in A, B, or C at timet; if in B and att ) 0, it may be
in A, B, or C at timet; and if in C and att ) 0, it may be in
A, B, or C at timet. Thus, the autocorrelation functions〈Fis

m(t)
Fis

m*(t + τ)〉 have nine terms in the following sums:

whereΩ stands for the state A, B, or C at time (t + τ) andΩ0

stands for A, B, or C at timet. P(a)(Ω, t + τ|Ω0, t) is the
probability of findingf (a)is

m (t) in the stateΩ at timet + τ, after
being in the stateΩ0 at timet. P(a)(Ω0) is the initial probability
of finding f (a)is

m (t) in the stateΩ0 at time t. Three P(a)(Ω0)
probabilities and nineP(a)(Ω, t + τ|Ω0, t) probabilities are

obtained by solving the set of differential equations. For the
jumps between three equivalent sites, the equations are

whereτc(a) ) τc
(H) or τc(a) ) τc

(T).
The expressions for the separate conditional probabilities (eqs

39-41) if the motion takes place in triple nonequivalent
potential are different than those for the motion in triple
equivalent potential. A shift of theT1 minimum to higher
temperatures and an increase in the minimumT1 value is
expected (see, for example, the appendix in refs 26 and 38-
40. This effect should be, however, insignificant if the inequiva-
lence of the potential barriers is very small (for example,∆E
) 0.04 kJ/mol).

Substituting eqs 39-41 into eq 38 and next into eq 36 we
arrive at

where

As in the polycrystalline material, particular spin pairs can
assume arbitrary angles,υis and æis; the calculations of
〈f (1)is

m (Ω) f (1)is
m* (Ω0)〉 were performed for the mean values (3

cos2 υis - 1)2 ) 4/5 (S0 ) 4/5), [sin υis cos υis exp(iæis)]2 )

Fis
m(t) ) f (1)is

m (t) f (2)is
m (t) (35)

〈Fis
m(t) Fis

m*(t + τ)〉 ) 〈f (1)is
m (t) f (1)is

m* (t + τ)〉〈f (2)is
m (t) f (2)is

m* (t + τ)〉
(36)

f (1)is
0 (t) ) dc

is(t)(3 cos2[υis(t)] - 1) (37a)

f (2)is
0 (t) ) r(t) (37b)

f (1)is
1 (t) ) dc

is(t) sinϑis(t) cosϑis(t) exp(iæis(t)) (37c)

f (2)is
1 (t) ) r(t) (37d)

f (1)is
2 (t) ) dc

is(t) sin2
ϑis(t) exp(i2æis(t)) (37e)

f (2)is
2 (t) ) r(t) (37f)

〈f (a)is
m (t) f (a)is

m* (t + τ)〉 ) ∑
Ω

∑
Ω0

〈f (a)is
m (Ω)f (a)is

m* (Ω0)〉P(a)(Ω, t +

τ|Ω0, t) P(a)(Ω0) (38)

P(a)(A) ) P(a)(B) ) P(a)(C) ) 1/3 (39)

P(a)(A, t + τ|A, t) ) P(a)(B, t + τ|B, t) ) P(a)(C, t +

τ|C, t) ) (1/3)[1 + 2 exp(-|τ|/τc(a))] (40)

P(a)(B, t + τ|A, t) ) P(a)(C, t + τ|A, t) ) P(a)(A, t +
τ|B, t) ) P(a)(C, t + τ|B, t) ) P(a)(A, t + τ|C, t) )

P(a)(B, t + τ|C, t) ) (1/3)[1 - exp(-|τ|/τc(a))] (41)

〈Fis
m(t) Fis

m*(t + τ)〉 ) [C1(1)is
m + C2(1)is

m exp(- |τ|
τc

(H))][C1(2)is
m +

C2(2)is
m exp(- |τ|

τc
(T))] (42)

C1(1)is
m ) (1/9)[f (1)is

m (A) f (1)is
m* (A) + f (1)is

m (B) f (1)is
m* (B) +

f (1)is
m (C) f (1)is

m* (C) + 2f (1)is
m (A) f (1)is

m* (B) + 2f (1)is
m (A) f (1)is

m* (C) +

2f (1)is
m (B) f (1)is

m* (C)] (43)

