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A transformed Hamiltonian for a triatomic molecule in Radau coordinates is employed for time-dependent
wave packet calculations. The first photoelectron band of the OClO molecule is calculated by propagating
the wave packet on a three-dimensional Fourier grid with the split operator method. To find the intial wave
function, we first calculate the few lowest one-dimensional eigenfunctions along each Radau coordinate by
the Fourier grid Hamiltonian method. The direct product of these eigenfunctions is then used as basis set for
obtaining the initial ground state vibrational wave function, which in this way is expressed directly on the
three-dimensional Fourier grid. Consistent with the results of a previous two-dimensional study, we find that
the asymmetric stretch plays little role in the photoionization process. An improved equilibrium geometry for
the potential energy surface function of the ground electronic state of OClO+ was found by iteratively comparing
with the experimental photoelectron spectrum. Using the approach employed here, it is easy to treat a time-
dependent Hamiltonian.

I. Introduction

Modern techniques to solve the time-dependent Schro¨dinger
equation play an important role in the description of atomic
and molecular processes.1-7 In many realistic molecular calcula-
tions, the numerical method is often to first solve the electronic
structure problem to produce a set of potential energy surfaces
and then to consider the nuclear motion quantum dynamically.
As the computational time increases exponentially with the
number of degrees of freedom of the system, it is necessary to
consider which coordinate system to employ. This usually means
working in a body fixed frame, but there does not seem to exist
a special coordinate system with general advantages for every
problem and system of interest. Katz et al.8 found in a com-
parative study at most a factor of 3 difference in computer time
between calculations employing four different coordinate sys-
tems, once the grid parameters had been optimized using a phase
space criteria.8 There are, however, some general considerations
which are helpful in choosing the coordinates for the system of
interest. For instance, hyperspherical coordinate systems, which
employ only one radial coordinate to describe all arrangement
channels, can reduce the number of grid points required in
studying chemical reactions or molecular dissociations.9 Using
Jacobi coordinates for describing the dynamics of atom-diatom
van der Waals complexes and triatomic molecules having one
atom much lighter than the other two10 may be advantageous.

Among the common body-fixed coordinates describing tri-
atomic molecules, Eckart bond coordinates are advantageous
for visualizing the nuclear motion.8 However the triatomic
Hamiltonian of a molecule in Eckart bond coordinates is
complex, and it requires many forward and backward Fourier

transforms if such are used in a wave packet propagation.8 Thus,
the numerical efficiency is lower than if Jacobi coordinates are
used, where the evaluation of the Laplacian operator only
requires three forward-backward Fourier transforms. However,
there exists a set of coordinates named after Radau11-15 in which
the time-dependent wave packet for a triatomic molecule
resembles the motion in Eckart bond coordinates, particularly
if the central atom is heavy. Conveniently, the triatomic
Hamiltonian in Radau coordinates is identical in form to that
in Jacobi coordinates.16,17 Thus, only three Fourier transforms
are required to propagate the wave packet one time step in Radau
coordinates.

An attractive aspect of the time-dependent wave packet
method is that much insight can be obtained by inspecting
snapshots of the wave packet at regular time intervals. From
the snapshots of the wave packet in Radau coordinates it is easy
to visualize the nuclear motion because of the resemblance
between the Radau and Eckart bond coordinates. This aspect
may be of special interest in real time studies of pump-probe
experiments. In this work we employ Radau coordinates to
calculate the first band of the He I photoelectron spectrum of
OClO.

The paper is arranged as follows: Section II contains theory.
It first revisits the triatomic Hamiltonian in Radau coordinates.
Then it is explained how the initial vibrational ground state wave
function is obtained and how the wave packet is propagated on
a three-dimensional Fourier grid using the split-operator method.
Further, some details on the calculation of the photoelectron
spectrum, the potential energy surfaces and the numerical
parameters are given. In section III, the results are presented
and discussed. A brief investigation of the numerical perfor-
mance for calculating the vibrational eigenenergies of OClO is
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presented together with the calculated first photoelectron band
of the OClO molecule. Finally an improved equilibrium
geometry for the ground electronic state of OClO+ is put forth.
We summarize our findings in section IV.

