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In the present study, we employ a set of different sulfur-nitrogen compounds, which contains eight different
SN bonds of varying polarity, to study descrepancies between experimentally and theoretically derived electron
densities characterized by their topological properties at the bond critical point according to Bader’s quantum
theory of atoms in molecules approach. First, the convergency of the computationally obtained parameters
with respect to the theoretical approach (flexibility of the basis sets, method of computation, influence of
substituents) is presented. A comparison with the experiment is performed by a direct comparison of the
theoretical and experimental counterparts and by an investigation into what extent the various data sets exhibit
relationships to the nature of the bonds. This approach allows testing of the self-consistency of the theoretical
and experimental data, respectively. Finally, the outcomes of the atoms-in-molecules approach is compared
with results obtained from the natural bond orbital approach and natural resonance theory.

I. Introduction

The electron density distribution (ED)F(r ) represents a
fundamental quantity which determines all chemical and physi-
cal phenomena, for example, intra- and intermolecular forces,
molecular geometry, electrostatic potential, and chemical
bonding.1-7 It is the underlying quantity in density functional
theory (DFT)8,9 and is also readily available from wavefunction-
based approaches. However, despite its importance, the density
is discussed less frequently in theoretical investigations, although
it represents a physical observable phenomenon. It is measur-
able, for instance, by high-resolution X-ray diffraction experi-
ments.2,3,6,10

The development of area detectors, often in combination with
the usage of very bright third-generation synchrotron sources,
has opened new horizons for the use of X-ray diffraction in the
experimental determination of the electron density, because the
time necessary for data acquisition shrinks considerably.11-14

A very enticing intrinsic feature of an experimentally determined
electron density is the fact that it includes all many-body effects
(e.g., electron correlation, relativistic effects, influence of the
environment). This renders it an ideal tool to analyze the
shortcomings of theoretical approaches, which, because of the
complexity of the systems, have to neglect or approximate parts
of the interactions. The quantum theory of atoms in molecules
(QTAIM) approach developed by Bader and co-workers,1 in
which the topological properties of the electron density are
interpreted, represents the most straightforward comparison
between experimental results and theory, but other approaches
are also under development.15-19

An even more attractive goal of high-resolution X-ray
diffraction experiments represents their ability to describe large
systems such as biological macromolecules which are still too
large for a reliable theoretical description.20,21One direction of
the ongoing research in this area is the attempt to construct such
systems from the overlay of the density of smaller subunits (e.g.,

single amino acids).14,22-26 It is clear that a success would open
not only the possibility to describe the electronic properties of
biological macromolecules but also the determination of the
bonding strength14,22-27 (e.g., within an enzyme inhibitor
complex, which is essentially for the development of agents
against infectious diseases).

The conditio sine qua non for all of these goals is that the
experimental electron density is not biased by assumptions or
shortcomings of the procedures necessary to get it from the
measured quantities (i.e., Bragg reflections and their intensities).
Indeed, various recent studies indicate that the Hansen-Coppens
multipole formalism,2,28 which is mostly used to derive the ED
from the experimental diffraction data, introduces such a
bias.29-31 It results because the basis sets used to describe the
electron density distribution seem to be not flexible enough to
reflect the subtle details of electron densities in polar bonds.
As discussed by the authors, this seems to be at least partly the
reason for the differences found between experimentally and
theoretically determined topological properties at the bond
critical point (BCP). As shown in many investigations, such
differences appear particularly for polar bonds. These exhibit
nonsymmetric interatomic densities and Laplacian distribu-
tions.2,6,14,22-27,32For nonpolar bonds experimentally and theo-
retically derived, bond topological values are in excellent
agreement.6,33,34It is also found that in most cases experiment
and theory agree qualitatively; for example, in the number of
bond critical points or the number of valence-shell charge
concentrations (VSCC).6,14,35,36A bias could also be introduced
in specific cases where two or more parameter sets of the
multipole model exist, which are of similar quality in residual
density and statistical quality. Such nonuniqueness was dem-
onstrated (e.g., by Peres et al).37

However, the disagreement in the absolute numbers of the
topological properties could also result from shortcomings in
the theoretical description. On one hand, the influence of the
crystal environment on the molecule, which is often not included
in the theoretical description, seems to be too small to explain
the descrepancies between experimental results and theory, as
already shown.38-40 On the other hand, the Hartree-Fock
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approach, for example, is well-known for predicting bonds
which are too polar (e.g., the inclusion of correlation effects is
important to obtain reliable electron densities41-43). The MP2
approach already predicts topological parameters in close
agreement with even more sophisticated approaches such as
MP4 or QCISD.22,44 A similar behavior is found for DFT if
hybrid functionals are used, while results obtained with gradient
corrected functionals deviate more strongly.22,44 Also, the
influence of the flexibility of the AO basis sets employed in
the computations were tested to some extent. An influence is
seen, but it is too small to explain the deviations between
experimental results and theory. However, with the exception
of very small model systems, the tested basis sets do not exceed
triple-ú quality.22,44

Besides the comparison of absolute numbers, an investigation
of the correlations between the topological parameters and the
bonding type can also reveal important information about the
quality of the results. Such correlations are expected and are
used in many investigations.2,3,6,34,45,35One example is the
position of the bond critical point, which, as shown by Cremer
and Kraka, correlates with the polarity of the bond.45 From
Bader’s QTAIM approach,1 correlations are also expected for
the density, its second derivative along the bond path (λ3), and
the bond ellipticity ε, which is obtained from the second
derivatives of the density perpendicular to the bond paths (ε )
λ1/λ2 - 1). The latter also gives information about the
delocalization within a molecule.35,46 Consequently, results
which do not reveal such correlations can be expected to be
biased to some extent. This is especially true if correlations are
found for the less sensitive parameters (e.g., density) but are
missing for more sensitive ones (e.g., Laplacian values). For
the homoatomic CC bonds of C60 fullerene derivatives, Wagner
et al.34 found the expected relationships between the density at
the BCP and the bond distances and between the Laplacian at
the BCP and the bond distances. This shows that high-resolution
synchrotron diffraction experiments are able to give very
accurate descriptions of such covalent nonpolar bonds. However,
whether this also holds true for polar bonds is unclear.

In a previous paper,36 we employed theoretically and experi-
mentally determined electron density distributions of methyl-
(diimido)sulfinic acid H(NtBu)2SMe (1), methylene-bis-
(triimido)sulfonic acid H2C[S(NtBu)2H(NtBu)]2 (2), sulfurdiimide
S(NtBu)2 (3), and sulfurtriimide S(NtBu)3 (4) (see Figure 1) to
elucidate the characters of the different SN bonds. For this
instance, we applied the topological theory of molecular
structure of the QTAIM approach for the interpretation of the
(theoretically and experimentally determined) electron densities
and compared the results to the NBO (natural bond orbital)/
NRT (natural resonance theory) description, which is based on
the wavefunctions obtained from the computations. Experimental
and theoretical values were found to be in good agreement
regarding the overall picture of the nature of the bonds as
obtained from the numbers, shapes, and positions of the VSCCs.
Excellent agreement was obtained for the qualitative spatial
Laplacian distributions and the reactive surfaces; however, the
quantitative values at the BCP differed considerably.

