10270 J. Phys. Chem. R004,108,10270-10279
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A definition for radical and generah-fold multiradical character of molecular systems is formulated. The
orbitals in which lone or odd electrons most often reside are identified; these orbitals are found by maximizing
their probability of (m-fold simultaneous) single occupancy over orbital rotations. The maximum such
probability functions as a scalar measure of (multi)radical character. The method is general and applicable to
wavefunctions of any form. The radical character, as defined here, obeys strict bounds of zero and unity and
has a well-defined meaning. The method has been implemented generally, and it has been tested on simple
radical, diradical (biradical), and triradical systems. The results agree with chemical experience for these
cases, and in the diradical case, we show that it agrees qualitatively with earlier proposed characterization
schemes. Specific implementation for monoradical character requires only two-particle density matrix
information, and furthermore, a promising approximation for the diradical analogue can be constructed from
quantities that we call the first and second monoradical characters and orbitals. An algebraic connection can
be made to a reinterpretation of the widely discussed distribution of total odd electrons.

1. Introduction characteristic of radicals; reactivity can be studied by measuring
species lifetimes using transient absorption spectrostopy.

It has been the challenge of theory to develop a quantitative
measure of radical character which agrees with the qualitative
understanding of electron pairing in chemical and quantum
mechanical contexts.

In molecular orbital theory, a radical is understood simply
by the presence of a singly occupied orbital. Beyond the
Hartree-Fock approach, however, one of the most basic and
widely understood ways to quantitatively think about radical
hcharacter is to look at natural orbital occupations directly.
Radicals are indicated by occupations that differ significantly
from zero or two, which are the only values present for closed-
shell, single-determinant wavefunctions. For example, occupa-
tion of a LUMO-like orbital by nearly one electron on the
average is characteristic of a singlet diradical; because of the
close connection between natural orbitals and bonding/anti-
bonding orbitals, this occupation is usually a manifestation of
a mostly broken bond, which leads to spin-entangled radical
fragments at dissociation. This is discussed thoroughly by

Radical behavior is a phenomenon familiar to every chemist,
and it is of great general interest, because much of chemistry
proceeds through pathways involving radicals. However, radical
character, like aromaticity and bond order, belongs to a class
of intuitive chemical concepts which do not have unique
theoretical definitions.

The electron pair was first proposed in a 1916 article by
Lewis? In this early work, the role of unpaired or odd electrons
was discussed in order to explain valency and reactivity.
Quantum mechanics and resulting orbital theories have muc
elucidated the physical nature of electron paifnigut the
discussion of fundamental properties of pairing and their impact
on chemistry is still proceeding in the modern literatéiré.

There is no quantum mechanical operator which defines the
extent of pairing unambiguously. Consequently, there can be
no direct measurement of radical character. One can only
observe behaviors of molecules believed to be characteristic of
radicals and infer information about their electronic structure.
Experimental characterization of radicals is often based on Déhnert and Kouteck
measurements of spin properties of their unpaired electrons. dhnert and Koutecky” .

The total spin angular momentum per molecule can be . In_a 1_978 paper by Takatsuka, Fueno, and Yamagtithg
determined by measuring bulk magnetization as a function of distribution operator

applied static magnetic field at very low temperature. Electron .

spin resonance is a critical spectroscopic tool to determine the D= 2(12)) - (1[))2 Q)
ground-state spin multiplicity, in which the interaction of

unpaired electrons with external (usually microwave) radiation was proposed for singlet systems, whéiés the spinless one-
gives rise to characteristic signals. Spin-state energy gaps areparticle density operator. Similar formulas were proposed for
also used to characterize radicals. In particular, the singlet higher-spin systems. The formula was proposed on the some-
triplet splitting is one of the most widely used indicators of what heuristic argument that every matrix element of this
diradical charactetand this will be discussed from a theoretical operator is identically zero for a state that can be represented
point of view later. Site-specific reactivity is also a primary as a single, closed-shell determinant. Otherwisedentifies

the regions of space where the wavefunction is not closed-shell-
* Corresponding author. E-mail: mhg@bastille.cchem.berkeley.edu.  like. The diagonal elements of this operatb(r) = [|DIrL]
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are said to be a spatial distribution of total odd electrons. The roles in the wavefunction. Indeed, the two-particle spin density

integral overD(F) has been usé#!2to define the total number  matrix generally has!, 1, and¥t + # blocks, as well as the

of unpaired electrong), = Tr(D). singlet paired!—*! block. For these reasons, it is necessary to
An elegantly presented motivation f@ was constructed 100k beyond just spin to describe the chemical phenomenon

twenty years later, but apparently independently, by Bochic- known as pairing, although the singtetiplet energy gap will

chio3 D(7) is interpreted there as a hole distribution, deriving be of considerable interest in characterizing diradicals within

its name from the construction of a hole density operator (2 OUr proposed model. Electrons in doubly occupied orbitals

15) contracted with the particle density operator, obtaining an ¢&nnot rigorously be said to form a spin singlet, however; we
expectation value for the number of holes in a conventional would like to preserve the concept that a doubly occupied orbital

trace algebra formulation. The result is thats a second-order
operator in'p. In contracting the hole density with the particle
density, however, a hole is only counted if there is some nonzero
particle density in that same natural orbital. For small occupa-
tions, the orbital is counted as a nearly double hole (weighted
by the small occupancy).

Although eq 1 has largely the correct behavior when the
eigenvalues ofp are all zero, one, or two, its behavior at other
points is somewhat arbitrary, as pointed out by Head-Gottlon.
The limit, shown by Staroverov and DavidsHrin which one
might determine that a molecule has= 2n unpaired electrons,
or 2n electron holes, is particularly unphysicali¢ the number
of electrons). An attempt to correct this by modifyibghas
been madé? In light of this strange limiting behavior, it is
difficult to say rigorously what the exact interpretationdbr
D(r) should be.

Recent work has also made use of the electron localization
function (ELF)}® applied to spin densities and total densifies,
and the resulting plots show interesting density anomalies in
the regions where one would expect to find odd electrons, at
dangling bonds. However, it is not clear that this analysis
rigorously corresponds to the presence of lone electrons.

