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An algorithm for computation of density-functional-based orbital reactivity indices, such as orbitally resolved
hardness and softness tensors, total hardness and softness, and the Fukui indices, has been extended for systems
with degenerate electronic states and implemented in the deMon computer code. The method treats explicitly
degenerate orbitals, thus avoiding spurious numerical errors in hardness tensor computations. Benchmark
calculations for a series of small molecules and some larger, highly degenerate systems reveal good
computational performance and numerical stability. The influence of the choice of auxiliary basis functions
on the results is also examined and discussed. The predicted orbital and total reactivity index values are
found to be insensitive to the applied exchange-correlation functionals. Applications of the orbital Fukui
indices to a series of (4n + 2) π-electron [n]-annulenes show the possibility of rationalizing the reactivity of
individual molecular orbital contributions.

Introduction

The concepts of reactivity theory, the so-called “reactivity
indices”, have been proven to be important predictive tools in
analyzing chemical interactions and reactions. In the early stage
of this theory, Pearson1 introduced the quantities electronic
hardness (η) and softness (S) in his hard-soft acid-base
(HSAB) principle, which states “hard likes hard and soft likes
soft”. The species are classified as soft (hard) if their valence
electrons are easy (hard) to polarize or to remove, and the
relationship between hardness or softness and the chemical
reactivity was given through the HSAB principle. In the
development of the reactivity theory, Fukui has proposed the
use of the density of the frontier orbitals (highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO)) in order to evaluate the reactivity of a system
toward electron donation and acceptance. A rigorous theoretical
basis to those qualitative concepts was given by Parr and co-
workers,2 and they were identified within the framework of
density-functional theory (DFT) as various energy derivatives
with respect to the total number of electrons (N). Thus, the
hardness is defined as the second derivative of the Kohn-Sham
(KS) energy to the density at fixed external potential and the
softness is the inverse of the hardness. Further, the hardness
and softness are derived in their local version,3 since they are
functions of the positions. They measure the local response at
a given point inside the molecular region to a global external
perturbation. Thus, it became possible to assign numbers to the
reactivity indices computed from first principles and to exploit
these values to rationalize a wide range of chemical interactions,
ranging from the atomic and molecular reactions,4 surface
adsorption processes,5 and nanoscale objects.6 An exhaustive

description of the applications of the reactivity indices in physics
and chemistry can be found in a monograph of Pearson.7

In the present study, we focus our attention on a numerical
implementation of the algorithm8 that uses fractional occupation
numbers of KS orbitals to compute hardness tensor elements,
from which softness tensor elements, total hardness, total
softness, and orbital Fukui indices can be obtained. We
communicate also an efficient extension of the algorithm to
systems with degenerate states that allows spurious entries in
hardness tensors to be avoided. The algorithm has been
implemented in the deMon-20039 code. Although the scheme
for computing the reactivity indices based on the orbitally
resolved hardness tensor (ORHT), first proposed within XR

10

and then within DFT,8 has been already successfully applied to
various chemical reactivity tasks,11-18 it was not yet fully
numerically optimized and implemented in a way to allow
routine computations.

The paper is organized in the following way. A brief outline
of the computational approach is presented in the first section.
Then, the numerical implementation is described, giving atten-
tion to the extension of the method to degenerate orbitals.
Further, we have addressed the question about the numerical
stability of the hardness and Fukui index values against the
magnitude of the occupation number perturbation (∆n), employ-
ing several combinations of exchange-correlation functionals
and auxiliary basis sets. Benchmark results are presented and
discussed. In the last section, the possibility of treating aromatic
systems is illustrated by exploring Fukui indices and total
hardness on a series of (4n + 2) π-electronDnh [n]-annulenes.