II. Theoretical Method

A. Triatomic Hamiltonian in Radau Coordinates. The
traditional Radau coordinates of a triatomic molecule are shown
in Figure 1.R1, R2, and æ constitute the Radau coordinates,
which resembler1, r2, andθ, the bond lengths and the bond
angle in Eckart bond coordinates. For completeness, a brief
description for setting up Radau coordinates is given here. In
Figure 1, pointC is the triatomic center of mass, and for OClO
point B is the center of mass of the two nonbonded oxygen
atoms. PointP is one of the canonical points.15 As measured
from B, the distance toP is the geometric mean of the distance
to M andC, that is,MB × CB ) PB2. For OClO,M indicates
the position of the chlorine atom. Although pointP depends on
the values of the bond lengths and the bond angle, it varies
little when the central atom is heavy. Therefore, for some
triatomic systems we approximately obtain the nuclear motion
in Eckart bond coordinates from snapshots of the time-dependent
wave packet even if it is represented in Radau coordinates. We
note that the OClO molecule has a relatively heavy central atom.

The Hamiltonian in Radau coordinates for a nonrotating
triatomic molecule in atomic units is14

We note that for the OClO molecule, setting the total angular
momentumJ ) 0 is an approximation, even at zero temperature,
as the ro-vibrational ground state has an angular momentum of
J ) 1/2.

In the numerical implementation a transformed form of
the Hamiltonian in eq 1 is used. It is obtained by setting
Ψ(R1,R2,æ) ) Φ(R1,R2,æ) sin-1/2æ18, where Φ is the wave
function for eq 1. The new Hamiltonian is

The volume element for Hˆ in eq 2 isR-3 dR1 dR2 dæ, where
R2 ) m3/(m1 + m2 + m3). m1 andm2 are the masses of the two
oxygen atoms, andm3 is the mass of the chlorine atom. This
transformed Hamiltonian has singularities atæ ) 0 andæ ) π.
Special attention must be paid to this when using the Hamil-
tonian for cases where collinear geometries occur. By the
transformation, the mixture of local and nonlocal operators of
the same coordinate disappears, which otherwise prohibits the
use of the split-operator method for propagating the wave
packet.19 For cases where collinear geometries occur, a useful
Hamiltonian is obtained by a change of variable fromæ to cos
æ in the Hamiltonian in eq 1. However, the grid then becomes
equidistant in the variable cosæ rather than inæ. Further, the
split-operator method cannot be used to propagate the wave
packet.

Often the potential energy surfaces of triatomic molecules
are expressed in Eckart bond coordinates. The relationship
between Radau (R1,R2,æ) and Eckart bond (r1,r2,θ) coordinates
can be written as

where a ) (R - 1)m1/(m1 + m2) and b ) (R - 1)m2/
(m1 + m2). The Jacobian factors wrt to Cartesian coordinates
areR-3R1

2R2
2sin æ dR1 dR2 dæ andr1

2r2
2 sin θ dr1 dr2 dθ for

the Radau and Eckart bond coordinates respectively, which is
useful in transforming between these coordinate systems.

B. The Initial Wave Function. Before propagating the wave
packet, its initial form has to be defined. For the current
calculation of a photoelectron spectrum, we need the lowest
vibrational eigenfunction of the ground electronic state of the
neutral OClO molecule, in which most of the population initially
resides. Here we introduce a method for finding the initial wave
packet on a three-dimensional Fourier grid, which is based on
the Fourier grid Hamiltonian method20,21 and resembles the
method used by Fu¨sti-Molnár et al.10 for finding eigenvalues
of the HOBr molecule.

