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A definition for radical and generalm-fold multiradical character of molecular systems is formulated. The
orbitals in which lone or odd electrons most often reside are identified; these orbitals are found by maximizing
their probability of (m-fold simultaneous) single occupancy over orbital rotations. The maximum such
probability functions as a scalar measure of (multi)radical character. The method is general and applicable to
wavefunctions of any form. The radical character, as defined here, obeys strict bounds of zero and unity and
has a well-defined meaning. The method has been implemented generally, and it has been tested on simple
radical, diradical (biradical), and triradical systems. The results agree with chemical experience for these
cases, and in the diradical case, we show that it agrees qualitatively with earlier proposed characterization
schemes. Specific implementation for monoradical character requires only two-particle density matrix
information, and furthermore, a promising approximation for the diradical analogue can be constructed from
quantities that we call the first and second monoradical characters and orbitals. An algebraic connection can
be made to a reinterpretation of the widely discussed distribution of total odd electrons.

1. Introduction

Radical behavior is a phenomenon familiar to every chemist,
and it is of great general interest, because much of chemistry
proceeds through pathways involving radicals. However, radical
character, like aromaticity and bond order, belongs to a class
of intuitive chemical concepts which do not have unique
theoretical definitions.

The electron pair was first proposed in a 1916 article by
Lewis.1 In this early work, the role of unpaired or odd electrons
was discussed in order to explain valency and reactivity.
Quantum mechanics and resulting orbital theories have much
elucidated the physical nature of electron pairing,2 but the
discussion of fundamental properties of pairing and their impact
on chemistry is still proceeding in the modern literature.3-7

There is no quantum mechanical operator which defines the
extent of pairing unambiguously. Consequently, there can be
no direct measurement of radical character. One can only
observe behaviors of molecules believed to be characteristic of
radicals and infer information about their electronic structure.
Experimental characterization of radicals is often based on
measurements of spin properties of their unpaired electrons.5

The total spin angular momentum per molecule can be
determined by measuring bulk magnetization as a function of
applied static magnetic field at very low temperature. Electron
spin resonance is a critical spectroscopic tool to determine the
ground-state spin multiplicity, in which the interaction of
unpaired electrons with external (usually microwave) radiation
gives rise to characteristic signals. Spin-state energy gaps are
also used to characterize radicals. In particular, the singlet-
triplet splitting is one of the most widely used indicators of
diradical character,8 and this will be discussed from a theoretical
point of view later. Site-specific reactivity is also a primary

characteristic of radicals; reactivity can be studied by measuring
species lifetimes using transient absorption spectroscopy.9

It has been the challenge of theory to develop a quantitative
measure of radical character which agrees with the qualitative
understanding of electron pairing in chemical and quantum
mechanical contexts.

In molecular orbital theory, a radical is understood simply
by the presence of a singly occupied orbital. Beyond the
Hartree-Fock approach, however, one of the most basic and
widely understood ways to quantitatively think about radical
character is to look at natural orbital occupations directly.
Radicals are indicated by occupations that differ significantly
from zero or two, which are the only values present for closed-
shell, single-determinant wavefunctions. For example, occupa-
tion of a LUMO-like orbital by nearly one electron on the
average is characteristic of a singlet diradical; because of the
close connection between natural orbitals and bonding/anti-
bonding orbitals, this occupation is usually a manifestation of
a mostly broken bond, which leads to spin-entangled radical
fragments at dissociation. This is discussed thoroughly by
Döhnert and Koutecky´.10

In a 1978 paper by Takatsuka, Fueno, and Yamaguchi,11 the
distribution operator

was proposed for singlet systems, where1F̂ is the spinless one-
particle density operator. Similar formulas were proposed for
higher-spin systems. The formula was proposed on the some-
what heuristic argument that every matrix element of this
operator is identically zero for a state that can be represented
as a single, closed-shell determinant. Otherwise,D̂ identifies
the regions of space where the wavefunction is not closed-shell-
like. The diagonal elements of this operator,D(rb) ) 〈rb|D̂|rb〉,* Corresponding author. E-mail: mhg@bastille.cchem.berkeley.edu.

D̂ ) 2(1F̂) - (1F̂)2 (1)
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are said to be a spatial distribution of total odd electrons. The
integral overD(rb) has been used11,12 to define the total number
of unpaired electrons,nD ) Tr(D̂).

An elegantly presented motivation forD̂ was constructed
twenty years later, but apparently independently, by Bochic-
chio.13 D(rb) is interpreted there as a hole distribution, deriving
its name from the construction of a hole density operator (2-
1F̂) contracted with the particle density operator, obtaining an
expectation value for the number of holes in a conventional
trace algebra formulation. The result is thatD̂ is a second-order
operator in1F̂. In contracting the hole density with the particle
density, however, a hole is only counted if there is some nonzero
particle density in that same natural orbital. For small occupa-
tions, the orbital is counted as a nearly double hole (weighted
by the small occupancy).

Although eq 1 has largely the correct behavior when the
eigenvalues of1F̂ are all zero, one, or two, its behavior at other
points is somewhat arbitrary, as pointed out by Head-Gordon.14

The limit, shown by Staroverov and Davidson,12 in which one
might determine that a molecule hasnD ) 2n unpaired electrons,
or 2n electron holes, is particularly unphysical (n is the number
of electrons). An attempt to correct this by modifyingD̂ has
been made.14 In light of this strange limiting behavior, it is
difficult to say rigorously what the exact interpretation ofD̂ or
D(rb) should be.

Recent work has also made use of the electron localization
function (ELF)15 applied to spin densities and total densities,16

and the resulting plots show interesting density anomalies in
the regions where one would expect to find odd electrons, at
dangling bonds. However, it is not clear that this analysis
rigorously corresponds to the presence of lone electrons.

We would like to draw attention to work on radicals by some
of the present authors and others. These studies involve either
accurate computation or analysis of multiradicals, and they make
use of the principle which we will attempt to define generally
in this work. That principle is that radical character is best
analyzed with respect to specific radical orbitals, which are
singly occupied, or, more generally, have a high probability of
being singly occupied.

In work by Jung and Head-Gordon,17,18 a perfect-pairing
cluster amplitude can be used to obtain the weight of an
important (diradical) correlating transition easily. This transition
implicitly defines radical orbitals as mixtures of the HOMO
and LUMO, as discussed later. Slipchenko and Krylov19 obtain
triradical orbitals by looking at the high-spin analogue of a
system of interest at the Hartree-Fock level and then flipping
the spin of one electron in a correlation calculation for the low-
spin case (spin-flip coupled cluster). We should also acknowl-
edge the well-known work of Amos and Hall,20 who define
corresponding orbitals in unrestricted Hartree-Fock wavefunc-
tions with broken symmetry; this is conceptually similar to our
own work but not as general.

