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A transformed Hamiltonian for a triatomic molecule in Radau coordinates is employed for time-dependent
wave packet calculations. The first photoelectron band of the OCIO molecule is calculated by propagating
the wave packet on a three-dimensional Fourier grid with the split operator method. To find the intial wave
function, we first calculate the few lowest one-dimensional eigenfunctions along each Radau coordinate by
the Fourier grid Hamiltonian method. The direct product of these eigenfunctions is then used as basis set for
obtaining the initial ground state vibrational wave function, which in this way is expressed directly on the
three-dimensional Fourier grid. Consistent with the results of a previous two-dimensional study, we find that
the asymmetric stretch plays little role in the photoionization process. An improved equilibrium geometry for
the potential energy surface function of the ground electronic state of Q@ found by iteratively comparing

with the experimental photoelectron spectrum. Using the approach employed here, it is easy to treat a time-
dependent Hamiltonian.

I. Introduction transforms if such are used in a wave packet propagéfitmus,

the numerical efficiency is lower than if Jacobi coordinates are
equation play an important role in the description of atomic UYSeéd. where the evaluation of the Laplacian operator only
and molecular process&s. In many realistic molecular calcula- ~ '€duires three forwardbac'kward Fourier transforms.. Hovyever,
tions, the numerical method is often to first solve the electronic there exists a set of coordinates named after Rédun which

structure problem to produce a set of potential energy surfacestn® time-dependent wave packet for a triatomic molecule
and then to consider the nuclear motion quantum dynamically. "€Seémbles the motion in Eckart bond coordinates, particularly
As the computational time increases exponentially with the if the central atom is heavy. Conveniently, the triatomic
number of degrees of freedom of the system, it is necessary toHamiltonian in Radau coordinates is identical in form to that
consider which coordinate system to employ. This usually meansin Jacobi coordinates:” Thus, only three Fourier transforms
working in a body fixed frame, but there does not seem to exist are required to propagate the wave packet one time step in Radau
a special coordinate system with general advantages for everycoordinates.

problem and system of interest. Katz efdbund in a com- An attractive aspect of the time-dependent wave packet
parative study at most a factor of 3 difference in computer time method is that much insight can be obtained by inspecting
between calculations employing four different coordinate sys- snapshots of the wave packet at regular time intervals. From
tems, once the grid parameters had been optimized using a phasthe snapshots of the wave packet in Radau coordinates it is easy
space criterid.There are, however, some general considerations to visualize the nuclear motion because of the resemblance
which are helpful in choosing the coordinates for the system of between the Radau and Eckart bond coordinates. This aspect
interest. For instance, hyperspherical coordinate systems, whichmay be of special interest in real time studies of puppbe
employ only one radial coordinate to describe all arrangement experiments. In this work we employ Radau coordinates to
channels, can reduce the number of grid points required in calculate the first band of the He | photoelectron spectrum of
studying chemical reactions or molecular dissociatfdsing OCIO.

Jacobi coordinates for describing the dynamics of atdatom The paper is arranged as follows: Section Il contains theory.
van der Wagls complexes and triatomic molecules having one It first revisits the triatomic Hamiltonian in Radau coordinates.
atom much lighter than the other tifanay be advantageous. — rq it is explained how the initial vibrational ground state wave

Among the common body-fixed coo_rdmates describing tri- function is obtained and how the wave packet is propagated on
%?Ti'gug?zlﬁ]cgm?ﬁé iﬁt?;??:gﬂg%olﬂ:\gf; "’Hﬁe atcrii\é?g\rtﬁigeousa three-dimensional .Fourier grid using t.he split-operator method.
Hamiltonian of a molecule in Eci<art bond coordinates is Further, some detalls_on the calculation of the photoelectr_on
complex, and it requires many forward and backward Fourier spectrum, the po_tentlal energy surfaces and the numerical

’ parameters are given. In section Ill, the results are presented

"The work was performed during a visit to"@borg University. and discussed. A brief investigation of the numerical perfor-

E-mail: zsun@dicp.ac.cn. mance for calculating the vibrational eigenenergies of OCIO is
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Eckart Bond Coordinates In the numerical implementation a transformed form of
the Hamiltonian in eq 1 is used. It is obtained by setting
Y(R,Ry,¢) = ®(Ry,Ry,¢) sin~12p18 where ®@ is the wave
function for eq 1. The new Hamiltonian is

2
T (e
MR MRS \dp® 4sin‘yp

V(R,R9.1) (2)