To obtain one-dimensional basis functions for each of the
body-fixed variables,R1, R2 andæ, we use the 1-dimensional
Fourier grid Hamiltonian (FGH) method of Marston and Balint-
Kurti20 for finding diatomic vibrational eigenfunctions. This is
done by varying one variable and fixing the other two at their
equilibrium values. The resulting Hamiltonian matrix is then
diagonalized in a one-dimensional Fourier grid basis. In this
way, we obtain three sets of eigenfunctions, one set for each of
the three variables. The number of eigenfunctions kept in each
set is truncated before the direct product of them is formed and
used as the basis set for solving the complete three-dimensional

Figure 1. Triatomic Radau (R1, R2, æ) and Eckart bond (r1, r2, θ)
coordinates. For OClO,m1 andm2 are the oxygen atoms andm3 the
chlorine atom. PointB is the center of mass of the two oxygen atoms,
C is the triatomic center of mass, andP is a canonical point satisfying
the conditionMB × CB ) PB2.
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problem. When calculating the Hamiltonian matrix for this basis
set, the actions of the kinetic energy operators can be realized
by utilizing three one-dimensional transformation matrices from
the space coordinates to momentum coordinates,20 or by the
fast Fourier transform technique.21 For both of these alternatives,
we find that the diagonalization procedure used here is efficient
for the current study of the OClO molecule. For simplicity we
refer to the three-dimensional FGH method now described as
the 3D FGH method. We also note that the one-dimensional
potential cuts are helpful for deciding the grid ranges to be used
in the calculations.

C. Time Evolution Operators. To accurately and effectively
calculate the action of the operators of the Hamiltonian on the
wave packet, a DVR grid,22 or Lagrange mesh,23 is often
used.24-26 Recently, it has been shown that the Fourier grid
Hamiltonian method essentially is a special case of a Lagrange
mesh calculation in which the kinetic energy operator is treated
by a discrete Fourier transform.27 That is, according to the
nomenclature of the DVR method, the transformation of the
grid or DVR basis function to the finite basis representation is
done using discrete Fourier transformation and the grid points
are evenly distributed. The Fourier grid Hamiltonian method is
developed from physical insight,1,20but has a firm mathematical
basis.22-27 The FGH was developed to solve eigenenergy
problems. It is numerically fast and easy to apply a discrete
fast Fourier transform for realizing the action of the time
evolution operator on the grid wave function and thus evolve
the studied system in time.

The Hamiltonian in eq 2 can be rewritten as

where the two last terms define the operatorÛpot(R1,R2,æ,t) and

In order to study dynamics, the time-dependent Schro¨dinger
equation

may be solved. The formal solution of the equation is

To apply the short time split-operator method to propagate the
initial wave function, the time is divided intoN intervals in
each of which the Hamiltonian changes little. The evolution
operator can then be expressed as

To evaluate the action of the time evolution operator on the
wave function, the split-operator method is applied19,28,29

which gives correct terms up to second order on expanding the
exponentials. Applying the operator∪̂(R1,R2,æ,∆t,0) in eq 11
repeatedly, the last exponent in eq 11 can be merged with the
first one.28 Effectively, we thus get a product of six operators
in each time step.

The five kinetic energy operators are nonlocal in coordinate
space and are evaluated by fast Fourier transform. For each of
them the second derivative is found keeping the other two
coordinates fixed. The potential operator, which is local in
coordinate space, acts in coordinate space. When the Fourier
transform method is combined with the split-operator technique
to propagate the initial wave packet, nonlocal and local operators
of the same coordinate must not appear within a single term in
the Hamiltonian.19 This is one reason for using the transformed
Radau Hamiltonian in eq 2.

Utilization of the split-operator method together with fast
Fourier transform in the three-dimensional propagation allows
for a highly efficient computer code and easy inclusion of effects
of a time dependent external field. This is useful for studying
ultrashort laser pulse interaction with molecules which is of
current interest, particularly in coherent control involving shaped
laser pulses.5,6 We notice the similarity of the triatomic
Hamiltonian in Jacobi coordinates with those in eqs 1 and 2,
and thus how easily the computer code is adapted to Jacobi
coordinates.