There is a natural inclination to use electron spin as a
theoretical tool to characterize radicals. Although there is a clear
connection between singly occupied orbitals and the presence
of a nonzero spin density, we argue that models of radical
character based on spin alone are insufficient to generalize the
concept of radicals, diradicals, and so on, to complicated
wavefunctions. For example, the common notion of a singlet
diradical3-7 involves a molecule whose spin density is zero
everywhere. In any system with more than two electrons, it is
impossible to consider any two as spin paired, because all
coordinates of the indistinguishable electrons play equivalent

roles in the wavefunction. Indeed, the two-particle spin density
matrix generally hasVV, vv, and Vv + vV blocks, as well as the
singlet pairedVv-vV block. For these reasons, it is necessary to
look beyond just spin to describe the chemical phenomenon
known as pairing, although the singlet-triplet energy gap will
be of considerable interest in characterizing diradicals within
our proposed model. Electrons in doubly occupied orbitals
cannot rigorously be said to form a spin singlet, however; we
would like to preserve the concept that a doubly occupied orbital
pairs electrons.

We propose an orbital-based definition of radical character
on the grounds of the following physical argument. The
phenomenologically conjectured electron pair is a consequence
of the Pauli exclusion principle, because electrons cannot form
groups of greater than two in lower-energy spatial orbitals. If
two molecules, fragments, or atoms are each individually
described by singly occupied orbitals, then the ground-state
wavefunction of the combined system should involve a bonding
interaction between them. The bond results from the fact that
there are only enough electrons to fill the bonding combination
formed from the originally singly occupied orbitals. The ability
to find an orbital in a molecule that has a high probability of
being singly occupied indicates that a large portion of the
wavefunction should be conducive to such a bonding interaction.
We should then have an indicator of the reactivity of a molecule,
which is a primary characteristic of a radical, in the spirit of
Lewis’s original concept of pairing.

2. Definition

The radical character of a spatial orbital|φs〉 is defined as
the probability of single occupancy of that orbital,P1, which
can formally be written as the expectation value of a Hermitian
operator

where n̂• and n̂° are the particle- and hole-number operators,
respectively, acting on spin orbitals|φsV〉 and |φsv〉, and|Ψ〉 is
the many-electron, multideterminant state of interest. The
product of number operators measures the probability that|φs〉
is occupied by aV electron but not av electron, or vice versa.
We take the monoradical character of a molecule,R1 ) P1

opt, to
be the radical character of the most radical orbital in that
molecule|φs〉opt. In practice, this is found by optimizingP1 over
continuous rotations of|φs〉 with all other spatial orbitals
spanning the one-particle space.

Our formalism for computing single occupancy is independent
of needing an excess spin density to extract such information.
It can be shown that the form of the operator in eq 2 is in-
variant with respect to any real or complex rotation of the spin
basis in which it is written, making the probability of single
occupancy of an orbital a well-defined physical quantity for a
given wavefunction, independent of the direction chosen to be
up.

All of the information necessary to compute the monoradical
character and orbital, including derivatives ofP1 with respect
to orbital rotation, is obtainable from the two-particle density
operator,2F̂. 2F̂ is necessary, because evaluating single oc-
cupancy involves the simultaneous knowledge of both a particle
and a hole. One can use the definitions of the particle and hole
operators in terms of the normal annihilation and creation
operators,â and â†, respectively

P1(|φs〉) ) 〈Ψ|(n̂°sVn̂sv
• +n̂°svn̂sV

• )|Ψ〉 (2)

nsV
• ) âsV

† âsV n̂°sV ) âsVâsV
† (3)
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and the anticommutation

to obtain

An interpretation follows from the second line of eq 5. The
probability of single occupancy of|φs〉 is the probability of
occupancy of|φsV〉 plus the occupancy of|φsv〉, minus the
probability that we counted theV orbital while thev orbital was
occupied, which is the same as the probability that we counted
the v orbital while theV orbital was occupied, hence the factor
of 2 for the two-particle piece. Because computingR1 depends
only on the information in2F̂, computing this quantity should
be feasible for any system for which the energy can be
computed. Derivatives ofP1 are presented in the method section.
Interestingly, Takatsuka et al. acknowledge that “recourse to
the second-order density matrix would be unavoidable” when
D(rb) fails to give a good characterization.

One of the advantages of this definition is that it generalizes
easily to the diradical case

which is the probability of simultaneous single occupancy of
two orthonormal spatial functions|φ1〉 and|φ2〉, where we have
chosen the indices 1 and 2 for convenience. Under this
definition, infinitely stretched singlet H2 is perfectly diradical,
and the orbitals which maximizeP2 f R2 are the atomic|1sA〉
and|1sB〉 functions on protons A and B, respectively.|1sA〉 and
|1sB〉 are both singly occupied in every configuration when the
wavefunction is written in that basis. The states|1σ〉 and|1σ* 〉

are the bonding and antibonding orbitals, respectively. We insist
on an orthonormal pair of orbitals for the optimization in the
diradical case, or else, we would simply obtain two copies of
the most radical orbital from the monoradical evaluation.

The generalization of the definition to them-fold multiradical
case is (m ) 1 for monoradical,m ) 2 for diradical, etc.)

for a set of m orthonormal spatial orbitals, where we are
concerned with the probability of simultaneous single occupancy
of those orbitals. Again, these orbitals are optimized to obtain
them-fold multiradical characterRm ) Pm

opt of the molecule in
question, which is the probability of finding the optimal orbitals
1 throughm simultaneously singly occupied.

Because of the cost of generalizing this method to higher
multiradical character, it is most applicable only to monoradicals
and diradicals. We can show that fully evaluating them-fold
multiradical character needs the 2m-particle density matrix,
which is usually an expensive quantity to obtain or manipulate.

There is hope, however, to get a good approximation of the
diradical character from monoradical information, without the
four-particle density matrix. If we know that the monoradical
orbital |φ1〉opt in an even electron system has probabilityR1 of
being singly occupied, then we know that there is at least one
other electron alone in an orbital somewhere else, in all
configurations where only one electron is in|φ1〉opt. However,
we would like to know that the other electron is alone in the
same orbital|φ2〉opt in each one of those configurations, as a
condition for the monoradical and diradical characters to be
related. We will look at this hypothesis with respect to the
quantities we call the first and second monoradical orbitals and
characters. The first monoradical orbital and character are
exactly|φ1〉opt andR1, respectively, as defined and discussed to
this point. The second monoradical characterR1

(2) ) P1
(2) opt

is
defined as the probability that the second monoradical orbital
|φ2〉opt is singly occupied, such thatP1

(2) has been optimized
subject to the constraint that the orbitals are orthonormal,
〈φ2|φ1〉opt ) 0.