C2(1)is
m ) (1/9)[2f (1)is

m (A) f (1)is
m* (A) + 2f (1)is

m (B) f (1)is
m* (B) +

2f (1)is
m (C) f (1)is

m* (C) - 2f (1)is
m (A) f (1)is

m* (B) - 2f (1)is
m (A) f (1)is

m* (C) -

2f (1)is
m (B) f (1)is

m* (C)] (44)

C1(2)is
m ) (1/9)[f (2)is

m (A) f (2)is
m* (A) + f (2)is

m (B) f (2)is
m* (B) +

f (2)is
m (C) f (2)is

m* (C) + 2f (2)is
m (A) f (2)is

m* (B) + 2f (2)is
m (A) f (2)is

m* (C) +

2f (2)is
m (B) f (2)is

m* (C)] (45)

C2(2)is
m ) (1/9)[2f (2)is

m (A) f (2)is
m* (A) + 2f (2)is

m (B) f (2)is
m* (B) +

2f (2)is
m (C) f (2)is

m* (C) - 2f (2)is
m (A) f (2)is

m* (B) -

2f (2)is
m (A) f (2)is

m* (C) - 2f (2)is
m (B) f (2)is

m* (C)] (46)
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2/15 (S1 ) 2/15), and [sin2 υis exp(2iæis)]2 ) 8/15 (S2 ) 8/15).
Therefore, after spatial averaging, the isotropic averages are
found to be

wherem ) 0, 1, or 2 andΩ0 andΩ ) A, B, or C, respectively,
dc

is(Ω0) ) γiγspRis
-3(Ω0), dc

is(Ω) ) γiγspRis
-3(Ω), P2(cos

ΘΩΩ0) ) 0.5(3 cos2 ΘΩΩ0 - 1) denotes the Legendre polyno-
mial, andΘΩΩ0 is the angle betweenRis(Ω0) andRis(Ω). ΘΩΩ0

) Θ3 ) 120° for the proton-proton vector in the methyl group.

Since the value of the dipolar coupling constant can be
changed when only one spin jumps, it can be noticed that the
valuef (2)is

m (A) ) 1 while the valuesf (2)is
m (B) ) dc

is(B)/dc
is(A) and

f (2)is
m (C) ) dc

is(C)/dc
is(A).

Substituting eqs 47 and 48 into eqs 43-46, the following
equations are obtained:

where

Therefore, the total correlation functions of the random functions
Fis

m(t) for the classical motion and rotational tunneling are

whereC1
is, C2

is, τc
(H), andτc

(T) are given by eqs 53, 54, 2, and 17,
respectively.

The respective spectral densities, which are the results of the
Fourier transform of the correlation functions, are

where

Equation 56 allows a calculation of the spectral density for the
frequenciesω ) nωI, wheren ) 1 or 2, as well as for the
frequenciesω )(ωT ( mωI). Therefore, the spectral densities
given in eq 56 should be applied in the calculations of (1/T1)EE

(eq 30) as well as in (1/T1)AE (eq 31).
Whendc

is andτc
(H) in eq 56 are related to the reorientationRis

vector, where spini belongs to the methyl group and spins to
another group in the molecule, let us denote these values as
dc

is(inter). The value ofdc
is(inter) can be variable [Ris(A) *

Ris(B) * Ris(C)], as shown in Figure 4. Equations 53 and 54
allow for such a case. The values ofRs(A), Ris(B), andRis(C)
can be unknown only in the case when spins belongs to the
neighboring molecule or to the protonated impurity in the
sample. Usually, in such cases,Jm(nωI) is calculated on the basis
of the value ofJm(nωI) with Ris(A) ) Ris(B) ) Ris(C) ) Ris )
1.78 Å (H-H distance between two protons in a methyl group)
by multiplication byX2. The value ofX2 is expected to be much
less than 1.

If dc
is(A) ) dc

is(B) ) dc
is(C) ) dc

is, thenΘAB
is ) ΘAC

is ) ΘBC
is )

Θ3
is for the proton-proton vector inside the methyl group. Let

us denotedc
is(intra) in eq 56 as the values related to the

reorientation of theRis vector where both spins belong to the
same methyl group.