The volume element for kh eq 2 isa3 dR; dR; dg, where
o? = mg/(my + M + mg). my andmy, are the masses of the two
oxygen atoms, andy is the mass of the chlorine atom. This
transformed Hamiltonian has singularitiesat= 0 andg = .
Special attention must be paid to this when using the Hamil-
tonian for cases where collinear geometries occur. By the
transformation, the mixture of local and nonlocal operators of
the same coordinate disappears, which otherwise prohibits the
use of the split-operator method for propagating the wave
Figure 1. Triatomic Radau Ry, Ry, ¢) and Eckart bondrg, rz, 6) packet!® For cases where collinear geometries occur, a useful
coordinates. For OCIOm andm; are the oxygen atoms amd; the Hamiltonian is obtained by a change of variable frgno cos
chlorine atom. PoinB is the center of mass of the two oxygen atoms, . i the Hamiltonian in eq 1. However, the grid then becomes
C is the triatomic center of mass, aRds a canonical point satisfying . . . .
the conditionMB x CB — PE. eql_Jldlstant in the variable cags rather than inp. Further, the
split-operator method cannot be used to propagate the wave
presented together with the calculated first photoelectron bandpacket.
of the OCIO molecule. Finally an improved equilibrium Often the potential energy surfaces of triatomic molecules

geometry for the ground electronic state of OCIi® put forth. are expressed in Eckart bond coordinates. The relationship
We summarize our findings in section IV. between RadawR(,Rx,¢) and Eckart bondr,rz,6) coordinates
can be written as

Il. Theoretical Method

A. Triatomic Hamiltonian in Radau Coordinates. The R, = \/(1 + a)2r12 + b2r22 + 2(1+ a)bryrycos  (3)
traditional Radau coordinates of a triatomic molecule are shown
in Figure 1.R;, Ry, and ¢ constitute the Radau coordinates, R,= \/(1 +b)%r,2 + a’r,? + 2(1+ b)ar,r,cos6  (4)

which resemblea, rp, and 6, the bond lengths and the bond

angle in Eckart bond coordinates. For completeness, a brief cosg = (R?+ R,2 —r,®> — r,> + 2r,r, cos6)/(2R,R,) (5)

description for setting up Radau coordinates is given here. In

Figure 1, pointC is the triatomic center of mass, and for OCIO  wherea = (o« — 1)m/(my + mp) and b = (@ — 1)my/

point B is the center of mass of the two nonbonded oxygen (my, + my). The Jacobian factors wrt to Cartesian coordinates

atoms. PoinfP is one of the canonical point8.As measured are o 3R12R,%sin ¢ dR; dR, dg andr,2r,? sin 6 dry dr, dé for

from B, the distance t® is the geometric mean of the distance the Radau and Eckart bond coordinates respectively, which is

to M andC, that is,MB x CB = PB?. For OCIO,M indicates useful in transforming between these coordinate systems.

the position of the chlorine atom. Although poldepends on B. The Initial Wave Function. Before propagating the wave

the values of the bond lengths and the bond angle, it varies packet, its initial form has to be defined. For the current

little when the central atom is heavy. Therefore, for some calculation of a photoelectron spectrum, we need the lowest

triatomic systems we approximately obtain the nuclear motion vibrational eigenfunction of the ground electronic state of the

in Eckart bond coordinates from snapshots of the time-dependenteutral OCIO molecule, in which most of the population initially

wave packet even if it is represented in Radau coordinates. Weresides. Here we introduce a method for finding the initial wave

note that the OCIO molecule has a relatively heavy central atom. packet on a three-dimensional Fourier grid, which is based on
The Hamiltonian in Radau coordinates for a nonrotating the Fourier grid Hamiltonian meth&t! and resembles the

triatomic molecule in atomic units i method used by Fti-Molnar et all? for finding eigenvalues
) 5 of the HOBr molecule.
f=— 1 9 1 9 To obtain one-dimensional basis functions for each of the
2m, 8R12 2m, 3R22 body-fixed variablesR;, R, and ¢, we use the 1-dimensional
1 1 1)1 9. 3 Fourier grid Hamiltonian (FGH) method of Marston and Balint-
E( >+ Slea o 2 osing— + Kurti2® for finding diatomic vibrational eigenfunctions. This is
mR" MR, }sm pag i done by varying one variable and fixing the other two at their
V(R,R,¢,t) (1) equilibrium values. The resulting Hamiltonian matrix is then

diagonalized in a one-dimensional Fourier grid basis. In this
We note that for the OCIO molecule, setting the total angular way, we obtain three sets of eigenfunctions, one set for each of
momentum) = 0 is an approximation, even at zero temperature, the three variables. The number of eigenfunctions kept in each
as the ro-vibrational ground state has an angular momentum ofset is truncated before the direct product of them is formed and
=1/, used as the basis set for solving the complete three-dimensional
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problem. When calculating the Hamiltonian matrix for this basis

Sun et al.

To evaluate the action of the time evolution operator on the

set, the actions of the kinetic energy operators can be realizedwave function, the split-operator method is apptfed2°

by utilizing three one-dimensional transformation matrices from
the space coordinates to momentum coordin®tes, by the

fast Fourier transform technigqéd&For both of these alternatives,
we find that the diagonalization procedure used here is efficient
for the current study of the OCIO molecule. For simplicity we
refer to the three-dimensional FGH method now described as
the 3D FGH method. We also note that the one-dimensional
potential cuts are helpful for deciding the grid ranges to be used
in the calculations.