Theory

In this section, we briefly recall the most important formulas
in the reactivity theory and the orbitally resolved hardness tensor
(ORHT) computational scheme. A detailed description of the
ORHT method within DFT can be found elsewhere.11,19

The chemical potential (µ) and the total hardness (η) are
defined within DFT as the first and second derivative, respec-
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tively, of the KS energy to the number of particles, at constant
external potential (V):

Several approximations of varying accuracy have been
proposed7,20-22 for the hardness and softness in their global and
local definitions. One of the most widely applied formulas for
computing these quantities uses the three-point finite difference
and expressesµ and η through the electron affinity (A) and
ionization potential (I):

The latter formulas are usually further simplified using the
HOMO-LUMO energies: µ ) -(εHOMO + εLUMO) and η )
εLUMO - εHOMO. These equations directly employ one-electron
change, although the exact definition demands an infinitesimal
change of the number of electrons. In the case of HOMO-
LUMO approximations, only the frontier orbital densities are
involved in the hardness computation. Moreover, KS orbitals
are different from the canonical molecular orbitals and the
hardness calculation as the HOMO-LUMO gap is not straight-
forward.

The reactivity will be, however, largely determined by the
response of all valence electrons and is governed by the whole
spectrum and not just the frontier orbitals.5 To this aim, an
algorithm to compute reactivity indices (total hardness and
softness, orbital Fukui indices, and orbital softnesses) from the
orbitally resolved hardness tensor has been proposed initially
within XR formalism10 and generalized later in the framework
of DFT.8 Computation of ORHT elements uses a fraction of an
electron in the finite difference derivatives that are taken over
all valence orbitals. A very similar protocol only for computing
orbital hardness tensor elements was implemented in an older
version of deMon code by Grigorov et al.23 It is, however, of
practical interest to use these hardness tensor elements to obtain
the other local and global reactivity indices.

The idea to study the orbital response to small charge
perturbation by means of the orbital energy derivative to the
occupation number variation is given in the works of Neshev
and Proynov.24,25 The computational scheme within DFT has
been derived by using Janak’s theorem,26 which defines the KS
one-electron orbital energy (εi) as the first derivative of the total
KS energy to the occupation number (ni), analogously with
Slater’s proposal to use fractional occupations.27 Each element
in the hardness tensor (ηij) is then obtained as the first derivative
of εi to the occupation number (nj).

The difference quotient of eq 1 with finite∆nj can be easily
implemented to compute the hardness tensor (ηij) numerically.
The computational procedure thus requires self-consistent
calculations first for the ground-state energy and then for each
perturbed orbital with occupationnj ) 1 - ∆nj andnj ) 0 +
∆nj, for the occupied and virtual orbitals, respectively.

The hardness (η), softness (S), softness tensor (sij), and orbital
Fukui indices (fi) are now easily accessible from the hardness

tensor elements, and they are related in the following way

where the summations go over all orbitals or, with a valence-
electron approximation, over the number of valence orbitals
(Nval). Hence, the dimension of the hardness tensor is the number
of treated orbitals. This general way of computing the hardness
could be further exploited in the future, for example, by
computing the hardness tensor for localized orbitals in the active
region of some large molecular or surface structures and hence
reducing the computational cost significantly. The hardness
tensor can be generalized to open-shell systems, using the spin
indexesR andâ:

In the open-shell case, the summation in eq 1 runs overR and
â valence orbitals, and the dimension of the hardness tensor is
the number of treatedR plus â orbitals.

The above outlined approach has been successfully applied
in the studies of maximum hardness principle11-13,15 and the
active sites in a series of electrophilic and nucleophilic
reactions.14-18

Implementation

In this section, we describe the implementation of orbital
hardness and softness in the deMon code.9 Some features of
deMon, such as the use of an auxiliary density, make this
implementation very efficient. However, as this implementation
is general, it is straightforward to apply it to any other density-
functional code.