If Ris(A) ) Ris(B) ) Ris(C), ΘAB
is ) ΘAC

is ) ΘBC
is ) Θ3

is, and
τc

(T) ) ∞, the spectral density given in eq 56 is reduced to

which is a well-known expression for the spectral density of
the classical motion of a two-spin system at a constant value of
the distanceRis undergoing the 3-fold hindered rotation.

If τc
(H) f ∞, eq 56 is reduced to the equation:

Equation 59 gives the values of spectral density of tunneling
jumps. Such a spectral density never exists alone. This ac-
companies the spectral density of classical motion.36 The
classical motion exists at liquid helium temperatures, but the
values of spectral densities of this motion are infinitesimal if

〈f (1)is
m (Ω) f (1)is

m* (Ω0)〉 ) Smdc
is(Ω) dc

is(Ω0) P2(cosΘΩΩ0
) (47)

〈f (2)is
m (Ω) f (2)is

m* (Ω0)〉 )
dc

is(Ω)

dc
is(Ω0)

P2(cosΘΩΩ0
) (48)

C1(1)is
m ) SmC1

is (49)

C2(1)is
m ) SmC2

is (50)

C1(2)is
m ) C1

is/dc
is(A)2 (51)

C2(2)is
m ) C2

is/dc
is(A)2 (52)

C1
is ) (1/9)[dc

is(A)] 2 + dc
is(B)2 + dc

is(C)2 +

dc
is(A)dc

is(B)(3 cos2 ΘAB
is - 1) + dc

is(A)dc
is(C)(3 cos2 ΘAC

is -

1) + dc
is(B)dc

is(C)(3 cos2 ΘBC
is - 1) (53)

C2
is ) (1/9)[2dc

is(A)] 2 + 2dc
is(B)2 + 2dc

is(C)2 -

dc
is(A)dc

is(B)(3 cos2 ΘAB
is - 1) - dc

is(A)dc
is(C)(3 cos2 ΘAC

is -

1) - dc
is(B)dc

is(C)(3 cos2 ΘBC
is - 1) (54)

〈Fis
m(t) Fis

m*(t + τ)〉 ) Sm[dc
is(A)]-2[C1

is + C2
is exp(- |τ|

τc
(H))]

[C1
is + C2

is exp(- |τ|
τc

(T))] (55)

Jis
m(ω) ) Sm[dc

is(A)]-2∫-∞

∞ [C1
is + C2

is exp(- |τ|
τc

(H))][C1
is +

C2
is exp(- |τ|

τc
(T))] exp(-iωτ) dτ ) Sm[dc

is(A)]-2

[C1
is C2

is
2τc

(H)

1 + (ωτc
(H))2

+ C1
is C2

is
2τc

(T)

1 + (ωτc
(T))2

+

(C2
is)2

2τc
(TH)

1 + (ωτc
(TH))2] (56)

1

τc
(TH)

) 1

τc
(H)

+ 1

τc
(T)

(57)

Jis
m(ω) ) Sm(dc

is)2 sin2 Θ3
is

2τc
(H)

1 + (ωτc
(H))2

(58)

Jis
m(ω) ) Sm(dc

is)2 sin2 Θ3
is

2τc
(T)

1 + (ωτc
(T))2

(59)
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ωI is high. Therefore, that is why often the classical motion is
not detected in experiments at low temperatures.

Thus, when the motions characterized by the correlation times
τc

(H) andτc
(T) separately modulate the interaction Hamiltonian of

the methyl group, the spectral densities of these motions are
given by eqs 58 and 59. A different situation appears when both
motions, which are independent, modulate the interaction
Hamiltonian simultaneously. Then, the total spectral density is
given by eq 56.

WhenωT . ωI, theT1 method is convenient for estimation
of the values ofωT from the experiment. Then, the (1/T1)AE

and (1/T1)EE maximums appear separately in the temperature
plots. The maximum (1/T1)AE appears at higher temperatures
than the maximum of (1/T1)EE. Moreover, the maximum (1/
T1)AE is not resonance frequency dependent, while (1/T1)EE

depends on the value ofωI on the low-temperature side of the
maximum.

