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Hydrogen loss from the toluene molecular ion generates benzylium (Bz+) and tropylium (Tr+) ions via two
competitive and independent pathways. The corresponding kinetic energy release distributions (KERDs) have
been determined under various conditions in the metastable time window for toluene and perdeuterated toluene
and have been analyzed by the maximum entropy method (MEM). The isomeric fraction Tr+/Bz+ is found
to be equal to 0.9( 0.3, in good agreement with the values obtained using photodissociation and charge
exchange experiments. It is, however, in disagreement with the value 5( 2 deduced by Moon, Choe, and
Kim (J. Phys. Chem. A2000, 104, 458) from KERD measurements. The origin of the discrepancy is suggested
to be the inadequacy of the orbiting transition state theory (OTST) for the calculation of KERDs in hydrogen
loss reactions. For both channels, more translational energy is released in the reaction coordinate than would
be expected on statistical grounds because of the presence of a barrier along the reaction path. For the Bz+

channel, the barrier entirely results from centrifugal effects. Rotational energy is converted into translation as
a result of angular momentum conservation. Deuteration is observed to reduce the importance of the rotational
energy flow in the reaction coordinate. The Tr+ channel is characterized by the presence of a reverse activation
energy barrier of electronic origin. The energy in excess of the dissociation asymptote can be partitioned into
two components: the reverse barrier plus a nonfixed energy contribution. About 40% of the reverse barrier
is converted into relative translational motion of the fragments. Here again, a lower fraction of the nonfixed
energy flows into translation for the deuterated isotopomer.

I. Introduction

According to the statistical theories of mass spectra,1-8 a
lifelong interest in Tomas Baer’s outstanding career, the internal
energy of an ionized molecule is completely randomized among
all available degrees of freedom before dissociation takes place.
In this statistical view, the internal energy is the only parameter
that fully determines the unimolecular dissociation. The main
argument is that the rate and the outcome of a unimolecular
dissociation are usually observed to depend only on the total
energy and not on how the molecule is activated.

Studies of the translational energy of separation of the two
products of a decomposition have also often been said to support
the statistical approach.1-14 The most detailed information is
provided by the functionP(ε|E) that gives the probability of
releasing a translational kinetic energyε from a molecular ion
having an excess internal energyE with respect to the dissocia-
tion asymptote. This function is termed the kinetic energy release
distribution (KERD). It is a direct outcome of the detailed
reaction dynamics of the system and can be expected to be
related to the shape of the potential energy surface in the post-
transition state region. Note thatε is defined in the molecular
center of mass frame.

A variant of phase space theory,15 termed orbiting transition
state theory (OTST),1,9,11,12 has been developed to predict
KERDs when the potential energy increases steadily along the
reaction path and does not show any reverse activation energy
barrier (Type I reactions).10,16 On the other hand, the presence

of a reverse activation energy barrier (Type II reactions)10,16

raises challenging problems. In general, reverse barriers lead
to nonstatistical distributions because exit-channel effects play
a leading role.2,10 In that case, the energy in excess of the
dissociation asymptote can be thought of as the sum of two
components: one representing the reverse barrier plus a nonfixed
energy contribution. Each of these components gives rise to a
very different energy-sharing pattern.17 Part of the reverse barrier
potential is converted into relative translational energy and part
of it is redistributed among all degrees of freedom. The nonfixed
energy of the transition state does of course also contribute to
the translational energy release, and this is usually expected to
take place in a more statistical way.

Toluene constitutes an attractive system because its singly
charged cation has been studied for years. A wealth of
experimental data is already available on it, especially on its
hydrogen loss reaction C7H8