Because this set of model systems contains many bonds of
varying polarity, it is ideally suited to study discrepancies
between theory and experiment. For this, we first investigate
the convergency of the theoretical values with respect to the
method of computations, employing different DFT approaches
and, also, the MP2 method. To study the influence of the basis
set, we go up to basis sets the size of cc-pV5Z. The computed
values are compared to their experimental counterparts, and to

shed some light onto the self-consistency of the data, we also
investigate possible relationships between the density and its
Laplacian at the BCP with the bond distances. Additionally,
the convergency of the NBO/NRT approach47 with repect to
the method of computation is tested, and its predictions about
the bond characters are compared to those obtained from the
topological parameters of the QTAIM approach.

II. Computational Methods

Gas-phase structures of the model compounds were optimized
for different substituents R) H, Me, andtBu, respectively,
employing a great variety of theoretical methods. Stationary
points were checked by frequency calculations. All calculations
were performed with theGaussian 98package.48 The subsequent
topological analyses were performed with theAIM2000pack-
age,49 while the NBO/NRT analyses were performed with the
NBO 4.Mpackage.47 As far as bond orders are discussed outside
NBO/NRT theory, we are referring to bond orders according
to Cioslowski.50 This approach divides the total number of
electrons in atomic and diatomic contributions by means of
evaluating the atomic overlap matrix under consideration of the
atomic boundaries and yields positive, purely covalent bond
orders.

Figure 1. The connectivity of the molecules under consideration: The
sulfinic acid,1a; the sulfinic acid as a dimer, as in the solid state,1b;
the sulfonic acid,2a; the S(NHR)(NR)2CH3, 2b; the diimide,3; and
the triimide,4.
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III. Results and Discussion

A. Investigation of the Method Dependency of Bond
Topological QTAIM Properties and Comparison with Ex-
perimental Results.Tables 1-3 summarize the computed bond
topological properties of some typical bonds of our set of model
systems as a function of the method of computation. For a
formal SN double bond, we picked S1dN2 of compound1a
(R ) Me, Table 1), while S1sN1 of the same compound was
chosen for a formal SN single bond (Table 2). As a typical
example for the less polar SC and NC bonds to a methyl (or
butyl) group, we give the bond topological properties of the

SsC bond of the same compound (Table 3). The tables contain
the computed bond distance of the given bond, denoted asd,
the density at the BCP,F, the Laplacian at the BCP,∇2F, the
decomposition of the Laplacian into its three Eigenvalues∇2F
) λ1 + λ2 + λ3, the ellipticityε ) λ1/λ2 - 1, and the respective
distances of the BCP to atom A,d(A) and to the other atom,
d(B). Additionally, the ratiod(A)/d(B) is shown. The ratio|λ1|/
λ3, which is expected to be smaller than 1 in ionic bonding
modes,1 is also given. At the BCP, the negative Eigenvalues,
λ1 andλ2, describe the local charge concentrations in a plane
with normal vector in the direction of the interatomic

TABLE 1: Bond Topological Properties at the BCP of the Formal S1dN2 Double Bond in 1a; R) Mea

d F ∇2F λ1 λ2 λ3 ε d(N) d(S) d(N)/d(S) |λ1|/λ3

B3PW91
6-31G(d) 1.55 1.76 8.36 -10.01 -7.14 25.52 0.40 0.96 0.60 1.61 0.39
6-31G(d,p) 1.55 1.76 8.33 -10.02 -7.14 25.5 0.40 0.96 0.60 1.61 0.39
6-31G(2d,p) 1.54 1.83 -5.22 -11.25 -8.27 14.30 0.36 0.92 0.62 1.48 0.79
6-31G(3d,p) 1.53 1.86 1.46 -11.65 -8.57 21.68 0.36 0.92 0.61 1.52 0.54
6-31+G(d) 1.55 1.76 8.02 -10.01 -7.15 25.18 0.4 0.96 0.60 1.60 0.40
6-31+G(d,p) 1.55 1.76 7.89 -10.00 -7.15 25.04 0.40 0.96 0.60 1.60 0.40
6-311G(d,p) 1.54 1.80 6.14 -10.31 -7.51 23.96 0.37 0.95 0.60 1.58 0.43
6-311G(2d,p) 1.53 1.86 -6.68 -11.45 -8.44 13.21 0.36 0.91 0.63 1.46 0.87
6-311G(3d,p) 1.53 1.87 0.45 -11.70 -8.61 20.76 0.36 0.92 0.61 1.50 0.56
cc-pVDZ 1.56 1.67 9.25 -8.85 -6.46 24.58 0.37 0.96 0.60 1.60 0.36
cc-pVTZ 1.54 1.86 3.65 -11.02 -7.77 22.43 0.42 0.94 0.60 1.56 0.49

B3LYP
6-311G(d,p) 1.55 1.79 4.62 -10.31 -7.50 22.44 0.37 0.95 0.60 1.58 0.46

MP2
6-31G(d) 1.57 1.67 4.40 -9.09 -6.46 19.94 0.41 0.97 0.61 1.61 0.46
6-31G(2d,p) 1.57 1.71 -7.82 -9.98 -7.42 9.58 0.34 0.93 0.64 1.44 1.02

Experimental
1.53 2.24 -9.38 -12.58 -11.73 14.92 0.07 0.74 0.79 0.94 0.84

a The geometry was optimized at the indicated level of theory. Distances are given in Å, densities are given in e/Å3, and second derivatives are
given in e/Å5.

TABLE 2: Bond Topological Properties at the BCP of the Formal S1sN1 Single Bond in 1a; R) Mea

d F ∇2F λ1 λ2 λ3 ε d(N) d(S) d(N)/d(S) |λ1|/λ3

B3PW91
6-31G(d,p) 1.75 1.31 -8.46 -6.94 -6.34 4.81 0.09 0.98 0.77 1.27 1.44
6-31G(2d,p) 1.74 1.30 -6.35 -7.10 -6.45 7.20 0.10 0.94 0.80 1.18 0.99
6-31G(3d,p) 1.73 1.36 -8.49 -7.32 -6.65 5.49. 0.10 0.98 0.75 1.31 1.33
6-311G(d,p) 1.75 1.32 -8.58 -7.32 -6.71 5.45 0.09 0.95 0.80 1.19 1.34
6-311G(2d,p) 1.74 1.31 -6.67 -7.37 -6.64 7.34 0.11 0.92 0.82 1.13 1.00
6-311G(3d,p) 1.73 1.36 -8.85 -7.56 -6.86 5.56 0.10 0.95 0.77 1.23 1.36
cc-pVDZ 1.77 1.24 -6.25 -6.06 -5.55 5.36 0.09 0.99 0.78 1.28 1.13
cc-pVTZ 1.73 1.38 -9.95 -7.84 -6.98 4.88 0.12 0.94 0.79 1.20 1.61

B3LYP
6-311G(d,p) 1.75 1.30 -8.40 -7.32 -6.74 5.67 0.09 0.95 0.80 1.18 1.29

Experimental
1.68 1.76 -7.95 -10.26 -9.66 11.97 0.06 0.83 0.85 0.98 0.86

a The geometry was optimized on the indicated level of theory. Distances are given in Å, densities are given in e/Å3, and second derivatives are
given in e/Å5.