C. Time Evolution Operators. To accurately and effectively
calculate the action of the operators of the Hamiltonian on the
wave packet, a DVR grié? or Lagrange mesP, is often
used?~26 Recently, it has been shown that the Fourier grid

Hamiltonian method essentially is a special case of a Lagrange ) -~ . .
d The five kinetic energy operators are nonlocal in coordinate

mesh calculation in which the kinetic energy operator is treate
by a discrete Fourier transforfi.That is, according to the
nomenclature of the DVR method, the transformation of the
grid or DVR basis function to the finite basis representation is
done using discrete Fourier transformation and the grid points
are evenly distributed. The Fourier grid Hamiltonian method is
developed from physical insigh£°but has a firm mathematical
basis?>~2’” The FGH was developed to solve eigenenergy
problems. It is numerically fast and easy to apply a discrete
fast Fourier transform for realizing the action of the time
evolution operator on the grid wave function and thus evolve
the studied system in time.

The Hamiltonian in eq 2 can be rewritten as

H=To + T + T, + UppRuR0t) =
1 1\

m,R,2 mszz)Bf/)2
AV + V(R,R,¢,t) (6)

32

where the two last terms define the operaﬁigg(Rl,Rz,gp,t) and
1 1

( rr12R22) (4 sin’p

In order to study dynamics, the time-dependent Sdimger
equation

=_1
AV=-3

1
mlRl2

1
+ z) ™

9 A A A a
IEIP(Rl,RZ,qa,t) = [TRi + TRz + T(ﬂ + Upot(Rl,Rz,(p,t)] X
Y(RLRe.) (8)

may be solved. The formal solution of the equation is

W(R,R,¢,t) = U(R, R0, 1) W(ty) =
H s T T " ! 1
exp( i fto [T, + Tr, + T, + Upol RuRo.1)] dt) x
Y(RLR¢.t) (9)
To apply the short time split-operator method to propagate the
initial wave function, the time is divided intdl intervals in

each of which the Hamiltonian changes little. The evolution
operator can then be expressed as

N—-1
URLR,.t) = [TURLR,¢. (N + 1AL + ty,nAt + t,)

"~ (10)

~

U(R,,R,,¢,At,0) =
exp{ — IAt[Tg + Tg + T, + U o(R1, Ry, AU2)]} ~
exp(— iAtTR1/2) exp(—iAtTRZ/Z) exp(-iAtT,/2) x
exp IAtU (R, Ry, 0, AU2)Ix exp(—iAtT /2) x
exp(—iAtTRZ/Z) exp(—iAtTRl/Z) (12)

which gives correct terms up to second order on expanding the
exponentials. Applying the operatoR;,R;,¢,At,0) in eq 11
repeatedly, the last exponent in eq 11 can be merged with the
first one?® Effectively, we thus get a product of six operators
in each time step.

space and are evaluated by fast Fourier transform. For each of
them the second derivative is found keeping the other two
coordinates fixed. The potential operator, which is local in
coordinate space, acts in coordinate space. When the Fourier
transform method is combined with the split-operator technique
to propagate the initial wave packet, nonlocal and local operators
of the same coordinate must not appear within a single term in
the Hamiltoniart® This is one reason for using the transformed
Radau Hamiltonian in eq 2.

Utilization of the split-operator method together with fast
Fourier transform in the three-dimensional propagation allows
for a highly efficient computer code and easy inclusion of effects
of a time dependent external field. This is useful for studying
ultrashort laser pulse interaction with molecules which is of
current interest, particularly in coherent control involving shaped
laser pulse&8® We notice the similarity of the triatomic
Hamiltonian in Jacobi coordinates with those in eqs 1 and 2,
and thus how easily the computer code is adapted to Jacobi
coordinates.

D. Photoelectron Spectrum.To calculate a photoelectron
spectrum using the time-dependent wave packet approach, we
first obtain the vibrational ground state wave function of the
ground electronic state of the neutral OCIO molecule. Then this
wave function is vertically shifted to the potential energy surface
of the ground electronic state of the catf@nwhere it is
propagated. Finally the photoelectron spectrum is obtained as
the Fourier transform of the wave function autocorrelation
function.

The Fourier transform of the autocorrelation function can be
written®!