3. Method

To avoid construction of a general 2m-particle density matrix
algorithm, it is easiest to write code in the spirit of the first
quantization, whenm is an input parameter. That is to say that
the state|Ψ〉 is expressed as a list of coefficients of each of the
possible determinants of orbitals in a given orthonormal single-
particle basis. As the single-particle basis is rotated, the same
many-particle function space is spanned by the determinants
of the new orbitals, and the state is re-expressed as a list of
coefficients for the new determinants.

It is trivial to decide whether an orbital|φq
i 〉 of the ith rotated

basis{|φq
i 〉|1 e q e N} is empty, singly occupied, or doubly

occupied in each possible determinant of these orbitals (N is
the number of spatial basis functions). For them-fold multi-
radical character, we are concerned with the probability of
simultaneous single occupancy of a set ofm orbitals. For
convenience, we establish the convention that these orbitals are
the first m members of the complete set,{|φs

i 〉|1 e s e m} ⊂
{|φq

i 〉}. These firstm orbitals will be called the trial orbitals,
and the remaining orbitals are referred to as the complementary
trial, or c-trial, orbitals. The indexs henceforth refers to a
member of the trial orbitals, and the indicesp and q refer to
either a trial or c-trial orbital. The trial orbitals yielding the
maximum of Pm are the radical orbitals{|φs

i 〉opt}, and the
maximum possible value ofPm definesRm.

If a certain determinant in the ket|Ψ〉 has all members of
{|φs

i 〉} singly occupied, then that determinant contributes to the
radical character of those trial orbitals. In other words, the
determinant survives being operated on byP̂m({|φs

i 〉}) of eq 8,
and it projects onto itself in the bra〈Ψ|. The function value
Pm({|φs

i 〉}) is then computed as the sum of squares of the
coefficients of those determinants, wherein the subset ofm
orbitals are all singly occupied, as in eq 9. Essentially, we get
the norm-squared of a projection of|Ψ〉 (a probability) into a
subspace of radical determinants, span{|Φx

m-Rad({|φq
i 〉})〉}.

Note, however, that this subspace is variable, depending on the
rotation of the orbitals.

Pm({|φs
i 〉}) ) 〈Ψ|[∑

x

|Φx
m - Rad({|φq

i 〉})〉〈Φx
m - Rad({|φq

i 〉})|]|Ψ〉

) ∑
x

〈Ψ|Φx
m - Rad({|φq

i 〉})〉2 (9)

âsVâsV
† ) 1 - âsV

† âsV (4)

P1(|φs〉) ) 〈Ψ|(âsV
† âsV + âsv

† âsv - 2âsV
† âsVâsv

† âsv)|Ψ〉

) 〈Ψ|(n̂sV
• + n̂sv

• - 2n̂sV
• n̂sv

• )|Ψ〉 (5)

P2({|φ1〉, |φ2〉}) ) 〈Ψ|(n̂°1V n̂1v
• + n̂°1vn̂1V

• )(n̂°2Vn̂2v
• + n̂°2vn̂2V

• )|Ψ〉
(6)

|1sAV 1sBv〉 + |1sBV 1sAv〉

x2
)

|1σV 1σv〉 - |1σ* V 1σ* v〉
x2

(7)

Pm({|φ1〉, |φ2〉, ...|φm〉}) ) 〈P̂m({|φ1〉, |φ2〉, ...|φm〉})〉 )

〈Ψ|[∏
s)1

m

(n̂°sVn̂sv
• + n̂°svn̂sV

• )]|Ψ〉 (8)
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We define rotation coordinates (θi)p
p′ between orbitals|φp

i 〉
and |φp′

i 〉 at eachith iteration. To first order in (θi)p
p′, the pth

orbital takes on a component in the direction of thep′th orbital
and thep′th orbital takes on a negative component in thepth

orbital. As a matter of notation, we define the upper indexp′ to
be the greater one,p′ > p. The vectorθi holds all the local
[N(N - 1)/2] instantaneous pairwise rotation coordinates. We
then construct the gradient vector with respect to these
coordinates. We note that at least one of the indices of a gradient
component must denote a trial orbital to obtain a nonzero result
for that component. There are nonzero derivatives for both trial/
trial and trial/c-trial mixings.

In each determinant|Φx
m - Rad({|φq

i 〉})〉, the trial orbital|φs
i 〉

is singly occupied by either aV or v electron in order that it is
a member of the set of radical determinants, but|φp

i 〉 is empty,
doubly occupied, or singly occupied, in general. Choosing
arbitrarily for |φs

i 〉 to be singly occupied by aV electron, we
have four possibilities for the occupancy of|φp

i 〉 and, conse-
quently, four possibilities for the derivative of each radical
determinant with respect to any (θi)s

p.

In eq 11b, the determinants composing the derivative are zero
by antisymmetry. In eq 11d, permutational antisymmetry is used
to arrive at the final expression.

The derivative algorithm functions similarly to the algorithm
for the evaluation of Pm. For each radical determinant
|Φx

m - Rad({|φq
i - 1〉})〉, the coefficient of this determinant is

multiplied by the coefficients of the determinants into which it
rotates with each (θi)s

p, per eq 10. Each product then contrib-
utes to the corresponding component of the gradient. A
conjugate-gradient-like algorithm is used to optimizePm. Parallel
transport of the previous step information, resulting from the
change of rotational coordinates at each step, is neglected in
this algorithm; this is acceptable for the small steps near
convergence; the initial large steps were done by steepest
descent.

We can also express the components of the gradient of the
monoradical character on the space ofθi in second quantized

form. We differentiate the operators in the first line of eq 5

to obtain

This is clearly a function of1F̂ and 2F̂ only, as claimed
previously. The indicess andp on the right-hand side of eq 13
refer implicitly to orbitals of the (i - 1)th set, as the derivative
is evaluated atθi ) 0. Equation 13 can be shown to be
equivalent to the result of eq 11 when inserted into eq 10.