TABLE 3: Bond Topological Properties at the BCP of the S1sC3 Bond in 1a; R ) Mea

d F ∇2F λ1 λ2 λ3 ε d(S) d(C) d(S)/d(C) |λ1|/λ3

B3PW91
6-31G(d,p) 1.81 1.30 -8.65 -7.42 -7.02 5.79 0.06 0.96 0.85 1.13 1.28
6-31G(2d,p) 1.80 1.27 -6.69 -6.90 -6.50 6.71 0.06 0.95 0.85 1.12 1.03
6-31G(3d,p) 1.80 1.33 -8.98 -7.56 -7.12 5.69 0.06 0.95 0.85 1.12 1.33
6-311G(d,p) 1.81 1.29 -8.09 -7.52 -7.11 6.55 0.06 0.97 0.84 1.15 1.15
6-311G(2d,p) 1.80 1.25 -6.08 -7.01 -6.60 7.53 0.06 0.95 0.85 1.12 0.93
6-311G(3d,p) 1.80 1.32 -8.30 -7.62 -7.19 6.51 0.06 0.95 0.84 1.13 1.17
cc-pVDZ 1.81 1.29 -9.19 -6.99 -6.57 4.38 0.06 0.96 0.85 1.13 1.60
cc-pVTZ 1.80 1.32 -8.32 -7.82 -7.34 6.84 0.06 0.95 0.85 1.12 1.14

B3LYP
6-311G(d,p) 1.82 1.27 -7.69 -7.44 -7.06 6.81 0.05 0.97 0.85 1.14 1.09

Experimental
1.79 1.54 -8.70 -9.18 -8.72 9.20 0.05 0.99 0.80 1.24 1.05

a The geometry was optimized at the indicated level of theory. Distances are given in Å, densities are given in e/Å3, and second derivatives are
given in e/Å5.
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line; λ1 is defined to be greater thanλ2, such that the ratioλ1(r) /
λ2(r ) always exceeds 1. A large value of this ratio indicates
π-like electron distribution. The positive Eigenvalueλ3 describes
the local charge depletion due to monotonic decreasing electron
densities from the nuclei to the BCP. Like the electron density,
all of its derivatives, including∇2F, λ1, λ2, andλ3, are functions
of the spatial variabler . Thus, the values of, for example, the
ellipticity ε, are sensitive to the position of the BCP.51 We
investigated the convergency of the various properties with
respect to the flexibility of the basis set and tested their
sensitivities with respect to the functional (using Becke’s B3
exchange functional52,53 in combination with the PW9154 and
the LYP55 correlation functionals, respectively) and the MP2
method. As expected from other DFT studies4,6,22,23,27,42-44 a
6-311G(2d,p)56-60 or a cc-pVTZ61-66 basis set seems to be
sufficient to obtain bond distances converged to about 0.01 Å
for the strong formal double bond. For smaller AO basis sets,
variations up to 0.04 Å for the present model systems were
obtained. Within the QTAIM theory, the properties at the BCP
play a crucial role such that its position can be expected to
represent a sensitive parameter. As shown in Tables 1-3 for
the present model systems, the positions of the BCPs vary only
slightly as a function of the theoretical method (∼3%). For the
formal S1dN2 double bond of compound1a, its distance from
the nitrogen center changes from 0.95 to 0.91 to 0.92 Å for the
series 6-311G(d,p), 6-311G(2d,p), and 6-311G(3d,p), and also,
the flexibility of the sp part (6-31G sets vs 6-311G sets) has a
small influence. If the PW91 correlation functional is replaced
by the LYP functional, only minor differences are found. The
differences between the MP2 and DFT approaches are somewhat
larger, as discussed elsewhere.22,44For the chosen formal SsN
single bond (Table 2), the position of the BCP varies more
strongly as a function of the theoretical approach in comparison
to the formal double bonds. For the SsC bond (Table 3), the
variation is less. It is interesting to note that, going from the
S1dN2 double bond (Table 1) to the single bond (Table 2),
the distance between the BCP and the nitrogen center does not
change much (e0.06 Å), while the distance between the BCP
and the sulfur center increases by approximately 0.16 Å.

The densitiesF’s at the BCP as well vary only slightly with
the method of computations. For formal double bonds as shown
in the example of the S1dN2 bond of compound1a within the
series 6-311G(d,p), 6-311G(2d,p), and 6-311G(3d,p), the values
change from 1.80 to 1.87 e/Å3. Please note that the value
computed with the cc-pVDZ basis set is smaller than that
obtained with the 6-31G(d,p) basis set, while both cc-pVTZ
and 6-311G(2d,p) give similar values. In general, the MP2
approach predicts somewhat smaller values than DFT, which
could result from the slightly enlarged bond distances.

Although the position of the BCP and the density at the BCP
are not very sensitive with respect to the basis set size and
method of computation, the Eigenvalues of the Laplacian of
the densityλi, i ) 1, 2, 3, at the BCP vary considerably for
S1dN2 of compound1a (R ) Me, Table 1), which was picked
as a typical formal SN double bond. As shown in Table 1,
especially,λ3 changes as a function of the flexibility of the basis
set (e.g., with increasing numbers of d functions). Please note
that theλ3 values obtained with the standardGAUSSIAN(2d,p)
set of polarization functions deviate strongly from the 1d and
3d results, and so, the (2d,p) results have to be regarded as
outliers. Smaller variations are found forλ1 and λ2. As a
consequence, also, the computed values forε, which according
to the QTAIM theory of Bader are used to obtain information
about the bond order, decrease only from 0.40 to 0.36 if the

basis set flexibility is increased. Forλ1 andλ2, the (1d,p), (2d,p),
(3d,p) series of polarization functions show smooth behavior.
As a consequence of the strong change inλ3, the Laplacian∇2F
even changes its sign if the number of polarization functions is
increased [6-311G(d,p)+ 6.14 e/Å5, 6-311G(2d,p)- 6.68 e/Å5,
6-311G(3d,p)+ 0.45 e/Å5]. Even if the (2d,p) basis set is
considered as an outlier,∇2F still drops appreciably if the
number of d polarization functions is increased.

For comparison, Table 1 also gives the experimental values
obtained from a high-resolution X-ray study.36 As already
discussed in this paper for the present set of model compounds,
experiment and theory agree qualitatively very well but disagree
in the absolute values. As shown in Table 1, all experimental
values are obviously outside the range spanned by the theoretical
data. The experimentally determined density at the BCP is
considerably higher (∼25%) than its theoretical counterpart. For
the formal SN double bonds, the experiment determinesλ1 and
λ2 to be almost equal, while a profound difference is predicted
by all computations (see Tables 1 and 8). As a consequence,
also, the experimentally and theoretically derivedε values
disagree. Surprisingly, the experimental value ofλ3 is close to
the prediction obtained with the (2d,p) set of polarization
functions, which was identified as an outlier in theory. Finally,
the positions of the BCPs also differ. For formal double bonds,
the experimental values are approximately in the middle of the
bond, while theory predicts a position much closer to the sulfur
center.

Before we come to a more detailed discussion of these
differences, we will first discuss the other types of bonds. For
the selected typical formal SN single bonds (Table 2), the
deviation between experimentally and theoretically determined
bond distances is somewhat larger than for the double bonds
(still 0.05 Å for the 6-311G(3d,p) basis set), because the former
possesses flatter potentials than the formal double bonds. For
the formal SN single bonds, the absolute value ofλ3 and, also,
its variations are considerably smaller, compared to the formal
SN double bonds. Also, as a consequence, the Laplacian∇2F
changes to a smaller extent. This also holds true for the other
density-related properties, such that the agreement between
theory and experiment is, in general, better. One example is
the position of the BCP. Please note that in comparison to the
formal SN double bond (Table 1) better agreement results,
because the theoretical [d(N)/d(S)] values change considerably
from about 1.5-1.6 for the formal double bond to approximately
1.2 for the formal single bond. The experimentally obtained
values for both types of bonds are virtually identical. Another
example for a better agreement isε. However, while both theory
and experiment findλ1 andλ2 to be very similar for the formal
single bonds, they disagree in the absolute values.

