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Proton Spin—Lattice Relaxation of Tunneling Methyl Groups: Calculation of the Time
Dependent Correlation Functions

L. Latanowicz*

Institute of Biotechnology and Emonmental Sciences, Umersity of Zielona Gm,
Monte Cassino 21 B, 65-651 Zielond &pPoland

Receied: May 29, 2004; In Final Form: August 11, 2004

A theory of magnetic nuclear relaxation, providing a calculation of the correlation functions of complex
motion of methyl groups is presented. The complex motion consists of jumps over the barrier (classical
motion) and jumps through the barrier (tunneling). The Sdimger equation has been applied in the calculation

of the rate constant of tunneling jumps through the barrier. The equations for the spectral défigitles
wherew = (v, £ w7), andw = (mw,), wherem = 1 or 2,w, is the resonance angular frequency, ards

the angular frequency of the tunnel splitting, are derived. These spectral densities concern the motion of spin
pairs inside methyl groups (“intra”) and outside methyl groups (“intéftje calculated spectral densities are
applied to analyze the temperature dependencies of the Igiite relaxation rate in solids containing methyl
groups. A wide regime of temperaturesrrd® K up to themelting point is considered. The temperature at
which the tunneling process ceases is discussed. The theory proposed explains the different temperature
dependencies of; for CH;COOK obtained in the experiments caused by small amounts gCOBH or

water impurities. The theoretical equations derived in this paper are compared to those known in the literature.

1. Introduction phenomenological expression for the temperature dependence

The first to investigate the mechanism of reorientation o CH of the correlation timetc):

groups in solids by NMR were Powles and Gutowsindrew
et al2 found that even at liquid helium temperatures the second 1 _1 ,{ EH) 1 4 E")
. =— — =] +—~exp— 5= 1)
moment of NMR line in trimethylbenzene does not reach the e R} RT
value predicted for the rigid molecule. Eades et‘aand also
Allen® reported that NMR spectra of a number of compounds The apparent activation energi. | has been identified with
containing methyl groups measured at liquid helium tempera- gy, = E,; — E,, the energy difference between the ground and
tures are often narrow, indicating rotational motion of the methyl first excited torsional states of the Glbtator. The activation
groups. The spilattice relaxation timeTy) of a number of  energy Ey) corresponds to the high-temperature classical limit,
molecules with low potential barriers of methyl groups is long namely, the barrier height minus the zero point energy. Equation
at its minimum value and much longer than any value consistent 1 is based on the assumption that at diminishing temperatures
with the classical theory of 3-fold hindered rotation. The NMR  the classical dynamics, namely, thermally activated hindered
relaxation study performed by Stejskal et*&land Clough Cs reorientation, evolves smoothly into the quantum low-
confirmed that the tunneling mechanism is plausible for thg CH temperature dynamics. However, eq 1 does not imply that a
group reorientations. The pafeis a review work on the  methyl group can undergo the classical motion which is complex
developments in the field of methyl group tunneling. (for example Cs hindered rotation about the symmetry axis of

Haupt® proposed the spirlattice relaxation theory of methyl  the group andCs' rotation about the symmetry axis of the
group tunneling. The general Haupt equation for proton&if1/  molecule)?526 Moreover, this equation is inserted into the
will be applied throughout this paper (with the relaxation spectral density equation for the single motion. Woeg&ner
efficiency factor §?) equal to'/;). However, the expressions  proved that it is not the total correlation time but the total
for the spectral densities, taken by Haupt, will be revised. These spectral density of a complex motion consisting of a number
spectral densities will be calculated for the proposed model of of independent motions modulating simultaneously the dipolar
complex motion. Hamiltonian, which has to be calculated.

The temperature dependence of the siitice relaxation The purpose of this paper is to calculate the temperature
time (T1) enables a determination of the correlation tinig ( dependencies of spectral densities for a complex motion
(or correlation times if there are more independent stochastic consisting of Arrhenius-type jumps over the barrier (correlation

motions) over a wide temperature range. The fact that the time () and tunnel jumps through the barrier (correlation
correlation time follows simple Arrhenius behavior with a single time 7"

L he hiah i dE <) in a three-minimum potential of a methyl group. The
activation energy at the high-temperature lim) and Eo; Schralinger equation will be used to derive the correlation time

activation energy at low temperatures was anticipated by a M. A wide temperature regime, from the liquid helium

number of author%:24 The authors-12introduced the following témperature up to the melting points, is taken into account