We would like to draw attention to work on radicals by some

pairs electrons.

We propose an orbital-based definition of radical character
on the grounds of the following physical argument. The
phenomenologically conjectured electron pair is a consequence
of the Pauli exclusion principle, because electrons cannot form
groups of greater than two in lower-energy spatial orbitals. If
two molecules, fragments, or atoms are each individually
described by singly occupied orbitals, then the ground-state
wavefunction of the combined system should involve a bonding
interaction between them. The bond results from the fact that
there are only enough electrons to fill the bonding combination
formed from the originally singly occupied orbitals. The ability
to find an orbital in a molecule that has a high probability of
being singly occupied indicates that a large portion of the
wavefunction should be conducive to such a bonding interaction.
We should then have an indicator of the reactivity of a molecule,
which is a primary characteristic of a radical, in the spirit of
Lewis’s original concept of pairing.

2. Definition

The radical character of a spatial orbiteklis defined as
the probability of single occupancy of that orbit&,, which
can formally be written as the expectation value of a Hermitian
operator

of the present authors and others. These studies involve either

accurate computation or analysis of multiradicals, and they make
use of the principle which we will attempt to define generally
in this work. That principle is that radical character is best
analyzed with respect to specific radical orbitals, which are
singly occupied, or, more generally, have a high probability of
being singly occupied.

In work by Jung and Head-Gorddh!® a perfect-pairing
cluster amplitude can be used to obtain the weight of an
important (diradical) correlating transition easily. This transition
implicitly defines radical orbitals as mixtures of the HOMO
and LUMO, as discussed later. Slipchenko and Kriimbtain
triradical orbitals by looking at the high-spin analogue of a
system of interest at the HartreBock level and then flipping
the spin of one electron in a correlation calculation for the low-
spin case (spin-flip coupled cluster). We should also acknowl-
edge the well-known work of Amos and Hafl,who define
corresponding orbitals in unrestricted Hartré@ck wavefunc-
tions with broken symmetry; this is conceptually similar to our
own work but not as general.

There is a natural inclination to use electron spin as a
theoretical tool to characterize radicals. Although there is a clear

Py (¢} = [W|(AgAY +N3AY) WO ®)
wheref* andn°® are the particle- and hole-number operators,
respectively, acting on spin orbitalgsJand |0 and |WHis

the many-electron, multideterminant state of interest. The
product of number operators measures the probability|#hat

is occupied by & electron but not 4 electron, or vice versa.
We take the monoradical character of a molecRles= P{™, to

be the radical character of the most radical orbital in that
molecule|¢s[. In practice, this is found by optimizirig, over
continuous rotations ofgpswith all other spatial orbitals
spanning the one-particle space.

Our formalism for computing single occupancy is independent
of needing an excess spin density to extract such information.
It can be shown that the form of the operator in eq 2 is in-
variant with respect to any real or complex rotation of the spin
basis in which it is written, making the probability of single
occupancy of an orbital a well-defined physical quantity for a
given wavefunction, independent of the direction chosen to be
up.
All of the information necessary to compute the monoradical

connection between singly occupied orbitals and the presencecharacter and orbital, including derivatives Rf with respect

of a nonzero Spin density’ we argue that models of radical to orbital I’Otatlon, is obtainable from the tWO-paI‘tIC|e denSIty

character based on spin alone are insufficient to generalize theopefatorllzp- ’p is necessary, because evaluating single oc-
concept of radicals, diradicals, and so on, to complicated cupancy involves the simultaneous knowledge of both a particle
wavefunctions. For example, the common notion of a singlet and a hole. One can use the definitions of the particle and hole
diradicaP~7 involves a molecule whose spin density is zero OPerators in terms of the normal annihilation and creation
everywhere. In any system with more than two electrons, it is OPeratorsa anda’, respectively

impossible to consider any two as spin paired, because all
coordinates of the indistinguishable electrons play equivalent

n,=ala, ng=a4) 3)
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and the anticommutation

a8l =1-ala, (4)
to obtain
Py(Ip) = (W|(ala, + alay — 28]a,al8,) W0
= W|(Ay + AY — 20y AY) (WD (5)

An interpretation follows from the second line of eq 5. The
probability of single occupancy ofpslis the probability of
occupancy of|¢4plus the occupancy ofgdl] minus the
probability that we counted thleorbital while thet orbital was

Dutoi et al.

There is hope, however, to get a good approximation of the
diradical character from monoradical information, without the
four-particle density matrix. If we know that the monoradical
orbital |¢1[9P'in an even electron system has probabiRgyof
being singly occupied, then we know that there is at least one
other electron alone in an orbital somewhere else, in all
configurations where only one electron is|ify [t However,

we would like to know that the other electron is alone in the
same orbital|¢,[9" in each one of those configurations, as a
condition for the monoradical and diradical characters to be
related. We will look at this hypothesis with respect to the
guantities we call the first and second monoradical orbitals and
characters. The first monoradical orbital and character are
exactly|p1 9Pt andRy, respectively, as defined and discussed to

. . . _ 2) opt .
occupied, which is the same as the probability that we counted this point. The second monoradical charag®t = PP ™ is

thet orbital while thel orbital was occupied, hence the factor
of 2 for the two-particle piece. Because computiigdepends
only on the information irfp, computing this quantity should
be feasible for any system for which the energy can be
computed. Derivatives d?; are presented in the method section.
Interestingly, Takatsuka et al. acknowledge that “recourse to
the second-order density matrix would be unavoidable” when
D(r) fails to give a good characterization.