This optimization algorithm has been implemented as an
extension to a development version of theQ-Chemprogram
package.21

4. Results and Discussion

The implications of the present definition of radical and
multiradical character will be discussed in a series of simple
examples. Orbital optimization and a principle nuance of the
radical character value will be illustrated in the context of
monoradical character. The most detailed discussion of this
model will take place in the consideration of diradicals. A simple
triradical system demonstrates the generality of the model. The
ability to approximate diradical (or higher) character from
monoradical characters is motivated by a numerical example.
Finally, we will highlight an interesting mathematical connection
between our definition andD̂ for perfect-pairing wavefunctions.

4.1. Monoradical Character. We will consider the mono-
radical character of the Li atom in a 6-31G basis set (one s
shell, two sp shells). A full configuration interaction (FCI)
computation was done for the ground state in the doublet,MS

) -1/2 space. In this example, FCI is a formality, because the
state is dominated by the Hartree-Fock 1s22s1 configuration
(|coeff| ) 0.99995). In Figure 1, the surface of the sphere
represents all possible normalized single-particle functions
which lie in the space spanned by the|1s〉, |2s〉 and |3s〉
canonical orbitals. Orbital radical characterP1 as a function of
mixtures of these three orbitals is plotted on the sphere. As
expected, the|1s〉 and|3s〉 orbitals have nearly zero probability
of being singly occupied, because they are almost always
doubly occupied or empty, respectively. The intuitive result is
returned, in that the orbital that maximizes the monoradical
character of the atom is approximately the|2s〉 orbital, hav-
ing nearly unit probability of being singly occupied,R1 ) P1

opt

≈ 1. We say that|2s〉 is the radical orbital for Li. The function
is relatively well-behaved in this simple system, making orbital
optimization from an arbitrary guess a smooth process.

An important nuance of our definition is illustrated by the
value ofP1 along the geodesic path between the|1s〉 and |3s〉
orbitals. The peak radical character along this path is

∂Pm

∂(θi)s
p|

θi)0

) ∑
x

2〈Ψ|Φx
m - Rad({|φq

i-1〉})〉 ×

〈Ψ|[ ∂

∂(θi)s
p
|Φx

m - Rad({|φq
i 〉})〉]

θi)0

(10)

(a)
∂

∂(θi)s
p
|...φs

i V...〉|θi)0 ) |...φp
i-1V...〉

(b)
∂

∂(θi)s
p
|...φs

i V...φp
i V...〉|θi)0 ) 0

(c)
∂

∂(θi)s
p
|...φs

i V...φp
i v...〉|θi)0 ) |...φp

i-1V...φp
i-1v...〉 -

|...φs
i-1V...φs

i-1v...〉

(d)
∂

∂(θi)s
p
|...φs

i V...φp
i Vφp

i v...〉|θi)0 ) |...φp
i-1V...φs

i-1Vφs
i-1v...〉

(11)

∂

∂(θi)s
p
âs(i)V|θi)0 ) âp(i - 1)V

∂

∂(θi)s
p
âs(i)V

† |θi)0 ) âp(i-1)V
† (12)

∂P1

∂(θi)s
p|

θi)0

) 〈Ψ|(âpV
† âsV + âsV

† âpV + âpv
† âsv + âsv

† âpv -

2âpV
† âsVâsv

† âsv - 2âsV
† âpVâsv

† âsv - 2âsV
† âsVâpv

† âsv - 2âsV
† âsVâsv

† âpv)|Ψ〉

(13)

P1( (|1s〉 + |3s〉)
x2 ) ≈ 0.5 (14)
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To illustrate the meaning of this, consider the basis

Because|1s〉 ) (|φ1〉 + |φ3〉)/x2, the state transforms mostly
as

and we can see directly that homogeneous mixtures of|1s〉 and
|3s〉 (i.e., |φ1〉 and |φ3〉) both have a half probability of being
singly occupied. We then notice that whenever one electron is
in |φ1〉 there is an equal amplitude for finding another electron
in |φ1〉 or in |φ3〉, and vice versa when there is an electron in
|φ3〉. This is a manifestation of the lack of correlation of electrons
in a single-determinant wavefunction (here, specifically, in-
out correlation). We have introduced the use of the|3s〉 state to
look at a determinant which is described by the|1s〉 and |2s〉
states. The logical extreme of this procedure is to introduce a
complete basis for the analysis. If we chose the point-like
position functions, we would see the lack of correlation spread
over many states, but none of these states would have significant
occupancy. Presumably, if a molecule’s behavior is well
described in the basis used for the energetic computation, then
so are the radical orbitals, assuming that they are, in fact,
physical indicators of reactivity.

For any system described by a single, closed-shell determi-
nant, one can show that the monoradical characterR1 of the
molecule is always exactly one-half. Consider that any orbital,
including the radical orbital, can be uniquely decomposed as
the sum of its projections into the occupied and virtual spaces.
The occupied component (renormalized) necessarily describes
a doubly occupied orbital, and the virtual component describes
an empty orbital. Now, we take these two states as the bases
for a two-dimensional space and note that the states in this space
with the highest probability of single occupancy are the

homogeneous linear combinations of the occupied and virtual
bases, and that these orbitals have exactly a one-half probability
of being singly occupied. Therefore, the radical orbital (which
maximizesP1) must be a homogeneous combination of an
occupied and a virtual orbital for a closed-shell determinant,
and we haveR1 ) 0.5.

We note for our coming discussion of diradical character that
the two orthogonal homogeneous combinations (() are also
simultaneously singly occupied with a probability of one-half
for a closed-shell determinant, making theR2 value at least one-
half. Because it is logically bounded from above by the
monoradical character, we haveR2 ) 0.5 exactly. The trans-
formation of the Li atom core in eq 16 illustrates the way that
a general closed-shell determinant could be transformed to get
R2 ) R1 ) 0.5.

There is nothing fundamental about any particular representa-
tion of a wavefunction, but usually, chemists choose a canonical
representation in which member orbitals may most often be
described as doubly occupied; these orbitals have particular
chemical relevance. Also interesting are these radical orbitals
that can be found to have a high probability of being singly
occupied. From what we have learned thus far, however, this
probability must exceed one-half to be chemically relevant.