In an initial single-point run, the “unperturbed” one-particle
energies (εi), the molecular orbital (MO) coefficients, and the
electron density of the system are computed. Then, the hardness
tensor (ηij) is calculated using the difference quotient of eq 1.
For this purpose, the finite perturbation (∆ni) is subtracted from
the occupation number (ni) of the ith orbital and self-consistent
field (SCF) computations are carried out as many times as the
number of perturbed orbitals. As the initial density of this SCF
is very close to the perturbed one for small∆ni, only a few
SCF cycles are necessary. The influence of the perturbation on
the result is discussed in the next section. The contribution of
the core orbitals to the hardness is generally small and not
important for chemical reactivity. In our implementation, the
user can choose if the core orbitals are included in the
calculation.

Special attention is required for degenerate orbitals. If one
of the degenerate orbitals is perturbed, orbital symmetry is
destroyed and usually convergence of the SCF is poor or even
fails. In addition, for two degenerate orbitals,j and j′, the
hardness tensor elementsηij and ηij ′ are equal; that is, equal
rows/columns in the hardness tensor are produced and it cannot
be inverted. We fix this problem by perturbing degenerate
orbitals simultaneously. After determination of the degree of
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degeneracy (D) using a threshold (10-5 Hartree as the default),
all degenerate orbitals are perturbed by∆ni/D. The factor 1/D
is due to the simultaneous perturbation of the degenerate orbitals,
so that the resulting change of the occupation numbers for that
system remains as∆n. In this way, each set of degenerate
orbitals is accounted for only once in the hardness tensor and
the correspondingηij values are directly multiplied by the degree
of degeneracy (D). The latter can be easily seen, for instance,
in the case of two degenerate orbitals (j and j′), from the
following equation:

Using this technique, spurious entries are removed fromηij,
which finally has the dimension of the number of nondegenerate
orbitals. After degenerate orbitals are removed fromηij, the
reactivity indices can be computed following eq 2. The
implementation of open-shell hardness follows exactly the same
recipe and is straightforward.

Dependence of the Reactivity Indices on the Perturbation
(∆n)

We have deliberately chosen the hardness values (η) as
benchmark for our implementation, sinceη is obtained from sij
computations (eq 2) and in this way reflects the entire numerical
algorithm. To illustrate how the implementation performs for
local property computations, the Fukui indices of theσ-orbitals
of halide acids, H2O, H2S, and NH3 are reported as well. As it
follows from eq 1, the accuracy of the hardness tensor elements
and the consecutive reactivity indices (sij, η, S, and fi) will
essentially depend on the accuracy of the KS one-electron
energies. On the contrary, the amount of perturbation (∆n) will
contribute to the numerical precision of the one-electron energy
values. For this reason, we have examined the numerical stability
of the hardness values versus∆n, first, employing the local spin-
density exchange-correlation approximation of Vosko, Wilk, and
Nusair28 (VWN) and setting the energy convergence tolerance
equal to 10-12 Hartree. The orbital basis functions used in these
computations are of double (DZVP)- and triple (TZVP)-ú
quality,29 while for fitting the density auxiliary basis sets of
various qualities were considered. (Auxiliaries are generated
automatically, using the strategy of Godbout et al.,29 covering
the space of the orbital basis functions used in the calculation.
The auxiliaries with polarization functions (denoted with an
asterisk) are an extension to the standard A2, A3, and A4 basis
set. They split the space into three regions (compared to two in
the standard), the first with only s orbitals, the second with spd
orbitals, and the third with spdfg orbitals, with each set of
orbitals sharing the same exponent.) Additional test computa-
tions were performed for two gradient-corrected approximations
(GGAs): (1) Perdew’s 1986 for correlation30 and Becke’s 1988
GGA for exchange,31 referred to as BP88, and (2) Perdew-
Burke-Ernzerhof’s 1996 exchange-correlation functional,32

referred to as PBE, employing DZVP bases.
In Figure 1, the dependence ofη on the perturbation (∆n) is

studied for H2 and HF molecules. In this study, we include six
sets of auxiliary functions to represent the auxiliary density.
For clarity, we discuss only the results obtained with the VWN
functional. The hardness is linearly dependent on the finite
perturbation (∆n), as follows directly from eq 1, where the
partial first-order derivative for each hardness tensor element