One of the advantages of this definition is that it generalizes
easily to the diradical case

P,({1¢:0)1¢,03) = [WI(AY, Ay + AR, ) (AR5 + Agi) WD
(6)

which is the probability of simultaneous single occupancy of
two orthonormal spatial functionig:Cand|¢.[] where we have
chosen the indices 1 and 2 for convenience. Under this
definition, infinitely stretched singlet Hs perfectly diradical,
and the orbitals which maximize, — R, are the atomig¢ls\[]
and|1lss[functions on protons A and B, respectivelys\[Cland
|1ssClare both singly occupied in every configuration when the
wavefunction is written in that basis. The statgsCand |1o* O

11844 1510 1554 15,10 (101 1010 |10*) 10*100
V2 V2

)

defined as the probability that the second monoradical orbital
|29t is singly occupied, such th@? has been optimized
subject to the constraint that the orbitals are orthonormal,
(ol 9Pt = 0.

3. Method

To avoid construction of a generaiparticle density matrix
algorithm, it is easiest to write code in the spirit of the first
guantization, whem is an input parameter. That is to say that
the statgWlis expressed as a list of coefficients of each of the
possible determinants of orbitals in a given orthonormal single-
particle basis. As the single-particle basis is rotated, the same
many-particle function space is spanned by the determinants
of the new orbitals, and the state is re-expressed as a list of
coefficients for the new determinants.

Itis trivial to decide whether an orbitap,[of thei'" rotated
basis{|¢'c1liﬂl < g < N} is empty, singly occupied, or doubly
occupied in each possible determinant of these orbitdls (
the number of spatial basis functions). For tidold multi-
radical character, we are concerned with the probability of
simultaneous single occupancy of a setmforbitals. For
convenience, we establish the convention that these orbitals are
the firstm members of the complete sftpJl <s<m} C
{|¢'qE}]. These firstm orbitals will be called the trial orbitals,
and the remaining orbitals are referred to as the complementary

are the bonding and antibonding orbitals, respectively. We insist trial, or c-trial, orbitals. The index henceforth refers to a

on an orthonormal pair of orbitals for the optimization in the
diradical case, or else, we would simply obtain two copies of
the most radical orbital from the monoradical evaluation.

The generalization of the definition to tihefold multiradical
case is i = 1 for monoradicalm = 2 for diradical, etc.)

Po{16:016,0 .. 16,3) = P ({120 90,00 .. 16, 3) 0=

m

[l

for a set of m orthonormal spatial orbitals, where we are

w| [ (AehS + ASAL) (1w (8)

member of the trial orbitals, and the indicpsand q refer to
either a trial or c-trial orbital. The trial orbitals yielding the
maximum of Py, are the radical orbital§|¢3}, and the
maximum possible value d?n, definesRy,

If a certain determinant in the k¢¥Uhas all members of
{1903 singly occupied, then that determinant contributes to the
radical character of those trial orbitals. In other words, the
determinant survives being operated onfi |p3) of eq 8,
and it projects onto itself in the brid’|. The function value
Pr({|¢3) is then computed as the sum of squares of the
coefficients of those determinants, wherein the subsetof
orbitals are all singly occupied, as in eq 9. Essentially, we get

concerned with the probability of simultaneous single occupancy the norm-squared of a projection B¥O(a probability) into a

of those orbitals. Again, these orbitals are optimized to obtain
the m-fold multiradical characteRy, = P2 of the molecule in
question, which is the probability of finding the optimal orbitals
1 throughm simultaneously singly occupied.

Because of the cost of generalizing this method to higher
multiradical character, it is most applicable only to monoradicals
and diradicals. We can show that fully evaluating thdold
multiradical character needs thenzarticle density matrix,
which is usually an expensive quantity to obtain or manipulate.

subspace of radical determinants, spdf’ "{{ |q>in}i)EB.
Note, however, that this subspace is variable, depending on the
rotation of the orbitals.

Po({93) = mw’Z@T‘Ra"({|¢gtﬂ)mﬁ>;“‘Ra"<{|¢;m>| wo

= > Wl "I, 9)
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We define rotation coordinate§i1§ between orbitalge,[]
and |¢,,(Jat eachi'" iteration. To first order in (Qi)g, the pth
orbital takes on a component in the direction of & orbital
and thep'™ orbital takes on a negative component in e
orbital. As a matter of notation, we define the upper ingeto
be the greater ongy > p. The vectorf; holds all the local
[N(N — 1)/2] instantaneous pairwise rotation coordinates. We
then construct the gradient vector with respect to these

coordinates. We note that at least one of the indices of a gradient—*

component must denote a trial orbital to obtain a nonzero result
for that component. There are nonzero derivatives for both trial/
trial and trial/c-trial mixings.

P,

=y 2w |o]  * (e, 'O
(673" 90 Z ’ )

0
3(6,)8

mw[ |<I>:“‘Ra"({|¢gtﬂ)t} (10)

6;=0

In each determinani®}’ ~ "*{{|4,3)C] the trial orbital|¢.(]
is singly occupied by either &or 1 electron in order that it is
a member of the set of radical determinants, |bQ[Dis empty,
doubly occupied, or singly occupied, in general. Choosing
arbitrarily for |¢iSDto be singly occupied by & electron, we
have four possibilities for the occupancy kdprand, conse-
quently, four possibilities for the derivative of each radical
determinant with respect to ang; ).

ad ; :
(b) 8(00’5" Py %:9
(c) a(g)pl---qbisl...</>ip1...q1§|:9 R e
[ N
(d) B(Z)p|¢lsl¢Ip¢¢IpTEFﬁ':9 = |¢Ip—1¢¢ls—1l¢,s_11|:|

(11)

In eq 11b, the determinants composing the derivative are zero
by antisymmetry. In eq 11d, permutational antisymmetry is used
to arrive at the final expression.

The derivative algorithm functions similarly to the algorithm
for the evaluation ofP,. For each radical determinant
|90 (I, ")) the coefficient of this determinant is
multiplied by the coefficients of the determinants into which it
rotates with each&)?, per eq 10. Each product then contrib-
utes to the corresponding component of the gradient. A
conjugate-gradient-like algorithm is used to optinfze Parallel
transport of the previous step information, resulting from the

J. Phys. Chem. A, Vol. 108, No. 46, 20040273

form. We differentiate the operators in the first line of eq 5

0 4 R 5 i
a(al)gas(m ;=0 = aP(' - 1) a(el)gal(lﬂ 0,=0 = a;(i_]_)l (12)
to obtain
S| = wi@lay + ala, - ahay +ala, -
a(ei)s Q‘:g
2a)a,8lay — 2ala,ala, — 28la,a)8, — 280a,al 4,) WD

This is clearly a function ofp and 2 only, as claimed
previously. The indices andp on the right-hand side of eq 13
refer implicitly to orbitals of thei(— 1) set, as the derivative
is evaluated at); = 0. Equation 13 can be shown to be
equivalent to the result of eq 11 when inserted into eq 10.