+ f C7H7
+ + H.18-23 A thorough

review of this process has been provided by Lifshitz.23 Two
dissociation energy pathways are in competition. They lead to
the formation of either the benzylium (Bz+) or the tropylium
(Tr+) ions. The Bz+ ion is formed at its thermochemical
threshold, since H abstraction from the toluene cation has no
reverse activation energy.23 However, the pathway leading to
Tr+ formation is much more complicated. A value of 0.43 eV
has been calculated for the reverse activation energy for H
abstraction from the cycloheptatriene radical cation.22 Thus,
although Tr+ has been calculated to be 0.48 eV more stable
than Bz+, its appearance energy is not lower than that of Bz+.
The internal energy dependence of the dissociation ratesk(E)
and of the isomeric ion ratio Tr+/Bz+ have also been
measured.18,20-23
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Almost all investigations on the toluene system have focused
mainly on the branching ratios and the rate constants. However,
more recently, Moon et al.13 have obtained the experimental
KERD using mass analyzed ion kinetic energy spectroscopy
and have then derived a branching ratio for the production of
Bz+ and Tr+. The KERD of the Bz+ pathway was theoretically
calculated using OTST, and the KERD of the Tr+ channel was
then obtained by subtracting this calculated distribution from
the experimental one. This analysis leads to an inconsistency
with previous work since the Tr+/Bz+ branching ratio found
by Moon et al. is much larger (5:1) than in other reports which
give a ratio close to one at the internal energy investigated, i.e.,
about 3.3 eV with respect to the C7H8

+ ground state.18,19,22,23

It is therefore interesting to investigate further this issue with
the help of the maximum entropy method (MEM), which has
been developed to detect nonstatistical effects and which has
been successfully used in detailed analysis of experimental
KERDs.24-34 This also gives us the opportunity to extend the
application range of this methodology to competitive reactions
involving a reverse activation barrier.17

II. Experimental and Data Handling

The KERDs for the C7H8
+ f C7H7

+ + H reaction are
deduced from ion translational energy spectra recorded with a
forward geometry two-sector mass spectrometer, in which the
electrostatic analyzer is followed by the magnetic field. The
accelerating voltage scan method35 allows us to observe
metastable dissociations taking place in the first field-free region
(between the ion source exit slit and the electrostatic analyzer).
In the experiments reported here, the electrostatic analyzer exit
slit (â-slit) has been closed to 0.25 mm to reach an energy
resolution∆E/E of 10-3. Accelerating voltage scan spectra have
been recorded for fragment ion translational energies ranging
between 3 and 8 keV (in the laboratory frame).

The shape of a metastable ion peak, in particular its width,
reflects the translational kinetic energy released to the fragments,
i.e., the KERD.36-38 In addition, the experimental peak shapes
obtained are further broadened owing to energy and angular
spread of the parent ion beam and to the apparatus function of
the electrostatic sector. Due to the smallness of the observed
released translational energy, a deconvolution procedure using
a Fourier transformation algorithm has been performed to obtain
data free from these experimental broadening effects.

After the deconvolution step, the KERD has to be obtained
as a function of the translational energy in the center-of-mass
frame,ε. This distribution is denoted asP̃(ε) to emphasize that
it corresponds in general to an average over the internal energy
distribution of the dissociating ion.P̃(ε) is derived by dif-
ferentiating the deconvoluted ion kinetic energy spectrum

followed by a transformation of variables from the laboratory
coordinates to the center-of-mass coordinates.36-38 More elabo-
rate data handling procedures are available.39-41 In the present
experiments, however, angular discrimination effects can be
neglected because the translational energy carried by the
fragment ion in the laboratory frame is small (loss of a hydrogen
atom).

However, the noise filtering procedure associated with the
Fourier transformation introduces some minor oscillations in
the wings of the deconvoluted peak (Gibbs phenomena). To
avoid these nonphysical oscillations that numerical differentia-
tion would enhance, the deconvoluted peak has been fitted to a
Holmes-Osborne function,38 i.e., to the product of a Gaussian
function with a third-order polynomial, prior to differentiation.

We have tested the reproducibility of the KERDs obtained
by analyzing different sets of data recorded within a period of
eight months. It should be noted that the experimental conditions
and in particular the repeller potential were identical in these
experiments. The first and second moments of the KERDs
measured in our experiments for the hydrogenated (C7H8

+) and
deuterated (C7D8

+) isotopomers are given in Table 1. They were
found to be reproducible within 3% for the first moment and
within 5% for the second moment.

