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A quantitative measure of the delocalization of electrons from the region inside a sphere of radiusR centered
on a nucleus to the region exterior to this sphere is the atom delocalization index∆(R). ∆(R) is defined by
the double integral of the point-point sharing indexI(ú;ú′) over two distinct volumes:ú over the interior of
a sphere of radiusR, and ú′ over the remaining space. This index, as a function ofR, has a remarkable
shell-like structure with the values of the maxima being close to the number of electrons traditionally assigned
to a particular shell times 0.25. The origin of these almost “magic” numbers and the reasons for deviations
of these numbers from the simple rule is discussed in terms of simple models of the electronic structure of
some light atoms. Results from numerical computations of electronic structure are presented for the atoms
Li, Be, Al, Ne, Ar, Kr, Xe, Rn, Zn, and Au. The distinct shell-like structure of∆(R) persists even to the
heaviest of these. For atoms with zero total orbital angular momentum, the delocalization index can be split
into a sum of noninterfering terms of different single particle angular momenta. These contributions also
have distinctive shell-like structures. The maxima of the different angular momentum contributions do not
always coincide. A similar decomposition also holds for spin “up” and “down” contributions. The shell-like
structure allows for the identification of the spatial region in which the valence electrons lie. The angular
momentum contributions can be used to identify the nature of the valence regions. The invariance of the core
electron regions and the changes in the valence regions upon bond formation are illustrated by the calculation
of the delocalization index for the heavy atoms in CH4, NH3, H2O, and SiH4. The identification of the spatial
location of the valence regions should aid choosing the location of fixed points when analyzing the behavior
of electrons using sharing amplitudes.

I. Introduction

The point-point sharing indexI(ú;ú′) gives a quantitative
measure of the degree to which a single electron in a many
electron system is shared (delocalized) between two space-spin
pointsú,ú′.1 (ú stands for the three spatial indices together with
a spin index.) This index obeys an important sum rule which
allows for a consistent interpretation that scales properly with
system size. The point-point sharing index is found from the
underlying point-point sharing amplitude〈ú;ú′〉, which itself
is the matrix, positive semidefinite, square root of the single
particle density matrix. The sharing amplitude is the closest
possible analogue to a wave function for the description of a
single electron in a many electron system. The sharing amplitude
shares with a wave function the following properties: the
amplitude may be complex; in general it has nodes; and, the
absolute value squared of the amplitude gives the sharing index
just as the absolute value squared of a normalized wave function
gives the probability density.

Basin-basin sharing indices based on the double integration
of the point-point sharing index over distinct atoms as defined
by Bader2 and basin-point sharing indices have been given for
a number of molecules in previous papers.3-5 These indices, in
conjunction with sharing amplitudes, were used by Fulton and
Perhacs6 to analyze hydrogen bonding (and antibonding) in

complexes formed from hydrides of the first row of eight
elements in the periodic table. Because the sharing amplitude
in general is a function of eight variables (six essential ones if
the total spin of the wave function is zero), the amplitude is a
more complex object to visualize than the basin-basin and
basin-point sharing indices. To simplify the visualization of
the amplitude, one point of the amplitude was fixed while the
other point was initially left free to roam about three dimensions.
Because the structure of the amplitude in the vicinity of the
bridge proton was desired and because hydrogen, unique among
the bonding atoms, has no electron core structure, the fixed
point, e.g.,ú′, was located on the bridge proton. The other point
was then restricted to a two-dimensional surface so that the
sharing amplitude in the region of the hydrogen bond could be
characterized.

The question now arises as to the handling of the fixed points
when dealing with atoms other than hydrogen. At a fixed point
in the region in which the core electrons reside will give
primarily the inner core structure of the atom. If we are to study
the behavior of the electrons involved in the bonding in a
molecule using sharing amplitudes, we need to determine the
regions wherein the valence electrons reside and locate the fixed
points in those regions. We should also like to have some
quantitative indication that the sharing in the core region of an
atom is essentially unaffected by the bonding of the atom to
other atoms.

The suggestion of a referee of a previous paper provided
additional motivation for this work, namely to check the
sensitivity of the basin-basin sharing indices to the shapes and
locations of the basin surfaces.
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In the next section we define the atom delocalization index
∆(R) as the quantitative measure of the sharing (delocalization)
of an electron between the interior of a sphere of radiusR
centered on the nucleus of an atom and the volume exterior to
that sphere. Some simplified models are considered to illustrate
the almost magic numbers that appear; namely, the heights of
the maxima of the delocalization index are approximately equal
to the number of electrons in a shell, which are active in being
shared across the spherical surface, times 0.25. Reasons for
deviations from this simple rule are discussed. In addition, as a
check on the number of electrons that are inactive in sharing
across the spherical surface, the self-sharing index of the
electrons within the spherical surface is considered.

This introduction is followed by a section in which the
indices, based on calculated correlated wave functions, are
presented for the atoms lithium, beryllium, aluminum, the rare
gas atoms from neon through radon, and zinc and gold. For
electronic states having a total orbital angular momentum of
zero, the delocalization index can be decomposed into a sum
of the contributions of single particle orbital angular momenta.
These contributions are given for select atoms. In addition the
spin up and spin down contributions are given for some atoms
in nonsinglet spin states.

∆(R), as a function ofR, is found to have a rich shell structure
with clear demarcations between the shells. The different shells
correspond to the classic divisions of atomic electrons into, for
example, 1s, 2s2p, 3s3p3d, etc., shells. Likewise, the contribu-
tions of the different single particle angular momenta to∆(R),
∆l(R) for angular momentuml, show a pronounced shell
structure with the maximum values of∆l(R) again being closely
related to the number of electrons having an angular momentum
l which are active in that shell. These maxima, however, are
not always at the same position in a given shell, this contributing
to the discrepancy of the maximum from the naive counting
given above. It is noted in conjunction with beryllium that, when
correlation is included, there is a significant contribution ofl
) 1 to the delocalization index in the region of the second shell.
The spin up and spin down contributions have behaviors similar
to that found for the orbital angular momentum contributions.

The structure of the atom delocalization index therefore
delineates not only the different shell regions of atoms but also
the numbers of electrons actively shared between inner and outer
portions of a given shell region together with the region in which
the valence electrons reside.