is approximated with the finite difference. Indeed, all computa-
tions except the A2 computation of H2 show such a linear region,
going from large to small∆n values. For smaller∆n, numerical
problems in the difference quotient start to be important, and
numerical stability is lost. These numerical difficulties can be
due to either an incomplete auxiliary basis, as in the case of
A2 for H2, or numerical difficulties due to an overdetermined
auxiliary basis, as in the case of A3* and A4* for HF. However,
if a (linear) extrapolation in the linear region ofη(∆n) is carried
out, the resulting hardness is found to be nearly independent of
the employed auxiliary basis. We have made similar observa-
tions for other numerical parameters, for instance, SCF tolerance
and grid quality.

The hardness values and Fukui indices (fσ) for a series of
benchmark molecules using the VWN, BP88, and PBE func-
tionals are collected in Tables 1 and 2, respectively. The
computations were carried out again for the same∆n range used
in the cases of H2 and HF. The main result is thatη andfσ are
nearly independent of the functional used, which is in contradic-
tion to other approximations of the reactivity indices that
explicitly use virtual orbitals. Only for molecules with a small
hardness, like naphthalene, small differences between the local
density approximation (LDA) and the GGA are found. The use
of TZVP bases at the LDA level of theory did not yield
significantly different values for the hardness (Table 1) and
Fukui indices (Table 2). Hence, it is also advantageous
concerning computing time to write orbitally resolved reactivity
indices within DFT.

The last aromatic molecules presented in Table 1 were chosen
because they contain a high number of degenerate orbitals, thus
being an appropriate test for the numerical stability of our
technique to treat degeneracy. For these molecules, the con-

ηij ) ηij ′ ) lim
∆nf0

εi(nj -
∆nj

2 ) - εi(nj)

∆nj

2

for εi ) εi′

Figure 1. Dependency of the hardness (in electronvolts) on the
perturbation (∆n) for various auxiliary basis sets for the VWN functional
for H2 (top) and HF (bottom). The function sets of the auxiliaries are
(4, 0, 0)/(4, 3, 0) for A2; (5, 0, 0)/(5, 4, 0) for A3; (8, 0, 0)/(8, 7, 0) for
A4; (2, 2, 0)/(3, 2, 2) for A2*; (3, 2, 0)/(3, 3, 3) for A3*, and (4, 4, 0)/
(5, 5, 5) for A4*, for H/F atoms, respectively. The nomenclature gives
the number of (s, spd, spdfg) sets.
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vergence criteria were difficult to satisfy when higher perturba-
tion (∆n > 0.03) was considered. The latter is not surprising
because the system stability is determined in general by the
eigenvalues of the matrix whose elements are energy derivatives
of second order (Hessian) with respect to the coordinates or to
the occupation numbers,16 that is, in our case, the eigenvalues
of the hardness matrix. Naphthalene is less stable compared,
for example, to halide acids, whose orbital reactivity index
values were obtained to be almost not sensitive to the magnitude
of ∆n (vide supra). This also demonstrates the advantage of
the proposed methodology, which can deal with rather small
perturbations.

The experimental data forη are reported in Table 1 as well.
Note that there is no direct way to measure hardness or softness.
The experimental hardness is the difference between the
measured ionization potential and the electron affinity.7 This
means the operational definition ofη (eq 2) has been used to
obtain the experimental hardness, while ourη values are
computed from another approximation that is closer to the exact
hardness definition of eq 1. Therefore, only the relative trends
can be compared. As is known, the hardness and other reactivity
index numbers are expected from the chemical evidence:7 (1)
water is harder than hydrogen sulfide and ammoniac; (2) the
hardness of the halide acids is in the order HF> HCl > HBr
> HI, as follows from the classification of the hard-soft
compounds;7 and (3) the smallestfσ value of HF correlates well
with the anomalous behavior of hydrofluoric acid, which is a
weak acid, whereas HCl, HI, and HBr are strong acids. To
provide direct comparison with the experimental data, we have

reported in Table 1 the hardness values obtained as half of the
difference between the ionization potentials (IPs) and electron
affinities (EAs) (eq 2), as well. For this purpose, IPs and AEs
were calculated employing the SCF procedure for the corre-
sponding neutral and charged molecules. The observed good
agreement between the experimental and theoretical date reveals
the known fact that DFT is able to reproduce well the
experimental ionization potentials and electron affinities.