The experimental conditions were as follows: trap current
of the ionizing electrons, 30µA; electron energy, 70 eV. To
avoid collision-induced dissociations with the background gas,
the mass spectrometer is differentially pumped and the pressure
in the field-free regions was kept in the 10-8 mbar range.
Toluene samples, C7H8 and C7D8, were provided by Aldrich
(99.8% stated purity) and were used without further purification.

III. Internal Energy Distribution of the Metastable
Parent Ions

The metastable fragmentations of ions in the field-free regions
of a sector mass spectrometer provide good quality KERDs
because the high translational energy of the precursor ion (keV
range) induces an amplification of the energy released in the
laboratory reference frame. However, in such experiments, there
is no direct internal energy selection, but rather a time window
within which the dissociation takes place. Based on the
spectrometer geometry parameters and on the operating condi-
tions, the ion entry and exit times,τ1 and τ2, can be easily
calculated. As a consequence of this time selection, the ions
are transmitted according to a transmission functionT(E) equal
to

wherek(E) is the unimolecular dissociation rate constant and

TABLE 1: Results of KERD Measurements at Three Values of the Fragment Translational Energy in the Laboratory Frame
for the Toluene Ion and Its Perdeuterated Isotopomera

C7H8
+ f C7H7

+ + H C7D8
+ f C7D7

+ + D

Vacc 3 kV 5 kV 8 kV 3 kV 5 kV 8 kV
〈E〉 (eV) 3.62 3.79 3.94 4.29 4.37 4.45
〈ε〉 (eV) 0.266 0.269 0.289 0.281 0.283 0.296
〈ε2〉 (eV)2 0.021 0.020 0.027 0.022 0.019 0.024
f 0.55( 0.05 0.45( 0.05 0.55( 0.05 0.45( 0.05 0.5( 0.05 0.5( 0.05
λ1 (eV)-1/2 -8 -8 -8 -6 -6 -6
λ1′ (eV)-1 -19 -15 -13 -21 -15 -16
λ2′ (eV)-2 19 17 13 27 15 18
FBz (%) 51( 5 48( 5 45( 5 63( 5 62( 5 61( 5
FTr (%) 50( 5 69( 5 70( 5 64( 5 67( 5 68( 5

a 〈E〉, average internal energy sampled;〈ε〉 and〈ε2〉, first and second moments of the KERDs. Results of the fit to the maximum entropy eq 6.5:
branching ratiof, Lagrange multipliersλ1, λ1′, andλ2′, and ergodicity indexF for the benzylium and tropylium channels.

T(E) ) B(E) [e-k(E)τ1 - e-k(E)τ2] (3.1)
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B(E) is a normalization constant. Thus, the transmission
efficiencyT depends on the rate constant which, in turn, depends
on the internal energyE. Internal energies will henceforth be
defined with respect to the vibrationless ground state of the
toluene ion C7H8

+ (or C7D8
+).

For a metastable dissociation, the internal energy distribution
of the precursor ions,D(E), is given by the transmission
coefficient, T(E), multiplied by the ionization cross section,
which can be approximated by the corresponding photoelectron
spectrum, PES(E).

The rate constantk(E) has been taken from the work of
Dunbar.21 It should be noted that the photoelectron spectrum
of toluene is not flat in the internal energy region sampled in
the toluene ion metastable dissociation experiments, so that it
is necessary to take this factor into account.

IV. Quantum Chemical Calculations

Ab initio calculations have been carried out on the C7H8
+

ion by Lifshitz and co-workers.22 Their value of 0.43 eV for
the reverse activation energy leading to tropylium+ + H has
been adopted here. However, for the maximum entropy analysis
to follow, data on the fragments are needed, too.

It was first checked that the reaction paths leading to Tr+

and Bz+ products are independent. In principle, the two isomeric
fragments could interconvert into each other via a nonplanar
intermediate. To ascertain this, B3LYP and QCISD ab initio
calculations were carried out (via the GAUSSIAN 94 package42)
with a 6-31G(d) basis set of atomic orbitals. Both calculations
detected a transition state between the two isomers at 3 eV above
the equilibrium geometry of the benzylium ion, i.e., higher than
the energy domain sampled in our metastable experiments (i.e.,
1.2-2.1 eV above the Bz+ + H asymptote and 1.7-2.6 eV
above the Tr+ + H asymptote). Therefore, interconversion has
not been taken into account in this work, and the two
dissociation pathways have been considered not to interfere.