The final section analyzes the atom delocalization index about
the heavy atom in CH4, in NH3, in H2O, and in SiH4. In these
we find that the delocalization index in the core region is
virtually identical to that in the isolated atoms. The differences
occur in the valence region. To illustrate the nonnegligible
effects of correlation on the delocalization indices in the valence
region, the results for methane, calculated at a correlated level,
are compared to the results of a Hartree-Fock calculation.

II. Atom Delocalization Index

In this section, after a brief recall of the definitions of the
sharing amplitude and point-point sharing index, we introduce
the atom delocalization index∆(R), which gives the sharing of
an electron between the inner volume of a sphere of radiusR
centered on the nucleus and the outer volume. Following this
we consider some very simple examples, the hydrogen atom,
the helium atom, and the beryllium atom, to get a feel for some
aspects of the delocalization index, including the origin of the
pseudo “magic numbers” and the reasons these numbers are
not precise. To complement the delocalization index, we also

give the inner self-sharing index of beryllium, this giving the
number of electrons within the sphere which are shared only to
points within the sphere. In the special case of a total orbital
angular momentum of zero, we note that the delocalization index
can be written as a sum of independent contributions of the
various single particle angular momenta.

Let ú represent the three spatial coordinatesr plus one spin
coordinateσ

The point-point sharing indexI(ú;ú′) is simply related to the
sharing amplitude〈ú;ú′〉 which in turn is found from the single
particle density matrixP(ú;ú′), normalized such that the integral
of P(ú;ú) over all space and summed over spin is the total
numberN of electrons in the system. The relations are the
following1

It is important to note that it is the positive semi-definite square
root of the matrix and not the square root of the matrix element
which is used in the connection between the sharing amplitude
and the density matrix. One immediate consequence of these
relations is the sum rule

the quantity on the right being the electron density at the point
ú. It is this relation that gives consistency to the interpretation
of the amplitudes and the indices. A second integral overú gives
the total number of electrons in the system

In this paper we determine the sharing of an electron between
the volume inside a sphere of radiusR, centered on the nucleus
of an atom, and the rest of the universe. The appropriate
delocalization index∆(R), the atom delocalization index, is
defined as

the integrals over the variables implicitly including sums over
the spin indices.

When expressed in terms of the natural spin-orbitals,7

æm(ú), the delocalization index is8

νm is the occupation number of themth spin-orbital æm(ú) and
(æm,æn)|r|eR stands for the integral

(æn,æm)|r|>R stands for a similar integral, but with the integration
over the volume exterior to the sphere.

To illustrate the features of∆(R) when applied to atoms, we
consider several simplified models. The first is the electron in
a hydrogen atom in the normalized pure state with “up” spin,
æ(r)R(σ). The delocalization index in this case can be written
in terms of the probabilitypin(R) that the electron be found
within the sphere as

ú ) (r, σ) ) (x, y, z, σ)

〈ú;ú′〉 ) P1/2(ú;ú′)

I(ú;ú′) ) |〈ú;ú′〉|2

∫dú′ I(ú;ú′) ) P(ú;ú′)

∫dú dú′ I(ú;ú′) ) N

∆(R) ) ∫|r|eR
dú ∫|r′|>R

dú′ I(ú;ú′)

∆(R) ) ∑
m,n

νm
1/2νn

1/2(æm,æn)|r|eR(æn,æm)|r|>R (1)

(æn,æm)|r|eR ≡ ∫|r|eR
dú æm

/ (ú) æn(ú)
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The maximum value of∆(R) is 0.25, occurring at the radius
for which the probability of finding the electron within the
sphere is 0.50. If the wave function is nonvanishing at the
nucleus,∆(R) vanishes as the cube of the radiusR asR f 0:

When the state is the ground state of the electron in a hydrogen
atom

the probability of finding the electron within the sphere is

The largeR behavior of∆(R) follows as

a power of R times an exponential which decreases with
increasing size of the sphere. We expect this relatively slow
exponential falloff with increasing radius to be a common
asymptotic feature of the delocalization index. The smallR
behavior agrees with eq 3. Between these limits there is one
maximum, found numerically to be at a radius of

We note that this maximum occurs at a radius about one-third
larger than the Bohr radius and less than the average radius of
1.5 for the 1s wave function. The radius scales inversely with
the nuclear charge so that if the charge on the nucleus isZ, the
radius at which the maximum occurs is

The radial dependence of this delocalization index is given in
Figure 1. The region in which the delocalization is largest is
almost entirely localized within a distance of roughly 4 bohr
from the nucleus. For example, the value of the delocalization
index is 0.01 at a radius of 4.197, this giving an indication of
the spatial extent of the region over which the electron is
delocalized. The slow decrease of∆(R) at values ofR greater
than 3 bohr as indicated above should be noted.

Because an integer times this maximum value of 0.25 tends
to permeate (at least approximately) the numerical results of
the next section, we consider some slightly more complicated
models to show the origin of the factor and some reasons for
discrepancies from this naive expectation. Consider a two
electron atom in its ground singlet electronic state at the
Hartree-Fock level approximation. Letæ(r) be the spatial part
of the Hartree-Fock orbitals. The delocalization index differs
by a factor of 2 from eq 2

The maximum of the delocalization index is now twice what it

was in the case of the hydrogen atom, namely 2× 0.25) 0.50.
If the spatial orbital is given by the hydrogen-like wave function
(4) modified to have an effective nuclear charge of 1.6875
appropriate for the approximate ground state of He using this
wave function, the maximum occurs at a radius of 0.792.

Consider now the simplistic model of the electrons in the
ground state of a beryllium atom given by a single determinant
wave function. Let the spatial parts of the real orbitals used in
forming the determinant be denoted byæ1s(r) andæ2s(r). The
delocalization index is

The first term on the right-hand side is a product of the
probability that an electron assigned to a 1s orbital be found
inside the sphere of radiusRand the probability that it be found
outside that sphere. The last term on the right-hand side is a
similar product involving a 2s electron. If we consider the
contributions of these terms separately, then each contributes
0.5 to their maximum, with the 2s maximum occurring at the
larger of the two radii. When the terms are added, each maxima
may be larger than 0.50 because, for example, the 2s contribu-
tion need not vanish at the position of the 1s maximum, hence
increasing the value and possibly displacing the location of the
maximum. That the contribution of the middle term to the
delocalization index is negative can be verified by using the
orthogonality of the 1s and the 2s orbitals. This represents a
characteristic interference term found in wavelike behavior. Its
contribution serves to decrease the values of the delocalization
index.