2 © _J(E+Eg)t~r

I(E) O [RelRe "¢ (1) ot (12)
whereRe is the transition dipole moment between the ground
electronic states of the neutral OCIO and its cation, which
usually depends on the kinetic energy and the molecular
geometry, but here is assumed to be a consEgns the energy
of the vibrational ground level of the ground electronic state of
the OCIO molecule an@'(t) is a damped time autocorrelation
function of the wave packet evolving on the ionic electronic
state. The autocorrelation functi@Xt) is calculated by

C(t) = QW(t = 0)le ™ w(t = 0)I=
(W(0)|W(H) = HIJ(— %)‘lp(%)ﬂ (13)

We begin with a real wave pack&(t=0), and therefore,
from a wave packet propagation timeté#, we can obtain the
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correlation function at tim&32 C'(t) is obtained by multiplying
C(t) with an exponential function
C'(t) = C(b)f(t) = C(t) exp(—t/7) (14)

This not only results in a smooth spectrum, but also
convolutes the spectrum with a Lorentzian function of fwhm
(full width at half-maximum)l’ = 2/t which can be chosen to
approximately reproduce the experimental broadening of the
spectral peaks.

E. Potential Energy Surface for OCIO". The OCIO
molecule plays an important role in the destruction of atmo-
spheric ozon® and has an interesting phase-dependent photo-
chemistry3* Therefore, a substantial amount of theoretical and
experimental work has been devoted to the systefi.An ab
initio based three-dimensional potential energy surface of the
ground state of the neutral OCIO molecule has been reported
by Peterson and Werrférand was used in our calculations.
For the cation, we extend to three dimensions the two-
dimensional MRCI potential energy surface of the ground
electronic state of the cation reported by Peterson and Wé&tner,
which was used in the work by Mok et #land Mahapatra et
al.*>47 For Cy, geometries, the potential energy surface of the
cation has been fitted to a polynomial of the form

V(S.8) = 3 C;(AS)/(AS) (15)
1j

where$; is the symmetric stretch coordinate (+ rz)/~/§ and
S the bending coordinaté (r4, r,, andf are the Eckart bond
angle coordinates).

To obtain a three-dimensional potential energy surface for
the cation ground electronic state, we first calculate the

dimensionless normal coordinates of the ground electronic state

of neutral OCIO* They are referred to &3y1, Qg2 andQ, and
describe the symmetric stretch, bending, and asymmetric stretc
vibrations, respectively. These were calculated byGRematrix
method of Wilson et & using the experimentally deduced force
field of Miyazaki et al*® and assuming a harmonic vibrational
motion. TheGF-matrix method gives mass-weighted coordi-

nates which are then transformed into the dimensionless normal

coordinates by multiplying withw;’2 (w; being the frequency

of the ith vibrational mode, in atomic units). Then the
dependence of the potential energy surface on the asymmetri
stretch coordinates = (r1 — rz)/«/ﬁ is approximated by a
harmonic potentiaV/(S$) = kiS$%2 = w,Qu?2. The parameter

k, is the force constant along the asymmetric stretch coordinate
of the ground state of OClOandw, is the harmonic frequency,

for which we adopted the cation ab initio value of 1280¢ém
reported by Alcarhiet al®® Therefore, the potential energy
surface used to model the cation ground state is expressed a:

VS.$:8) = T CAS)AS) +V(S)  (16)
]

Mahapatra and co-workéPs*” used this method to extend other
C,, potential energy surfaces to three-dimensions in their
calculations involving the neutral OCIO and its anion and cation.
F. Numerical Parameters for the Wave Packet Calcula-
tions. In the calculations, the grid ranges are [1.6, 3.9] in atomic
units forR; andR; and [1.9, 3.0] in radians fap. We note that
the equilibrium geometries of the OCIO molecule and its cation
are far from linear with deep bending wells. Therefore, we do
not need to worry about the singularities of the Hamiltonian in
eq 2. The grid numbers fdr;, R, and ¢ are 64, 64, and 32

he

C
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respectively, which is enough to converge the calculations. The
time stepAt used in the calculations is 0.25 fs.

[ll. Results and Discussion Application to OCIO

Cornford et al. and Flesch et al. recorded the He | photo-
electron spectrum of the OCIO molecdfeThe spectrum of
Flesch et al., which has the better energy resolution, showed
four distinct bands between 10 and 22 ¥\The first band is
due to the ionization of the 3lunpaired electron of the OCIO
molecule which thereby forms tH#&; ground electronic state
of the cation®3 Two distinct vibrational progressions within this
band were assigned to the symmetric stretch and bending
vibrational modes of the cation OCIOThe real time photo-
dissociation dynamics of OCIO has also been studied using the
ultrashort pump-probe techniqué? These experiments observed
apparent biexponential decay after the pump excitation, but the
explanations to this phenomenon véafHere we only report
calculated He | photoelectron spectra, but first we discuss the
accuracy of the eigenfunctions obtained by the 3D FGH method
outlined above.

We note that ionizing an electron from the ground state of
the OCIO molecule to form OCIOin the ground state is a
perpendicular transition. That means that the parity of the initial
total wave function is opposite to that of the final wave function,
which has been thoroughly discussed in ref 51. Even though
the angular momentum changes during the excitation process,
all results presented here are for a total angular momentum of
zero.