The computed values ofλ3 are smaller than their experimental
counterparts for the formal single bonds (Tables 2 and 3). The
smaller theoretical absolute values ofλ1 andλ2 and the lower
theoretical value ofλ3 cancel each other, so that theory and
experiment agree with respect to the Laplacian. It is interesting
that, on the basis ofε, there is no difference between formal
single and double bonds in the experimental values.

The topological properties of the S-C bond of compound
1a, which was selected as a typical bond for the less polar S-C
bonding, is given in Table 3. For this type of bond, the variations
within the theoretical results are much smaller than for the
previous two types. In accordance with the former results, the
computations again find the (2d,p) to represent an outlier. In
addition to the reduced dependency on the method of calculation,
the agreement between theory and experiment is much better
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for all derivatives of the density at the BCP. For the density
itself, theory again predicts much lower values. Both theory
and experiment locate the BCP closer to the carbon center.

To investigate the dependency of theλi values as a function
of the basis set flexibility in more detail, we computed the
topological QTAIM properties of the formal S1dN1 double
bond of compound3 (R ) H) for the cc basis set series (Table
4). The SN formal double bonds were found to be problematic
with respect toλ3. Table 4 also gives the values obtained with
the 6-311G basis set enlarged with an increasing number of d
functions. With respect to the Laplacian,∇2F, this bond is found
to behave similarly to the S1dN2 bond of compound1a
described in Table 1 (i.e.,∇2F gets initially considerablely
smaller with increasing basis set size). For the cc series, both
λ1 andλ2 show convergency with respect to the basis set size.
For λ3, however, a change of about 10% is still found if the
cc-pVQZ basis set is compared to the cc-pV5Z basis set. The
influence of basis set size on the Laplacian∇2F at the BCP is
somewhat smaller, because the changes in theλi values
compensate to some extent. Table 4 also underlines the fact
that results obtained with the standard 2d set of polarization
functions of the Pople basis set deviate considerably from those
obtained with other basis sets.

A first hint to the reasons for the dependence of theλ3 values
on the method of calculation stems from the [d(N)/d(S)] values.
For both formal SN double bonds, S1dN2 of compound1 (R
) Me, Table 1) and S1dN1 of compound3 (Table 4), values
around 1.5 were computed (i.e., the BCP is located considerably
closer to the sulfur center then to the nitrogen center). Similar
values are found for all formal SN double bonds of the present
model systems. For the S1sN1 bond in1a (Table 2), values
around 1.2 were computed, while values of approximately 1.1
are obtained for the SsC bond in1a. These values are typical
for the formal single SsN and SsC bonds. This shows that,
when going from formal SN double bonds to formal single
bonds, the BCP moves away from the sulfur center more into
the middle of the bonds. The consequence for the density and
its Laplacians can be taken from Figure 2 , inwhich the density
and theλi values are plotted along the S1dN1 bond path in
compound4 (R ) tBu). For this computation, the experimental
geometry was used. For this formal SN double bond, the BCP
is located in a region, whereλ1 and λ2 vary slowly, whileλ3

abruptly changes toward very large positive values, a situation
that can be properly described with the BCP lying in the rampant
edge of the Laplacian. A tiny displacement of the BCP to the
right would change the sign of the Laplacian, while a tiny
displacement to the left would lead to a strong increase of the
Laplacian. Consequently, already the small changes in the
position of the BCP discussed already lead to large changes in
the λ3 value and the Laplacian. This explains the strange

behavior of the (2d,p) set. For the 6-31G(2d,p) and 6-311G-
(2d,p) basis sets, the [d(N)/d(S)] values are somewhat smaller
than for the basis sets with 1d or 3d polarization functions. For
formal single bonds, the variations of theλi values along the
bond path are similar, but the BCP is located close to the middle
of the bonds. In this region,λ3 also changes slowly. As a
consequence, its dependency on the method of calculation is
considerably weaker.

The strong deviations between experiment and theory could
be caused by the fact that the sterically demanding substituents
employed in the experimental studies are quite often replaced
by smaller groups. Sterically demanding substituents mainly
change the kinetic stability, while the electronic structure is less
influenced. Consequently, for less sensitive properties, such a
replacement is surely justified. For more sensitive properties
such as the Laplacian at the BCP of polar bonds, one needs to
test whether this simplification within theory does not influence
such properties too much. For the present model systems, we
find only a weak dependency of the bond topological properties,
as shown in Table 5 for the formal SN double bonds of S(NR)3,
R ) H, Me, tBu, which were selected as examples, because
the formal double bonds show a strong sensitivity ofλ3, in
particular. Similar variations were obtained for all other
compounds. Employing the 6-311G(d,p) basis set, the Laplacian
varies in the series R) H, Me, tBu from 3.54 to 3.95 e/Å5.
This change is smaller than the variations obtained

TABLE 4: Bond Topological Properties at the BCP of the
S1dN1 Bond in 3 (R ) H), Calculated with the B3PW91
Functional and Indicated Basis Setsa

basis set F ∇2F -λ1 -λ2 λ3 d(N)/d(S)

cc-pVDZ 1.66 8.66 8.577 6.569 23.802 1.60
cc-pVTZ 1.83 2.62 10.738 7.897 21.260 1.56
cc-pVQZ 1.91 0.15 12.384 9.157 21.700 1.55
cc-pV5Z 1.92 0.83 12.847 9.603 23.280 1.54
6-311G 1.62 -0.09 7.709 6.825 14.442 1.44
6-311G(d) 1.79 5.92 10.073 7.685 23.682 1.59
6-311G(d,p) 1.79 5.68 10.143 7.741 23.561 1.59
6-311G(2d,p) 1.85 -7.19 11.314 8.596 12.717 1.46
6-311G(3d,p) 1.86 -0.46 11.524 8.784 19.319 1.51

a The geometry was optimized on the indicated level of theory.
Distances are given in Å, densities are given in e/Å3, and second
derivatives are given in e/Å5.

Figure 2. Eigenvaluesλi (empty circles,O) and the density along the
bond path (filled circles,B) in 4, R ) tBu, calculated at the B3PW91/
6-311++G(d,p) level of theory with fixed experimental geometry. At
the BCP, the density isF(rBCP) ) 1.90 e/Å3, and the Laplacian assumes
∇2F(rBCP) ) 8.26 e/Å5. The sulfur center is at-0.52 Å, and the nitrogen
center is at 0.92 Å.

TABLE 5: Influence of the Substituents on the Bond
Topological Properties at the BCP of the SdN Bond of 4a

d F ∇2F λ1 λ2 λ3 ε d(N) d(S)
d(N)/
d(S)

R ) H
6-31G(d,p) 1.53 1.85 6.29-10.96 -7.08 24.34 0.55 0.94 0.95 1.58
6-311G(d,p) 1.53 1.89 3.54-11.32 -7.50 22.37 0.51 0.93 0.60 1.56

R ) Me
6-31G(d,p) 1.54 1.83 5.44-10.57 -6.78 22.79 0.56 0.94 0.60 1.58
6-311G(d,p) 1.53 1.86 3.67-10.91 -7.16 21.74 0.52 0.93 0.60 1.56

R ) tBu
6-31G(d,p) 1.54 1.81 5.32-10.33 -6.74 22.40 0.53 0.94 0.60 1.57
6-311G(d,p) 1.53 1.84 3.95-10.61 -7.06 21.62 0.50 0.93 0.60 1.55

a The geometry was optimized on the indicated level of theory.
Distances are given in Å, densities are given in e/Å3, and second
derivatives are given in e/Å5.
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if the basis set is enlarged from 6-31G(d,p) to the 6-311G(d,p)
basis set. The ratio [d(N)/d(S)] remains nearly unaffected also
if the substituents are changed. Thus, within the present series
of model compounds for comparing bond topological properties
between experiment and theory, it seems reasonable to make
calculations for the molecules with the smaller substituents R
) Me instead of R) tBu; even R) H is a good approximation.