The small tunnel splitting, that is,ωT e ωI, makes the high-
temperature maximums (due to classical motion) of (1/T1)AE and
(1/T1)EE appear at the same temperature, and both are frequency
dependent. Usually, for such a case, the value of (1/T1)AE is
higher than (1/T1)EE becauseRis(intra) < Ris(inter). Thus, the
dominating relaxation mechanism is (1/T1)AE. The values of
(T1)AE at the minimum which is due to classical motion decrease
with increasingωT when 0< ωT < 2ωI. Then, these undergo
an increase (Figure 5). This is interesting to note that the
temperature plot of (T1)AE for ωT ) 3ωI is almost identical to
the plot forωT ) 0. T1 is no longer frequency dependent for
ωT ) ωI andωT ) 2ωI. This unusual temperature dependence
of (T1)AE is visible in Figure 5 forωT ) (2π × 30) and (2π ×
60) MHz. Therefore, it can be concluded that the sensitivity of
the NMR relaxation method in the determination ofωT < 3ωI

is low. The indicator for the low tunnel splitting values of the
methyl group can be the frequency dependence of the high-
temperature minimum ofT1 from the low-temperature side.

5. Interpretation of the Experimental Data in Terms of
the Theory Proposed

Potassium Acetate (CH3COOK). The experimental results
of the spin-lattice relaxation time measurements (T1) (15, 30,
and 52 MHz) for CH3COOK obtained by Koksal et al.16 have
been plotted as a function of 1000/T in Figure 6. The spin-

lattice relaxation time is independent of the Larmor frequency
in a wide temperature regime (a similar temperature dependence
of T1 has been reported for the compounds (CH3COO)2Ba, (CH3-
COO)2Cd, and (CH3COO)2Ca). The authors16 interpreted their
results in terms of a single correlation time of the tunneling
process at low temperatures, a single correlation time of
thermally activated jumps at high temperatures, and an effective
correlation time which is described by eq 1 for temperatures
between 70 and 56 K. The activation energy obtained from the
slope ofT1 versus 1000/T for 25 K-1 < 1000/T < 50 K-1 is
identified byE01, the energy difference between the ground and
first excited torsional states of the CH3 rotator. The change in
the slope of theT1 plot below temperatures of 25 K (1000/T )
50 K-1) was interpreted in terms of the activation energy of
molecules that occupy the ground-state level only. The activation
energy of the tunneling process turns out to bepωT

0, that
corresponding to the ground-state tunnel splitting. The inter-
pretation proposed in the present paper involves the change in
the low-temperatures slope ofT1 as a result of the character of
the temperature dependence of the correlation time of tunneling
according to eq 17.

The single potassium acetate molecule has protons in the
methyl group only. The temperature dependencies ofT1 cannot
be interpreted in terms of theC3 classical motion of the methyl
group (Figure 6a). The weak frequency dependence ofT1 versus

Figure 5. (T1)AE (ωI ) 2π × 30 MHz) of an isolated methyl group
(eqs 31 and 56) versus (1000/T) for different values ofωT ) 2π × νT,
whereνT in units of megahertz are 0, 30, 40, 50, 58, 60, 90, 150, 300,
600, 900, and 1100. The plots for the values 0< ωT < 3ωI are marked
by dashed lines, while these forωT > 3ωI are marked by solid lines.
The assumed motion parameters areEH ) 5.03 kJ/mol,τ0

(H) ) 5 ×
10-16 s, Ris ) 1.78 Å, andΘ3

is ) 120°.

Figure 6. Temperature dependencies of the proton spin-lattice
relaxation time for CH3COOK at 15, 30, and 52 MHz16 marked by
circles, squares, and triangles, respectively. The theoretical curves are
marked by the following lines: solid, 52 MHz; dashed, 30 MHz; and
dotted, 15 MHz. The best-fit parameters are listed in Table 1.
Theoretical curves were computed using the well-known equation for
the case of a classicalC3 methyl group rotation (a). The lines in part
b represent the best fit of eqs 31 and 56 to the data. The arrow shows
the temperatureTtun ) EH/Cp (41 K).
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1000/T indicates that only the (1/T1)AE term governs the proton
relaxation process in the CH3COOK molecule and the observed
T1 temperature dependence corresponds to the resonance
frequency approximately equal toωT (ωT ≈ (ωT ( ωI) ≈ (ωT

( 2ωI)) which points toωT . ωI. The best fit of eqs 31 and 56
to the experimental data is shown in Figure 6b. The fitting
parameters (τ0