This optimization algorithm has been implemented as an
extension to a development version of feChemprogram
package!

4. Results and Discussion

The implications of the present definition of radical and
multiradical character will be discussed in a series of simple
examples. Orbital optimization and a principle nuance of the
radical character value will be illustrated in the context of
monoradical character. The most detailed discussion of this
model will take place in the consideration of diradicals. A simple
triradical system demonstrates the generality of the model. The
ability to approximate diradical (or higher) character from
monoradical characters is motivated by a numerical example.
Finally, we will highlight an interesting mathematical connection
between our definition and for perfect-pairing wavefunctions.

4.1. Monoradical Character. We will consider the mono-
radical character of the Li atom in a 6-31G basis set (one s
shell, two sp shells). A full configuration interaction (FCI)
computation was done for the ground state in the douMet,
= —1/, space. In this example, FCl is a formality, because the
state is dominated by the HartreEock 182s' configuration
(Jcoefff = 0.99995). In Figure 1, the surface of the sphere
represents all possible normalized single-particle functions
which lie in the space spanned by thes] |2d]and |34
canonical orbitals. Orbital radical charackras a function of
mixtures of these three orbitals is plotted on the sphere. As
expected, th¢lsddand|39 orbitals have nearly zero probability
of being singly occupied, because they are almost always
doubly occupied or empty, respectively. The intuitive result is
returned, in that the orbital that maximizes the monoradical
character of the atom is approximately tf®&sJorbital, hav-
ing nearly unit probability of being singly occupiel; = P{™
~ 1. We say thaf24]s the radical orbital for Li. The function
is relatively well-behaved in this simple system, making orbital
optimization from an arbitrary guess a smooth process.

change of rotational coordinates at each step, is neglected in An important nuance of our definition is illustrated by the
this algorithm; this is acceptable for the small steps near Valueé ofP1 along the geodesic path between fheland|3s]
convergence; the initial large steps were done by steepestorb'tals- The peak radical character along this path is

descent.
5 ((|1sﬂ+ 3)
|

7 )%0.5

We can also express the components of the gradient of the

(14)
monoradical character on the spacedpin second quantized
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homogeneous linear combinations of the occupied and virtual
bases, and that these orbitals have exactly a one-half probability
of being singly occupied. Therefore, the radical orbital (which
maximizesP;) must be a homogeneous combination of an
occupied and a virtual orbital for a closed-shell determinant,
and we haveR; = 0.5.

We note for our coming discussion of diradical character that
the two orthogonal homogeneous combinatioft§ ére also
simultaneously singly occupied with a probability of one-half
for a closed-shell determinant, making Revalue at least one-
half. Because it is logically bounded from above by the
monoradical character, we ha®e = 0.5 exactly. The trans-
formation of the Li atom core in eq 16 illustrates the way that
a general closed-shell determinant could be transformed to get
Rz = R]_ = 0.5.

There is nothing fundamental about any particular representa-
tion of a wavefunction, but usually, chemists choose a canonical
F_igure 1. Radical character as a function of orbit_al for the FCI/6-31G representation in which member orbitals may most often be
I;latom [0~ black < gray = purple = dark blue< light blue < green described as doubly occupied; these orbitals have particular

yellow < orangex 1]. The|19Jand|3sJorbitals have nearly zero . . . . .
probability of being singly occupied, as is true for tpland |3p0] chemical relevance. Also interesting are t_h_ese radl_cal o_rbltals
functions that cannot be shown here. TBeorbital has almost unit ~ that can be found to have a high probability of being singly
probability of being singly occupied, and one expects it to be the radical occupied. From what we have learned thus far, however, this
_Orbital fqr Li. Orbitals which are _mixtur(_es of these bases have probability must exceed one-half to be chemically relevant.
intermediate values for the probability of single occupancy. 4.2. Diradical Character: General Discussion.The gen-
eralization of the perfect-pairing analysis of Jung and Head-
Gordort’ for singlet diradicals to general wavefunctions was
|15+ |35 |15 |35 the motivation for this work. In a perfect-pairing coupled cluster
s [p,0= |24 |¢3D=T (15) doubles (PP-CCD) wavefuncti®&?3 each independent pair

function has the form of the right-hand side of eq 7, except
that the amplitude of the double excitation into the virtual orbital

asBecausleEb (1ol |¢33/\/§, the state transforms mostly is a variablet. In the basis which homogeneously mixes the
HOMO and LUMO orbitals (similar to the left-hand side of eq

1181429 = 7), the wavefunction looks increasingly diradical with increasing

LiLt
|$2¥P 1A [ 1ddsldp AT [ty r T patpslepptll 1

To illustrate the meaning of this, consider the basis

[

Jung and Head-Gordon quantify this effect by the LUMO
2 occupation number following Dmert and Koutecky®

) ) To illustrate the nature of a diradical with reference to our
and we can see directly that homogeneous mixtur¢ssband definition, we present the following discussion of two electrons
3sLi(i.., |¢1l0and |¢sl) both have a half probability of being i the HOMO (H) and LUMO (L) space (2-in-2), where H and
singly occupied. We then notice that whenever one electron is| 5.6 \yell separated energetically from the other orbitals. H
in |¢:[there is an equal amplitude for finding another electron 54| are canonical orbitals, meaning that they maximize the
in |¢1Llor in |¢sC] and vice versa when there is an electron in -, hjita| energy splitting of any two orthogonal orbitals which
|¢3[ This is a manifestation of the lack of correlation of electrons can be constructed in this space. The singlet space for this
In a single-determinant wavefunction (here, specifically; in - g gtem js spanned by three possible configuration states, whose
out correlation). We have introduced the use of|Bg&ktate to spatial parts are HH, LL, and (H: LH)/«/E There is also a
look at a determinant which is described by theland |25 P P I . . .