D. Photoelectron Spectrum.To calculate a photoelectron
spectrum using the time-dependent wave packet approach, we
first obtain the vibrational ground state wave function of the
ground electronic state of the neutral OClO molecule. Then this
wave function is vertically shifted to the potential energy surface
of the ground electronic state of the cation,31 where it is
propagated. Finally the photoelectron spectrum is obtained as
the Fourier transform of the wave function autocorrelation
function.

The Fourier transform of the autocorrelation function can be
written31

whereRE is the transition dipole moment between the ground
electronic states of the neutral OClO and its cation, which
usually depends on the kinetic energy and the molecular
geometry, but here is assumed to be a constant.E0 is the energy
of the vibrational ground level of the ground electronic state of
the OClO molecule andC′(t) is a damped time autocorrelation
function of the wave packet evolving on the ionic electronic
state. The autocorrelation functionC(t) is calculated by

We begin with a real wave packetΨ(t)0), and therefore,
from a wave packet propagation time oft/2, we can obtain the
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+ T̂æ + Ûpot(R1,R2,æ,t)] ×

Ψ(R1,R2,æ,t) (8)
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correlation function at timet.32 C′(t) is obtained by multiplying
C(t) with an exponential function

This not only results in a smooth spectrum, but also
convolutes the spectrum with a Lorentzian function of fwhm
(full width at half-maximum)Γ ) 2/τ which can be chosen to
approximately reproduce the experimental broadening of the
spectral peaks.

E. Potential Energy Surface for OClO+. The OClO
molecule plays an important role in the destruction of atmo-
spheric ozone33 and has an interesting phase-dependent photo-
chemistry.34 Therefore, a substantial amount of theoretical and
experimental work has been devoted to the system.33-47 An ab
initio based three-dimensional potential energy surface of the
ground state of the neutral OClO molecule has been reported
by Peterson and Werner35 and was used in our calculations.
For the cation, we extend to three dimensions the two-
dimensional MRCI potential energy surface of the ground
electronic state of the cation reported by Peterson and Werner,36

which was used in the work by Mok et al.44 and Mahapatra et
al.45-47 For C2V geometries, the potential energy surface of the
cation has been fitted to a polynomial of the form

whereS1 is the symmetric stretch coordinate (r1 + r2)/x2 and
S2 the bending coordinateθ (r1, r2, andθ are the Eckart bond
angle coordinates).

To obtain a three-dimensional potential energy surface for
the cation ground electronic state, we first calculate the
dimensionless normal coordinates of the ground electronic state
of neutral OClO.47 They are referred to asQg1, Qg2 andQu and
describe the symmetric stretch, bending, and asymmetric stretch
vibrations, respectively. These were calculated by theGF-matrix
method of Wilson et al.48 using the experimentally deduced force
field of Miyazaki et al.49 and assuming a harmonic vibrational
motion. TheGF-matrix method gives mass-weighted coordi-
nates which are then transformed into the dimensionless normal
coordinates by multiplying withωi

1/2 (ωi being the frequency
of the ith vibrational mode, in atomic units). Then the
dependence of the potential energy surface on the asymmetric
stretch coordinateS3 ) (r1 - r2)/x2 is approximated by a
harmonic potentialV(S3) ) kuS3

2/2 ) ωuQu
2/2. The parameter

ku is the force constant along the asymmetric stretch coordinate
of the ground state of OClO+ andωu is the harmonic frequency,
for which we adopted the cation ab initio value of 1280 cm-1

reported by Alcamı´ et al.50 Therefore, the potential energy
surface used to model the cation ground state is expressed as

Mahapatra and co-workers45-47 used this method to extend other
C2V potential energy surfaces to three-dimensions in their
calculations involving the neutral OClO and its anion and cation.

F. Numerical Parameters for the Wave Packet Calcula-
tions. In the calculations, the grid ranges are [1.6, 3.9] in atomic
units forR1 andR2 and [1.9, 3.0] in radians foræ. We note that
the equilibrium geometries of the OClO molecule and its cation
are far from linear with deep bending wells. Therefore, we do
not need to worry about the singularities of the Hamiltonian in
eq 2. The grid numbers forR1, R2 and æ are 64, 64, and 32

respectively, which is enough to converge the calculations. The
time step∆t used in the calculations is 0.25 fs.