To conclude this section, we emphasize that the absolute
values of the reactivity indices do not provide any physical
information. The reactivity index numbers can provide knowl-
edge only if a particular chemical behavior for a set of
compounds is studied. Therefore, we believe it is of great
importance to ensure a stable numerical algorithm for computing
global and local reactivity indices, taking into account the
response of all orbitals in the system rather than comparing their
values coming from different working definitions.

Reactivity Indices of Aromatic Molecules

Aromatic molecules have a special reactivity, and molecular
reactivity is considered as one of the categories defining
aromaticity.22,33-35 Since aromaticity describes compounds that
are energetically stabilized due to the presence of cyclic
delocalized electrons,35-37 it is expected that aromatic com-
pounds can be characterized by their relatively large hardness
values. The latter is in general associated with higher stability,
or lower reactivity, as is aromatic stabilization. Although the
attempts to correlate hardness with aromaticity date from the
late 1960s, the relationship of hardness and aromaticity was
neither fully exploited22 nor extended to the involvement of the
Fukui functions.

We discuss below the orbitally resolved total hardness and
Fukui indices of σ- and π-orbitals belonging to (4n + 2)
π-electron systems that are listed in Table 3. The HOMO-
LUMO total hardness (ηH-L) is also given because this is one
of the most applied approximations in the reactivity-based
description of aromaticity.38-42 The total hardness from the
ORHT method is inversely dependent on the number of active

TABLE 1: Hardness (η, in eV) at Various Levels of DFT
for Benchmark Molecules, Using the DZVP and TZVP Basis
Sets (TZVP is Not Available for I and Br)29 and A2
Auxiliaries (See Text)a

system VWN BP88 PBE VWN exptlb

HF 14.10 (10.28) 14.20 (10.15) 14.14 (10.65) 13.17 11.0
HCl 9.38 (8.17) 9.30 (7.84) 9.36 (7.87) 9.06 8.0
HBr 8.08 (7.26) 7.94 (6.27) 7.92 (6.74)
HI 7.20 (6.44) 7.16 (6.17) 7.16 (6.23) 5.3
H2O 11.58 (8.51) 11.54 (8.36) 11.56 (8.41) 11.04 9.5
H2S 8.18 (7.68) 8.12 (7.64) 8.14 (7.682) 8.56 6.2
NH3 10.20 (7.33) 10.20 (7.47) 10.06 (7.52) 9.54 8.2
benzene 1.96 (5.57) 2.30 (5.48) 2.30 (5.66) 2.28
naphthalene 1.22 (4.18) 1.82 (4.14) 1.78 (4.15) 1.75

a Geometries have been optimized at the same levels of theory.b The
experimental hardness values are taken from ref 7. Note that the
experimental hardness is obtained from the measured ionization
potential and electron affinity (η ) 1/2(I - A)). In parentheses are
reported the hardness values (in electronvolts) coming from the
calculated IP and AE values. For IP and AE, SCF computations at the
same levels of theory have been performed.