* Corresponding author. E-mail: jlat@amu.edu.pl. Phone: 048 61 It will be ?hOW.n th"’(‘%nm only the motion Cha_raCte”ZEd by
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(11" activated hindered rotation about the symmetry axis of the
a -+ = N methyl group is
_ A ) =1y expEL/RT) 2)
.h 1
¢ where the activation energyEy{) equals the value of the
hindering potential minus the value of the ground-state vibra-
tional level. The value oEy (potential barrier per one mole of
E particles) for the methyl group varies from very few to over a
ho dozen kJ/mol. The preexponential factd characterizes the
rate of the motion. This value is in the range from 10to
10%s.
b t AL According to classical mechanics, to overcome a potential
Acn barrier, the particles must have a kinetic energy greater than
T Asa the height of the barrier. However, according to quantum
S hor! OO I . 2;‘5“”*2“") mechanics, there is a possibility of overcoming a potential barrier
l h(or-a) l by particles whose klnetlc energy is lower than the barrier, by
Iy Eun the process of tunneling.
— X Eoin Let us consider the motion of a particle in the field of forces
E E, o E, with the rectangular barrier. The particle with the eneEgis
- to overcome a potential barrier of heigbig and widthL from
Eoi = (1 - 5) kJ/mol the side of area | (Figure 1). The height of the potentikj) (s
constant forx in the range (0< x < L), so in the second area,
II. Ug=0 forx < O (area |) andk > L (area lll) (Figure 1).
The solution of the problem of motion of particles through a
E o Eun potential barrier can be found in the following Sttimger
T— J T‘ — X - equation
! ‘,’ h (@r+oy) h (02w 2 o
vo— hon’~ 102 kI/mol h (o) h (or+2m;) _ h_d_ll)+ —
R N omge T V=B 2
5:: /:\‘/ Asip
A ) ¥ 0 Asan which also is
Figure 1. Schematic representation of the motion in the periodic triple
pote_ntial well (a) and the energy-level sc_heme of @he two Iovyest K2 dz’l/)
torsional states0 andv1 of a methyl rotor in an applied magnetic ———Lt=Ey 4)
field (b). 1% and 14" are the rate constant classical jumps across 2m g2
the barrier and tunneling jumps through the barrier. Theand v1
states exhibit a tunnel splittingof) into states with the symmetr in areas | and Ill. Equation 4 changes into
andE. The solid arrows indicate the allowed transitions, and the dashed
arrows indicate the forbidden transitioh®, andA2w,. ﬁz dzw
_ o —%—XZ=(E—U0)1/J (5)
determined by the correlation time§” and " govern the d
proton NMR relaxation processes at low temperatures. The in area Il
classical motion characterized In&'/*) (Arrhenius dependence) The géneral solutions of eqs 4 and 5 are
takes place over the whole temperature range. The theoretical
equations known in the literature used to study the methyl group — A qkx —ikx
dynamics will be discussed and compared with the equations ¥ =Ae"+Be (for area ) (6)
given in the present paper. Y =A%+ B,e " (for area Il) (7)
The calculated spectral densities of the complex motion will ) _
be applied in the analysis of the experimental temperature y =A, "+ B, e (for area Ill)
dependencies of the proton spilattice relaxation timeTy) of ®)
the CH;COOK molecule. Protons in this molecule belong only
to the methyl group, but this group is in the crystal lattice and where
cannot be treated as an isolated methyl group. This fact has 1
been revealed in two different experimental temperature de- k=f’TLv 2mE 9
pendencies ofT; for the same CKCOOK polycrystalline
substancé®18 and
2. The Model of Motion u= %m (10)

The methyl group undergoes a complex stochastic motion

(Figure 1a) made of two components, namely, the classical wherem is the mass of the particle.
motion and the tunneling through the potential barrier. The  The amplitude of the wave in area Ill is equal Ag, and
correlation time of the classical (Arrhenius type), thermally this wave transmits through the barriddof. However, the



11174 J. Phys. Chem. A, Vol. 108, No. 51, 2004 Latanowicz

quantity By describes the amplitude of the wave expanding in y
the negative direction of the axis, too.By; = 0 because the
wave in this area does not propagate in xh@irection. Two
waves propagate in area |, the wave of amplitddéapproach- 0
ing wave) and the wave of amplitudg (reflected wave). The
ratio

2
D= |A||||2 (11) 0 L X
IA] Figure 2. Uy and L stand for the height and width of the potential
barrier. The Roman numbers denote the area before, through, and after
can be interpreted as the ratio of an intensity of the stream of the potential barrier.
particles after jumps through the barriéigf over an intensity : : :
of the stream of particles approaching the barti&).(The value
D can be also interpreted as a probability of the tunneling of
the particles through the barriddq). Frequently, the coefficient
D is called the coefficient of transmittance or coefficient of
transparency of the barrier.

-
il

expl-(E,-C,T)"] (arbitrary unit)

The ratio
2
R— 1B (12)
TNE
A |
characterizes the probability of the reflection of the particle from 0 20 40 60 80 100
the barrier Ug) (coefficient of reflection). The sum of transmit- 1000/T (K”)
tance D) and reflection R) is equal to 1. Figure 3. lllustration of the temperature dependence described by the
For a wide rectangular barriepl( > 1), the following equationD = exp(~+/(E,—E), whereE = C,T, E4 = 5.03 kd/mol,
equation holds andC, = 121.5 J/mol. The arrow shows the temperaflire: En/C,
(41.4 K).
D = D,g 2y 2mUor 8 (13) characteristic temperature whe@yTn = Ep. Interestingly,

before cessation of the tunneling, the probability of tunneling
For the barriers that are more complicated in shape, the valueincreases. The rate constant of motion and the probability of
of D obeys motion have the same meaning. The correlation time character-
izing a given motion is inversely proportional to the rate constant
of a given motion. For the rotation about tig axis in the
triple equivalent minima potential, the rate constdg) 6 related
to the correlation timett) as follows:

D= Doe—zuhfii 2m(Ug—E)dx (14)

wherex; andx, are the coefficients of the beginning and end

of the barrier for a given value d&. .= 1 (16)
Importantly, the probability of the tunneling of the particle ¢ 3Kk

through the barrier decreases exponentially with the widening

of the potential barrier and also with the increase in the square Therefore, eq 13 can be explicitly applied as the correlation

root of Ug — E). This probability assumes reasonable values time of tunneling:

only in the microscopic world. It is equal to zero for the

macroscopic objects (high value bfand big value ofn). Tg) = .L-(OT)eB4/(EH_CpT) (17)

D = Dy whenE = Ug. Also D ~ D,e @MV 20 ) whenE
< Up. The value under the square root in eqs 13 and 14 is where
negative forE > Uy.