(H))V0, (τ0
(T))V0, EH, Cp, B, and ωT

0 are listed in
Table 1. The value of the proton-proton distance in the methyl
group and the angle of theRis jump were taken from the
literature (Ris ) 1.78 Å and Θ3

is ) 120°). In the high-
temperature range, the only one mechanism is the classical
motion leading to the spin-lattice relaxation. The left side slope
of theT1 minimum in Figure 6b determines the activation energy
(EH) (Table 1). Therefore, the other estimated values areTtun )
41 K andCp ) 121.5 J/K/mol. The arrow in Figure 6b shows
the temperatureTtun. Above the temperatureTtun ) 41.4 K
(1000/T ≈ 24.2 K-1), only the correlation time (τc

(H))V0,
corresponding to the activation energy (EH), affects the value
of T1. Below the temperatureTtun, the dominant mechanism of
the relaxation is rotational tunneling. The special character of
the temperature dependence of (τc

(T))V0 causes the change in the
low-temperature slope ofT1. This change reflects the increase
of the probability of tunneling motion before reaching the
temperatureTtun. The molar specific heat equals 119.3 J/K/mol41

or 109.4 J/K/mol according to ref 42. The agreement between
the molar specific heat of CH3COOK obtained from theT1

temperature dependence and this value published in the literature
is very good. The value ofB equals 0.08(xJ)-1. This value is
about 4 times lower than that estimated from eq 19 for the
rectangular barrier at the widthL ) 1.78 Å. This result seems
to be a reasonable average value for the Maxwell distribution
of the kinetic energy of the particles.

No differences between the theoretical plots 1/T1 ) nV0(1/
T1)V0 and 1/T1 ) nV0(1/T1)V0 + nV1(1/T1)V1 have been observed.
This fact can be interpreted as being due to either a small
population of molecules at the first excited vibration level or a
high rate (1/τc

(T))V1 relative to the (nωI ( ωT
1) frequencies

considered. The population of molecules at the first excited
vibration level at low temperatures is very small, for example,
at 1000/T ) 30 K-1, nV1 ) 0.044nV0. Therefore, the motion of
molecules in the ground-state torsional level plays a dominant
role in the proton relaxation process of the methyl group below
the temperatureTtun.

The experimental and theoretical temperature dependencies
of the correlation times are presented in Figure 7. These plots
differ from the Arrhenius diagrams, usually presented in the
literature, showing the temperature dependence of a single
correlation time (eq 1). The correlation time (τc

(T))V0 (eq 17)
exists up to the characteristic temperatureTtun, which is shown
by the arrow. Just belowTtun, (τc

(T))V0 undergoes shortening
which reflects the process of the increase of the probability of
tunneling. This shortening is less visible on the logarithmic scale
in Figure 7.

In contrast to the experimental results obtained by Koksal et
al.,16 the data reported by Montjoie et al.18 show a clear
frequency dependence on the low-temperature side of the 1/T1

(1000/T) maximum. These differences in the results of measure-
ments ofT1 for the same material can be explained in light of
the presented theory.

The frequency dependence of 1/T1 versus 1000/T at low
temperatures for the CH3COOK molecule obtained by Montjoie
et al.18 (circles, 15 MHz; triangles,-30 MHz in Figure 8) has
to be due to the (1/T1)EE contribution to the spin-lattice
relaxation. The CH3COOK molecule does not have more protons
than those in the methyl group; therefore, if such frequency
dependence is observed, it has to originate from the inter-
molecular dipole-dipole interactions. The intermolecular in-
teractions seem to be those between CH3COOK and the
protonated impurity (i.e., H2O or CH3COOH). The exact
calculations of (1/T1)EE (eq 30) are impossible in the case
considered; therefore, eqs 28 and 56 withRis ) 1.78 Å and the
X2 factor as the best-fit parameter (as is described in the
comment below eq 56) have been substituted into eq 32. The
X2 value obtained from this fit is small, 0.01. It can indicate
that either the number of thes spins at a reasonable distance
from spin i belonging to the CH3COOK molecule is low or
that the distances in these spin pairs are much greater than the
proton-proton distance in the methyl group (Ris ) 1.78 Å).