To be more specific, choose the spatial parts of the orthonor-
mal 1s and 2s orbitals to be

and

with the effective nuclear chargesZ1s ) 3.7 andZ2s ) 2.25,

Figure 1. ∆(R) of a hydrogen atom.

∆(R) ) 2[(æ1s,æ1s)|r|eR(æ1s,æ1s)|r|>R+

2(æ1s,æ2s)|r|eR(æ2s,æ1s)|r|>R+ 2(æ2s,æ2s)|r|eR(æ2s,æ2s)|r|>R]

(5)

æ1s(r) ) (Z1s
3

π )1/2

e-Z1sr

æ2s(r) )

[ 3Z2s
5

8π(4Z1s
2 - 2Z1sZ2s + Z2s

2)]1/2[13(Z1s + Z2s/2)r - 1]e-Z2sr/2

∆(R) ) pin(R) [1 - pin(R)]

pin(R) ) ∫|r|eR
dr æ*( r) æ(r) (2)

∆(R) ≈ 4π
3

R3|æ(0)|2 (3)

æ(r) ) (1π)1/2
e-r (4)

pin(R) ) 1 - e-2R(1 + 2R + 2R2)

∆(R) ≈ 2R2e-2R

R≈ 1.337

R≈ 1.337
Z

∆(R) ) 2pin(R)[1 - pin(R)]

pin(R) ) ∫|r|eR
dr æ*( r) æ(r)
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the latter chosen so as to give approximate agreement with the
delocalization index for beryllium given later in Figure 5.

The delocalization index∆(R) along with the separate
contributions from the 1s and the 2s orbitals and from the
interference term are plotted in Figure 2 as a function of the
radiusR. The delocalization index is the top curve with two
maxima. The contribution of the 1s orbital to∆(R) is the curve
with the single peak on the left. This contribution forms the
main part of the first peak. The contribution of the 2s orbital to
∆(R) is the curve with the single peak to the right, the 2s orbital
being essentially the sole contribution to the delocalization index
for R > 1.3. The curve that is negative represents the
contribution of the interference term. In the present example
this term is small. However, we do note that in the region in
which the 1s orbital is the major contributor, the 2s orbital makes
but a small contribution, which is mainly canceled by the
interference term.

The value of∆(R) at each maximum is 0.50, the number of
electrons in the shell which are actively shared across the surface
of the sphere times the maximal value of the delocalization index
for a single electron. This is amplified below when the self-
sharing index is analyzed. The radius of the minimum simply
gives the radius of the sphere across which the sharing is leasts
the electrons are essentially confined to the inner or to the outer
region.

Although we have phrased the above in terms of the 1s, 2s,
and interference contributions, these are not unique because,
as is well-known, the orbitals themselves in the case of a single
determinant wave function are not unique but may be trans-
formed into other sets of orbitals by unitary transformations. It
is the delocalization index which is unique.

Complementing the delocalization index,∆(R) is the self-
sharing index

which gives the number of electrons shared only to points within
the inner region, hence localized within the inner region and
not shared across the spherical boundary. This index, also
invariant to unitary transformations of the orbitals, and the
delocalization index obey the sum rule that the sum of the two
gives the average number of electronsNinner(R) in the inner
region

A plot of I inner(R) as a function of the radius of the sphere using

the vertical scale on the right is given in Figure 3. The
delocalization index is superimposed on the figure using the
left scale. There are two regions of interest in the figure. The
first is the region 0e R < 0.2 in which the self-sharing index
is essentially zerosall the electrons are shared to the outer region
for these values of the radiussand the second is for 1.0< R <
1.5 in which the self-sharing index is essentially flat at a value
of 2sthe number of electrons in the 1s orbital. We note that
this flat region occurs near and to the right of the minimum of
the delocalization index. Any additional electrons in the inner
region asR is increased from roughly a value of 1.1 are shared
to the outer region; the electrons in the inner 1s region have
lost their potency for further delocalization. The behavior in
this second region serves to reinforce the idea that the electrons
in the inner region are now spectators of the valence region
and that the maximal values of the delocalization index in a
region is the number of active electrons in that region (or shell)
times the maximal value for a single electron, 0.25. Note also
that this behavior also delineates the valence region in this
example as beginning at roughly the radius ofR ) 1.1.

The other atoms in the first row of eight have contributions
from p orbitals. Consider the case in which the natural spin-
orbitals can be written as either pure s or pure p orbitals. Because
the regions of integration are spherical, cross terms such as (æns,
æ2px)|r|eR and (æ2px, æ2py)|r|eR vanish, so there is no interference
between orbitals of different angular momenta. If the maxima
of the contributions of the 2p orbitals are located at the same
radius as the maximum of the 2s orbital, the value of the
maximum is simply the number of electrons active in the shell
times 0.25. For example, the outer (second) maximum of the
delocalization index for neon is expected to be close to 2. But
the maxima of the 2s and 2p orbitals need not be at the same
location, resulting in a possible diminution of height of the
maximum.

One additional reason exists for the maxima not being simply
the number of active electrons in a shell times 0.25sa
correlation that has been left out of the simplistic models just
considered. When the delocalization index is written in terms
of the natural spin-orbitals, eq 1, it is to be noted both that
there are cross terms (m* n) that lead to negative contributions
to the delocalization index and that there are fractional occupa-
tion numbers for the orbitals contributing to∆(R), each of these
influencing the heights of the maxima.

In the special case that the total orbital angular momentum
L of the wave function is zero, the single particle density matrix
PLM(ú;ú′), normalized to the total number of electronsN, can

Figure 2. Simulated delocalization index of beryllium along with the
1s, 2s, and interference contributions.

Figure 3. Simulated delocalization and self-sharing indices of beryl-
lium.

I inner(R) ) ∫|r|,|r′|eR
dú dú′ I(ú;ú′)

Ninner(R) ) I inner(R) + ∆(R)

11694 J. Phys. Chem. A, Vol. 108, No. 52, 2004 Fulton



be written in terms of the spherical harmonicsYlm(θ,æ) as (see
the appendix)

which is diagonal inl andm. There is a similar decomposition
of the sharing amplitude9

with A00;l(r,σ;r′,σ′) the matrix square root ofP00;l(r,σ;r′,σ′)

The result is that the delocalization index can be written as a
sum of contributions of the differentl values

with

Similarly, if the wave function is an eigenfunction of the
z-component of the total spin, thez-component of the single
particle spin commutes with the single particle density matrix
with the result that the density matrix is diagonal in the spin
variable

The R and â components of spin do not interfere and the
contributions of up and down spin can be considered separately.
The sharing amplitude can be similarly decomposed, and the
contributions of the different spins to the delocalization index
are additive.