The ener n_ 1

» 7y = 3D, (18)
NAE=C,T (15)
and

characterizes the thermal energy of the Avogadro number of
particles,C, is the molar specific heat, afidis temperature on B= 2L [2m
the Kelvin scaleEy = NaUo (in joules per mole) (eq 2) concerns AA Ny
the potential barrier per 1 mol of particles. The value of exp
[ — /(EH_C )] equals 1 forEy = CyTwn (Figure 3). Tun is The value ofB in eq 19 depends on the mass of the tunneling
the characteristic temperature at which this event take place.Particle and on the width of the potenn;l barrier. If the mass of
Above the temperaturBy, the probability of tunneling is zero.  the tunneling proton isn = 1.67 x 107*" kg and the barrier
The arrow in Figure 3 shows the temperatligg, The plotin  WidthisL = 1.78 A (protor-proton distance in methyl group),
Figure 3 reveals that the value of the coefficiBnfprobability then the value oB is 0.25¢/J) ", The preexponential factor
of tunneling) significantly increases at temperatures below the rg) (eq 17) characterizes the rate of the tunneling motion. This

(19)
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value is known to be in the range from ¥0s (deuterons) to
1079 s (protons).

Usually?~24 the correlation time of methyl group tunneling

is assumed to follow the exponential temperature dependence
as

7" = 7{) expE,,/RT) (20) Hi

3 R;, (inter)

o ) o Figure 4. The Rg(inter) distance between thth proton outside the
The activation energy for the tunneling motion is found to be methyl group and theth proton belonging to this methyl group assumes
comparable with the value &y, the energy difference between the valuesRs(A), Rs(B), andRs(C) when the methyl group undergoes

Is

the ground and the first excited torsional levels of the methyl Cs hindered rotation©5s, ©gc, O are the angles of thBs(inter)

group. Equation 20 has been assumed by intuition jumps. TheRs(intra) distance referring to the dipolar interaction of
' ' _two methyl protons becomes constant during the methyl group rotation.
The character of the temperature dependence of the correlation

time of 7" following from eq 17 is different than that from eq The perturbation dipolar Hamiltoniahlis'(t) contains the
20. The correlation time given in eq 17 deviates into shorter functionsF?S(t), Fils(t), and Fizs(t) which are random in timé3
values from the linear dependencerfﬁ(} versus (10000) just

before reaching of the temperatuFg,. Then, forT > Ty, the Fat) = dS()[3 cos () — 1] (23a)
probability of tunneling is zero. .

The fact that the spectral density of tunneling motion is zero Fia(t) = d5() sin 9,(t) cosv(t) explei(t)  (23b)
at high temperatures has been noted also for the tunneling of .
the hydrogen bonded proton in solids consisting of hydrogen Fizs(t) = d3(t) sin’ (1) expi2¢(t) (23c)

bonded tautomer®.

The stochastic molecular motions in the ground and first Wheredics(t_) = y[yﬁRu;3(t)_iS the dipolar coupling constant.
excited torsional states do not have the same rates. Therefore, The spin-lattice relaxation rate can be found by summing
ond S v i i o ) )
the correlation times(” andz" for separate0 andv1 states up the transition probabilities within the spin energy levels in

have to be defined separately. Assuming that eqs 2 and 17 definé* magne;tic field.tlf thet?]pin sgs}em canb?lw?ys be dt?]scribed byl
@™),0 and ¢"),0, the respective correlation times fot can a spin temperature, then it 1S possibie 1o use the genera

33
be defined as formula:
(H) (H) ;Wmm(Em - En’f)2
(t¢ )1 = Teo eXPIE, — Ep)/RT] (21) i _m (24)
T, 2
L) =k (22) D En
(TE: )) vl (T((: )) v0 m
The transition probability per unit timenv) from an initial
wherek’ > 1. state|m> to a final statgm’> can be written as
The value ok’ > 1 indicates a faster rate of tunneling in the 1
first excited torsional state than in the ground state. A value of Wi = _szm(wmm) (25)
~30 for k' has been established for the rat€’},, of the h
proton transfer in the hydrogen bo#fti3?
where
. . - o0 .
3. Proton Spin—Lattice Relaxation Rate I (@) = f_m K, () €Xp(—ie, ) d (26)

The proton relaxation rate (Ij) is governed by the stochastic
molecular motions which introduces time dependence into the an
interaction Hamiltonian through modulation of the dipele
dipole interactions. Usually, the dipolar perturbation Hamiltonian
is considered for a two-spin system. Since spiasds belong
to the molecule, which undergoes stochastic motions, the
coordinates R, vis, @is) are random functions of timez;s is

Kinni(7) = Wl His' ()1 @) (@ His' (t + D)l @) * 0 (27)

Kmni(t) are correlation functions of the matrix elements|His'(t)-
lom), andJImm(wmn) are the spectral densities of these correla-

the dist bet inands. v- andao th | d tion functions. ¢, and ¢ are the eigenfunctions, which
€ distance between Spinands. vis andgis are the polar an correspond to the statem> and |m'>. H'ig(t) is the random

azimuth angles, respectively, describing the orientation of the a1t of the dipolar Hamiltonian (perturbation Hamiltonian).
internuclear vector in the laboratory frame with thexis in Two types of dipolar interactions should be distinguished:
the direction of the external magnetic fielBof. When the two  the “intra” interactions within an isolated methyl group and the
spins belong to the same group in the molecule, the internuclearinter” interactions with other protons of the molecule and with
distance Rs) becomes constant. The distariRe between the protons of different molecules (Figure 4).

spins belonging to different groups of the same molecule can  The resulting equation for the spitattice relaxation in
change with changes ins andgis because of the reorientation  substances, in which each pair of homonuclear spins with the
of one of the spins (Figure 4). guantum numbet/, can be treated as an isolated two-spin
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system (inter contribution EE’ contribution), contains spectral When given that spin of a methyl group interacts with two
densities at frequencies; and 2v,:33 s spins of another methyl group, the dipolar interactions sum
up. ForN—total number of spins in a molecutavhere three
spins numbered from 1 to 3 belong to a methyl group, the