4.2. Diradical Character: General Discussion.The gen-
eralization of the perfect-pairing analysis of Jung and Head-
Gordon17 for singlet diradicals to general wavefunctions was
the motivation for this work. In a perfect-pairing coupled cluster
doubles (PP-CCD) wavefunction,22,23 each independent pair
function has the form of the right-hand side of eq 7, except
that the amplitude of the double excitation into the virtual orbital
is a variable,t. In the basis which homogeneously mixes the
HOMO and LUMO orbitals (similar to the left-hand side of eq
7), the wavefunction looks increasingly diradical with increasing
magnitude of the HOMO-LUMO amplitude, explicitlytHVHv

LVLv .
Jung and Head-Gordon quantify this effect by the LUMO
occupation number following Do¨hnert and Koutecky´.10

To illustrate the nature of a diradical with reference to our
definition, we present the following discussion of two electrons
in the HOMO (H) and LUMO (L) space (2-in-2), where H and
L are well separated energetically from the other orbitals. H
and L are canonical orbitals, meaning that they maximize the
orbital energy splitting of any two orthogonal orbitals which
can be constructed in this space. The singlet space for this
system is spanned by three possible configuration states, whose
spatial parts are HH, LL, and (HL+ LH)/x2. There is also a
degenerate spin triplet of states, which all share the same spatial
wavefunction, (HL - LH)/x2. In the singlet space, the
diradical character varies continuously from zero to unity, as a
function of the coefficients of the three spatial wavefunctions,
as in Figure 2. The triplet states, however, are all completely
diradical (in any representation mixing H and L); they share
the same spatial part, and two same-spin electrons cannot be in
the same one-particle state.

If the HOMO-LUMO gap is large, then the aufbau principle
dominates, and the system is a closed-shell singlet, with two
electrons in H (R2 ) 0.5). As the orbital splitting decreases, as
when H2 is stretched, scatterings to the other singlet states
become more accessible, and they mix in. Electron correlation
then becomes a large effect, and the position of an electron in
one localized orbital will correlate with the other electron being
in the remaining orthonormal orbital; the system will then look
increasingly diradical in the basis which most localizes the
orbitals in the two-dimensional, one-particle space. One could

Figure 1. Radical character as a function of orbital for the FCI/6-31G
Li atom [0≈ black< gray< purple< dark blue< light blue< green
< yellow < orange≈ 1]. The |1s〉 and |3s〉 orbitals have nearly zero
probability of being singly occupied, as is true for the|2p〉 and |3p〉
functions that cannot be shown here. The|2s〉 orbital has almost unit
probability of being singly occupied, and one expects it to be the radical
orbital for Li. Orbitals which are mixtures of these bases have
intermediate values for the probability of single occupancy.

|φ1〉 )
|1s〉 + |3s〉

x2
, |φ2〉 ) |2s〉, |φ3〉 )

|1s〉 - |3s〉
x2

(15)

|1sV1sv2sV〉 )

|φ1Vφ1vφ2V〉 + |φ1Vφ3vφ2V〉 + |φ3Vφ1vφ2V〉 + |φ3Vφ3vφ2V〉
2

(16)
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say that this effect defines the notion of localization for these
purposes.

If a singlet state were completely diradical, then its spatial
wavefunction would resemble that of a triplet, and therefore,
the exchange contribution to the energy (Hund’s rule, assuming
the orbitals are near one another) would then unambiguously
favor a spin-state change to a triplet state. If the HOMO-LUMO
gap is significant, however, the energy favorability of allowing
both electrons simultaneously into H some of the time will keep
the state a singlet, but the state is then, by this same argument,
not purely diradical. As a consequence of all this, no ground-
state singlet should ever be completely diradical, but a singlet
wavefunction can have variable diradical character, reflecting
what is often called static correlation. These Hund’s and aufbau
contributions compete equally at the point where the singlet
and triplet are degenerate. This should make the singlet-triplet
energy gap a good experimental indicator of diradical character,
according to our definition.

Our definition has some nice properties, relative to approaches
using 1F̂, that we will expound upon in the diradical case.1F̂
loses interesting information about the correlation. Consider
infinitely stretched H2 and the wavefunction in eq 7. Both
the atomic functions and the canonical molecular orbitals
diagonalize the nonzero block of the spinless one-particle density
matrix in this particular case, with two degenerate eigenvalues
of unity. 1F̂ cannot distinguish between an orbital which is singly
occupied with full probability, like the atomic functions, and
an orbital which is doubly occupied with a one-half probability,
like the canonical functions. For any stretch distance other than
infinity, the degeneracy in1F̂ is broken, and there is a unique
set of natural orbitals, which are nearly the canonical orbitals.
However, one can show that the atomic-like functions are more
relevant for describing the extent of the diradical character at
all distances, under our definition.

The phase of the configuration interaction in the right-hand
side of eq 7 is also important for correlation; however, the same
1F̂ could result from the wavefunction in eq 7 or a wavefunction

where this phase is flipped, as in eq 17. In eq 17, no orbital

(atomic or canonical) is ever singly occupied. In eq 7, the
electrons are correlated to maximize the distance between one
another〈r̂12〉, whereas in eq 17, this distance is minimized, which
would be unphysical for the ground state.R2 will distinguish
between these two wavefunctions.1F̂, however, cannot techni-
cally differentiate between these two phenomena, although
LUMO occupation numbers can generally be assumed to
originate from physically reasonable correlations (-1 < t < 0
for PP-CCD amplitudes), allowing1F̂, and alsoD̂, to provide
some information about the extent and spatial domain of radical
behavior; this assumption may only be valid for ground states,
however.

4.3. Diradical Character: Results.In Figure 3, the diradical
characterR2 of Li2 is plotted as a function of nuclear separation,
using a toy basis consisting of the three s orbitals from the 6-31G
set for each atom. TheR2 curve is for the FCI ground-state
wavefunction in the singlet space; the shape of the energy curve
is also plotted for reference.

The diradical character of a molecule should be viewed as
relative to the diradical character that one would expect from a
closed-shell system. One-half is then a sort of baseline, because
as discussed previously, a closed-shell determinant species has
R2 ) 0.5. (We can also show that closed-shell species have
one-quarter triradical and tetraradical character, and so on, in
inverse powers of two.) For this reason, the percent excess
diradicalism, according to our definition, has also been plotted.

Even at very compressed distances, Li2 is quite diradical (50.8%
at equilibrium) and this converges to nearly 100% at long
distances, reflective of the fact that the atoms have almost
complete monoradical character, making the combined system
a nearly pure diradical. For reference, minimal basis (FCI/STO-
3G) singlet H2 is 20.8% diradical at equilibrium.

There are also simple formulas to obtainR2 for unrestricted
Hartree-Fock (UHF) and PP-CCD wavefunctions. In eq 19a,
S is the spatial overlap of the least overlapping UHF corre-
sponding orbital pair.20 In eq 19b,t refers specifically totHVHv

LVLv .