degenerate spin triplet of states, which all share the same spatial

states. The logical extreme of this procedure is to introduce a ) /2 )
complete basis for the analysis. If we chose the point-like Wavefunction, (HL — LH)/v2. In the singlet space, the

position functions, we would see the lack of correlation spread diradical character varies continuously from zero to unity, as a
over many states, but none of these states would have significanfunction of the coefficients of the three spatial wavefunctions,
occupancy. Presumably, if a molecule’s behavior is well @S in Figure 2. The triplet states, however, are all completely
described in the basis used for the energetic computation, therdiradical (in any representation mixing H and L); they share
so are the radical orbitals, assuming that they are, in fact, the same spatial pgrt, and two same-spin electrons cannot be in
physical indicators of reactivity. the same one-particle state.

For any system described by a single, closed-shell determi- If the HOMO—-LUMO gap is large, then the aufbau principle
nant, one can show that the monoradical charaRieof the dominates, and the system is a closed-shell singlet, with two
molecule is always exactly one-half. Consider that any orbital, electrons in HR, = 0.5). As the orbital splitting decreases, as
including the radical orbital, can be uniquely decomposed as when H is stretched, scatterings to the other singlet states
the sum of its projections into the occupied and virtual spaces. become more accessible, and they mix in. Electron correlation
The occupied component (renormalized) necessarily describesghen becomes a large effect, and the position of an electron in
a doubly occupied orbital, and the virtual component describes one localized orbital will correlate with the other electron being
an empty orbital. Now, we take these two states as the basesn the remaining orthonormal orbital; the system will then look
for a two-dimensional space and note that the states in this spacéncreasingly diradical in the basis which most localizes the
with the highest probability of single occupancy are the orbitals in the two-dimensional, one-particle space. One could

magnitude of the HOME@LUMO amplitude, explicitlyt;,.
(16)
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p : 5 . Figure 3. Diradicalism of three different wavefunctions for toy-basis
that the curve is shifted upward. PP-CCD atoms dissociate to perfect
HH and LL bases have been mixed to show the cylindrical symmetry ¢y,
one wavefunction in the singlet space (the north/south pole of the plot),
. . . ; . a7
a one-dimensional manifold of singlet states (the equator), for which ﬁ ﬁ
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G mssassssesssssssnesssetonan 3 Li-Li Distance (Angstrom)
R v : :
B : Li, [solid line = FCI energy in arbitrary units]. The PP-CCD
4 : wavefunction is similar in diradicalism to the FCI wavefunction, except

) o . ) ) monoradical subunits because of less atomic (dynamic) correlation. The
Figure 2. The diradical character of singlet 2-in-2 wavefunctions [The yHF wavefunction starts closed-shell and breaks symmetry dramati-
of the plot; a factor of W2is implicit. 0~ black < gray < purple <
dark blue< light blue < green< yellow < orange~ 1]. There exists ~  where this phase is flipped, as in eq 17. In eq 17, no orbital
for which no orbital in the HOMG-LUMO space is ever singly %11k
occupied; the electrons have coalesced in this wavefunction. There is |1s“lls’“TD+ |1SBL135TD: |1Gl10¢D+ |10 o*t0
some pair of orbitals can be found, which are always simultaneously
singly occupied.

(atomic or canonical) is ever singly occupied. In eq 7, the
) ' ) — electrons are correlated to maximize the distance between one
say that this effect defines the notion of localization for these another1.Jwhereas in eq 17, this distance is minimized, which
pUrposes. o _ ~would be unphysical for the ground sta®. will distinguish

If a singlet state were completely diradical, then its spatial petween these two wavefunctiods, however, cannot techni-
wavefunction would resemble that of a t”plet, and therefore, Ca"y differentiate between these two phenomena’ although
the exchange contribution to the energy (Hund’s rule, assuming| UMO occupation numbers can generally be assumed to
the orbitals are near one another) would then unambiguously griginate from physically reasonable correlatiorsL(< t < 0
favor a spin-state change to a triplet state. If the HOMOMO  for PP-CCD amplitudes), allowingp, and alsoD, to provide
gap is significant, however, the energy favorability of allowing - some information about the extent and spatial domain of radical
both electrons simultaneously into H some of the time will keep hehavior; this assumption may only be valid for ground states,
the state a singlet, but the state is then, by this same argumentpgwever.
not purely diradical. As a consequence of all this, no ground- 4 3. Diradical Character: Results.In Figure 3, the diradical
state singlet should ever be completely diradical, but a singlet characteR, of Li is plotted as a function of nuclear separation,
wavefunction can have variable diradical character, reflecting ysing a toy basis consisting of the three s orbitals from the 6-31G
what is often called static correlation. These Hund’s and aufbau set for each atom. Tha2 curve is for the FCI ground_state