III. Results and Discussion Application to OClO

Cornford et al. and Flesch et al. recorded the He I photo-
electron spectrum of the OClO molecule.43 The spectrum of
Flesch et al., which has the better energy resolution, showed
four distinct bands between 10 and 22 eV.43 The first band is
due to the ionization of the 3b1 unpaired electron of the OClO
molecule which thereby forms the1A1 ground electronic state
of the cation.43 Two distinct vibrational progressions within this
band were assigned to the symmetric stretch and bending
vibrational modes of the cation OClO+. The real time photo-
dissociation dynamics of OClO has also been studied using the
ultrashort pump-probe technique.42 These experiments observed
apparent biexponential decay after the pump excitation, but the
explanations to this phenomenon vary.42 Here we only report
calculated He I photoelectron spectra, but first we discuss the
accuracy of the eigenfunctions obtained by the 3D FGH method
outlined above.

We note that ionizing an electron from the ground state of
the OClO molecule to form OClO+ in the ground state is a
perpendicular transition. That means that the parity of the initial
total wave function is opposite to that of the final wave function,
which has been thoroughly discussed in ref 51. Even though
the angular momentum changes during the excitation process,
all results presented here are for a total angular momentum of
zero.

A. Vibrational Eigenfunctions on the Fourier Grid. As
mentioned, the potential energy surface of the ground electronic
state employed in the calculation is the three-dimensional ab
initio based surface reported by Peterson.35 One-dimensional
potential cuts along the variablesR1 (or R2) andæ are shown
in Figure 2. In each panel two coordinates are fixed at their
equilibrium values. The figure indicates that only part of the
angularæ range, 0 toπ, is necessary to set up the grid. The
lowest three eigenfunctions of the two (three) potential cuts are
shown. The eigenvalues of the three-dimensional potential
energy surface are found using a direct product basis of the
one-dimensional eigenfunctions. Retaining the five lowest
eigenfunctions along each degree of freedom in the direct
product is enough to make the lowest vibrational level converge
to within 0.01 cm-1. Results for the two lowest eigenfunctions
are listed in Table 1. These are compared with eigenvalues
obtained using the Eckart bond Hamiltonian in ref 52 and
expanding the wave function in a direct product basis of one-
particle functions in Eckart bond coordinates19

whereφnri(ri) are Morse wave functions andφnθ(θ) are harmonic
oscillator wave functions. This method has been shown to give
good convergence for the ground electronic state of the OClO
molecule.19

From Table 1, we see that the three-dimensional Fourier grid
Hamiltonian approach works well for obtaining the initial ground
vibrational wave packet for the time-dependent calculation. The
3D FGH approach shows faster convergence than the Morse
plus harmonic basis functions method as a function of basis
size, in the present application. We however note the difference
in absolute values between the eigenvalues obtained from the
Morse plus harmonic basis functions and the corresponding

C′(t) ) C(t)f(t) ) C(t) exp(-t/τ) (14)
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energies obtained using the 3D FGH method. This results from
the two different Hamiltonians and the numerical methods used.

Employing the widely used Hamiltonian in bond bond-angle
coordinates19,52 and proceeding as in ref 19, the Hamiltonian
matrix constructed from the basis functions in eq 17 becomes

nonhermitian. As a result, the eigenenergies are different from
those obtained by the 3D FGH method. This is further illustrated
by the last column in Table 1. There the wave functionΨ,
obtained using the Eckart bond Hamiltonian with Morse plus
harmonic basis functions, is expressed in Radau coordinates and
the energy is then obtained as〈Ψ|H|Ψ〉 where H is the
Hamiltonian in Radau coordinates. It is clear that the eigen-
energies now are larger than for the 3D FGH approach but
converge toward the same value as the basis set size increases.