III. Numerical Results for Atoms

In this section we give the results of numerical calculations
for a number of atoms. The calculations were done using the
GAUSSIAN 98 suite of programs10 with, unless otherwise noted,
the 6-31++G** basis at the QCISD level of approximation.
The core electrons were included when correcting the Hartree-
Fock results for electron correlation. Six d orbitals were included
in all calculations and 10 f orbitals in those involving f orbitals.
All calculations used the minimal nonrelativistic Hamiltonian.

The atomic overlap integrals used in the formation of the
delocalization indices were calculated using a slightly modified
version of PROAIMV11 and then constructing∆(R) according
to eq 1. The modification was simply to ensure that the radius
of theâ sphere never exceeded the radiusR. The points on the
lines in all subsequent figures indicate the values of the radii at
which the indices were calculated. The lines give the results of
a cubic spline fit to the points.

The atoms considered in this section are lithium, beryllium,
aluminum, the rare gases neon, argon, krypton, xenon, and
radon, and the atoms zinc and gold. All atoms are in their ground
state. The contributions of the up and down spin are given for
lithium and for aluminum whereas the decomposition in terms

of the various angular momentum components are given for
beryllium, neon, argon, zinc, and gold. The self-sharing index
for the inner sphere is given in the case of beryllium The
delocalization indices for carbon, oxygen, nitrogen and silicon
are given in conjunction with their hydrides in the next section.
The delocalization index for phosphorus is given elsewhere.9

Li. The delocalization indices for lithium are given in Figure
4. The uppermost line is the total delocalization index, the next
lower curve, which coincides with the upper curve at large radii,
is the contribution of theR spins to the delocalization index
whereas the remaining curve is the contribution of theâ spin.
To be noted is the coincidence of theR andâ contributions at
radii less than 1.2 bohr. These radii clearly lie in the core region.
Theâ spin contribution is the lesser contribution at radii greater
than 1.5 bohr and, for all practical purposes, vanishes by a radius
of 2 bohr. The valence region is quite clearly that region
extending from 1.5 bohr outward. The value of the delocalization
index at the inner maximum is 0.5 whereas that of the outer
maximum is 0.25, both values as anticipated by the argument
given in the previous section.

Be. The delocalization index (scale on the left) and the self-
sharing index for the inner sphere (scale on the right) for
beryllium are given in Figure 5. The curves are remarkably
similar to those of Figure 3. (The effective nuclear charges used
for Figure 3 were adjusted to make the maxima of the
delocalization index occur at roughly the same radii.) The value
of the maximum of the inner peak of the delocalization index
is 0.5, the naive value for two active electrons, whereas the
outer peak has a maximum of 0.476 at a radius of 2.38 bohr,

Figure 4. Delocalization index for lithium along with spin up and
down contributions to∆(R).

Figure 5. Delocalization and self-sharing indices for beryllium.

P00(ú;ú′) ) ∑
l,m

Ylm(θ,æ) P00;l(r,σ;r′,σ′)Ylm
/ (θ′,æ′) (6)

〈ú;ú′〉 ) ∑
l, m

Ylm(θ,æ) A00;l(r,σ;r′,σ′)Ylm
/ (θ′,æ′) (7)

P00;l(r,σ;r′,σ′) )

∑
σ′′
∫dr′′ r′′2|A00;l(r,σ;r′′,σ′′) A00;l(r′′,σ′′;r′,σ′)

∆(R) ) ∑
l

∆l(R) (8)

∆l(R) ≡ (2l + 1)∑
σ,σ′

∫reR
dr r 2∫r′>R

dr′ r′2|A00;l(r,σ;r′,σ′)|2

(9)

P(ú;ú′) ) Pσ(r;r′)δσ,σ′
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somewhat less than the value of 0.5 anticipated on a naive basis.
Compared to the maxima found for the delocalization index in
the lithium atom, the maxima for beryllium have moved to
smaller radii, a result of the greater nuclear charge of Be. The
self-sharing index has the characteristics noted in the previous
section. There is a short horizontal section from the origin to a
radius of about 0.2 bohr, followed by a steep increase until the
radius is roughly 1.0 bohr followed by a relatively flat region
extending to 1.5 bohr. This latter region of lesser slope indicates
that the additional electrons added to the inner sphere as the
radius is increased are active electrons in the sense of being
shared to the outer region, as reflected in the growth of∆(R) in
this region. As the radius is extended into the region of the
second shell, the self-sharing index increases until it reaches
the maximum number of electrons in the atom.

One effect of correlation on the delocalization index can be
quite simply checked in this atom. At the Hartree-Fock level
of approximation the atomic orbitals are purel ) 0 orbitals,
and these are the only contributors to the delocalization index.
When correlation is taken into account, orbitals of other angular
momenta can contribute to the delocalization index. Because
the ground state has a total orbital angular momentum of zero,
the delocalization index can be written as a sum of noninter-
fering contributions of single particle orbital angular momenta,
eq 8. The top curve in Figure 6 is the total delocalization for
beryllium as given before. The next two lower curves give the
l ) 0 andl ) 1 contributions to∆(R). (The l ) 2 contribution,
essentially coinciding with the abscissa, is negligible at this level
of approximation.) The largest contribution to∆(R) is from l
) 0 orbitals. As may be expected on the basis of a lack of a 1p
orbital in hydrogen-like molecules, thel ) 1 orbitals make
essentially no contribution in the region of the maximum closest
to the nucleus. But, in the region of the outer maximum thel )
1 contributions are not insignificant, the contribution of thel )
1 contribution being about 10% that of thel ) 0 contribution
at a radius of 2.4 bohr.