contributions compete equally at the point where the singlet \yavefunction in the singlet space; the shape of the energy curve
and triplet are degenerate. This should make the singlipiet is also plotted for reference.
energy gap a good experimental indicator of diradical character, The diradical character of a molecule should be viewed as
according to our definition. relative to the diradical character that one would expect from a
Our definition has some nice properties, relative to approachesclosed-shell system. One-half is then a sort of baseline, because
using p, that we will expound upon in the diradical cadg. as discussed previously, a closed-shell determinant species has
loses interesting information about the correlation. Consider R, = 0.5. (We can also show that closed-shell species have
infinitely stretched H and the wavefunction in eq 7. Both  one-quarter triradical and tetraradical character, and so on, in
the atomic functions and the canonical molecular orbitals inverse powers of two.) For this reason, the percent excess
diagonalize the nonzero block of the spinless one-particle densitydiradicalism, according to our definition, has also been plotted.
matrix in this particular case, with two degenerate eigenvalues
of unity. 1o cannot distinguish between an orbital which is singly % excess diradicalisrF 2(R, — 0.5) x 100% (18)
occupied with full probability, like the atomic functions, and
an orbital which is doubly occupied with a one-half probability, Even at very compressed distances,isiquite diradical (50.8%
like the canonical functions. For any stretch distance other thanat equilibrium) and this converges to nearly 100% at long
infinity, the degeneracy ifp is broken, and there is a unique distances, reflective of the fact that the atoms have almost
set of natural orbitals, which are nearly the canonical orbitals. complete monoradical character, making the combined system
However, one can show that the atomic-like functions are more a nearly pure diradical. For reference, minimal basis (FCI/STO-
relevant for describing the extent of the diradical character at 3G) singlet H is 20.8% diradical at equilibrium.
all distances, under our definition. There are also simple formulas to obt&nfor unrestricted
The phase of the configuration interaction in the right-hand Hartree-Fock (UHF) and PP-CCD wavefunctions. In eq 19a,
side of eq 7 is also important for correlation; however, the same S is the spatial overlap of the least overlapping UHF corre-

15 could result from the wavefunction in eq 7 or a wavefunction sponding orbital paif® In eq 19b,t refers specifically tdhﬁﬁ,.
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100%
(@R =1- s
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) 80% |
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In Figure 3, the excess diradicalism associated witliRthealues § 40% [ gu " "
of UHF and one-pair PP-CCD wavefunctions are also plotted o
as functions of Li bond distance, for comparison with FCI 20% “AA‘.. . % XS Diradicalism @
. A % X n A
(same basis). , _ _ eseee’ 100% x LUMO occ. e
4.4. Diradical Character: Discussion of ResultsOf primary 0% s \ ‘ s -
concern here is the meaning of the radical character values. We 1 2 3 4 5 6 7
have defined a quantity which we call the radical character. Li-Li Distance (Angstrom)

However, this is not the same as a theory of radical behavior. Figure 4. Three different measures of diradicalism for toy-basis one-

Radical character should be some theoretical measure of thePair PP-CCD Li [solid line = FCI energy in arbitrary units]. The

similarity in the electronic structure of radicals, whereas radical Measures are qualitatively the same, and algebraically related, for this

N . - - simple case.

behavior is that which is typically experimentally observed of

such species. Concretely, there has been discussion of moleculegase, to the percentage of two unpaired electrons obtained from

such as the {{Pr)P)(B(t-Bu)), ring molecule (BPBP)/#The the proposed modifieD.14 For this simple case, all three values

claim by Scheschkewitz et &, who first synthesized this  measure the same correlation effect and therefore behave

molecule, is that it is an indefinitely stable singlet diradical. similarly.

Although site-specific reactivity is generally indicative of radical For the PP-CCD case, we have the conceptual advantage that

character in the electronic structure, this reactivity might be the entire LUMO occupancy is a result of double excitation

sterically hindered in this particular molecule. We would like out of the HOMO {pny = 2 — Lp.1), and the core orbitals are

to separate out these effects by looking at the electronic structureexactly doubly occupied. This means timatcan be written as

alone, to assign the molecule a theoretical diradical character.function of 1o, only, and if we assume that< 0, we can
BPBP is 16.9% “diradicaloid”, according to the perfect- write R, as a function oftp.. as well.

pairing/LUMO analysi¥’ (100% x p, wherelp is the

i -pai B - . n
LUMO occupation) for a 71-pair PP-CCD/6-31G(d) wavefunc () 100%x 7D — 100% x [Z(IPLL) . (1pLL)2]

tion.
1 ppceo_ 2 (20) (b) % excess diradicalisniRg) = 100% x
LL = —2
1+t v2(o) = Cow)® (21)

Using eq 19b, we obtain 55.7% excess diradicalism for this By choosing this form of the wavefunction, the homogeneous
wavefunction {= —0.304 21), according to our definition. We  mixtures of the HOMO and LUMO are automatically the radical
caution against attaching too much significance to these raw orbitals. All of the quantitiesR,, 1p., andnp, are therefore
numbers; under either analysis, one would reach the sameisomorphic for the 2-in-2 perfect-pairing case, but we believe
practical conclusion, that BPBP is about as diradical agd.i that R, is the fundamentally most meaningful quantity, of
at equilibrium. Concerning the 20.8% excess diradicalism of whichlp,. and np should be considered indicators. It is the
equilibrium H, we would not consider this to be a diradical. authors’ hypothesis that each of these measures should serve
We would like any theoretical definition to yield vanishing as some sort of threshold criteria. Molecules whose diradicalism
radical character for closed-shell determinants, but we mustis above a certain value on one of these scales (which
remember that no real system, including one whose behaviorcorresponds uniquely to a different threshold value on a different
is essentially closed-shell, is described by a single determinant.scale) will rapidly begin to behave more diradically as this value
There is no a priori value that should correspond to a system increases. We say this, because each measure does indicate the
which behaves closed-shell, and systems with closed-shellextent to which a molecule has singly occupied orbitals, but
behavior may exhibit a range of character values under any we believe that an orbital must be quite singly occupied before
definition. it is particularly reactive. This remains to be verified.