TABLE 2: Fukui Indices for the σ-Orbitals of HF, HCl,
HBr, HI, H 2O, H2S, and NH3, Using the VWN, BP88, and
PBE Exchange-Correlation Functionals and the DZVP Basis
Set and the VWN Exchange-Correlation Functional and the
TZVP Basis Seta

system HF HCl HBr HI H2O H2S NH3

fσ
b 0.58 0.78 0.82 0.74 1.03 1.03 0.52

fσ
c 0.65 0.82 0.85 0.76 1.14 1.15 0.54

fσ
d 0.65 0.82 0.85 0.76 1.13 1.15 0.55

fσ
e 0.57 0.81 0.90 1.07 0.60

a All the computations were carried out employing A2 auxiliaries
(see text). Geometries have been optimized at the same levels of theory.
b The VWN exchange-correlation functional and the DZVP basis set.
c The BP88 exchange-correlation functional and the DZVP basis set.
d The PBE exchange-correlation functional and the DZVP basis set.
e The VWN exchange-correlation functional and the TZVP basis set.

TABLE 3: Hardness of Dnh [n]-Annulenes from the ORHT
Method (η), Hardness from the HOMO-LUMO Difference
(ηH-L), in eV, and Orbital Fukui Indices for Some Selected
π- and σ-Orbitals of (4n + 2) [n]-Annulenes, Computed
Using the PBE Exchange-Correlation Functional, the DZVP
Basis Set, and A2 Auxiliaries (See Text)a

system ηH-L η fπ fσ

C3H3
+ 9.09 3.06 0.051 (8) -0.421(4)

C4H4
2+ 4.81 2.60 0.027 (11) -0.383 (5)

C4H4
2- 3.59 2.52 -0.039 (13) -0.334 (5)

0.118 (14+ 15) 0.262 (6+ 7)
C5H5

- 5.55 2.46 -0.094 (16) -0.555 (6)
0.096 (17+ 18) 0.142 (7+ 8)

C6H6 5.12 2.30 -0.328 (17) -0.36 (7)
0.003 (20+ 21) -0.04 (8+ 9)

C7H7
+ 4.29 2.24 -0.134 (20) -0.623 (8)

-0.003 (23+ 24) -0.232 (9+ 10)
C8H8

2+ 3.39 2.10 -0.085 (21) -0.280 (9)
-0.044 (26+ 27) -0.150 (10+ 11)

C8H8
2- 4.15 1.90 0.080 (23) -0.151 (9)

-0.053 (26+ 27) -0.215 (10+ 11)
-0.115 (28+ 29) -0.185 (12+ 13)

C10H10 3.29 1.20 0.437 (27) 1.573 (11)
-0.118 (30+ 31) 1.006 (12+ 13)
-0.800 (34+ 35) -1.370 (14+ 15)

a In parentheses, the numbers of orbitalssall π-orbitals and the
isolobalσ-orbitalssare given (for further details, see ref 35). Geometries
have been optimized at the same levels of theory.
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orbitals that constitute the hardness tensor. Therefore,η values
for the (4n + 2) [n]-annulenes decrease with an increasing
number of electrons. The same is true for HOMO-LUMO gaps,
which decrease in Hu¨ckel theory with increasing ring size. This
trend is generally true, as also other indices of aromaticity
correlate reciprocally with the ring size.22,43 Special cases in
the series of [n]-annulenes are ions with the same ring topology
but different numbers of electrons. The series of annulenes
contain two species with the same number of vertices but a
different number ofπ-electrons: C4H4

2+/C4H4
2- and C8H8

2+/
C8H8

2-. In both cases, Hu¨ckel theory gives a degenerate orbital
which has zero energy and is hence neither bonding nor
antibonding (the LUMO in the cationic species and the HOMO
in the anionic species). Therefore, the aromatic stabilization of
both systems should be rather similar. This is exactly what we
find within the ORHT: the molecular hardness of these species
differs by<5%. On the other hand, it is obvious thatηH-L fails
to describe the reactivity of these molecules: the LUMO of
the cation is the HOMO of the anion, and hence, the HOMO-
LUMO gap is computed between different orbitals for C4H4

2+/
C4H4

2- and C8H8
2+/C8H8

2-, respectively.
The ORHT hardness decreases monotonically with increasing

ring size and number ofπ-electrons, which is comparable with
experimental observations and not reflected in theηH-L ap-
proximation. The ORHT approach gives the possibility of
overcoming the size dependency of the total hardness, including
local reactivity properties, for example, the Fukui indices, in
the description and interpretation of aromaticity.