TABLE 1: Molar Specific Heat and Motional Parameters
Obtained from the T1 Measurements of Authors16,18 and the
Theory Presented in This Paper

compound (experiment) CH3COOK16 CH3COOK18

Cp (J/K/mol) 121.5( 10 114( 10
[τ0

(H)]V0 (10-15s) 0.5( 1 2 ( 1

[τ0
(T)]V0 (10-10s) 3 ( 1 3 ( 1

B(xJ)-1 0.08( 0.02 0.08( 0.02
EH (kJ/mol) 5.0( 0.5 4.2( 0.5
ωT

0 (2π MHz) 400( 50 350( 50

Figure 7. Proton correlation times (τc
(H))V0 (circles) and (τc

(T))V0

(triangles) of CH3COOK as a function of 1000/T (K-1). The points
and lines refer to the experimental and theoretical correlation times,
respectively. The motional parameters used in the calculations are taken
from Table 1. The arrow shows the temperatureTtun ) EH/Cp (41 K).

Figure 8. Experimental points of proton 1/T1 for CH3COOK (15 and
30 MHz) obtained by the authors18 marked by circles and squares,
respectively. The theoretical curves of the best fit (the solid lines) were
calculated using (eqs 30-34) together with eq 56. The best-fit parameter
is X2 ) 0.01, and the others are listed in Table 1. The arrow shows the
temperatureTtun ) EH/Cp (37 K).
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Therefore, it can be concluded that a different-from-zero value
of (1/T1)EE testifies to the presence of an impurity with proton-
containing molecules in the sample. Thus, the differences in
the results of measurements ofT1 presented in Figures 6 and 8
are due to the different purities of the material studied. The
contribution of (1/T1)EE would not occur for the CH3COOK
substance free from impurities.

6. Other Models of the Correlation Function and Spectral
Density

The equation for the spectral density of theRis vector that
undergoes single classical motion is well established in terms
of time dependent perturbation theory

The value ofC2
is depends on the model of motion.C2

is ) (d2
is)2

for isotropic motion, and it equals (d2
is)2 sin2 Θ3

is for the C3

reorientation in the triple equivalent potential (as this is written
in eq 58). Also,C2

is ) (d2
is)2 0.75 sin2 ΘAB

is for jumps in double
potential between equal potential minima A and B. The constant
value of theRis vector is assumed in eq 60 forC2

is (which is not
generally true for theRis distance between a moving spin and
a spin which does not participate in motion).

In a number of papers,9-24 the total correlation time (τc
total)

(eq 1), representing the classical motion and rotational tunneling,
has been used instead ofτc

H in eq 60. In these papers, it is
assumed that the spectral density of classical and tunneling
jumps contribute to spin-lattice relaxation at high and low
temperatures, respectively, and that the classical motion evolves
smoothly from the tunneling motion over an intermediate
temperature region.

Exemplary temperature dependence of spectral density for
theC3 rotation according to eq 60 (whereτc

(H) ) τc
total) is given

in Figure 9 by solid line #3. Dashed lines #1 and #2 represent
the spectral densities of the classical motion (eqs 58 and 2) and
the motion related to tunneling (eqs 59 and 20), respectively.
In the high-temperature region, solid line #3 does not follow
dashed line #1, which represents the spectral density of the
classical motion. Also, it is impossible to estimate from Figure
9 the intermediate temperature regime where classical motion

smoothly evolves to tunneling motion. Therefore, this approach
to the spectral density seems unconvincing.

Conclusions

The equations are derived for the autocorrelation functions
of the random functions of the dipolar Hamiltonian and for its
spectral densities for three independent stochastic motions, that
is, classical jumps over the potential barrier (correlation time
τc

(H), Arrhenius formula) and tunneling jumps through the
potential barrier (correlation timeτc

(T), Schrödinger formula).
The calculations carried out on the basis of these equations lead
to the following conclusions:

(1) The correlation functions related to the rotational tunneling
equals zero at high temperatures at whichCpT > EH, where Cp

is the molar specific heat andEH is the molar potential barrier.
(2) Classical hopping between three equilibrium sites and the

linear relation ln[(τc
(H))V0] versus 1000/T can be detected even

at very low temperatures, when low enough resonance frequen-
cies are applied forT1 measurement.

(3) A small amount of water impurity in a sample generates
the (1/T1)EE contribution to the proton relaxation rate (1/T1) of
the CH3COOK molecule and changes the character of the
temperature dependence of 1/T1.
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