(1) Benzylium Ion (Symmetry C2V). The 1A1 ground state
of the ion is found to be planar. The 36 vibrational frequencies
(35 harmonic+ 1 anharmonic, see below) and the three
rotational constants of the benzylium ion have been calculated
ab initio by the B3LYP/6-31G(d) method recommended by Scott
and Radom.43 The basis set included 119 basis functions. The
results are given in Table 2. Comparison with experimental
measurements carried out by Eiden et al.44 is possible for thirteen

of them. The agreement is very good (average accuracy of the
order of 2%; up to 4% in the worst case). The normal mode
observed at 627 cm-1 and calculated at 606 cm-1 is found to
correspond to the torsion of the CH2 group with respect to the
phenyl ring. This mode has been treated as an anharmonic
oscillator converging to a first-order saddle point, which is
calculated to be located 2.08 eV above the equilibrium structure,
and where the CH2 group is perpendicular to the ring.

The density of states of the pair of fragments has been
calculated by the Beyer-Swinehart direct-count method includ-
ing rotations.1,45 In addition, a planar triplet state has been
calculated at 1.84 eV above the ground state. Its perpendicular
conformation at 2.29 eV above the equilibrium geometry of the
singlet ground state is a first-order saddle point. It plays no role
in the dissociation mechanism.

The same procedure has been followed for the deuterated
benzylium ion. The results are given in Table 2. The anharmonic
vibrational frequency corresponding to the CH2 torsion is
calculated at 437 cm-1.

(2) Tropylium Ion (Symmetry D7h). The tropylium isomer
has a regular seven-membered ring structure and many of its
vibrations are doubly degenerate. The results of the ab initio
calculations, at the same level as for the Bz+ isomer, are given
in Table 2. Here again the calculated frequencies compare well
with the 10 experimental frequencies measured in both solid
state and solution by Sourisseau and Hervieu,46 as well as with
those calculated at the Hartree-Fock level by Bandyopadhyay
and Manogaran,47 and with those calculated at various levels
of theory by Lee and Wright.48

V. Maximum Entropy Method

A. Basic Equations. The maximum entropy method
(MEM)24-28 can be used to analyze the experimental KERD
arising from the dissociation of the toluene ion. At a given
internal energyE, the experimental KERDP(ε|E) should be
compared with a reference distribution, termed theprior
distribution and denoted asP0(ε|E), which is defined as the
KERD that would have been obtained in the case of a
completely statistical dissociation. In this hypothetical situation,
the only constraint is provided by the total energy conservation
law, which implies that all isoenergetic product states are equally
populated.

Because it is based on purely statistical arguments, the prior
distribution can be derived from the densities of states of the
reaction products. In a dissociation process, a part of the internal

TABLE 2: Ab initio Calculated Vibrational Frequencies and Rotational Constants (in cm-1) of the Tropylium and Benzylium
Ions and of Their Perdeuterated Isotopomersa

benzylium+ ion (C2V):
160; 330; 346; 404; 514; 587; 606; 620; 771; 793; 820; 954; 964; 965; 976; 989; 1013; 1065; 1098; 1164; 1174; 1311; 1343; 1378; 1431; 1457;

1526; 1548; 1611; 3055; 3092; 3096; 3098; 3114; 3116; 3147.
0.178; 0.093; 0.061.

d7- benzylium+ ion (C2V):
144; 280; 296; 355; 437; 485; 490; 564; 642; 643; 719; 761; 781; 796; 823; 831; 844; 846; 850; 869; 926; 1036; 1050; 1238; 1299; 1390; 1457;

1476; 1569; 2231; 2284; 2286; 2291; 2307; 2312; 2348.
0.146; 0.079; 0.051.