The influence of the nonhermiticity of the Eckart bond
Hamiltonian matrix on the lowest vibrational level is rather
small. The nonhermiticity of the Hamiltonian matrix has
somewhat stronger impact on the higher vibrational level in
Table 1, and this is expected to get worse as still higher levels
are studied.

B. The First Band of the He I Photoelectron Spectrum of
OClO. Mok et al.44 have carried out an anharmonic Franck-
Condon simulation of the He I photoelectron spectroscopy of
the OClO molecule using the three-dimensional ab initio
potential energy surface of Peterson35 for the ground state of
the neutral OClO molecule and the two-dimensional ab initio
potential energy surface of Peterson and Werner36 for the ground
state of the cation. They however modified the potential energy
surface of the neutral OClO to have the experimental equilibrium
geometry. Thus, in their iterative Franck-Condon analysis Mok
et al.44 could derive a corresponding “experimental” equilibrium
geometry of the cation ground state.

Using a two-dimensional time-dependent wave packet method
in Jacobi coordinates, Mahapatra and Krishnan45 produced the
experimental He I photoelectron spectrum43 in the first band.
They employed the two-dimensional ab initioC2V potential
energy surfaces of Peterson and Werner36 and found an intensity
maximum at the photoelectron spectrum band origin in contrast
to the experiments. By instead using the modified cationic
surface derived by Mok et al., they obtained better agreement
with the experimental spectrum. The reduced dimensionality
results of Mok et al.44 and Mahapatra and Krishnan45 suggested
that the asymmetric stretch plays only a marginal role in the
electronic transition process.

Below we use the three-dimensional wave packet method in
Radau coordinates and the potential energy surfaces specified
in section II to calculate the first band of the photoelectron
spectrum of OClO. In agreement with the reduced dimensional-
ity simulations,45 we find that the asymmetric stretch is not
active in the transition process. Our calculated spectra agree
better with the experimental spectrum using the improved cation
equilibrium geometry of Mok et al. than using the equilibrium
geometry of the original ab initio potential energy surface.
However, our full dimensional calculation using the ab initio
equilibrium geometry of the cationic ground state does not lead
to a maximum at the band origin, in contrast to the two-
dimensional work of Mahapatra and Krishnan. This is discussed
below as is a small modification to the equilibrium geometry
of Mok et al. which further improves the reproduction of the
experimental photoelectron spectrum.

Our computed results using the 3D wave packet method and
the ab initio potential energy surfaces of Peterson and Wern-
er,35,36 with the extension to 3D for the cationic surface, are
shown in the upper panel of Figure 3. We have set the adiabatic
ionization energy (AIE) to 10.33 eV, which is higher than the
ab initio value by about 0.1 eV. The adjustment of the AIE is
necessary to correctly reproduce the locations of the spectral
peaks. This is consistent with the results of Mahapatra and
Krishnan.45 The spectrum clearly shows two different vibrational

Figure 2. One-dimensional cuts through the ground-state OClO
potential energy surface along the variablesR1 (or R2) andæ in Radau
coordinates. In each panel, two coordinates are at their equilibrium
values. The first three eigenfunctions for each potential curve are found
by the one-dimensional Fourier grid Hamiltonian method and shown
in the figure. There are 64 grid points alongR1 (or R2) and 32 alongæ.

TABLE 1: The Two Lowest Eigenvaluesa of OClO on the
Three-Dimensional Potential Energy Surface of Peterson35

no. of
eigenfunctionsb,c method A method B method C

(0,0,0) (4,4,4) 1264.2251 1264.0866 1264.3326
(5,5,5) 1264.1857 1263.9700 1264.2153
(6,6,6) 1264.1795 1263.9416 1264.1867
(7,7,7) 1264.1784 1263.9357 1264.1807
(9,9,9) 1264.1782 1263.9336 1264.1785