Figure 2. The diradical character of singlet 2-in-2 wavefunctions [The
HH and LL bases have been mixed to show the cylindrical symmetry
of the plot; a factor of 1/x2 is implicit. 0≈ black< gray< purple<
dark blue< light blue< green< yellow < orange≈ 1]. There exists
one wavefunction in the singlet space (the north/south pole of the plot),
for which no orbital in the HOMO-LUMO space is ever singly
occupied; the electrons have coalesced in this wavefunction. There is
a one-dimensional manifold of singlet states (the equator), for which
some pair of orbitals can be found, which are always simultaneously
singly occupied.

Figure 3. Diradicalism of three different wavefunctions for toy-basis
Li 2 [solid line ) FCI energy in arbitrary units]. The PP-CCD
wavefunction is similar in diradicalism to the FCI wavefunction, except
that the curve is shifted upward. PP-CCD atoms dissociate to perfect
monoradical subunits because of less atomic (dynamic) correlation. The
UHF wavefunction starts closed-shell and breaks symmetry dramati-
cally.

|1sAV1sAv〉 + |1sBV1sBv〉

x2
)

|1σV1σv〉 + |1σ* V1σ* v〉
x2

(17)

% excess diradicalism) 2(R2 - 0.5)× 100% (18)
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In Figure 3, the excess diradicalism associated with theR2 values
of UHF and one-pair PP-CCD wavefunctions are also plotted
as functions of Li2 bond distance, for comparison with FCI
(same basis).

4.4. Diradical Character: Discussion of Results.Of primary
concern here is the meaning of the radical character values. We
have defined a quantity which we call the radical character.
However, this is not the same as a theory of radical behavior.
Radical character should be some theoretical measure of the
similarity in the electronic structure of radicals, whereas radical
behavior is that which is typically experimentally observed of
such species. Concretely, there has been discussion of molecules
such as the ((i-Pr)2P)2(B(t-Bu))2 ring molecule (BPBP).17,24The
claim by Scheschkewitz et al.,24 who first synthesized this
molecule, is that it is an indefinitely stable singlet diradical.
Although site-specific reactivity is generally indicative of radical
character in the electronic structure, this reactivity might be
sterically hindered in this particular molecule. We would like
to separate out these effects by looking at the electronic structure
alone, to assign the molecule a theoretical diradical character.

BPBP is 16.9% “diradicaloid”, according to the perfect-
pairing/LUMO analysis17 (100% × 1FLL, where 1FLL is the
LUMO occupation) for a 71-pair PP-CCD/6-31G(d) wavefunc-
tion.

Using eq 19b, we obtain 55.7% excess diradicalism for this
wavefunction (t ) -0.304 21), according to our definition. We
caution against attaching too much significance to these raw
numbers; under either analysis, one would reach the same
practical conclusion, that BPBP is about as diradical as Li2 is
at equilibrium. Concerning the 20.8% excess diradicalism of
equilibrium H2, we would not consider this to be a diradical.
We would like any theoretical definition to yield vanishing
radical character for closed-shell determinants, but we must
remember that no real system, including one whose behavior
is essentially closed-shell, is described by a single determinant.
There is no a priori value that should correspond to a system
which behaves closed-shell, and systems with closed-shell
behavior may exhibit a range of character values under any
definition.

It is reasonable to expect that wavefunctions with radical
character will be diagnosed as such under a variety of analyses.
The quest is to identify and extract the most fundamental
similarity between radicals. Such an analysis should be theoreti-
cally satisfying in its interpretation, and it should provide the
most robust prediction of radical behavior, when applied to
complicated wavefunctions. Figure 4 shows a few proposed
measures of diradical character, applied to the one-pair PP-CCD/
toy-basis Li2 wavefunction. This wavefunction was chosen,
because it is easy to analyze with respect to these different
measures and it is easy to think about, as it reduces to a 2-in-2
model problem. The percent excess diradicalism as defined here,
the percentage of two unpaired electrons (nD/2) achieved
according toD̂, and the percentage of one electron in the LUMO
(1FLL) have been plotted. This last measure is equivalent, in this

case, to the percentage of two unpaired electrons obtained from
the proposed modifiedD̂.14 For this simple case, all three values
measure the same correlation effect and therefore behave
similarly.

For the PP-CCD case, we have the conceptual advantage that
the entire LUMO occupancy is a result of double excitation
out of the HOMO (1FHH ) 2 - 1FLL), and the core orbitals are
exactly doubly occupied. This means thatnD can be written as
function of 1FLL only, and if we assume thatt e 0, we can
write R2 as a function of1FLL as well.

By choosing this form of the wavefunction, the homogeneous
mixtures of the HOMO and LUMO are automatically the radical
orbitals. All of the quantities,R2, 1FLL, andnD, are therefore
isomorphic for the 2-in-2 perfect-pairing case, but we believe
that R2 is the fundamentally most meaningful quantity, of
which1FLL and nD should be considered indicators. It is the
authors’ hypothesis that each of these measures should serve
as some sort of threshold criteria. Molecules whose diradicalism
is above a certain value on one of these scales (which
corresponds uniquely to a different threshold value on a different
scale) will rapidly begin to behave more diradically as this value
increases. We say this, because each measure does indicate the
extent to which a molecule has singly occupied orbitals, but
we believe that an orbital must be quite singly occupied before
it is particularly reactive. This remains to be verified.

In terms of orbital single occupancy, our new definition is
the rigorous generalization of extraction of radical character to
the non-perfect-pairing case. Our analysis should provide the
best orbitals for thinking about diradical (or higher) character,
and it will, hopefully, be a more robust method for analyzing
more complicated systems.

4.5. Triradical Character. Figure 5 shows the triradical
characterR3 of linear H3 along a symmetric stretch coordinate,
done at the FCI/6-31G (two s shells) level in the doubletMS )
-1/2 space. The closed-shell baseline for triradical character is
one-quarter, as stated earlier. As one might expect, the triradical
character at small distances is nearly one-half (33% excess),
because one of the canonical orbitals is almost always singly
occupied, and a doubly occupied canonical orbital can be
transformed in many ways (reflecting the lack of left-right,

(a)R2
UHF ) 1 - S2

2

(b) R2
PP-CCD )

(1 - t)2

2(1 + t2)
(19)

1FLL
PP-CCD ) 2t2

1 + t2
(20)

Figure 4. Three different measures of diradicalism for toy-basis one-
pair PP-CCD Li2 [solid line ) FCI energy in arbitrary units]. The
measures are qualitatively the same, and algebraically related, for this
simple case.