Al. Figure 7 gives the delocalization index for aluminum as
well as theR andâ spin contributions. Consider first the total
delocalization index, the highest of the three curves. The
contribution of the 1s shell is apparent, giving the leftmost peak.
It is to be noted that the peak height is 0.524, about 5% larger
than naively expected. This peak, however, is riding on the
beginnings of the next shell. The maximum of the second peak
is 1.970, somewhat less than the naive expectation of 2 for eight
electrons in a shell. The maximum of the third peak, occurring
at a radius of 2.55 bohr, is 0.667, significantly less that the
simple value of 0.75.

The contributions of theR andâ spins to the total delocal-
ization index are the lower two curves in the figure. The two
curves are indistinguishable at radii less than 1.2, these radii
being in the core region. The divergence occurs in the valence
region.

A part of the reason for the discrepancy of the maximum
value of the delocalization index from the value of 0.75 in the
outer region is that the contributions of theR andâ spins occur
at different radii, the maximum value of theR spin contribution
is 0.440 at a radius of 2.67 bohr, whereas the values of theâ
spin contribution give a maximum of 0.236 at a radius of 2.40
bohr. The maxima do not coincide, reducing the value from
0.75 and, in addition, the values of maxima of theR and â
contributions are less than the naively anticipated values of 0.50
and 0.25.

There is further information that can be gleaned from the
figures. In the outer region theâ spin contribution is expected
to be mainly due to a 3s orbital, whereas theR spin contribution
is due to both a 3s orbital and a 3p orbital. If theR andâ 3s
orbitals are similar in shape, we infer that, in terms of the
delocalization index, the 3p orbital extends to a larger radius,
in terms of sharing, than the 3s orbital.

The next set of atoms considered constitutes the rare gases.
In addition to the total delocalization index, the plots for neon
and argon also contain the contributions of the angular momenta
l ) 0, 1, 2 to∆(R).

Ne. Figure 8 gives the delocalization indices for neon. The
upper curve is the total delocalization index. The next lower

Figure 6. Angular momentum contributions to∆(R) for beryllium. Figure 7. Delocalization index for aluminum together with the spin
up and down contributions to∆(R).

Figure 8. Delocalization index of neon with angular momentum
contributions.

11696 J. Phys. Chem. A, Vol. 108, No. 52, 2004 Fulton



curves are the contributions of angular momentuml ) 1 andl
) 0, in descending order, to the delocalization index. The lowest
curve (essentially the baseline) is the contribution of the orbitals
with l ) 2. The first peak in the total delocalization index has
a maximum value slightly greater that 0.5, this being the 1s
orbital contribution on top of minor contributions from the 2s
and 2p orbitals. The second maximum has a value of 1.813 at
a radius of 0.82. This is about 10% lower than the naive
expectation of 2 for eight electrons in the shell. The curves
giving the p and the s contributions in this region are each lower
than the anticipated values of 0.5 and 1.5, the most significant
discrepancy being in thel ) 1 curve. The maximum of the p
contribution lies to the right of that of the s contribution and
the tail of the p contribution extends considerably to the right
of thescontribution. As found below, this is a consistent theme
in the rare gas atoms.

Ar. The trends established for neon continue in argon, the
delocalization index and the angular momentum contributions
being given in Figure 9. In the core region, the values of the
maxima are close to the anticipated values of 0.5 and 2.0, for
the contributions of 2 and, respectively, 8 electrons. The inner
maximum, although still a maximum, is merging into the rise
to the second maximum. As found below, this merging of a
maximum with the next outer maximum continues in the heavier
rare gas atoms. The maximum value of the delocalization index
of the outer shell is, as in neon, smaller than the value of 2,
being 1.835 at a radius of 1.46 bohr. In this case some of the
discrepancy is due to the noncoincidence of the maxima of the
s and the p contributions to the index, the maxima of these two
contributions being at radii of 1.34 and 1.51 bohr, respectively.
In addition, there are the undoubted effects of correlation on
the sharing of electrons in this outer shell because the maxima
of the s shell and the p shell contributions are 0.466 and 1.375,
the latter being some 10% lower than the expectation based on
simple counting of electrons in a subshell. The d orbitals make
a very small, barely visible contribution to∆(R) in this atom,
with the maximum value of the contribution occurring in the
region of 1.4 bohr.

Kr, Xe, and Rn. Figures 10-12 give the delocalization
indices for krypton, xenon, and radon. In addition, the contribu-
tions of the different single particle orbital angular momenta to
∆(R) are given for radon, this being the first atom of the paper
which has f electrons. The basis set for xenon is taken from
Huzinaga et al.12,13augmented by a diffuse d orbital. The basis
set used in the radon calculation is taken from Gropen12,14

supplemented by an added diffuse d orbital from Huzinaga et
al.15

In each of the three atoms the maximum formerly associated
with the innermost shell now appears as a distinct shoulder on
the rise to the maximum associated with the second shell. This
completes the trend noted in connection with argon. In addition
the second shell in radon is also associated with a shoulder rather
than a maximum, extending the trend to more shells as heavier
atoms are considered. Nonetheless, as illustrated in Figure 13,
which gives the delocalization index in the vicinity of the origin
on an expanded scale, the locations of the inner regions are
clearly discernible, making the number of shells countable.

In agreement with the number of shells assigned classically,
for krypton there are a total of four distinct shoulders or maxima,

Figure 9. Delocalization index of argon with angular momentum
contributions.

Figure 10. Delocalization index of krypton.

Figure 11. Delocalization index of xenon.

Figure 12. Delocalization index of radon with angular momentum
contributions.
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five in the case of xenon and six in the case of radon. The
heights of the maxima and of the shoulders of the delocalization
indices follow approximately the simple rule of being the
number of electrons in a shell times 0.25. The contribution of
the l ) 3 electrons to the delocalization index in radon in
addition to those of smallerl is apparent in the maximum having
a height of 8, which occurs at about 0.4 bohr. In addition to the
merging of the inner shells in this series to form shoulders in
place of distinct maxima, the increasing nuclear charge results
in the drift of the shells to smaller radii.

The contributions of the various angular momenta to the
delocalization index in radon are also given by the lower curves
in Figure 12. Of note are the locations of the maxima of the
contributions of the different angular momenta. In the outermost
shell region, the maximum of the p contribution occurs at a
radius of about 2.4 bohr whereas that of the s contribution occurs
at about 2.0 bohr, a significant difference between the two. In
the next region inward, the maxima of thel ) 0, 1, and 2
contributions are similarly ordered with the maximum of the d
contribution being at the largest radius.