1y _3 1 2
(T_is)EE o zl(l T D) + Ji2o)] (28) resulting equation is

1

" 1 3 _
J%w)) andJ{(2w)) are the spectral densities of the autocorre- =| =-=I(+1)N .

is) " is - Tl AE 4
lation functions, that is,

3 3
Iw) = [ FLL) FT (t + 7)Cexp(-ime;7) dr (29) ZZ[‘] S + o1) + I, — 07) + I52o, + w;) +

2 f—
wherem = 1 or 2 andF(t) are given in egs 23b and c. Jis(20, = o7)] (31)

The 11T relaxation forN number of spins in a molecule is h is the L ¢ - is th ional
determined by the sum of dipolar interactidni.the i spins where w, Is the Larmor frequency andr Is the torsiona

numbered 1, 2, or 3 belong to the methyl group andstegins tunneling splitting. ) )
to another proton, then the resulting equation is Whenwr = 0, eq 31 is reduced to the well-known equation

describing the relaxation of three moving spins in the molecule
1 3 3 N with N number of spins.
(—) =-I(l + 1)NflzZ[J L) + Ji(2w)] (30) The contribution of (If1)ae to the relaxation can be inde-
1/ EE 1=1s= pendent of the resonance frequeney) whenwt > w,. (T1)ae

can be long at the minimum value because of a high value of

The values of Ti)ee on the low-temperature side of the . The methyl tunneling frequencies are typically in the range
minimum depend on the resonance frequengy. (T1)ee is long 100 GHz= w/27 = 4 kHz3*
at minimum value due to the long proteproton distances The vibrational relaxation is much faster than the spattice
(longer than those inside a methyl group). This contribution to rg|axation. It is reasonable to assume that all molecules occupy

the relaxation rate can cause the appearance of a separatgyg torsional levels onlyo-32 Therefore, the relaxation rate is
maximum of the relaxation rate whern > w,. (1/T1)ee can be

calculated accurately only for protons belonging to the same 1 1
molecule. Even the changes of tRg(inter) (Figure 4) vector 7= nyo( )
can be taken into account. However, when splrelongs to !

the methyl group and spisto the neighboring molecule (for ) .
example, to the protonated impurity), (1Jee can be estimated ~ ™o andn,, are the fractions of molecules in the ground and

only when this maximum is well separated from the maximum first excited states, respectively. T)..0) and (11).1) are the
of the intramolecular contribution ((T{)ag). relaxation rates of the molecules in the ground and first excited

torsional states, respectively. The values off (/o) and (1/
T1)) are

1
+ nvl(ﬁ)(yl) (32)

Tl (v0)

The protons belonging to the GHyroup under rotation in
the triple symmetric potential cannot be treated as an isolated
spin pair. The spin energy levels in a magnetic field for a purely
3-fold potential barrier of the Ctotator and for the two lowest (i) = (l) + (i)
torsional states were calculated by Hatfgfhe motions (jumps Tewoy \Ti/aewoy  \Ti/eewo)
over the barrier and jumps through the barrier) of methyl protons
in a triple potential (Figure 1a) induce the transitions between (l) = (i) + (l) (34)
the spin states marked in Figure 1b by solid line arrows. The T, (v1) T, AE(v1) T EE(v1)
spin—lattice relaxation of an isolated GHjroup is determined
only by A< E transitions. The symmetry conserving transitions where (1T1)egp1), (1/T)eewa), (LT1)aeeo), and (IM)agq0) are
Ea. < Ep are forbidden by the spin selection rules and do not given by egs 30 and 31 with the spectral densities corresponding
contribute to the spin relaxation of single methyl groups in to the motions at these levels.
compliance with Haupt®® finding. It should be emphasized that

spin levels in a magnetic fieldg) are known from the literature 4 cgrrelation Functions and Spectral Densities for the

for the three protons of a rotating methyl group, while the Complex Motion of the Ris Vector Undergoing Classical
probabilities of transitions between these levels are usually Hopping and Rotational Tunneling

calculated for dipoledipole interactions in the spin pairs.

Therefore, the random functions used to calculate spectral A spin pair distanced bRRs at low temperatures can undergo
densities belong to the two-spin perturbation Hamiltonian.  stochastic jumps between three sites of potential energy minima
The resulting equation for the relaxation rateTg)4e (intra through a barrier (rotational tunneling). In such a case, the
contribution, ‘AE’ contribution) has been obtained by Haupt tunneling accompanies the thermal jumps over the barrier. These
et all011 The value (1T))ac refers to the relaxation of two  two stochastic processes modulate the interaction Hamiltonian
protons at the distand@s(intra) (Figure 4). independently of each other. Each process has its own spectral
If the methyl spin system can always be described by a spin density determined by a different correlation time (egs 2 and

temperature (which is a crude approximation in the present case),17)-

then the spirlattice relaxation rate can be determined by If the random functions (eqs 23&) can be written as a
summing up the transition probabilities (eq 24) within the product of functions, which are time dependent due to the
manifold of levels, as illustrated in Figure 1b. separate reorientations, the correlation function for the complex

(33)
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motion can be calculated as a product of two correlation obtained by solving the set of differential equations. For the

functions?’