(a) 100%× nD

2
) 100%× [2(1FLL) - (1FLL)2]

(b) % excess diradicalism (R2) ) 100%×
x2(1FLL) - (1FLL)2 (21)
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in-out, up-down, etc., correlation) to be one-half diradical.
At long distance, the radical orbitals are the atomic|1s〉 orbitals,
and the species becomes completely triradical. This toy system
demonstrates that the method functions for higher multi-
radicals.

4.6. Approximating Multiradical Character from Mono-
radical Characters. We now explore the relationship between
higher and lower multiradical characters. Specifically, we focus
on the relationship ofR2 to R1 andR1

(2), as defined previously.
Simple logical arguments yield the bounds

If we know that the highest probability of finding an orbital
singly occupied isR1, then we cannot have a higher probability
of finding two orbitals simultaneously singly occupied (upper
bound). Also, if two orthogonal orbitals are found whose
probabilities of single occupancy,R1 and R1

(2), respectively,
sum to greater than unity, then we know that they must be
simultaneously singly occupied some of the time (lower bound).
We expect thatR2 will lie between R1 × R1

(2), when the
monoradical single occupancies are uncorrelated, andR1, when
they are perfectly correlated.

Unless bothR1 andR1
(2) are near unity, then the bounds in eq

22 are not very tight, so we look for another way to test the
possibility that the monoradical characters and diradical char-
acters measure the same correlation effect and that we can use
one to approximate the other. In other words, we have the
hypothesis, stated previously, thatR2 ≈ R1 ≈ R1

(2) and that
|φ1〉opt and|φ2〉opt from the first and second monoradical analyses
are the same|φ1〉opt and|φ2〉opt that one would obtain from the
full diradical evaluation. The system we choose is the Be atom,
done at the FCI/6-31G (one s shell, two sp shells) level. Be
was chosen because there are two valence electrons surrounding
a nucleus of shielded charge of approximately two, but unlike
in a helium atom, these electrons live in a Hilbert space of four

nearly degenerate orbitals, and the interactions of the s and p
orbitals in this shell lead to interesting angular correlation.

All of the monoradical through tetraradical probabilities of
this system are given in Table 1. There are clear patterns in the
numbers of this table relating lower radical characters to the
higher ones. For exampleR2 ≈ R1 ) R1

(2) for the valence
correlation, which was our hypothesis. AlsoR2

(2) ) R1
(3) ) R1

(4)

) 0.5, which comes from the largely uncorrelated core. Finally
R3 ) R4 ≈ R2 × R2

(2), because slightly correlated diradical
characters form the tetraradical character, and the triradical
character is from the same effect. The remaining unaddressed
numbers are from orbitals that have some small occupation due
to low-amplitude scatterings. Table 1 is a good illustration of
the way that our method isolates a few important correlation
effects from a complicated wavefunction.

One finds that the first monoradical orbital is an sp hybridized
orbital. There is a two-dimensional submanifold of sp hybrids
embedded in the three-dimensional manifold of normalized
states in the four-dimensional sp-shell state space; one such state
on this sp manifold is converged upon at random in the first
monoradical optimization. Now, there is only one sp hybrid
remaining on this manifold which is orthogonal to the first one.
This orthogonal sp hybrid is the second monoradical orbital,
and by symmetry, we haveR1

(2) ) R1, to within numerical
noise. These two sp hybrids are members of a two-dimensional
manifold of radically degenerate pairs of sp hybrids which could
have been converged upon; in each pair, the hybrid partners
point in opposite directions from the nucleus.

We also find that the diradical characterR2 is nearly
equivalent to these monoradical characters and that the first
diradical orbitals are also a pair of sp hybrids pointing in
opposite directions. One can easily imagine why this is true.
The electrons are correlating such that they have a higher
probability of being found alone on opposite sides of the nucleus,
even though the aufbau contribution keeps them together in the
lower energy|2s〉 state most of the time (only 24% excess
diradicalism).

One can also imagine that the relationship between mono-
radical and diradical characters would hold in cases where the
first and second monoradical orbitals (the approximate diradical
orbital pair) are on more spatially separated sites. A good
diagnostic for this assumption is thatR1 ≈ R1

(2), which should
then be approximatelyR2. For FCI/toy-basis Li2 along the stretch
coordinate, the maximum difference betweenR1 andR1

(2) is 5.4
× 10-5 (at 3.25 Å), and the maximum difference betweenR1

andR2 is 0.011 14 (at 5.5 Å).
We are led to wonder whether it is very important that

diradical (triradical, etc.) orbitals be simultaneously singly
occupied. Perhaps that would be important in concerted
electronic mechanisms, but not always. It may be useful to
simply establish the values of the largestR1

(a) and the orbitals
to which they belong (1e a e N). As stated earlier, the

TABLE 1: The Values of Rm
(a) for an FCI/6-31G Be Atoma

m Rm Rm
(2) Rm

(3) Rm
(4) Rm

(5) Rm
(6) Rm

(7) Rm
(8) Rm

(9)

1 0.620 972 036 4 0.620 972 032 0 0.50 0.50 0.020 0.020 0.016 0.016 0.0024
2 0.617 707 775 3 0.500 777 968 3 0.016 0.016
3 0.310 454 260 3 0.008 129 358 3 0.000 080
4 0.310 454 117 3 0.000 000 227 6

a[1 e m e n, anda ranges from 1 to the maximum allowed by the basis size for a givenm.] There are clear patterns relating lower radical
characters to the higher ones, most notablyR1 ) R1

(2) ≈ R2. This means that these monoradical characters result primarily from a two-electron
valence correlation, and so, the monoradical characters in this system are good indicators of the diradical character.

Figure 5. Triradical character for FCI/6-31G symmetric linear H3 [solid
line ) FCI energy in arbitrary units]. H3 is 33% triradical at equilibrium
and 100% triradical at infinite separation.

MAX(0, R1 + R1
(2) - 1) e R2 e R1 (22)
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monoradical characters are much cheaper to compute than higher
radical characters.

4.7. Algebraic Connection toD̂ and Perfect Pairing. The
reader may have already noticed that a form similar toD̂ appears
in the expression for excess diradicalism for a simple case in
eq 21b. There are many ways that one could elaborate on this,
and in the interest of space, detailed derivations will not be
presented.

Equation 21b holds for a 2-in-2 perfect-pairing system, under
the condition thatt e 0, which is a reasonable assumption for
repulsive correlation. This relationship also holds for the
diradical character of each individual pair in a more general
PP-CCD wavefunction; because the pairs are noninteracting,
each double excitation amplitude for a pair gives us a successive
R2

(a) value. For each pair, we also haveR2
(a) ) R1

(2a - 1) ) R1
(2a).