A. Vibrational Eigenfunctions on the Fourier Grid. As
mentioned, the potential energy surface of the ground electronic
state employed in the calculation is the three-dimensional ab
initio based surface reported by Peterdo@ne-dimensional
potential cuts along the variabl&s (or R;) and¢ are shown
in Figure 2. In each panel two coordinates are fixed at their
quilibrium values. The figure indicates that only part of the
angularg range, O tor, is necessary to set up the grid. The
lowest three eigenfunctions of the two (three) potential cuts are
shown. The eigenvalues of the three-dimensional potential
energy surface are found using a direct product basis of the
one-dimensional eigenfunctions. Retaining the five lowest
eigenfunctions along each degree of freedom in the direct
product is enough to make the lowest vibrational level converge
to within 0.01 cnt?. Results for the two lowest eigenfunctions
are listed in Table 1. These are compared with eigenvalues
obtained using the Eckart bond Hamiltonian in ref 52 and
expanding the wave function in a direct product basis of one-
particle functions in Eckart bond coordinates

>

S|n 6 WP

W(rprp0) =——
S

Cnrlcn rZCn0¢’nr1(r 1) ¢nr2(r2) d’ne(e)
an

wheregn,(ri) are Morse wave functions amgl,(6) are harmonic
oscillator wave functions. This method has been shown to give
good convergence for the ground electronic state of the OCIO
molecule!®

From Table 1, we see that the three-dimensional Fourier grid
Hamiltonian approach works well for obtaining the initial ground
vibrational wave packet for the time-dependent calculation. The
3D FGH approach shows faster convergence than the Morse
plus harmonic basis functions method as a function of basis
size, in the present application. We however note the difference
in absolute values between the eigenvalues obtained from the
Morse plus harmonic basis functions and the corresponding
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nonhermitian. As a result, the eigenenergies are different from
those obtained by the 3D FGH method. This is further illustrated
by the last column in Table 1. There the wave functidin
obtained using the Eckart bond Hamiltonian with Morse plus
harmonic basis functions, is expressed in Radau coordinates and
the energy is then obtained d¥|H|WO where H is the
Hamiltonian in Radau coordinates. It is clear that the eigen-
energies now are larger than for the 3D FGH approach but
converge toward the same value as the basis set size increases.

0.00- The influence of the nonhermiticity of the Eckart bond
Hamiltonian matrix on the lowest vibrational level is rather
2.1 24 27 3.0 33 small. The nonhermiticity of the Hamiltonian matrix has
somewhat stronger impact on the higher vibrational level in
RqorR;(a.u) Table 1, and this is expected to get worse as still higher levels
are studied.

B. The First Band of the He | Photoelectron Spectrum of
OCIO. Mok et al** have carried out an anharmonic Franck
0.04+ Condon simulation of the He | photoelectron spectroscopy of
the OCIO molecule using the three-dimensional ab initio
potential energy surface of Peterdofor the ground state of
the neutral OCIO molecule and the two-dimensional ab initio
potential energy surface of Peterson and Wé#frer the ground
state of the cation. They however modified the potential energy
surface of the neutral OCIO to have the experimental equilibrium
0.00- geometry. Thus, in their iterative Franeicondon analysis Mok
. . . . et al** could derive a corresponding “experimental” equilibrium
1820 22 24 26 28 geometry of the cation ground state.

® (rad) Using a two-dimensional time-dependent wave packet method

Figure 2. One-dimensional cuts through the ground-state OCIO n ‘]aC.ObI c:)?rgln?teﬁ, tl\/lalhapt)atra andtﬁgl§m?tfmof§1utc%d tf:je
potential energy surface along the varialfegor R;) andg in Radau expenimenial He | photoe ‘?C ron_spec rm h e s ar_l :
coordinates. In each panel, two coordinates are at their equilibrium They employed the two-dimensional ab init@,, potential
values. The first three eigenfunctions for each potential curve are found energy surfaces of Peterson and Wethand found an intensity

by the one-dimensional Fourier grid Hamiltonian method and shown maximum at the photoelectron spectrum band origin in contrast
in the figure. There are 64 grid points aloRg(or R) and 32 alongp. to the experiments. By instead using the modified cationic

TABLE 1: The Two Lowest Eigenvalues of OCIO on the surface derived by Mok et al., they obtained better agreement

Three-Dimensional Potential Energy Surface of Petersc with the experimental spectrum. The redqced dimensionality
results of Mok et af* and Mahapatra and Krishr&rsuggested

0.064

0.03

Energy (a.u.)