Fis® = fst) F2ysD)

[Fig(®) Fie (¢ + 7)0= Biaye® flayslt + 0 TBzys®) f st + )0
(36)

(35)

TheF(t) function given in egs 23ac can be changed into the
product of the two function§yy(t) andf 5(t) in the follow-
ing way:

£0s(0) = dS(O(3 cod[vg(0)] — 1) (37a)

f?Z)is(t) =r(t) (37b)

flys(t) = d(t) sin v,(t) cos V() exple(t)) (37¢)
floye®) = r(t) (37d)

(1)|s(t) = dls(t) sz ﬁls(t) exp(2(p,s(t)) (376)
f(22)is(t) =r(t) (371)

wherer(t) = 1. The value ofr(t) is a unit vector coincident
with Ris, that is,r(t) = (Rif/|Rs|) (see eqs 1 and 2 in ref 33 or

egs 58-63 in ref 34). The(t) value can also be time dependent
if, for example, the proton pair distance changes due to jumping

of one the protons (Figure 4).
Now, let us assume that the two spinands separated by

jumps between three equivalent sites, the equations are

I:)(a) (A)

=P,(B)=P,(C)=" (39)

Pa(A t+17|A 1) =Py (B, t +7|B, 1) = P,(C,t +
7IC, 1) = ()1 + 2 exp(-|7l/t )] (40)

Pe(B, t+ TIA, 1) = Py (C, t+ 7IA, 1) = Py(A, t +
7|B, 1) = P (C, t + 7|B, t) = P, (A, t + 7|C, 1) =
Pa(B, t+17/C, 1) = (1/3)[1 — exp(=|tlityy)] (41)

Wherefc(a) = T((:H) or Tc(a) = T((:T).

The expressions for the separate conditional probabilities (eqs
39-41) if the motion takes place in triple nonequivalent
potential are different than those for the motion in triple
equivalent potential. A shift of thd; minimum to higher
temperatures and an increase in the minimiinvalue is
expected (see, for example, the appendix in refs 26 and 38
40. This effect should be, however, insignificant if the inequiva-
lence of the potential barriers is very small (for exam@\&
= 0.04 kJ/mol).

Substituting eqs 3941 into eq 38 and next into eq 36 we
arrive at

T
FM(t) F (t-r-r)D:[ 1(1).S+C2(1),sex;{ I I)” et

_ It

m
Cooys X (T)

(42)

where

Rs undergo jumps among the stable positions A, B, and C. Each Cl(l)rs = (1/9)[f this(A) f(l)IS(A) + fg)is(B) fE‘I}s(B) +

site, A, B, or C, is defined by the appropriate minimum in the

potential energy surface. The time dependendﬂ%(t) is due

to the classical jumps over the barrier, and the time dependence

(1)is(C) f?:BB(C) + 2f(l)|s(A) 1:(1)|s(B) + 2f )IS(A) f(l)IS(C) +
2f (1)|5(B) f(1)|s(C)] (43)

of f5)s(t) is due to incoherent tunneling. The time required to
perform a jump is considered negligible as compared with the 1
residence time in each equilibrium position. Thus, at any time, Chyuys = (Te)[2f(1y(A) fis(A) + 2f(1(B) F(B) +

a constant number of spin pairs can be found at sites A, B, or of M (C)f ©) -
(2)is (D)is

C. The random functlonﬁ‘(‘;ls(t) wherea =1 or 2, take one of

the three discrete valud$,(A), f3(B), or f3(C). There

are nine cases to consider: if the nuclsts in A att =0, it

can be in A, B, or C at time; if in B and att = 0, it may be

in A, B, or C at timet; and if in C and at = 0, it may be in

A B, or C at timet. Thus, the autocorrelation functiofB{L(t)
(t + r)Ohave nine terms in the following sums:

a)rs(t) f(a)rs(t + T)Dz Z Zl:ﬂ(a)ls (Q)f (a)rs(QO) [P(a)(g, t +

7|€2, 1) P(a)(Qo) (38)

whereQ stands for the state A, B, or C at time+ 7) and Qo
stands for A, B, or C at timé. P(R,t + 7|Q0, 1) is the
probability of f|nd|ngf"‘ () in the stateQ? at timet + 7, after
being in the stat€, at trmet Pa)(€20) is the initial probability
of finding f@s(t) in the stateQo at time t. Three P(Q0)
probabilities and nineP)(R2, t + 7|0, t) probabilities are

2f a)rs(A) f(l)rs(B) 2f H)IS(A) f(l)rs(c) -
2f (1)|s(B) f(1)|S(C)] (44)

1(2)15 = (1/9)[f (2)IS(A) f(2)|$(A) + f(2)|s(B) f(z)rs(B) +
f(2)|s(C) f(2)|s(C) + 2f(2)|s(A) f(2)|s(B) + Zf )IS(A) f(2)|s(C)
2f (n;)rs(B) f(2)|s(C)] (45)

Corois = (T9)[2f (ys(A) F2)s(A) + 2f(3ys(B) f2(B) +
2f ?;)IS(C) 1:(2 |s(C) 2f ?;)IS(A) f(2)|s(B) -
2f£2)|s(A) f(2)|s(c) 2f ?;)rs(B) f(2)|s(c)] (46)
As in the polycrystalline material, particular spin pairs can
assume arbitrary anglessis and ¢is; the calculations of

Be(Q) f{l(Qo)Owere performed for the mean values (3
cog vis — 1)2 = 45 (S = ¥s), [sin vis cos vis explgis)]?> =
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2/15 (S_q_ = 2/15), and [Slﬁ Vis exp(Zcpis)]Z = 8/;|_5 (Sg = 8/15).