It is reasonable to expect that wavefunctions with radical In terms of orbital single occupancy, our new definition is
character will be diagnosed as such under a variety of analysesthe rigorous generalization of extraction of radical character to
The quest is to identify and extract the most fundamental the non-perfect-pairing case. Our analysis should provide the
similarity between radicals. Such an analysis should be theoreti-best orbitals for thinking about diradical (or higher) character,
cally satisfying in its interpretation, and it should provide the and it will, hopefully, be a more robust method for analyzing
most robust prediction of radical behavior, when applied to more complicated systems.
complicated wavefunctions. Figure 4 shows a few proposed 4.5. Triradical Character. Figure 5 shows the triradical
measures of diradical character, applied to the one-pair PP-CCD/charactelR; of linear H; along a symmetric stretch coordinate,
toy-basis Ly wavefunction. This wavefunction was chosen, done at the FCI/6-31G (two s shells) level in the douMet=
because it is easy to analyze with respect to these different—1, space. The closed-shell baseline for triradical character is
measures and it is easy to think about, as it reduces to a 2-in-2one-quarter, as stated earlier. As one might expect, the triradical
model problem. The percent excess diradicalism as defined herecharacter at small distances is nearly one-half (33% excess),
the percentage of two unpaired electromy/2) achieved because one of the canonical orbitals is almost always singly
according td, and the percentage of one electron in the LUMO occupied, and a doubly occupied canonical orbital can be
(*oLL) have been plotted. This last measure is equivalent, in this transformed in many ways (reflecting the lack of tefight,
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TABLE 1: The Values of R? for an FCI/6-31G Be Atom?

m Ry Rfﬁ) RT(T3]) R,(.ﬁ) Rﬁ) REvG\) Rﬂ) Rr(g) Rﬁﬁ)

1 0.620 972 036 4 0.620 9720320 0.50 0.50 0.020 0.020 0.016 0.016 0.0024
2 0.617 707 7753 0.500 777 968 3 0.016 0.016

3 0.310 454 260 3 0.008 129 358 3 0.000 080

4 0.310454 1173 0.000 000 227 6

31 = m < n, anda ranges from 1 to the maximum allowed by the basis size for a gnémhere are clear patterns relating lower radical

characters to the higher ones, most notaRly= R(f) ~ Ry. This means that these monoradical characters result primarily from a two-electron
valence correlation, and so, the monoradical characters in this system are good indicators of the diradical character.

1 g E R 100% nearly degenerate orbitals, and the interactions of the s and p
e orbitals in this shell lead to interesting angular correlation.
o 08 F 180% ¢ All of the monoradical through tetraradical probabilities of
5} . El this system are given in Table 1. There are clear patterns in the
§ 0.6 [ m’f 7160% § numbers of this table relating lower radical characters to the
S - E higher ones. For examplB, ~ Ry = R(f) for the valence
g oan m"ﬁ FC1% XS Triradied B 140% & correlation, which was our hypothesis. AR = R® = R
§ 7] ai = 0.5, which comes from the largely uncorrelated core. Finally
(= ozt!’\ 120% ® R: = Ry ~ R, x R?, because slightly correlated diradical
characters form the tetraradical character, and the triradical

005 1 1'5 2 2'5 3 3‘5 “‘ 450% character is from the same effect. The remaining unaddressed
' - - ) ' numbers are from orbitals that have some small occupation due
Adjacent H-H Distance (Angstrom) K . . . .
to low-amplitude scatterings. Table 1 is a good illustration of

Figure 5. Triradical character for FCI/6-31G symmetric lineay[solid the way that our method isolates a few important correlation
line = FCI energy in arbitrary units]. s 33% triradical at equilibrium . -
effects from a complicated wavefunction.

and 100% triradical at infinite separation.

One finds that the first monoradical orbital is an sp hybridized
in—out, up—down, etc., correlation) to be one-half diradical. orbital. There is a two-dimensional submanifold of sp hybrids
At long distance, the radical orbitals are the atorig brbitals, embedded in the three-dimensional manifold of normalized
and the species becomes completely triradical. This toy systemstates in the four-dimensional sp-shell state space; one such state
demonstrates that the method functions for higher multi- on this sp manifold is converged upon at random in the first
radicals. monoradical optimization. Now, there is only one sp hybrid

4.6. Approximating Multiradical Character from Mono- remaining on this manifold which is orthogonal to the first one.
radical Characters. We now explore the relationship between This orthogonal sp hybrid is the second monoradical orbital,
higher and lower multiradical characters. Specifically, we focus and by symmetry, we havEZ(f) = Ry, to within numerical
on the relationship oR, to R; andR?, as defined previously.  hoise. These two sp hybrids are members of a two-dimensional

Simple logical arguments yield the bounds manifold of radically degenerate pairs of sp hybrids which could
have been converged upon; in each pair, the hybrid partners
MAX(0, R, + R(12) ~1)<R, <R, (22) point in opposite directions from the nucleus.

We also find that the diradical charact&, is nearly
equivalent to these monoradical characters and that the first
diradical orbitals are also a pair of sp hybrids pointing in
opposite directions. One can easily imagine why this is true.
The electrons are correlating such that they have a higher
probability of being found alone on opposite sides of the nucleus,
even though the aufbau contribution keeps them together in the
lower energy|29]state most of the time (only 24% excess
diradicalism).

One can also imagine that the relationship between mono-
radical and diradical characters would hold in cases where the
first and second monoradical orbitals (the approximate diradical
orbital pair) are on more spatially separated sites. A good

If we know that the highest probability of finding an orbital
singly occupied igx;, then we cannot have a higher probability
of finding two orbitals simultaneously singly occupied (upper
bound). Also, if two orthogonal orbitals are found whose
probabilities of single occupancyg, and R, respectively,
sum to greater than unity, then we know that they must be
simultaneously singly occupied some of the time (lower bound).
We expect thatR, will lie between Ry x R(f), when the
monoradical single occupancies are uncorrelated Rapdhen
they are perfectly correlated.

Unless bottR; andR? are near unity, then the bounds in eq
22 are not very tight, so we look for another way to test the . . , . D)
possibility that the monoradical characters and diradical char- diagnosiic for this assumption is thiit ~ R,", which should

acters measure the same correlation effect and that we can usg]en b_e approxmate&. For _FCV toy-basis laalong trzg _stretch
one to approximate the other. In other words, we have the coordinate, the maximum difference betwérandR;™ is 5.4

hypothesis, stated previously, thRs ~ Ry ~ R(lz) and that x 1075 (at 3.25 A), and the maximum difference betwed®n

|19 and| @[ from the first and second monoradical analyses andR, is 0.011 14 (at 5.5 A).