Putting this all together, we can obtain

the value of which starts at the one-half baseline for each
monoradical orbital with any occupancy and increases with
correlation.

Additionally, if one were to define the number of unpaired
electrons, we would suggest

because this sums over all orbitals, weighted by the probability
that an electron is alone in that orbital. First, one sums over
those orbitals that can be found to be almost always singly
occupied, if there are any, thus obtaining the number of electrons
which are almost always alone. Then, there would be a series
of orbitals (approximately speaking, mixtures of core and virtual
orbitals) which contribute nearly one-half of an electron each,
and then come orbitals with only slight occupancy. One can
show that for all wavefunctions, the following limits hold

and, practically speaking

So, we now have a new expression for the number of unpaired
electronsnR, using the monoradical characters defined in this
work. We can also expressnR in terms of D̂ for PP-CCD
wavefunctions, which are often qualitatively good wavefunctions
for thinking about bond breaking and radicals. In this PP-CCD
case, the bounds in eqs 25 and 26 are implicitly enforced by
the structure imposed on1F̂ by the wavefunction Ansatz; strong
pairs contribute nearly two electrons to the total, and weak pairs
contribute less. Outside of the perfect-pairing approach,nR is
still well defined and bounded, but it must be computed by brute
force.

A caveat follows: We have only chosen to present eqs 23-
25 for the insight they give intoD̂. We cannot recommend that
nR be used as a measure of radical character. It is not clear what
the number of unpaired electrons should mean for radical
behavior. Tracing overD̂ or D̂1/2 sums over all correlations,
including small amplitude dynamic ones. While dynamic
correlation may increase the average aloneness of electrons, it
still may not produce a single reactive radical orbital. It has

been pointed out14 that the derivative ofnD with respect to small
deviations from zero or two in a natural orbital occupation is
two, so that the most heavily weighted component ofnD arises
from dynamic correlation. This effect would be exacerbated in
nR, where that slope is divergent.

Per the discussions in this paper, it seems most relevant to
isolate a few primary correlation effects (static correlation).
Static correlation could be viewed as a generalized form of
symmetry breaking, because in the extreme case, the proper
symmetric ground state is a superposition of a few degenerate,
symmetry-broken solutions, which are, themselves, nearly
eigenstates; this leads to slow dynamics of the system when
perturbed along these wavefunction coordinates (static). The
effect of static correlation, as interpreted here, is that it leaves
electrons to occupy some orbitals mostly alone, as a means of
staying away from one another much of the time. The optimiza-
tion procedure defined herein extracts the best description of
these static effects, independent of the particular basis rotation
in which the energy is computed or the structure of electron
correlation in that basis.

4.8. Behavior in the Limiting Case of nD. As kindly
suggested by one of the referees, we should also address the
behavior of our procedure for wavefunctions in which the value
of nD approaches the 2n limit discussed previously. We start
by restating a point made in a recent letter25 that this limiting
case is not likely to be realized in chemically relevant situations.
Nonetheless, this concern needs to be addressed to fulfill the
stated “satisfying interpretation” and “robustness” criteria. These
wavefunctions will be called the highly correlated case, because
as addressed earlier,12 this case occurs when all of the natural
orbital occupations are very small.

Because diagonalizing the spinless one-particle density matrix
should produce as some of its eigenvectors those orbitals with
the largest occupancy, no one-particle state can be found that
has significant single or double occupancy in the highly
correlated case. This means that the value ofR1 for these systems
will be small, and all of the higherRm values will be smaller,
asRm+1 e Rm, always.

We would not consider such a highly correlated system to
be a monoradical; it does not contain a single one-particle state
that would, by our interpretation, constitute a reactive radical
orbital. The utility of the proposed measures of diradical and
higher characters is to isolate a dominant correlation which has
the effect of leaving electrons alone in orbitals; no single such
correlation is present in this case. While we concede that for
those cases wherenD ≈ 2n, all Rm are nearly zero, making them
of little use, we are satisfied with this result, because the effects
which we are looking for are, in fact, not there. We remind the
reader that the motivation was to develop a universally
applicable, quantum mechanical analogue to the simple concept
of a radical, born out of Lewis pair theory, to explain valency
and reactivity.

That said, we draw attention to two cases in which our
procedure produces a useful result wherenD fails. First, we note
the behavior of our theory in one subcase of the highly correlated
case, when those orbitals that do have some occupancy are far
more likely to be singly occupied than doubly occupied. By
virtue of summing over all orbitals, we obtainnR ≈ n (eq 23
does not apply in this case.), indicating that all electrons are
unpaired; this value is lowered by any pairing that occurs.
Second, we note a more physically relevant situation, where
the unphysical limit ofnD shows consequences outside of the
highly correlated case. In another recent letter,26 nD was
computed for FCI/aug-cc-pV4Z triplet He.nD has a lower bound

∑
a)1

N

R1
(a) )

n

2
+

1

2
Tr(D̂1/2) (PP-CCD case) (23)

nR ) ∑
a)1

N

R1
(a) (24)

0 e nR e n (25)

n/2 < nR < n (26)
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of 2 in this case; the computed result is that He has 2.0015
unpaired electrons according to this method. Our number of
unpaired electrons,nR, cannot exceed the total number of 2
electrons, and the diradical character,R2, cannot exceed unity.

In the absolute (unphysical) limit, ourRm andnR values are
correct; that is, they are true to the qualities we are trying to
quantify. In realistic cases, we are able to recover meaningful
results whereD̂ fails.

5. Conclusion

We have proposed a measure of general multiradical character
as a logical extension of the concepts which drive a single-
determinant model chemistry, where a radical is well-defined.
We have justified this extension based on simple arguments
about pairing and reactivity. This definition of radical character
provides us with both scalar measures, theRm, and with
distribution quantities, the radical orbitals, that indicate the extent
and spatial domain of this character, respectively. TheRm values
obey reasonable bounds, and they can be interpreted in terms
of well-defined probabilities. For perfect-pairing systems, we
recover an expression for annR value in terms ofD̂, bringing
some insight into the meaning ofD̂. The definition is very
general, applicable to wavefunctions of any structure, ground
state or otherwise. It can be systematically generalized to an
arbitrary degree of radical behavior. Computation of the
monoradical character appears to be practical for moderate
systems, and reasonably good approximations to diradical and
higher characters appear to be possible.
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