0.02

Energy (a.u.)

eigenr;ﬁhf:){ion%c method A method B method C that the asymmetric stretch plays only a marginal role in the
electronic transition process.
(0,0,0) (4,4,4) 1264.2251 1264.0866 1264.3326 . . .
(5.5.5) 1264.1857 1263.9700 12642153 Below we use the three-dlmensm_mal wave packet methoq in
(6,6,6) 1264.1795 1263.9416 1264.1867 Radau coordinates and the potential energy surfaces specified
(7,7,7) 1264.1784 1263.9357 1264.1807 in section Il to calculate the first band of the photoelectron
(9,9,9) 1264.1782  1263.9336 1264.1785  spectrum of OCIO. In agreement with the reduced dimensional-
0.1.0) (4.4.4) 17149111  1714.4980 1714.8325 jty simylations?® we find that the asymmetric stretch is not
Egggg gﬂﬁg% gig:gﬂg gﬂ:iggg active ir_1 the transiti_on process. Our ca_llculate_d spectra agree
(7,7,7) 1714.1177 1713.7863 1714.1199 better with the experimental spectrum using the improved cation
(9,9,9) 1714.1144 1713.7812 1714.1147 equilibrium geometry of Mok et al. than using the equilibrium

aThe eigenvalues are obtained by the three-dimensional Fourier grid geometry of the original ab initio potential energy surface.

Hamiltonian method (A) o using Morse plus harmonic basis functions However, our full dimensional calculation using the ab initio
(B). In method C, the wave function obtained by method B is €quilibrium geometry of the cationic ground state does not lead

transformed to Radau coordinates and the energy is then obtained a¢0 a maximum at the band origin, in contrast to the two-
(W|H|WwhereH is the Fourier grid Hamiltonian in Radau coordinates. dimensional work of Mahapatra and Krishnan. This is discussed
The zero of energy is at the classical minimum of the poterftishe ~ pelow as is a small modification to the equilibrium geometry

first two numbers are the number of the basis functions along the ¢ \1ok et al. which further improves the reproduction of the
variablesR; andR; in Radau coordinates @k andr, in bond bond- .
experimental photoelectron spectrum.

angle coordinates. The third number is the number of basis functions .
in the angular coordinaté.For method A, the one-dimensional basis Our computed results using the 3D wave packet method and

sets along each coordinate are converged, and the numbers indicat¢he ab initio potential energy surfaces of Peterson and Wern-
how many eigenfunctions are kept in each coordinate for forming the er3536 with the extension to 3D for the cationic surface, are
direct product basis. shown in the upper panel of Figure 3. We have set the adiabatic
energies obtained using the 3D FGH method. This results from ionization energy (AIE) to 10.33 eV, which is higher than the
the two different Hamiltonians and the numerical methods used. ab initio value by about 0.1 eV. The adjustment of the AIE is
Employing the widely used Hamiltonian in bond bond-angle necessary to correctly reproduce the locations of the spectral
coordinate¥52 and proceeding as in ref 19, the Hamiltonian peaks. This is consistent with the results of Mahapatra and
matrix constructed from the basis functions in eq 17 becomes Krishnan?® The spectrum clearly shows two different vibrational
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TABLE 2: Improved Parameters for the Cation Ground

ab initio Electronic State
re (au) 6e (deg) Te (eV)
2.678 121.8 10.33

neutral OCIO molecule of the different ab initio works which
are used in the polynomial expansion of the corresponding
potential energy surface. In our calculation, the three-dimen-
IE (eV) sional ab initio surface of Peterson is uséahile in the work

of Mahapatra and Krishnan, the earlier two-dimensional surface
Mok et al reported by Peterson and Werner was (#ed.

Our calculated results using the equilibrium geometry of Mok
et al. for the catioft are depicted in the middle panel of Figure
3. This equilibrium geometry gives results in better agreement
with the experiment than that of the ab initio wotkgompare
this to Figure 4 where the first photoelectron band of Flesch et
al.*® is reproduced. The third peak of the symmetric stretch
progression is a little larger, but the first peak of the same
IE (eV) progression is a little smaller, compared to the results of the
experiment of Flesch et & and the anharmonic Franek
Improved Condon calculation&’

In the anharmonic FranekCondon work of Mok et al*4 the
2D ab initio potential energy surface for the cafi®and the
3D ab initio potential energy surfatfor neutral OCIO were
used, but for neutral OCIO the equilibrium geometry was
modified as stated above. The overall shape of the spectrum
100 Y 0 sensitively dependsf on the relative equilibrium geometries_ of

’ ) ’ the ground electronic states of the neutral OCIO and its cation.