Within the Bader approach, the atomic charges are obtained
by integrating the charge density over the atomic basins. With
compound4 as a typical example, Table 6 summarizes the
variations in the computed atomic charges as a function of some
methods of calculation and basis sets. Hartree-Fock predicts
the highest charges, which is expected, because it tends to
overestimate the ionicity of bonds. A considerable difference
is also found between the MP2 approach and DFT, and a more
flexible basis set also seems to be of importance. Our attempt
to test even larger basis sets failed because of problems
establishing the strongly curved zero-flux surfaces around the
sulfur centers.

Quite often, the bond strength is discussed in terms of the
bond order. In the present study, the bond orders according to
Cioslowski50 were calculated. They are a measure of the purely
covalent character of the bond. We used compound3, R ) Me,
to investigate the variations in the computed values on the
theoretical approach. Table 7 shows the calculated values for
the two SN formal double bonds and the two NC formal single
bonds as a function of some theoretical approaches and basis
set sizes. Additionally, an NN bond order is given. Comparing
the bond order variations to those found for the computed
topological properties, we found the bond order to be quite
insensitive. This holds true particularly for the bond orders of
the formal NC single bonds, for which all DFT values are
between 0.99 and 1.01 and the MP2 results deviate only slightly,
and also for formal double bonds for which the Laplacian values
and atomic charges varied considerably. The S1dN2 bond
orders predicted by DFT are between 1.76 and 1.83. If, as
suggested by the analysis of the Laplacian, the (2d,p) set is
regarded as an outlier, the variations are only 1-2%. The MP2
approach deviates from the DFT results by about 5%. Although
the topological analysis of this molecule yields no bond path
between the nitrogen atoms, a bond order of roughly 0.30 is
calculated. The B3LYP value differs only 0.01 unit from the
corresponding B3PW91 values, while the MP2 values are again
somewhat smaller.

Up to now, all topological properties were computed for
optimized geometries. To ensure that the variations discussed
already do not mainly result from small changes in the computed
bond distances, we repeated some of the calculations at
experimental geometries. These results are summarized in Table
8, which shows that the variations inF and∇2F remain (i.e. the
small changes in the bond distances found in the former cases
cannot be mainly responsible for the high sensitivity discussed
here). Because experimental geometries were used in combina-
tion with the substituents employed in the experiment, Table 8
provides a direct comparison between theoretical and experi-
mental values for the formal SN double bonds, which seem to
be the most difficult to describe. Therefore, Table 8 also gives
the experimental values.36 It is obvious that all experimental
values at the BCP lie outside the range spanned by theory. Most
obvious are the different positions of both BCPs which were
already discussed in combination with the formal double bond
S1dN2 of compound1a (Table 1). Although the experimental
BCP is located almost in the middle of the bond, [d(N)/d(S)]
≈ 1, theory predicts it to be much closer to the sulfur center,
[d(N)/d(S)] ≈ 1.5. To investigate this disagreement, we
computed the values at the experimental position of the BCP,
which are given in the last row. This was already suggested by
ref 25, in which a better agreement was obtained between theory

TABLE 6: Influence of the Theoretical Approach on the
QTAIM Charges of 4; R ) Mea

Q(S) Q(N) Q(N∑)b

HF/6-311G(d,p)) +3.65 -1.78 -1.22
MP2/6-31G(d,p) +3.27 -1.64 -1.10
B3PW91/6-31G(d,p) +2.85 -1.4 -0.95
B3LYP/6-311G(d,p) +2.71 -1.32 -0.90
B3PW91/6-311G(d,p) +2.77 -1.36 -0.92

a Geometries have been optimized at the indicated level of theory.
Charges are given in e.b The ∑ denotes the summation of the atomic
charges of the nitrogen atom and the substituent.

TABLE 7: Bond Orders of S(NCH3)2, 3, According to
Cioslowskia

S1-N2 S1-N1 N2-N1 N2-C2 N1-C1

B3PW91
6-311G(d,p) 1.78 1.72 0.32 0.99 0.99
6-311G(2d,p) 1.83 1.77 0.28 1.01 1.01
6-311G(3d,p) 1.78 1.73 0.29 1.00 1.00
6-31G(d) 1.76 1.70 0.33 0.99 0.99
6-31G(d,p) 1.76 1.70 0.33 0.98 0.98
6-31G(2d,p) 1.82 1.77 0.29 1.00 1.00
6-31G(3d,p) 1.77 1.72 0.30 0.99 0.99
cc-pVDZ 1.76 1.71 0.32 0.98 0.97

B3LYP
6-311G(d,p) 1.79 1.73 0.32 0.99 0.98

MP2
6-31G(d) 1.64 1.64 0.29 0.93 0.93
6-31G(2d,p) 1.71 1.69 0.25 0.94 0.93

a Geometry was optimized at the indicated level of theory.

TABLE 8: Bond Topological Properties at the BCP of the Formal SdN Double Bond of 4 with R ) tBu [S(NtBu)3] Computed
at the Experimental Geometrya

F ∇2F λ1 λ2 λ3 ε d(N) d(S) d(N)/d(S)

STO-3G 1.49 21.67 -5.83 -3.53 31.04 0.65 0.93 0.59 1.58
SV 1.69 5.75 -7.86 -6.52 20.13 0.21 0.90 0.61 1.47
6-31G(d,p) 1.88 10.61 -11.00 -7.30 28.92 0.51 0.92 0.59 1.57
6-311G(d,p) 1.90 8.09 -11.15 -7.51 26.75 0.49 0.92 0.59 1.56
6-311G(2d,p) 1.94 -7.45 -12.09 -8.20 12.84 0.47 0.89 0.62 1.43
6-311G(3d,p) 1.93 -1.06 -12.09 -8.18 19.21 0.48 0.90 0.61 1.47
6-311++G(d,p) 1.90 8.64 -11.76 -7.54 27.36 0.56 0.92 0.59 1.57

Experimental
2.27 -10.56 -14.40 -11.83 15.69 0.22 0.78 0.74 1.05

6-311++G(d,p)b 1.95 -14.28 -11.26 -7.64 4.48 0.47 0.78 0.74 1.05

a Distances are given in Å, densities are given in e/Å3, and second derivatives are given ine/Å5. b Bond topological values at the position of the
experimental BCP.
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and experiment. However, for the present compounds, it does
not improve the agreement. The deviation in the density remains,
and abetter agreement in the Laplacian results from compensa-
tion betweenλ2 andλ3. Both individual values deviate more if
the theoretical values taken at the position of the experimental
BCP are compared with the experimental results.

Table 8 shows that at the theoretical and experimental
positions of the BCPs the computed density is smaller than its
experimental counterpart, indicating that in the whole bonding
region the computed density is considerably smaller than the
experimental one. It is interesting to note that a similar behavior
is also found at the position of the nuclei, as shown in Table 9.