As the Fukui indices are directly proportional to the orbital
softness, a lowerf value indicates a harder, more localized orbital
and vice versa. Orbitals that are characterized by negative Fukui
indices are considered as nonreactive, having an opposite
behavior with respect to the other MOs of the molecule toward
a particular reaction.44 Usually, aromatic systems are known as
species that “try to leave theirπ-electrons unchanged”.22 The
results in Table 3 reveal that most of thefπ and fσ values are
negative or near zero, thus indicating these orbitals are nonre-
active or are harder compared to the other valence MOs in the
molecule. For C3H3

+ and C4H4
2+ species, the tendency ofσ-

andπ-MOs to keep their electrons is well evidenced by thefσ
and fπ values.

In the case of C4H4
2-, we note that the Fukui index values

characterize the higher-energyσ-MO and frontierπ-orbitals as
relatively soft, delocalized orbitals, while the low-energyσ- and
π-MOs are expected to be nonreactive. Thus, the relatively low
reactivity, or the aromatic character, would be predominantly
due to the contributions of the low-lyingσ- andπ-MOs. With
increasing molecular size, thefπ values of the frontier degenerate
set of π-electrons decrease, approaching zero for C6H6 and
C7H7

+ and becoming negative for C8H8
2+. The same behavior,

even more pronounced, is observed for the degenerate set of
σ-electrons.

The Fukui indices of the last two species considered here
(C8H8

2- and C10H10) indicate the lowest-energyπ-orbitals are
relatively soft, delocalized orbitals. As the degree of localization
decreases in going to the higher-energyπ-orbitals, the negative
fπ value for the second degenerateπ-set correctly characterizes
these orbitals as nonreactive, with greater ability to keep their
electrons unchanged. Recently computed MO-NICS35 revealed
greater contributions of theπ lowest-energy MO-NICS values
that are attributed to the higher degree of delocalization of these
π-MOs. The MO-NICS calculations show also that C8H8

2- is
more aromatic than C8H8

2+. In the case of the former molecule,

two moreπ-orbitals are occupied. Ourfπ values indicate these
two frontier MOs are nonreactive.

Summary

An efficient algorithm for the computation of density-
functional-based orbital reactivity indices, such as the orbitally
resolved hardness and softness tensors, total hardness and
softness, and Fukui indices, is proposed and implemented in
the deMon-2003 code. The theory accounts for all valence
orbitals in the computations of the hardness, thus allowing direct
and relatively easy computations of the local reactivity indices
as well. The algorithm automatically treats degenerate orbitals.
The good computational performance of the algorithm is
illustrated for a series of small molecules and some large, highly
degenerate systems as well. The numerical stability is tested
for a set of 10 different values of the occupation number
perturbations, ranging from∆n ) 0.0001e to ∆n ) 0.8e. The
influence of the basis set and the choice of auxiliary basis
functions to fit the density in the deMon code on the numbers
is also examined and discussed. The approach is found to be
insensitive to the applied exchange-correlation functionals.

The relationship between the reactivity-based concepts and
aromaticity is illustrated for a series of (4n + 2) [n]-annulenes.
The orbital Fukui indices correctly attribute low reactivity to
the isonodalσ- and π-molecular orbitals in the aromatic
compounds, ranging from C3H3

+ to C10H10. The high degree
of delocalization of the lowest-energyπ-orbitals in C8H8

2- and
C10H10 is indicated by the largerfπ values for these MOs. The
low reactivity of those aromatic compounds is most probably
due to the frontier sets of degenerateπ-orbitals, for which
negativefπ values have been obtained.

Further applications of this fully optimized numerical imple-
mentation toward reactivity study of various problems can be
easily performed with relatively small computational costs and
human resources.
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