are the samép: [t and |, that one would obtain from the We are led to wonder whether it is very important that
full diradical evaluation. The system we choose is the Be atom, diradical (triradical, etc.) orbitals be simultaneously singly
done at the FCI/6-31G (one s shell, two sp shells) level. Be occupied. Perhaps that would be important in concerted
was chosen because there are two valence electrons surroundinglectronic mechanisms, but not always. It may be useful to
a nucleus of shielded charge of approximately two, but unlike simply establish the values of the Iargééi’ and the orbitals

in a helium atom, these electrons live in a Hilbert space of four to which they belong (1= a < N). As stated earlier, the
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monoradical characters are much cheaper to compute than highebeen pointed otit that the derivative ofip with respect to small
radical characters. . deviations from zero or two in a natural orbital occupation is
4.7. Algebraic Connection toD and Perfect Pairing. The two, so that the most heavily weighted componenparises
reader may have already noticed that a form simildd sppears from dynamic correlation. This effect would be exacerbated in
in the expression for excess diradicalism for a simple case in ng, where that slope is divergent.
eq 21b. There are many ways that one could elaborate on this, per the discussions in this paper, it seems most relevant to
and in the interest of space, detailed derivations will not be jsolate a few primary correlation effects (static correlation).
presented. Static correlation could be viewed as a generalized form of
Equation 21b holds for a 2-in-2 perfect-pairing system, under symmetry breaking, because in the extreme case, the proper
the condition that < 0, which is a reasonable assumption for symmetric ground state is a superposition of a few degenerate,
repulsive correlation. This relationship also holds for the symmetry-broken solutions, which are, themselves, nearly
diradical character of each individual pair in a more general ejgenstates; this leads to slow dynamics of the system when
PP-CCD wavefunction; because the pairs are noninteracting,perturbed along these wavefunction coordinates (static). The
each double excitation amplitude for a pair gives us a successiveeffect of static correlation, as interpreted here, is that it leaves
R(za) value. For each pair, we also haR@ = R(lza_ D= R(lza). electrons to occupy some orbitals mostly alone, as a means of
Putting this all together, we can obtain staying away from one another much of the time. The optimiza-
tion procedure defined herein extracts the best description of
. @ N, 1 BY) 5 these static effects, independent of the particular basis rotation
2 R = > + ETr(D (PP-CCDcase)  (23) iy which the energy is computed or the structure of electron
& correlation in that basis.

the value of which starts at the one-half baseline for each 4.8. Behavior in the Limiting Case of np. As kindly
monoradical orbital with any occupancy and increases with suggested by one of the referees, we should also address the

correlation. behavior of our procedure for wavefunctions in which the value
Additionally, if one were to define the number of unpaired ©Of Mo approaches ther2limit discussed previously. We start
electrons, we would suggest by restating a point made in a recent Iettehat this limiting

case is not likely to be realized in chemically relevant situations.
N Nonetheless, this concern needs to be addressed to fulfill the

Ng= ZR(f) (24) stated “satisfying interpretation” and “robustness” criteria. These
a= wavefunctions will be called the highly correlated case, because

. ) ) .. as addressed earli&rthis case occurs when all of the natural
because this sums over all orbitals, weighted by the probability ; pita occupations are very small.

that an electron is alone in that orbital. First, one sums over
those orbitals that can be found to be almost always singly
occupied, if there are any, thus obtaining the number of electrons
which are almost always alone. Then, there would be a series
of orbitals (approximately speaking, mixtures of core and virtual

orbitals) which contribute nearly one-half of an electron each,

and then come orbitals with only slight occupancy. One can

show that for all wavefunctions, the following limits hold

Because diagonalizing the spinless one-particle density matrix
should produce as some of its eigenvectors those orbitals with
the largest occupancy, no one-particle state can be found that
has significant single or double occupancy in the highly
correlated case. This means that the valug;dor these systems
will be small, and all of the higheR, values will be smaller,
asRm1 < Ry, always.

We would not consider such a highly correlated system to

0<ng=n (25) be a monoradical; it does not contain a single one-particle state

that would, by our interpretation, constitute a reactive radical

and, practically speaking orbital. The utility of the proposed measures of diradical and
higher characters is to isolate a dominant correlation which has

I, <ng<n (26) the effect of leaving electrons alone in orbitals; no single such

correlation is present in this case. While we concede that for
So, we now have a new expression for the number of unpairedthose cases wherg ~ 2n, all R are nearly zero, making them

electronsng, using the monoradical characters defined in this of little use, we are satisfied with this result, because the effects
work. We can also expresss in terms of f) for PP-CCD which we are Iooking for are, in fact, not there. We remind the
wavefunctions, which are often qualitatively good wavefunctions reader that the motivation was to develop a universally
for thinking about bond breaking and radicals. In this PP-CCD applicable, quantum mechanical analogue to the simple concept
case, the bounds in eqs 25 and 26 are implicitly enforced by of & radical, born out of Lewis pair theory, to explain valency
the structure imposed df by the wavefunction Ansatz; strong ~ and reactivity.
pairs contribute nearly two electrons to the total, and weak pairs That said, we draw attention to two cases in which our

contribute less. Outside of the perfect-pairing approaghs procedure produces a useful result whaydails. First, we note
still well defined and bounded, but it must be computed by brute the behavior of our theory in one subcase of the highly correlated
force. case, when those orbitals that do have some occupancy are far

A caveat follows: We have only chosen to present egs 23 more likely to be singly occupied than doubly occupied. By

25 for the insight they give int®. We cannot recommend that  virtue of summing over all orbitals, we obtaimk ~ n (eq 23

Ng be used as a measure of radical character. It is not clear whaidoes not apply in this case.), indicating that all electrons are
the number of unpaired electrons should mean for radical unpaired; this value is lowered by any pairing that occurs.
behavior. Tracing oveb or D¥2 sums over all correlations, Second, we note a more physically relevant situation, where
including small amplitude dynamic ones. While dynamic the unphysical limit ofnp shows consequences outside of the
correlation may increase the average aloneness of electrons, ihighly correlated case. In another recent letfenp, was

still may not produce a single reactive radical orbital. It has computed for FCl/aug-cc-pV4Z triplet Hep has a lower bound
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of 2 in this case; the computed result is that He has 2.0015 References and Notes
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