A direct comparison needs, at least, a correlation of the
corresponding experimental and theoretical values. For the given
set of model compounds, such a relationship exists for the
densities (see Figure 2 of ref 36). In ref 36, we showed that
both the theoretically and experimentally determined densities
at the BCPs correlate with the bond distances. Figure 3 shows
a similar correlation between the Laplacians at the BCPs and
the bond distances exclusively for the theoretical description.
Table 10 summarizes the results of the linear regressions for
the Laplacians versus bond distances and also repeats the results
obtained for the correlation of the densities with bond distances.
The missing correlation between the experimental Laplacian and
the bond distances is obvious.

Table 10 also offers information on the extent to which
experimentally determined geometries can be employed in a

theoretical determination of densities and Laplacians. If the bond
topological properties are computed from single point calcula-
tions at the experimental equilibrium geometries with medium
to large basis sets, the bond distances correlate with the densities
and Laplacians at the BCP. If smaller basis sets are employed,
only a correlation between bond distances and densities at the
BCP exists; the correlation between bond distances and Lapla-
cians is no longer found. For theoretically optimized equilibrium
geometries, the correlation also exists in this case. The destruc-
tion of the correlation between the Laplacian values at the BCPs
and bond distances found for the smaller basis sets in combina-
tion with the experimental geometries occurs, because such basis
sets tend to overestimate the bond distances of the single bonds
considerably. As compared to the respective equilibrium
geometry of the given approach, the theory describes com-
pressed bonds if the experimental geometries are employed.
From this point of view, computations which employ theoreti-
cally optimized geometries seem to be favorable with respect
to those which use the experimental geometries. If experimental
geometries are used, they have to be combined with very flexible
basis sets. It is also obvious that, as a consequence of the
different correlations with respect to the bond distances, both
theoretically and experimentally determined Laplacians do not
correlate with each other. Indeed, we find anR2 value of 0.11.
Consequently, a direct comparison is problematic.

The differences between the experimentally and theoretically
determined Laplacian values are not only connected to theλ3

values. Also, for theλ1 andλ2 Eigenvalues, no correlation can
be expected, because the experimental and theoretical values
of ε behave differently. Theoretical values obtained for the
formal single and formal double bonds differ by approximately
0.3, while the experimental values are virtually identical. A
similar situation is found for the BCPs. The theory predicts
different positions for different formal types of SN bonds, but
the experimentally determined positions remain nearly un-
changed (compare, for example, Tables 1 and 2). Because, as
discussed previously,36 the SN formal single and double bonds

Figure 3. Correlation between bond distanced and Laplacian∇2F(rBCP) for all SN bonds. Left: Optimized methyl-substituted model compounds
1-4, calculated at the B3PW91/6-311G(d,p) level of theory. Best linear fit:∇2F(rBCP) ) -91.11d + 154.53,R2 ) 0.890. Right: Experimental
values. Best linear fit:∇2F(rBCP) ) 11.16d - 29.83,R2 ) 0.053.

TABLE 9: Comparison between the Experimental and
Theoretical Densities in e/Å3 at the Sulfur and Nitrogen
Nuclei

experiment theory

compound S1 N1 N2 N3 S1 N1 N2 N3

1b 17 974 1391 1392 17 462 1310 1313
2a 17 996 1391 1391 1392 17 455 1310 1311 1312
3 17 981 1391 1390 17 464 1313 1314
4 18 025 1395 17 455 1313

TABLE 10: Linear Regression on Theoretically and Experimentally Derived Bond Topological Properties at the BCPG(rBCP)
and ∇2G(rBCP) vs Bond Distanced for Eight Different SN Bondsa

F ) a‚d + b ∇2F ) a‚d + b

calculation a b R2 a b R2

experiment spb -3.12 7.01 0.784 +11.16 -29.83 0.053
B3PW91/6-311G(d,p) sp -2.38 5.50 0.939 -28.37 45.35 0.046
B3PW91/6-311G(d,p) optb -2.22 5.25 0.967 -91.11 154.53 0.890
B3PW91/6-311++G(d,p) sp -2.24 5.19 0.694 -91.89 144.58 0.633

a The linear regression implies no model building.b Single point (sp) calculations were done at the experimental (solid state) geometry, R) tBu.
c The optimization was performed employing the methyl-substututed compounds.
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are quite different in nature (considerably higher ionic character
of the formal double bonds), variations in the density-related
properties, as predicted by theory, seem to be reasonable.

The discussion shows that, on the experimental side only,
the less sensitive properties at the BCP (e.g., density) reveal a
correlation with bond distance or with the formal type of bond.
For the more sensitive parameters (e.g., second derivatives and
related quantities), no correlation is found. Despite the depen-
dency on the method of calculation for the theoretically
determined data, the corresponding correlations are found for
all properties. From the present study, one cannot answer why
the experimental data do not show the expected correlation .
This could arise from uncertainties which enter the experimental
data during the refining process as was shown by recent
investigations.29-31 For the nonpolar CC bonds of C60 deriva-
tives, Wagner et al. found all correlations discussed here.34

B. Investigation of Dependency of NBO/NRT Properties
on the Method. In a previous paper,36 QTAIM and NBO/NRT
approaches complemented each other in the investigation of the
bonding properties of the present set of model compounds. The
application of the topological QTAIM analysis enables the
comparison of the qualitative features of the experimentally and
theoretically determined density distributions. The NBO/NRT
approach allows the detection of more subtle details of the
bonding character. They were also present within the QTAIM
parameter; however, because of the strong dependencies dis-
cussed already, a support was necessary to avoid an over-
interpretation. Because some authors claim a strong dependency
on the method of computations for the NBO/NRT results,50 we
investigated the dependencies of data obtained from the NBO/
NRT approach on the theoretical approach. The results are
summarized in Tables 11-16. As for QTAIM inves-
tigations, we chose some typical bonds to illustrate the overall
behavior. In Table 11, the leading Lewis structures are depicted,
which will be denoted as Ls 1 to Ls 3. Tables 12-16 summarize
the variations in weights and in the computed total, covalent,
and ionic bond orders (BOt, BOc, BOi, respectively69-71).
Finally, the atomic charges,Q’s, also obtained from the NBO
analyses, are given.Q(X) denotes the atomic charge of atom
X. When atom X is connected to a substituent R) H, Me or
R ) tBu, then the summed up atomic charges are also given

and denoted asQ(X∑) ) Q(X) + Q(H), Q(X∑) ) Q(X) +
Q(Me), andQ(X∑) ) Q(X) + Q(tBu), respectively.

The tables show that the weights of the leading Lewis
structures depend considerably upon the theoretical approach,
as well as on the size of the AO basis sets. For compound1b,
for example, the weight of Ls 1 drops from about 56% to about
38% if we compare the MP2 result with the B3PW91 data
(Table 12). If the hydrogen or the methyl substituents are
replaced by the bulkytBu groups, which were used in the

TABLE 11: Leading Natural Lewis Structures Obtained
from the NBO/NRT Analysisa

aOptimized geometries were used.

TABLE 12: Influence of the Theoretical Approach on the
NBO/NRT Expansion and on the Computed Bond Orders of
1b (R ) Me)a

MP2c B3LYP B3PW91

Ls 1b 56.2% 38.8% 38.0%
Ls 2 5.1 9.2 8.1
Ls 3 5.1 9.2 7.5

S1sN1
BOt 0.95 0.92 0.92
BOc 0.68 0.67 0.67
BOi 0.27 0.25 0.25

S1dN2
BOt 1.05 1.10 1.09
BOc 0.81 0.82 0.81
BOi 0.24 0.28 0.28

S1sC
BOt 0.97 0.96 0.96
BOc 0.90 0.90 0.90
BOi 0.07 0.06 0.06

N2‚‚‚H
BOt 0.01 0.02 0.02
BOc 0.00 0.00 0.00
BOi 0.01 0.02 0.02

a The corresponding Lewis structures can be taken from Table 11.
b The geometries were optimized with the 6-31G(d,p) basis set and the
indicated method. The initial three lines give the respective weights of
the leading resonance structures. The other lines give the total (BOt),
covalent (BOc), and ionic (BOi) bond orders for different bonds as
obtained from the NRT analysis.c This calculation was done by
imposing inversion symmetry.