Latanowicz

The respective spectral densities, which are the results of the

Therefore, after spatial averaging, the isotropic averages areFourier transform of the correlation functions, are

found to be

(@) F1is(Q0T= §,d5(R) d(Qg) Po(cosOqq)  (47)
d(Q)
(2)|s(9)f(2)|s(Qo)D= " (QO)PZ(COS®QQ) (48)

wherem= 0, 1, or 2 and2o and2 = A, B, or C, respectively,
ds(Q0) = yiydiRs ¥(Q0), d(Q) = yiyhRs 3(Q), Pa(cos
Bg0,) = 0.5(3 cod Ogqq, — 1) denotes the Legendre polyno-
mial, and®qq, is the angle betweeR(R20) andRs(R2). Oqq,

= @3 = 120 for the protorn-proton vector in the methyl group.

Since the value of the dipolar coupling constant can be

changed when only one spin jumps, it can be noticed that the

valuef 3, (A) = 1 while the values 3, (B) = d3(B)/dS(A) and

f"£)|s(C) = dS(C)/dS(A.

Substituting egs 47 and 48 into eqs—44%, the following
equations are obtained:

s = =S.C; (49)
Clis = SiCs (50)
Toys = CHIAS(A)? (51)

Chizjs = CHIAS(A)? (52)

where

Cr = (1IdS(AN* + di(B)” + d3(C)* +
dS(A)d5(B)(3 cog O, — 1) + dS(A)dS(C)(3 co OF. —
1) + d¥(B)dS(C)(3 cod OF. — 1) (53)

C5 = (U205 ()" + 2d5(B)” + 2d;(C)° ~
dS(A)dS(B)(3 cog O — 1) — dS(A)dS(C)(3 cog O —
1) - d3(B)dS(C)(3 cod O — 1) (54)

Therefore, the total correlation functions of the random functions
Fi(t) for the classical motion and rotational tunneling are

qcs+cs exp(—

cs+CS exr(

7|

4

7]
(T))] (°5)

[Fi() Fie (t+ 0= SldZ(A)]

whereC?, C5, 7", andz{"

respectively.

are given by eqs 53, 54, 2, and 17,

I) = SLeAN 2 [CE + exp( 'fH')) cr+
S ex — | T'))] expior) dr = S [d5(A)] 2
TC
(H) (T)
CIS CIS 2t C is isL_i_
P4 )2 T P4 (0r)?
. (TH)
( IS 2; (56)
21+ (M2
where
11,1
ST A 1 (57)
TgTH) rf:H) _L,((:T)

Equation 56 allows a calculation of the spectral density for the
frequenciesw = nw;, wheren = 1 or 2, as well as for the
frequenciesy =(wt £+ mw). Therefore, the spectral densities
given in eq 56 should be applied in the calculations of {{&

(eq 30) as well as in (Th)ae (eq 31).

Whend? andz" in eq 56 are related to the reorientatigg
vector, where spim belongs to the methyl group and sgito
another group in the molecule, let us denote these values as
dS(inter). The value ofd(inter) can be variableRs(A) =
Rs(B) = Rs(C)], as shown in Figure 4. Equations 53 and 54
allow for such a case. The values R{A), Rs(B), andRs(C)
can be unknown only in the case when spihelongs to the
neighboring molecule or to the protonated impurity in the
sample. Usually, in such casd8(nw)) is calculated on the basis
of the value ofJ™(nw;) with Rs(A) = Rs(B) = Rs(C) = Rs =
1.78 A (H—H distance between two protons in a methyl group)
by multiplication byX,. The value oiX; is expected to be much
less than 1.

1If dS(A) = d3(B) = d(C) = d, thenOpg = 0. =05 =
O3 for the protor-proton vector inside the methyl group. Let
us denotedZ(intra) in eq 56 as the values related to the
reorientation of theRs vector where both spins belong to the
same methyl group.

If Rs(A) = R¢(B) = Rs(C), Oz = O = O5. = 65, and
7" = o, the spectral density given in eq 56 is reduced to
o
m, is
Ji() = S(d5)’ sir’ ©F W (58)

which is a well-known expression for the spectral density of
the classical motion of a two-spin system at a constant value of
the distanceRs undergoing the 3-fold hindered rotation.

If 7% — o, eq 56 is reduced to the equation:

2D
+ (07l")?

Equation 59 gives the values of spectral density of tunneling
jumps. Such a spectral density never exists alone. This ac-
companies the spectral density of classical motfoiThe
classical motion exists at liquid helium temperatures, but the
values of spectral densities of this motion are infinitesimal if

INw) = S,(d)? ssz) (59)
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Figure 5. (T1)ae (w1 = 27 x 30 MHZz) of an isolated methyl group
(eqgs 31 and 56) versus (1009for different values ofvr = 27 x v, b
wherevy in units of megahertz are 0, 30, 40, 50, 58, 60, 90, 150, 300, 1
600, 900, and 1100. The plots for the values @1 < 3w, are marked 104
by dashed lines, while these farr > 3w, are marked by solid lines ]
The assumed motion parameters Bre= 5.03 kd/mol,7y” = 5 x ]
1075, Rs = 1.78 A, and@f = 120°. 14
w
wy is high. Therefore, that is why often the classical motion is [y

not detected in experiments at low temperatures. 014
Thus, when the motions characterized by the correlation times i
7™ and7{" separately modulate the interaction Hamiltonian of

the methyl group, the spectral densities of these motions are 0,01+ J

given by egs 58 and 59. A different situation appears when both E 1 —

motions, which are independent, modulate the interaction 0 20 40 60 80 100

Hamiltonian simultaneously. Then, the total spectral density is 1000/T (K™

given by eq 56. _ _ o Figure 6. Temperature dependencies of the proton -sittice
Whenwt > o), the Ty method is convenient for estimation  relaxation time for CHCOOK at 15, 30, and 52 MH$ marked by

of the values ofwt from the experiment. Then, the [Jae circles, squares, and triangles, respectively. The theoretical curves are

and (1Ty)ge maximums appear separately in the temperature marked by the following Iines:_ solid, 52 MHz; dashed, 3Q MHz; and

plots. The maximum (Th)ae appears at higher temperatures dotted, 15 MHz. The best-fit parameters are listed in Table 1.