IE (eV) Therefore, the equilibrium geometry of the cation derived by
Figure 3. Calculated first photoelectron band of the OCIO molecule. Mok et al#4 does not work perfectly together with the ab initio
Upper panel: using the ab initio equilibrium geometry of the cationic equilibrium geometry for the neutral OCIO molecule. Here we

round state. Middle panel: using the improved equilibrium geometr P e
Sorivad by Franckce)ndon ana?ysiS‘! B?)ttom pgnel: usingg e assume that the ab initio equilibrium geometry of the three-

parameters listed in Table 2. The bottom spectrum reproduces thedimensional potential energy surface of the neutral molecule
experimental spectrum best. Before Fourier transformation, the time has been obtained accurately and optimize the equilibrium
autocorrelation function has been exponentially damped with a geometry of the cationic ground state by iteratively comparing
parameter value which is equivalent to convoluting the spectrum with with the experimental photoelectron spectrum.
a Lorentzian function with fwhm of 30 meV. We find that by usinge = 2.678 au and). = 121.8 in the
. polynomial expansion of the potential energy surface of the
Experimental cation, a spectrum in good agreement with the experimental
(Flesh et al) observation is obtained. Compared with the parameters
2.672 au and)e = 121.8 of Mok et al.?? the value ofr. has
!\ been increased by 0.006 au. The original ab initio va@fuesre
Il re = 2.6897 au and. = 120.78. The spectrum corresponding
/\}‘ to the new equilibrium geometry of the cation is shown in the
\’\/\-\/v_. bottom panel of Figure 3, which can be compared with the
' experimental photoelectron spectrum in Figure 4. There is clear
improvement using the parameters of our modified equilibrium
IE (eV) geometry. In Table 2, we summarize the parameters in the
Figure 4. Experimental first photoelectron band of the OCIO molecule. Polynomial expansion of the potential energy surface for the
Reprinted from the work of Flesch et @lCopyright 1971 American cationic ground electronic state which we found to best
Chemical Society. reproduce the experimental photoelectron spectrum. The nu-

progressions, a quite strong progression along the symmetrictmhgr'csrlgmﬁlecrusla;egai?:(gpggqhsepﬁgmn;l'segu:rz Ss'enr?':‘t'lc\:laenif
stretch and a relatively weak one along the bending mode, in P : ’ W vail Ignifi y

agreement with the experimental observation; see Figure 4. Thedlfferent.flrom tho_sg .Of Mok et al. However, the accuracy of
ur modified equilibrium geometry depends on the quality of

energy distances between the peaks of the two progressions ar . L
125 and 66 meV, corresponding respectively to the symmetric e used potential energy surfaces and the approximation that
' the OCIO molecule does not rotate.

stretch and bending vibrational frequencies of the ground
electronic state of OCIQ

The maximum of the band in the upper panel in Figure 3
does not appear at the band origin, but at the second peak, which In this work, we introduce a three-dimensional time-depend-
is different from the results of the two-dimensional work of ent wave packet method in Radau coordinates based on the
Mahapatra and Krishndhwhere the maximum appears at the Fourier grid Hamiltonian method. The fast Fourier transform
band origin. This may result from the difference between the is used in all degrees of freedom to realize the actions of the
equilibrium geometries of the ground electronic state of the kinetic energy operators on the wave packet. The propagation
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is performed by the second order split operator method for a  (9) Barinovs, G; Markovic, N.; Nyman, GChem. Phys. Lett1999

; i teomian i 315 282,
total angular r.nomenFum of Z.ero' .The mator.mc Haml.ltoman In. (10) Fisti-Molnar, L.; Szalay, P. G.; Balint-Kurti, G. Gl. Chem. Phys.
Radau coordinates is identical in form with that in Jacobi 1999110 844s.
coordinate, but snapshots of the wave packet in Radau coordi- (11) Radau, RAnn. Ecole Normale Sujpeor 1868 5, 311.
nates can be approximately interpreted as bond bond-angle28(12) Adamov, M. N.; Natanson, G. A/estn. Leningr. Uni. 1973 4,
(Eckart bo_nd) coord_mates. This aspect is o_f particular interest '(13) Smith, F. TPhys. Re. Lett. 1980 45, 1157.
in simulating real-time pumpprobe experiments. We can (14) Mobius, P.Nucl. Phys196Q 16, 278:Nucl. Phys196Q 18, 224;
alternatively calculate the dynamics in Eckart bond coordinates, Nucl. Phys.1961, 28, 304.
but this involves more operators and therefore more computa- 88 éo?r}-sf?n'BB'TR';TRemhardtjh\{ijbChe[n' Pg%ﬂni%%fg;igg-
H H e H H utclitre, . I.; Tennyson, Jat. J. Quantum e A .
tlona,l tlm_e' Becau§e of ,the similarity of the Jacobi and Radau The definition of the Radau coordinates used in this reference is different
Hamiltonians of triatomic systems, the code based upon the from the traditional form, which is used in the present work.
method introduced here can easily be adopted to study systems (17) Sutcliffe, B. T.; Tennyson, Mol. Phys.1986 58, 1053.

which are better described in Jacobi coordinates. (18) Barinovs, G Markovic, N.; Nyman, GJ. Phys. Chen2001, 105