TABLE 13: Influence of the Basis Set Size on the NBO/
NRT Expansion and the Computed Bond Orders of 2b (R)
Me) Obtained from the NRT Analysisa

6-31G(d,p) 6-311G(d,p) 6-31G(3d,p) cc-pVDZ cc-pVTZ

Ls 1b 33.97% 33.24% 27.20% 33.49% 41.12%
Ls 2 12.91 13.18 13.36 15.20 3.90
Ls 3 10.95 10.16 12.86 9.65 15.93

S1sN1
BOt 0.58 0.57 0.54 0.56 0.70
BOc 0.36 0.39 0.34 0.37 0.45
BOi 0.22 0.18 0.20 0.19 0.25

S1dN2
BOt 1.18 1.16 1.17 1.17 1.25
BOc 0.81 0.85 0.78 0.84 0.86
BOi 0.36 0.32 0.39 0.33 0.39

S1dN3
BOt 1.24 1.23 1.26 1.24 1.11
BOc 0.86 0.89 0.83 0.88 0.81
BOi 0.39 0.33 0.43 0.36 0.30

S1sC7
BOt 0.89 0.90 0.89 0.90 0.89
BOc 0.85 0.89 0.83 0.88 0.85
BOi 0.04 0.01 0.07 0.02 0.04

a The corresponding Lewis structures can be taken from Table 11.
b The geometry optimizations were performed employing the B3PW91
functional and the indicated basis set. The initial three lines give the
respective weights of the leading resonance structures. The other lines
give the total (BOt), covalent (BOc), and ionic (BOi) bond orders for
different bonds as obtained from the NRT analysis.
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experiment, the weights of the leading Lewis structures drop
from around 30% to only 15% (Table 15). However, despite
these strong variations, the computed bond orders and atomic
charges remain almost constant. One example is the decreasing
weights of the leading Lewis structures found for R) H
compared to R) tBu. The corresponding bond orders differ
by only 1-2%. Similar changes are found if the basis set size
or the method of computation is varied. The atomic charges
vary to a somewhat larger extent, but, for this quantity also,
the changes are less than 10%. If we compare Table 6 with
Table 16, it is obvious that the atomic charges derived with the
NBO/NRT approach are less sensitive with respect to the method
of calculation than its QTAIM counterparts. The NBO-derived
charges of the sulfur atoms mimic their formal oxidation state,
as can be seen from Table 17.

C. Comparison of the QTAIM and NBO/NRT Ap-
proaches. As discussed already, in a previous paper, we
combined the QTAIM and NBO/NRT approaches to investigate
the nature of the SN bonds within our set of model compounds.
This requires that the quantities obtained from both approaches

correlate with each other. The comparison of the QTAIM- and
NBO/NRT-derived atomic charges of the sulfur and nitrogen
centers in all eight different SN bonds is given in Table 17.
The linear regression of this data set yieldsQQTAIM ) 1.34QNBO

+ 0.09 with a correlation coefficient ofR2 ) 0.99, showing
that both approaches predict similar trends. The slope of 1.34
in combination with an intercept of 0.09 reveals, however, that
QTAIM charges are higher, which was also found in other
studies (e.g., ref 67). The absolute values of both approaches
agree for some centers but disagree for others. Table 17 shows
that a nearly perfect agreement is found for the N1 center of1a
and the N1 center of2b which form single bonds to three
different neighbors. For all other nitrogen centers which form
one bond to the sulfur atom and one to a carbon center, the
deviation lies between 0.2 and 0.4 electron units. The differences
found for the sulfur are also quite interesting. For1a,72 which
possesses only one dominant Lewis structure, a difference of
only 0.19 electron units is found. For compound4, for which
three equally contributing Lewis structures exist, the largest
deviation of about 1 electron unit is obtained (i.e., the difference
seems to correlate with the number of Lewis structures in the
NBO/NRT approach possessing a weight higher than 0.2).

If the total bond orders computed within the NBO/NRT
approach are compared to those obtained with the Cioslowski
approach,50 we find a linear regression of BOQTAIM )
0.96BONBO + 0.27,R2 ) 0.91 (i.e., a slope of about 1 is found),
but the Cioslowski approach always give a somewhat higher
bond order. The difference is even larger if it is taken into
account that according to Cioslowski50 only the covalent bond
order is computed, while the total bond order of the NBO/NRT
approach is used. If ionic contributions, which are expected from
the high atomic charges, were added to the Cioslowski bond
order, the corresponding total bond orders become quite high.

However, although the QTAIM and the NBO/NRT ap-
proaches disagree in the actual numbers for bond orders and
atomic charges, the trends for the series of compounds1-4
are in line with each other. Both approaches predict increasing
covalent as well as ionic contributions when comparing a formal
single bond to a formal double bond. For the formal single S1s
N1 bond of 2b (R ) Me, Table 13), NBO/NRT predicts a
covalent bond order of 0.3-0.4 and an ionic contribution of
approximately 0.2. For the formal double bonds S1dN2 and
S1dN3 of the same molecule, covalent bond orders of ap-
proximately 0.8 are computed, and the ionic contribution is
predicted to be 0.3-0.4. The bond order according to Cioslowski
increases from 1.01 to 1.34 (for R) H, see Table 18), and as
can be seen from Table 17, the absolute value of the atomic
charge also increases from 1.07 for the N1 center to about 1.44

TABLE 14: Influence of the Basis Set Size on the Atomic
Charges of 2b in e, Predicted by the NBO Analysis

6-31G(d,p) 6-311G(d,p) 6-31G(3d,p) cc-pVDZ cc-pVTZ

Q(S1)a +2.03 +1.94 +2.09 +1.93 +1.98
Q(N1) -0.94 -0.88 -0.96 -0.91 -0.87
Q(N1∑)b -0.33 -0.31 -0.33 -0.31 -0.31
Q(N2) -0.97 -0.94 -1.00 -0.95 -0.94
Q(N2∑) -0.81 -0.79 -0.83 -0.78 -0.80
Q(N3) -0.95 -0.93 -0.98 -0.95 -0.92
Q(N3∑) -0.79 -0.77 -0.81 -0.77 -0.78
Q(C7) -0.94 -0.78 -0.96 -0.84 -0.81
Q(C7∑) -0.11 -0.07 -0.12 -0.06 -0.10

a The geometry optimizations were performed employing the B3PW91
functional and the indicated basis set.b The∑ denotes the summation
of the atomic charges of the respective atoms and the substituents.

TABLE 15: Influence of the Substituents on the NBO/NRT
Expansion on the Computed Bond Orders (BOs) and on
Charges (Q’s) in e of 4a

R ) Ha R ) Mea R ) tBua

Ls 1-3 29.09% 25.12% 15.51%

SdN Bond Order
BOt 1.33 1.32 1.31
BOc 0.96 0.97 0.95
BOi 0.37 0.35 0.36

Charge
Q(S) +1.88 +1.90 +1.96
Q(N) -1.01 -0.84 -0.89
Q(N∑)b -0.63 -0.63 -0.65

a The corresponding Lewis structures can be taken from Table 11.
b The geometries have been optimized at the indicated level of theory.
c The∑ denotes the summation of the charges of the substituents into
the atomic charge.