There is one cautionary note to be mentioned here when
interpreting the contribution of the f functions to the delocal-
ization index. There is only one contracted set of f functions in
the basis set for radon. Therefore the shape of this contribution
to the delocalization index is the same as that found at the
Hartree-Fock level of approximation.

The last two atoms considered are zinc and gold. Spin-orbit
coupling has been ignored in the calculation of the one-particle
density matrix, and hence in the delocalization index. As a result,
the total orbital angular momentum of the wave function
vanishes,L ) 0, and we can separate the contributions of the
various single particle angular momenta to the delocalization
indices, just as in the case of the rare gas atoms.

Zn. The delocalization index for zinc, as well as thel ) 0,
1, and 2 contributions to∆(R), are given in Figure 14. The basis
set is taken from Rasolov et al.12,16 The comments made
previously about the values of the maxima apply here. Use of
an expanded abscissa shows that there is a valley, small but
distinct, at a radius of 0.05 bohr, this valley separating the 1s
shell from the 2s2p shell. Then ) 2 and n ) 3 shells are
separated by a distinct valley, with the values of the maxima
indicating that 8 and 18 reside in the shells. Beyond a radius of
about 2.2 bohr there is a plateau of height very close to 0.5
extending to a radius of about 3.0 bohr. This is followed by a
decline as the radius is increased.

The contributions to the delocalization index from the various
angular momenta give the three inner corel ) 0 shells as lying

between the origin and a radius of about 1.25 bohr, The twol
) 1 shells lie between the origin and roughly a radius of 1.6
bohr. Thel ) 2 shell, which has a distinct horizontal region
near the origin (related to ther2 dependence of thel ) 2 orbitals
in the neighborhood of the origin), extends to about 2.4 bohr,
with a good deal of delocalization lying beyond thel ) 1
contributions. In the outer region, beyond a radius of 1.25 and
extending to a considerable distance, lies the finall ) 0 shell
with a maximum of about 0.5. This final s shell is well outside
the other contributions to the delocalization index and is the
major contributor to the plateau mentioned above. We note that
the maxima of the third s, the second p, and the d contributions
form a progression, in that order, to larger radii.

Au. The delocalization index for gold, using the nonrelativ-
istic basis set of Jansen,17 is given in Figure 15. The delocal-
ization index associated with the inner two shells appear as
shoulders on the first maximum, which occurs at a radius of
about 0.2 bohr (see Figure 17 below for an expanded view).
The height of this maximum is close to 4.5, the value expected
by the simple counting game for a shell containing 18 electrons.
The next maximum has a height of 8.02, again corresponding
to the value from the counting game for a shell containing 32
electrons. The maximum at the radius of about 1.2 bohr is
followed by a long slow decline beginning at a radius of about
3.2 bohr.

That the major (but not only) contribution to the delocalization
index in the region beyond 3.2 bohr is from angular momentum
l ) 0 is apparent from Figure 16, which gives the contributions
of the various angular momenta to∆(R). However, it should

Figure 13. Delocalization index of radon near the origin. Figure 14. Delocalization index of zinc with angular momentum
contributions.

Figure 15. Delocalization index of gold.
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be noted that the tail of the rightmostl ) 2 contribution to the
delocalization index (conventionally the 5d contribution) extends
well into the region of this s contribution. This is unlike the
behavior in Zn in which the delocalization index in the outermost
region stems entirely from anl ) 0 contribution.

Of note in the decomposition by angular momenta are the
rightmost maxima of thel ) 2 andl ) 1 contributions as well
as the penultimate maximum of thel ) 0 contributions. These
maxima occur at increasing values of the radius in the order of
increasing values ofl. We note that the 4d shell has a
considerable overlap with the 6s shell, although the 6s contribu-
tion is dominant at large radii. Also to be noted is thel ) 3
contribution which resides within the fourth shell. These features
can, of course, be found by other means, e.g., at the Hartree-
Fock level of approximation by transforming the natural spin-
orbitals to orbitals of definite angular momentum. The present
results, however, have been found using a correlated wave
function and it is nice to see the shell structure appear by using
invariant sharing quantities with a correlated wave function.

The contributions of the various components of angular
momentum to the delocalization index for smallRare not clear
in Figure 16. The total delocalization index as well as the angular
momentum contributions are given using an expanded scale near
the origin in Figure 17. We note that maximum of the 2p
contribution occurs at a smaller radius than that of the 2s
contribution. Similarly, the maximum of the 3d contribution is
at a smaller radius than that of the 3p contribution which in
turn is at a smaller radius than the 3s contribution. When

maxima of the angular momentum contributions to the fourth
shell are compared, it is found that the order of the radii is
reversed, the ordering now being, from smallest radius to largest,
4s, 4p, 4d, and then 4f.

The cautionary note given in the case of radon also applies
to goldsnamely, that there is only one contracted set of f
functions in the basis set for gold. Therefore the shape of this
contribution to the delocalization index is the same as that found
at the Hartree-Fock level of approximation.

The approximate radii which mark the beginning of the
valence regions for some of the atoms are given in Table 1.
The radii for carbon, nitrogen, and oxygen are taken from
the figures in next section whereas that for phosphorus is
taken from ref 9. It is apparent from the figures that the radii
for Li through Zn are reasonably well delineated whereas
the radius for Au is not. The radius given for Au is the radius
at which the s contribution becomes larger than the d contribu-
tion to the delocalization index. Note the contrast between zinc
and gold. In Zn the beginning of the region for the outermost
l ) 0 contributions is fairly clear, roughly at 1.9 bohr. The
situation in Au, as just noted, is more murky for there is
considerable overlap of the tail of the outermostl ) 2 region
with the large distance contribution of thel ) 0 region. Is this
possibly related to the variety of oxidation states that exist for
gold?

IV. Numerical Results for Molecules

At the outset one motivation for the determination of the
delocalization structure of atoms in molecules was to compare
the sum of the carbon-hydrogen sharing indices to the carbon
atom in methane delocalization indices evaluated at radii in the
range of the distance of the bond points from the carbon nucleus,
this possibly providing a check on the sensitivity of the sharing
indices to the location of the boundaries of the basins. Another
motivation for determining the delocalization structure of the
electrons in atoms is to determine the valence region of atoms
so that the fixed points used in conjunction with the sharing
amplitudes can be properly positioned to give the behavior of
the electrons in the bonding regions of a molecule. In addition,
the influence attached atoms have on the delocalization from
the core region of an atom should be ascertained. In this section
we consider the delocalization index of the four hydrides CH4

(together with CH4 at the Hartree-Fock level of approximation),
NH3, H2O, and SiH4.