than the maximum of (Th)ee. Moreover, the maximum (1/ Theoretical curves were computed using the well-known equation for

Ty is not resonance freZEl.Jency depéndent whileT i the case of a classic@l; methyl group rotation (a). The lines in part
1)AE ) il

. b represent the best fit of eqs 31 and 56 to the data. The arrow shows
depends on the value afi on the low-temperature side of the  the temperatur@,, = En/C, (41 K).

maximum.
The small tunnel splitting, that ig)r < w;, makes the high- |attice relaxation time is independent of the Larmor frequency
temperature maximums (due to classical motion) oF)At and in a wide temperature regime (a similar temperature dependence

(1/T1)ee appear at the same temperature, and both are frequencyyf T, has been reported for the compounds {CEO)Ba, (CHs-
dependent. Usually, for such a case, the value OfiJa¢ is COO)Cd, and (CHCOOYCa). The authoi$ interpreted their
higher than (IT1)ee becauseRs(intra) < Rs(inter). Thus, the  results in terms of a single correlation time of the tunneling
dominating relaxation mechanism is T{)ae. The values of  process at low temperatures, a single correlation time of
(T1)ae at the minimum which is due to classical motion decrease thermally activated jumps at high temperatures, and an effective
with increasingwr when 0< wr < 2w,. Then, these undergo  correlation time which is described by eq 1 for temperatures
an increase (Figure 5). This is interesting to note that the petween 70 and 56 K. The activation energy obtained from the
temperature plot ofTy)ae for wr = 3w, is almost identical to slope ofT; versus 1000V for 25 K-1 < 1000 < 50 K1 is
the plot forwr = 0. Ty is no longer frequency dependent for  jdentified byEq,, the energy difference between the ground and
wt = oy andwt = 2w. This unusual temperature dependence first excited torsional states of the Glrbtator. The change in
of (Ty)ae is visible in Figure 5 forwr = (27 x 30) and (Z x the slope of thel; plot below temperatures of 25 K (1000&
60) MHz. Therefore, it can be concluded that the sensitivity of 5q K1) was interpreted in terms of the activation energy of
the NMR relaxation method in the determinationsef < 3w, molecules that occupy the ground-state level only. The activation
is low. The indicator for the low tunnel splitting values of the energy of the tunneling process turns out to #ae?, that
methyl group can be the frequency dependence of the high-corresponding to the ground-state tunnel splitting. The inter-
temperature minimum of from the low-temperature side. pretation proposed in the present paper involves the change in
the low-temperatures slope of as a result of the character of
the temperature dependence of the correlation time of tunneling
according to eq 17.

Potassium Acetate (CHCOOK). The experimental results The single potassium acetate molecule has protons in the
of the spin-lattice relaxation time measurements)((15, 30, methyl group only. The temperature dependenciel ahnnot
and 52 MHz) for CHCOOK obtained by Koksal et &f.have be interpreted in terms of the; classical motion of the methyl
been plotted as a function of 1000ih Figure 6. The spif group (Figure 6a). The weak frequency dependende @érsus

5. Interpretation of the Experimental Data in Terms of
the Theory Proposed
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TABLE 1: Molar Specific Heat and Motional Parameters ' ' '

Obtained from the T; Measurements of Authorg¢8and the z
Theory Presented in This Paper “EJ
compound (experiment) GEOOK!® CH;COOK?® %
Cp (J/K/mol) 121.5+ 10 1144+ 10 5
[7].0 (10%55) 0.5+1 2+1 z
[.[gr)]vo (l(ylos) 3+1 3+1 %
B(vJ) 0.08 0.02 0.08+ 0.02 3

En (kJ/mol) 5.0+ 0.5 42+05 6

w3 (2 MHz) 400+ 50 350+ 50 g

-

10001 indicates that only the (Tf)ae term governs the proton — ‘ o
0 20 40 60 80 100

relaxation process in the GHOOK molecule and the observed )
T, temperature dependence corresponds to the resonance 1000/T (K)
frequency approximately equal tor (vt ~ (o1 £ W) ~ (w1 Figure 7. Proton correlation timest{"),, (circles) and "),

+ 2w))) which points towt > w,. The best fit of eqs 31 and 56  (triangles) of CHCOOK as a function of 1000/ (K1). The points

to the experimental data is shown in Figure 6b. The fitting and Iintes Ireft;rh to th? eXﬁ)erimentrt;\I and tt&e_ort?]tical Icolrnta_lation tiTeksén
H T 0 H : respectively. € motional parameters used In the calculations are ta

parameterSt(, Do (T(O )0, En, Cp. B, af‘d wy are listed in frorFT)l Tableyl. The arrow sﬁows the temperatlixgg = En/C, (41 K).