tropylium+ ion (D7h):
216 (2); 423 (2); 543 (2); 638; 847; 857 (2); 865 (2); 978 (2); 1021 (2); 1038 (2);1212 (2); 1269 (2); 1394; 1470 (2); 1511 (2); 1580 (2);

3072 (2); 3080 (2); 3089 (2); 3094.
0.125 (2); 0.0625.

d7-tropylium+ ion (D7h):
190 (2); 408 (2); 461 (2); 469; 662 (2); 803 (2); 807 (2); 810; 820 (2); 864 (2); 893 (2); 932 (2); 1076; 1258 (2); 1496 (2); 1507 (2); 2267 (2);

2274 (2); 2283 (2); 2288.
0.105 (2); 0.0525.

a Degeneracies characteristic of theD7h point group are indicated in brackets.

D(E) ) T(E) PES(E) (3.2)
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energyE equal toε flows into the relative translational motion
of the pair of fragments, whereas the remainder is stored in
their vibrational-rotational degrees of freedom. Because the
density of translational states in a three-dimensional space is
proportional toε1/2, the prior distributionP0(ε|E) is given by24-28

whereE0 is the internal energy corresponding to the dissociation
asymptote,C(E) is a normalization factor andN(E - E0 - ε)
represents the vibrational-rotational energy-level density of the
pair of dissociating fragments.

However, the experimental KERD deviates from the purely
statistical distributionP0(ε|E) because of the influence of
dynamical constraints. As a result, the energy sharing between
the reaction coordinate and the bath of vibrational-rotational
degrees of freedom is no longer statistical.

Consider now the following expression derived from the prior
distribution

whereλ0 and λr are Lagrange multipliers. The quantitiesAr,
which are usually expressed as powers ofε, are referred to as
constraints or informative observables. It can be shown24-28 that
eq 5.2 represents a KERD where energy is randomized as
extensively as allowed by the dynamical constraints that operate
on the system. It corresponds therefore to the maximum entropy
situation taking the dynamical constraints into account.

Equation 5.2 has also been demonstrated49 to converge to an
exact expression for the KERD. The power of the MEM is that
it is found to fit adequately most experimental KERDs already
with a limited number of constraints (up to two usually). This
fit makes possible the identification of the constraints that
prevent the reaction from being completely statistical.

To quantify the deviations with respect to the purely statistical
situation, we consider first the entropy of the continuous
distributionP(ε|E), which is is defined as

whereN(ε|E) is the density of states for a translational energy
equal toε and a fragment internal energy equal to (E- E0 -
ε) in the other degrees of freedom. Starting from this definition,
an entropy deficiency is then introduced as the difference
between the entropy of the prior distribution,S0, and that of
the actual distribution, S:

where〈Ar〉 is the average value of the constraintAr:

A nonzero value for DS implies that the phase space sampled
by the pair of fragments is reduced with respect to its maximum
value. The entropy deficiency is a positive quantity related to
the fractionF of phase space effectively sampled by29,50

For a fully statistical dissociation (i.e., 100% phase space
sampling),DS ) 0 andF ) 1.

The previous definitions have been given for a well-defined
value E of the internal energy. However, as previously
mentioned in section III, in the case of a metastable dissociation,
the dissociating ions have a relatively broad distribution of
internal energies D(E). Taking this into account, the measured
KERD, denotedP̃(ε), is given by

Explicitly,

B. Fitting Procedure. It is common practice to use a least-
squares-fitting algorithm in MEM studies for fitting the chosen
functional form [here, eq 5.8 with a limited number of
constraints] to the experimental data. The criterion for assessing
the quality of the fit is theø2 index, which is defined as the
sum of the squares of the differences between the experimental
KERD and the chosen functional form with given values of
the Lagrange parameters. The optimal values for these param-
eters are those that minimizeø2.