CH4. The delocalization index about the central atom in CH4

is given in Figure 18, along with the delocalization in an isolated
carbon atom (the lower of the two curves). First we note that
in the core region, radii less than 0.5 bohr, the delocalization
index of the carbon atom and that of the carbon atom in methane
are indistinguishable. It is for larger radii that the indices differ,
and it is this which is a verification of the location of the valence
region of a carbon atom.

Figure 16. Angular momentum contributions to the delocalization
index of gold.

Figure 17. Delocalization index of gold near the origin with angular
momentum contributions.

TABLE 1: Radius of the Beginning of the Valence Region
for Selected Atoms

atom Rvalence

Li 1.6
Be 1.0
C 0.6
N 0.5
O 0.4
Al 1.4
P9 1.0
Zn 1.9
Au(6s) 3.2
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The basin sharing indices for methane are given in Table 2.
The diagonal entries give the self-sharing indices of the atoms
(the numbers following the atom symbols identify the atomic
basins by number) whereas the off-diagonal entries give the
interbasin sharing indices. Only the diagonal entries and those
below the diagonal are given. The entries above the diagonal
simply reproduce the indices already given. It is clear from the
table that the primary interbasin sharing is between the carbon
basin and the hydrogen basins.

The bond points as defined by Bader2 lie at about 1.38 bohr
from the carbon nucleus. The delocalization index∆(R) for a
radius of 1.38 bohr is about 1.40 whereas the sum of the four
C-H sharing indices is about 1.72, considerably greater than
the delocalization index for the central atom. In fact, the
maximum of∆(R) is 1.70 and this occurs not near the bond
points but near a radius which corresponds to the distance
between the carbon nucleus and a proton. The reason for the
difference is that the carbon basin is far from spherical18 and
that there is more surface area between the carbon basin and
the hydrogen basins than given by a spherical surface.

The maximum value of the delocalization index for the carbon
atom is 0.90, about 10% less than the simple counting argument
gives. Now the index in methane contains the four electrons
supplied by the hydrogens. The naive calculation gives a value
of the maximum as 2, whereas Figure 18 gives a maximum of
1.7, 15% less than the naive calculation gives. Is this due to
the nonspherical nature of methane or to correlation? Figure
19 gives the delocalization index for methane at the Hartree-
Fock level of approximation (upper curve) and at the QCISD
level of approximation using the same basis set as above. The
core region is remarkably similar to that from the QCISD level
of approximation despite the core electrons being included when
determining the correlated amplitude. The outer region differs
in the Hartree-Fock calculation, with the maximum in the
valence region being 1.97, essentially the value from the naive
counting. Clearly the main reason for the decrease in the
maximum value in the QCISD calculation from the naive value
is the inclusion of correlation.

NH3 and H2O. The delocalization indices of nitrogen and
oxygen (lower curves in Figures20 and 21) illustrate both the
effects of increased nuclear charge and the increased number
of valence electrons when compared to the delocalization index
for carbon. The increased nuclear charge in the sequence C to
N to O draws the maxima of the delocalization index increas-
ingly toward the nucleus. The increase in the number of valence
electrons results in systematic increase in the height of the
maxima of the delocalization indices in the valence regions.

Figure 18. Delocalization indices for carbon in methane (higher curve)
and of a carbon atom.

TABLE 2: Sharing Indices for CH 4

basin C H1 H2 H3 H4

C 4.172
H1 0.424 0.553
H2 0.424 0.018 0.553
H3 0.424 0.018 0.018 0.553
H4 0.424 0.018 0.018 0.018 0.553

Figure 19. Delocalization indices for carbon in methane. Higher curve
is from a Hartree-Fock calculation.

Figure 20. Delocalization indices for nitrogen in ammonia and of a
nitrogen atom.

Figure 21. Delocalization indices for oxygen in water and of an oxygen
atom.
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There are some differences and some similarities between
the three hydrides considered so far. In methane, Figure 18,
the delocalization index of the molecule begins to diverge from
that of the carbon atom at the minimum that occurs at 0.6 bohr.
In ammonia, Figure 20, the divergence between the delocal-
ization indices becomes noticeable about one-third the way up
the slope in the valence region. In water, Figure 21, the
divergence occurs somewhat beyond the halfway up the slope
in the valence region. Similarly, the heights of the maxima of
the delocalization indices of the three atoms increases in the
order of the increasing number of electrons in the valence region.

The delocalization indices are similar in that the heights of
the maxima of the delocalization indices of all three maxima
are essentially the same, the maxima in the valence regions being
close to 1.7, apparently reflecting the fact that the total number
of bonding and lone pair electrons in the valence region is the
same in all three molecules.

SiH4. The last molecule we consider is SiH4. The delocal-
ization index for Si and for Si in the molecule is given in Figure
22. In the core region the delocalization indices are virtually
indistinguishable. There are two maxima in the core region,
corresponding to principal quantum numbers of 1 and 2, with
the values of the maxima being in agreement with the naive
counting. As could be anticipated from the atoms and molecules
in the preceding row, it is in the valence region that the indices
for the silicon atom and the silicon atom in the molecule diverge.
The core region, now containing two shells, remains intact as
the molecule is formed. As in methane, the maximum value of
the rightmost peak in the molecule is less than the canonical 2,
being close to the 1.7 found in the other three hydrides. It is to
be noted that the two delocalization indices plotted in Figure
22 begin to diverge at the beginning of the valence region,
similar to what is found in methane, the other tetrahydride
considered.

V. Conclusions

The point to point sharing amplitudes〈ú;ú′〉 and indicesI(ú;ú′)
introduced in ref 1 give quantitative measures of the sharing
(delocalization) of a single electron between the two pointsú
and ú′ in a single or a many electron system. (I(ú;ú′) is
normalized to the total number of electrons in the system being
considered.) In this paper we investigate the delocalization of
an electron in single atoms and about the central atom of some
simple molecules by means of an atom delocalization index
∆(R). This index is given by a double integral of the sharing
index I(ú;ú′) over the two indicesú and ú′; ú over an inner

spherical region of radiusR centered on a nucleus andú′ over
the region exterior to that spherical region. The result is that
we have a measure of the delocalization of the electrons between
the inner and outer regions of an atom. We also make modest
use of an associated self-sharing index, an index that is a
measure of the number of electrons shared to points within the
inner spherical region.