Table 1. The value of the protetproton distance in the methyl

group and the angle of thRs jump were taken from the * * *

literature Rs = 1.78 A and ©5 = 12¢°). In the high-

temperature range, the only one mechanism is the classical

motion leading to the spinlattice relaxation. The left side slope

of the T; minimum in Figure 6b determines the activation energy

(En) (Table 1). Therefore, the other estimated valuesTare= -

41 K andC, = 121.5 J/K/mol. The arrow in Figure 6b shows -

the temperaturely,,. Above the temperatur@y, = 41.4 K

(1000m ~ 24.2 K1), only the correlation time rﬁH))yo,

corresponding to the activation enerdyy], affects the value

of Ty. Below the temperatur&yn,, the dominant mechanism of 0.014 | ]

the relaxation is rotational tunneling. The special character of ‘ : : : :

the temperature dependence dfj,o causes the change in the 0 20 40 60 80 100

low-temperature slope df;. This change reflects the increase 1000/T (K™)

of the probability of tunneling motion before reaching the Figure 8. Experimental points of proton Tf for CH;COOK (15 and

temperaturdy,,. The molar specific heat equals 119.3 J/K/fhol 30 MHz) obtained by the authdfsmarked by circles and squares,

or 109.4 J/K/mol according to ref 42. The agreement between respectively. The theoretical curves of the best fit (the solid lines) were

the molar specific heat of GJEOOK obtained from theT; palculated using (eqs 3(4) together Wit_h eq 56. The best-fit parameter

temperature dependence and this value published in the literature® X> = 0.01, and the others are listed in Table 1. The arrow shows the

emperaturely, = Ex/C, (37 K).
is very good. The value d8 equals 0.08(/3)_1. This value is P ! WG ( )

about 4 times lower than that estimated from eq 19 for the |, contrast to the experimental results obtained by Koksal et
rectangular barrier at the width= 1.78 A. This result seems al.16 the data reported by Montjoie et #l.show a clear
to be a reasonable average value for the Maxwell distribution fre,quency dependence on the low-temperature side of the 1/
of the kinetic energy of the particles. (1000 maximum. These differences in the results of measure-
No differences between the theoretical plot$11# n.o(1/ ments ofT; for the same material can be explained in light of
T1).0 and 1My = n,o(1/T1),0 + Nua(1/T1),1 have been observed.  hq presented theory.
This fact can be interpreted as being due to either a small o frequency dependence offi/versus 10007 at low
population of molecules at the first excited vibration level or a temperatures for the GEOOK molecule obtained by Montjoie
high rate (1#{"),1 relative to the i, + 1) frequencies et ali® (circles, 15 MHz; triangles-30 MHz in Figure 8) has
considered. The population of molecules at the first excited g pe due to the (Th)ee contribution to the spirlattice
vibration level at low temperatures is very small, for example, yelaxation. The CHCOOK molecule does not have more protons
at 10001 = 30 K™, n,; = 0.044,0. Therefore, the motion of  than those in the methyl group; therefore, if such frequency
molecules in the ground-state torsional level plays a domi”amdependence is observed, it has to originate from the inter-
role in the proton relaxation process of the methyl group below mojecular dipole-dipole interactions. The intermolecular in-
the temperaturdun. teractions seem to be those between;CBOK and the
The experimental and theoretical temperature dependenciesprotonated impurity (i.e., O or CH;COOH). The exact
of the correlation times are presented in Figure 7. These plotsg|culations of (IT)ee (eq 30) are impossible in the case
differ from the Arrhenius diagrams, usually presented in the considered: therefore, egs 28 and 56 vijh= 1.78 A and the
literature, showing the temperature dependence of a singlex, factor as the best-fit parameter (as is described in the
correlation time (eq 1). The correlation time{'),o (eq 17) comment below eq 56) have been substituted into eq 32. The
exists up to the characteristic temperatligg, which is shown X, value obtained from this fit is small, 0.01. It can indicate
by the arrow. Just belowWwyp, (rg))yo undergoes shortening  that either the number of thespins at a reasonable distance
which reflects the process of the increase of the probability of from spini belonging to the CECOOK molecule is low or
tunneling. This shortening is less visible on the logarithmic scale that the distances in these spin pairs are much greater than the
in Figure 7. proton—proton distance in the methyl grouRd{ = 1.78 A).
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‘ ‘ ‘ smoothly evolves to tunneling motion. Therefore, this approach
to the spectral density seems unconvincing.

Conclusions

The equations are derived for the autocorrelation functions
of the random functions of the dipolar Hamiltonian and for its
spectral densities for three independent stochastic motions, that
is, classical jumps over the potential barrier (correlation time
7™, Arrhenius formula) and tunneling jumps through the
potential barrier (correlation time‘CT), Schrainger formula).

The calculations carried out on the basis of these equations lead
to the following conclusions:
1000/T (K™) (1) The correlation functions related to the rotational tunneling

Figure 9. Temperature dependencies of the spectral denslities equals zero at high temperatures at whifi > Ev, where G
+ w)) according to eqs 60 and 1, solid line #3; spectral density of iS the molar specific heat ari}, is the molar potential barrier.
classical motion (egs 58 and 2), dashed line #1; and spectral density (2) Classical hopping between three equilibrium sites and the
of tunneling (eq 59 and 20), dotted line #2. = 2z x 30 MHz, wr = linear relation In[¢™),q] versus 10007 can be detected even
27 x 10 MHz, 73" = 105,70 =4 x 1075, By = 8.4 kd/mol.Er at very low temperatures, when low enough resonance frequen-
= 1.3 kJ/molRs = 1.78 A, and®3 = 120" cies are applied fol; measurement.

. . (3) A small amount of water impurity in a sample generates
Therefore, it can be concluded that a different-from-zero value ¢ (17T1)ee contribution to the proton relaxation rate T4y of
of (1/Ty)ee testifies to the presence of an impurity with proton- - he cHCOOK molecule and changes the character of the
containing molecules in the sample. Thus, the differences in temperature dependence offl/
the results of measurementsTafpresented in Figures 6 and 8
are due to the different purities of the material studied. The Acknowledgment. The author wishes to express her sincere
contribution of (17;)ee would not occur for the CBCOOK  thanks to Professor D. E. Woessner for fruitful discussions and
substance free from impurities. to Dr J. N. Latosiska for enlightening discussions of the
dynamics of the methyl group.
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