(0,1,0) (4,4,4) 1714.9111 1714.4980 1714.8325
(5,5,5) 1714.2251 1713.9174 1714.3053
(6,6,6) 1714.1322 1713.8146 1714.1482
(7,7,7) 1714.1177 1713.7863 1714.1199
(9,9,9) 1714.1144 1713.7812 1714.1147

a The eigenvalues are obtained by the three-dimensional Fourier grid
Hamiltonian method (A) or using Morse plus harmonic basis functions
(B). In method C, the wave function obtained by method B is
transformed to Radau coordinates and the energy is then obtained as
〈Ψ|H|Ψ〉 whereH is the Fourier grid Hamiltonian in Radau coordinates.
The zero of energy is at the classical minimum of the potential.b The
first two numbers are the number of the basis functions along the
variablesR1 andR2 in Radau coordinates orr1 and r2 in bond bond-
angle coordinates. The third number is the number of basis functions
in the angular coordinate.c For method A, the one-dimensional basis
sets along each coordinate are converged, and the numbers indicate
how many eigenfunctions are kept in each coordinate for forming the
direct product basis.
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progressions, a quite strong progression along the symmetric
stretch and a relatively weak one along the bending mode, in
agreement with the experimental observation; see Figure 4. The
energy distances between the peaks of the two progressions are
125 and 66 meV, corresponding respectively to the symmetric
stretch and bending vibrational frequencies of the ground
electronic state of OClO+.

The maximum of the band in the upper panel in Figure 3
does not appear at the band origin, but at the second peak, which
is different from the results of the two-dimensional work of
Mahapatra and Krishnan45 where the maximum appears at the
band origin. This may result from the difference between the
equilibrium geometries of the ground electronic state of the

neutral OClO molecule of the different ab initio works which
are used in the polynomial expansion of the corresponding
potential energy surface. In our calculation, the three-dimen-
sional ab initio surface of Peterson is used,35 while in the work
of Mahapatra and Krishnan, the earlier two-dimensional surface
reported by Peterson and Werner was used.36

Our calculated results using the equilibrium geometry of Mok
et al. for the cation44 are depicted in the middle panel of Figure
3. This equilibrium geometry gives results in better agreement
with the experiment than that of the ab initio work;36 compare
this to Figure 4 where the first photoelectron band of Flesch et
al.43 is reproduced. The third peak of the symmetric stretch
progression is a little larger, but the first peak of the same
progression is a little smaller, compared to the results of the
experiment of Flesch et al.43 and the anharmonic Franck-
Condon calculations.44

In the anharmonic Franck-Condon work of Mok et al.,44 the
2D ab initio potential energy surface for the cation36 and the
3D ab initio potential energy surface35 for neutral OClO were
used, but for neutral OClO the equilibrium geometry was
modified as stated above. The overall shape of the spectrum
sensitively depends on the relative equilibrium geometries of
the ground electronic states of the neutral OClO and its cation.
Therefore, the equilibrium geometry of the cation derived by
Mok et al.44 does not work perfectly together with the ab initio
equilibrium geometry for the neutral OClO molecule. Here we
assume that the ab initio equilibrium geometry of the three-
dimensional potential energy surface of the neutral molecule
has been obtained accurately and optimize the equilibrium
geometry of the cationic ground state by iteratively comparing
with the experimental photoelectron spectrum.

We find that by usingre ) 2.678 au andθe ) 121.8° in the
polynomial expansion of the potential energy surface of the
cation, a spectrum in good agreement with the experimental
observation is obtained. Compared with the parametersre )
2.672 au andθe ) 121.8° of Mok et al.,42 the value ofre has
been increased by 0.006 au. The original ab initio values36 were
re ) 2.6897 au andθe ) 120.78°. The spectrum corresponding
to the new equilibrium geometry of the cation is shown in the
bottom panel of Figure 3, which can be compared with the
experimental photoelectron spectrum in Figure 4. There is clear
improvement using the parameters of our modified equilibrium
geometry. In Table 2, we summarize the parameters in the
polynomial expansion of the potential energy surface for the
cationic ground electronic state which we found to best
reproduce the experimental photoelectron spectrum. The nu-
merically calculated absorption spectrum is quite sensitive to
the parameters in Table 2, so the new values are significantly
different from those of Mok et al. However, the accuracy of
our modified equilibrium geometry depends on the quality of
the used potential energy surfaces and the approximation that
the OClO molecule does not rotate.