To ca!culqte the _photoeleptron spectrum, we first fi_nd the 74‘(‘119) Barinovs, G Markovic, N.; Nyman, GJ. Chem. Phys1999 111,

lowest vibrational eigenfunction of the ground electronic state 6705,

of the neutral nonrotating OCIO molecule. This is done by using ~ (20) Marston, C. C.; Balint-Kurti, G. GI. Chem. Phys1989 91, 3571.
a direct product of one-dimensional eigenfunctions found by cOgrln)uEiggtiKg;tlés% G.; Ward, C. L.; Marston, C. Gompt. Phys.
applying the Fourier grid Hamiltonian method of Marston and 22) Li.ght, 3. C.: Hamilton, 1. P.: Lill. J. VJ. Chem. Phys1985 82,

Balint-Kurti?® to each of the three Radau coordinates in turn, 1400.

keeping the other two fixed at their equilibrium values. The  (23) Baye, D.; Heenen, P.-H. Phys. A: Math. Geril986 19, 2041.
potential energy surface used in the calculation is the three- 19&%4213H?g|155 D. O.; Engerholm, G. G.; Gwinn, W. D. Chem. Phys.
dimensional one reported by PetersdiComparing the eigen- (25) Dickinson, A. S.; Certain, P. R. Chem. Phys1969 49, 4209.
values obtained in this way with results from Morse plus  (26) Greenawalt, E. M.; Dickinson, A. S. Mol. Spectrosc1969 30,

harmonic basis function calculations, we found that the presented427.
method works well. (27) Semay, CPhys. Re. E 200Q 62, 8777.

. . . . 28) Feit, M. D.; Fleck, J. A., JrJ. Chem. Phys1983 78, 301.
~ The wave function obtained for the ground vibrational level 229; Feit, M. D.: Fleck, J. A., Jr.; Steiger, ,@%/ Comaput_ Phys1982
is used as the initial wave function and propagated on the ground47, 412.
electronic state of the cation. The autocorrelation function is ~ (30) Eno, L.J. Chem. Phys200Q 113, 453.

; : ; : (31) Heller, E. JAcc. Chem. Red.981 14, 368.
obtained and Fourier transformed to give the first band of the (32) Engel. V.Chem. Phys. Let1992 189, 76. Manthe, U.: Meyer,

photoelectron spectrum of the OCIO molecule. In the calcula- { -p.: cederbaum, L. SI. Chem. Phys1992 97, 9062.

tion, the two-dimensional potential energy surface of the cationic  (33) Vaida, V.; Simon, J. DSciencel995 268 1443.

ground electronic state of Peterson and Wefheas been (34) Reid, P. JJ. Phys. Chem2002 106, 1473.

extended to a three-dimensional one by assuming a harmonic ggg Eggzgﬂ: E'. AAJ.;' \(}Vhe‘i;”ér?hHY?}?%ahér?ﬁ gﬁ§§i992 96, 8948
asymmetric stretch. The spectrum obtained from the three- peterson, K. A.: Werner, H.-ibid 1993 99, 302.

dimensional calculation is similar to that of a previous two- (37) Richard, E. C.; Vaida, VJ. Chem. Phys1991, 94, 163. Richard,
dimensional modé and an anharmonic FranelCondon E. C. Vaida, V.J. Chem. Physl99Q 94, 153.

. 2 X . . . (38) Sun, Z.; Lou, N.; Nyman, GChem. Phys.in press.
;:r?lcyla.tlorf Int all c.?ses the asymmetric stretch is inactive in (39) Esposito, A. P.: Stedl, T, deson, H.; Reid, P. J.: Peterson, K. A.
e ionization transition.

J. Chem. Phys1999 103 1748.
Assuming that the three-dimensional potential energy surface (40) Hubinger, S.; Nee, J. E:hem. Phys1994 181, 247. Marston, G.;

i ; Walker, I. C.; Mason, N. J.; Gingell, J. M.; Zhao, H.; Brown, K. L.; Motte-
of the gr_o.und electronic state of the OCIO mo!ecule is accurate, Tollet, F.- Delwiche, J.: Siggel. M. R. B Phys. B: At. Mol. Opt. Phys.
we modified three parameters for the potential energy surface 1995 ‘31 3387

of the cationic ground electronic state in order to obtain  (41) Davis, H. F.; Lee, Y. TJ. Chem. Phys1996 105, 8142. Furlan,
improved agreement between the calculated and experimentaf-: Scheld, H. A.; Huber, J. Rl. Chem. Phys1997 106 6538. Delmdahl,

- : R. F.; Bakker, B. L. G.; Parker, D. H.. Chem. Phys200Q 112 5298.
photoelectron spectrum. The parameters are given in Table 2. (42) Baumert, T.: Herek, J. L. Zewail, A. . Chem. Phys1993 99,

. 4430. Ludowise, P.; Blackwell, M.; Chen, €hem. Phys. Letfl997, 273
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