TABLE 16: Influence of the Theoretical Approach on the
NBO Charges in e of 4; R) Me

Q(S) Q(N) Q(N∑)a

HF/6-311G(d,p)b +2.23 -0.97 -0.74
MP2/6-31G(d,p) +1.91 -0.84 -0.64
B3LYP/6-311G(d,p) +1.90 -0.84 -0.63
B3PW91/6-311G(d,p) +1.90 -0.84 -0.63
B3PW91/6-31G(d,p) +1.96 -0.86 -0.65

a The geometry was optimized with the B3PW91 functional in
combination with the 6-311G(d,p) basis set.b The ∑ denotes the
summation of the atomic charges of the respective atoms and the
substituents.

TABLE 17: Comparison of QTAIM and NBO Charges in ea

compound center Q(NBO) Q(QTAIM)
∆[|Q(QTAIM) | -

|Q(NBO)|]
1a S1 1.13 1.32 0.19
1a N1 -1.02 -1.07 0.05
1a N2 -1.09 -1.32 0.23
2b S1 1.89 2.42 0.53
2b N1 -1.05 -1.07 0.02
2b N2 -1.13 -1.44 0.31
2b N3 -1.12 -1.46 0.34
3 S1 1.13 1.83 0.70
3 N1 -0.93 -1.29 0.36
3 N2 -0.91 -1.3 0.39
4 S1 1.88 2.86 0.98
4 N1 -1.01 -1.36 0.35

a All calculations were performed with the B3PW91 functional in
combination with a 6-311G(d,p) basis set (R) H).
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for the N2 and N3 centers (i.e., also in this picture, the covalent
and the ionic bond strength increase). Figure 4 shows the
correlation for the NBO/NRT approach.

This trend is also reflected in the densities and Laplacians at
the BCP. For the B3PW91/6-311G(d,p) approach, the formal
single bonds (S1-N1 in 1b and 2b) possess densities at the
BCP of 1.32 and 1.37 e/Å3. They are associated with Laplacians
of -8.58 and-9.98 e/Å5, respectively, showing that SN formal
single bonds are comparable in density and Laplacian at the
BCP. All formal double bonds possess increased densities,
indicating increased covalent bonding. Simultaneously, the
Laplacian values at the BCP are shifted toward positive values,
which within the QTAIM theory indicate higher ionic contribu-
tions (see Figure 3).

IV. Summary and Conclusions

In the present study, a set of sulfur-nitrogen compounds,
which contain SN formal single and double bonds and include
nitrogen atoms involved in inter- and intramolecular hydrogen
bonds, is used to study the dependency of the bond topological
QTAIM properties and of the NBO/NRT data on the method
of computations. Additionally, the theoretical results are com-
pared to each other and to their experimental counterparts.

For the SN formal double bonds, our investigations show a
quite strong dependency of theλ3 values, and as a consequence,

the Laplacians at the BCP also vary with respect to the
theoretical approach and the size of the AO basis sets. The other
Hessian Eigenvalues,λ1 andλ2, change to a smaller extent, and
the density itself varies only slightly. For all other bonds, the
variations with respect to the theoretical approach are smaller.
It is interesting to note that all data obtained with the (2d,p)
polarization basis set proposed by Pople are found to deviate
considerably from the corresponding values from (1d,p) and
(3d,p) polarization basis sets.

The strong influence of the theoretical approach on theλ3

values found for the formal double bonds mainly occurs, because
it varies remarkably near the BCPs. As a consequence, small
variations in the position of the BCP already lead to large
changes inλ3 and in the Laplacian. Becauseλ1 andλ2 and the
density change slowly, a smaller dependency of these properties
with respect to the theoretical description results. For all other
bonds (e.g., formal single S-N and S-C bonds), the BCP is
located close to the middle of the respective bond. In this region,
λ3 also varies slowly, so that smaller dependencies result.
Despite these strong variations for the formal double bonds,
the computed densities and Laplacians at the BCPs are found
to show a nice correlation with the computed bond distances
and formal characters of the bonds. Within the NBO/NRT
approach, the weights of the leading Lewis structures are found
to depend strongly on the method of computations and basis
set size; however, the derived properties such as bond orders
and atomic charges are found to be almost independent.

Within our set of model compounds, the Cioslowski bond
orders are considerably higher than the covalent bond orders in
the NBO/NRT approach, and also, higher atomic charges are
obtained in QTAIM theory than in the NBO approach. However,
although both approaches disagree considerably in the actual
numbers, they agree in the trends. Both predict increasing ionic
and covalent bond contributions when comparing the SN formal
single to the formal double bonds.

For the present set of model compounds, theory and experi-
ment agree qualitatively in the topological features of the
electron density, but both disagree in the absolute values of the
density and the Laplacians at the BCPs. Already the positions
of the BCPs are quite different. To study whether both can be
directly compared, we studied the correlations between experi-
mentally and theoretically derived quantities obtained for our
set of eight different SN bonds. Such a correlation is only found
for the less sensitive properties, such as density at the BCPs.
The more sensitive ones (e.g., the Eigenvalues of the Hessian
and the Laplacians) do not correlate. Comparing other relation-
ships, we found that all theoretically derived properties correlate
with bond distances or formal types of bonds; from the
experimentally derived quantities, such relationships are only
found for the density, while they are missing for the more
sensitive properties. An example is the position of the BCP,
which exclusively in the calculations clearly distinguishes formal
single and double bonds. It is interesting to note that single point
calculations of the density-related properties at experimentally
derived geometries requires flexible basis sets. For smaller basis
sets, the correlations between Laplacians and bond distances
disappear. If both the geometries and density-related properties
are obtained from theory, the correlations are also found for
smaller basis sets.

From the present study, we cannot answer why a correlation
between the Laplacians and bond distances is missing for the
experimental data. In principle, it could turn out that the
Hansen-Coppens formalism in its original form is not flexible
enough to describe the topology (i.e., density and Laplacian at

Figure 4. Ionic (BOi) versus covalent (BOc) NBO bond order in the
eight different N-S bonds of1b, 2b, 3, and4 (R ) Me), calculated at
the B3PW91/6-311G(d,p) level of theory (optimized geometries).

TABLE 18: Comparison of Cioslowski (CIO) and NBO
Bond Ordersa

compound bond NBO CIO ∆

1a S1-N2 0.63 1.10 0.47
1a N1-N2 1.31 1.52 0.21
1a S1-C2 0.95 1.03 0.08
2b S1-N1 0.59 1.01 0.34
2b S1-N2 1.11 1.34 0.23
2b S1-N3 1.31 1.37 0.07
2b S1-C7 0.90 0.99 0.09
3 S1-N1 1.49 1.78 0.29
3 S1-N2 1.36 1.77 0.41
3 N1-N1 0.15 0.34 0.19
4 S-N 1.32 1.55 0.23
4 N-N 0.00 0.25 0.25

a All calculations were performed with the B3PW91 functional in
combination with a 6-311G(d,p) basis set (R) H).
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the BCP) of the present SN bonds correctly. The little variation
in the position of the experimental BCP supports this thesis.
On the other side, there are examples of highly ionic bonding
modes (e.g., in silicon compounds68) which show a BCP very
close to the electropositive atom. The other possibility is that
the Hansen-Coppens formalism is of sufficient flexibility, but
multiple solutions exist in the least-squares refinement, maybe
some of them of similar quality in the statistical quality measure.
These questions are the matter of our future work.
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