IV. Summary

In this work, we introduce a three-dimensional time-depend-
ent wave packet method in Radau coordinates based on the
Fourier grid Hamiltonian method. The fast Fourier transform
is used in all degrees of freedom to realize the actions of the
kinetic energy operators on the wave packet. The propagation

Figure 3. Calculated first photoelectron band of the OClO molecule.
Upper panel: using the ab initio equilibrium geometry of the cationic
ground state. Middle panel: using the improved equilibrium geometry
derived by Franck-Condon analysis.44 Bottom panel: using the
parameters listed in Table 2. The bottom spectrum reproduces the
experimental spectrum best. Before Fourier transformation, the time
autocorrelation function has been exponentially damped with a
parameter value which is equivalent to convoluting the spectrum with
a Lorentzian function with fwhm of 30 meV.

Figure 4. Experimental first photoelectron band of the OClO molecule.
Reprinted from the work of Flesch et al.43 Copyright 1971 American
Chemical Society.

TABLE 2: Improved Parameters for the Cation Ground
Electronic State

re (au) θe (deg) Te (eV)

2.678 121.8 10.33

Time-Dependent Wave Packet Calculations J. Phys. Chem. A, Vol. 108, No. 42, 20049231



is performed by the second order split operator method for a
total angular momentum of zero. The triatomic Hamiltonian in
Radau coordinates is identical in form with that in Jacobi
coordinate, but snapshots of the wave packet in Radau coordi-
nates can be approximately interpreted as bond bond-angle
(Eckart bond) coordinates. This aspect is of particular interest
in simulating real-time pump-probe experiments. We can
alternatively calculate the dynamics in Eckart bond coordinates,
but this involves more operators and therefore more computa-
tional time. Because of the similarity of the Jacobi and Radau
Hamiltonians of triatomic systems, the code based upon the
method introduced here can easily be adopted to study systems
which are better described in Jacobi coordinates.

To calculate the photoelectron spectrum, we first find the
lowest vibrational eigenfunction of the ground electronic state
of the neutral nonrotating OClO molecule. This is done by using
a direct product of one-dimensional eigenfunctions found by
applying the Fourier grid Hamiltonian method of Marston and
Balint-Kurti20 to each of the three Radau coordinates in turn,
keeping the other two fixed at their equilibrium values. The
potential energy surface used in the calculation is the three-
dimensional one reported by Peterson.35 Comparing the eigen-
values obtained in this way with results from Morse plus
harmonic basis function calculations, we found that the presented
method works well.

The wave function obtained for the ground vibrational level
is used as the initial wave function and propagated on the ground
electronic state of the cation. The autocorrelation function is
obtained and Fourier transformed to give the first band of the
photoelectron spectrum of the OClO molecule. In the calcula-
tion, the two-dimensional potential energy surface of the cationic
ground electronic state of Peterson and Werner36 has been
extended to a three-dimensional one by assuming a harmonic
asymmetric stretch. The spectrum obtained from the three-
dimensional calculation is similar to that of a previous two-
dimensional model45 and an anharmonic Franck-Condon
calculation.44 In all cases the asymmetric stretch is inactive in
the ionization transition.

Assuming that the three-dimensional potential energy surface
of the ground electronic state of the OClO molecule is accurate,
we modified three parameters for the potential energy surface
of the cationic ground electronic state in order to obtain
improved agreement between the calculated and experimental
photoelectron spectrum. The parameters are given in Table 2.
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(50) Alcamı́, M.; Mó, O.; Yáñez, M.; Cooper, I. L.J. Phys. Chem. A

1999, 103, 2793.
(51) Balint-Kurti, G. G.; Fu¨sti-Molnár, L.; Brown, A.Phys. Chem. Chem.

Phys.2001, 3, 702.
(52) Carter, S.; Handy, N. C.Mol. Phys.1986, 57, 175.

9232 J. Phys. Chem. A, Vol. 108, No. 42, 2004 Sun et al.