As a function of the radiusR, ∆(R) shows remarkable shell-
like behavior in atoms, with, for the lighter atoms, delineations
between the shells marked by distinct minima in∆(R). For the
heaviest atoms considered, the separation between inner shells
is marked not by minima but rather by distinct plateaus. The
values of the maxima in the atom delocalization index, which
when multiplied by 4 give the number of electrons shared across
the dividing spherical surface, are in close agreement with the
“classical” number of electrons in the corresponding shell. The
origin of this relation and reasons for deviations from the strict
application of this relation is found in the influence of
interference effects and in the correlation of the electrons relative
to the Hartree-Fock approximation.

If the total orbital angular momentum of the atom is zero,
the contributions to∆(R) can be broken into a sum of
contributions from the various single electron angular momenta
with no interference terms. Similarly, if the total wave function
is an eigenfunction of thez-component of the spin angular
momentum, the contributions of the “up” and “down” spins can
be separately considered. Just as the delocalization index shows
the shell structure of an atom, so do the angular momentum
and spin contributions to the delocalization index. However,
we now find that the positions of maxima of the contributions
of the different angular momenta need not coincide, this
contributing to the discrepancy between a naive counting of
the electrons and the values of the maxima of∆(R).

Important for the application of the sharing amplitude to the
determination of the behavior of electrons in bonding regions
of molecules is the identification of the valence region of an
atom. It is shown that the shell structure of∆(R) gives the
valence regions of atoms, thus allowing for the placement of
the fixed points when using sharing amplitudes when investigat-
ing the behavior of electrons in molecules.

The delocalization indices about the heavy atom in several
simple hydrides are given. These illustrate the invariance of the
core electron structure of an atom upon bond formation, the
changes in the valence region upon bond formation, and, for
methane, the marked influence of electron correlation on the
carbon atom delocalization in the outer regions of the molecule.
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Appendix

In this appendix we demonstrate that, when the total orbital
angular momentum is zero, the single density matrix (normalized
to 1) can be decomposed as

i.e., is diagonal in the indicesl andm.
Let the N-particle stateΨLM(ú) be an eigenfunction of the

z-component of angular momentumL̂z and the square of the
angular momentumL̂2,

Figure 22. Delocalization indices for silicon in silane and of a silicon
atom.

F00(ú;ú′) ) ∑
l,m

Ylm(θ,æ) F00;l(r,σ;r′,σ′) Ylm
/ (θ′,æ′)

(A1)
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with p ) 1. The single particle density matrix (normalized to
1) is defined by

We begin by noting that becauseΨLM(ú,úN-1) is an eigenfunc-
tion of L̂z with eigenfunctionM,

The total angular momentum may be written as the sum of the
angular momentum of particle 1,l̂, and the contribution of the
remaining particles to the angular momentum,∆L̂

Because∆L̂ is Hermitian

and we are left with

The general expansion of the single particle density matrix in
terms of the spherical harmonicsYlm(θ,æ) is

Becausel̂z and F̂ commute, the terms withm * m′ vanish and
the expansion reduces to

We now consider the special case of zero total orbital angular
momentum,L ) 0. In this case the wave function is also an
eigenfunction of thex- andy- components of the total orbital
angular momentum,

and we find that the single particle density matrix commutes
with both l̂x andl̂y. As a consequence, the single particle density
matrix commutes with the square ofl̂2

This leads to

whence, because the spherical harmonics are independent,

F00;lm,l′m is diagonal inl and l′

Also from the fact that thex- andy-components of the orbital
angular momentum commute with the density matrix it follows
that l̂+ ≡ l̂x + il̂ y commutes with the density matrix. This leads
to the relation

which gives the recursion relation

indicating thatF00;lm(r,σ;r′,σ′) is independent ofm. The density
matrix in this case is
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L̂zΨLM(úN) ) ΨLM(úN)M

L̂2ΨLM(úN) ) ΨLM(úN)L(L + 1) (A2)

FLM(ú;ú′) ≡ ∫dúN-1ΨLM(ú,úN-1)ΨLM
/ (ú′,úN-1) (A3)

∫dúN-1 L̂ΨLM(ú,úN-1) ΨLM
/ (ú′,úN-1) )

∫dúN-1 ΨLM(ú,úN-1)[L̂zΨLM
/ (ú′,úN-1)]* (A4)

L̂ ) l̂ + ∆L̂ (A5)

∫dúN-1 ∆L̂ΨLM(ú,úN-1) ΨLM
/ (ú′,úN-1) )

∫dúN-1 ΨLM(ú,úN-1)[∆L̂zΨLM
/ (ú′,úN-1)]* (A6)

l̂ zF̂ ) F̂ l̂ z (A7)

FLM(ú;ú′) ) ∑
l,m,l′m′

Ylm(θ,æ) FLM;lm,l′m′(r,σ;r′,σ′) Yl′m′
/ (θ′,æ′)

(A8)

FLM(ú;ú′) ) ∑
l,m,l′

Ylm(θ,æ) FLM;lm,l′m(r,σ;r′,σ′)Yl′m
/ (θ′,æ′)

(A9)

L̂xΨLM(úN) ) ΨLM(úN) × 0

L̂yΨLM(úN) ) ΨLM(úN) × 0 (A10)

l̂2F̂ ) F̂ l̂2 (A11)

∑
l,m,l′

[l(l + 1) -

l′(l′ + 1)]Ylm(θ,æ) F00;lm,l′m(r,σ;r′,σ′)Yl′m
/ (θ′,æ′) ) 0 (A12)

F00;lm,l′m ) F00;lmδll ′ (A13)

∑
l,m

[(l - m)(l + m + 1)]Ylm(θ,æ)

Yl′m
/ (θ′,æ′)[F00;lm(r,σ;r′,σ′) - F00;l,m+1(r,σ;r′,σ′)] ) 0

F00;lm+1(r,σ;r′,σ′) ) F00;lm(r,σ;r′,σ′)

F00(ú;ú′) ) ∑
l, m

Ylm(θ,æ) F00;l(r,σ;r′,σ′) Ylm
/ (θ′,æ′) (A14)
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