Because the number of parameters to be fitted in the present
study can be as large as four, the use of a black-box algorithm
for finding the minimum ofø2 is dangerous since it could lead
to irrelevant values of the parameters deriving from local minima
in the ø2 multidimensional surface. It was therefore preferred
to first calculate the completeø2 surface, whose dimensionality
is equal to the number of parameters, and to plot appropriate
cross-sections of it. Such cross-sections are displayed as a set
of iso-ø2 curves. In each case, the range of variation of the
parameters was first chosen wide enough to make sure that the
global minimum of the surface was identified. The procedure
was then repeated with a finer mesh to improve the precision.
An example is given in section VI.

VI. Results

In section IV, the reaction paths leading to the Tr+ and Bz+

products were found to be independent because the intercon-
version barrier is higher than the available internal energy. The
two dissociation pathways can be considered separately. Thus,
the experimental KERD reflects the weighted sum [f and (1-
f)] of two contributions, corresponding to the formation of the
two isomeric structures.

whereP̃Bz and P̃Tr represent the KERDs for the Bz+ and Tr+

channels, respectively.
A. Benzylium Channel. There is no problem for the

benzylium channel, which displays no reverse activation barrier.
After several tests that consisted of comparing theø2 values
obtained for different constraints (ε1/2, ε, ε2), the constraint on
the benzylium dissociation pathway was identified to beε1/2.
The particular expression of eq 5.2 appropriate to the benzylium
channel is thus

where the prior distributionP0(ε|E) is expressed as

P̃(ε) ) ∫E0+ε

∞
D(E)P(ε|E) dE (5.7)

P̃(ε) ) ∫E0+ε

∞
D(E)P0(ε|E) exp(-λ0) exp(-∑

r

λrAr) dE (5.8)

P̃(ε) ) f P̃Bz(ε) + (1 - f)P̃Tr(ε) (6.1)

PBz(ε|E) ) PBz
0 (ε|E) e-λ0e-λ1ε

1/2
(6.2)

PBz
0 (ε|E) ) CBz(E)ε1/2NBz(E - EBz

0 - ε) (6.3)

P0(ε|E) ) C(E)ε1/2N(E - E0 - ε) (5.1)

P(ε|E) ) P0(ε|E) exp(-λ0) exp[- ∑
r

λrAr(ε)] (5.2)

S(E) ) - ∫0

E-E0

P(ε|E)[lnP(ε|E)

N(ε|E)] dε (5.3)

DS) S0 - S) -λ0 - ∑
r

λr〈Ar〉 (5.4)

〈Ar〉 ) ∫0

E-E0

Ar(ε)P(ε|E) dε (5.5)

F ) exp(-DS) (5.6)
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B. Tropylium Channel. The second channel leading to the
Tr+ fragment is quite another matter. It presents a reverse
activation barrier (denotedEb, see Figure 1) that introduces great
difficulties into the analysis.

In principle, the total energy in excess of the dissociation
asymptote, i.e., the quantityE - ETr

0 + Eb, is available for
redistribution among the relative translation and all internal
degrees of freedom of the fragments (Figure 1a). Zamir and
Levine17 have proposed considering that the partitioning of both
the reverse barrierEb and the nonfixed contributionE - ETr

0

are governed by the same dynamical constraints. The constraints
contribute differently to the value of the Lagrange parameter
but their nature is the same. This approach has been adopted
by Lorquet and Lorquet to analyze a translational energy
distribution.51

The prior distribution for the Tr+ channel is expressed as

The description of repulsive releases by the maximum entropy
method is known to require more than one constraint.25

Therefore, several Lagrange multipliers are expected to be
required to convert the prior distribution into an actual KERD
via eq 5.2. Following the usual practice, the constraints have
been expressed as powers (e.g.,ε1/2, ε, ε2) of the kinetic energy.

C. Complete Distribution. The full kinetic energy distribu-
tion P̃(ε) is a weighted sum of the Bz+ and Tr+ contributions.
Because the energy domain defined by the internal energy
distributionD(E) is narrow, the Lagrange parameters and the
isomeric fraction (1- f)/f can be considered to remain constant
with energy. Different attempts showed that the overall KERD

is best described by the following equation, derived from eqs
5.8 and 6.1:

Note that the values of the multipliersλ0 and λ0′ are not
adjustable unknowns in this equation: they are determined by
normalizing separately each component.

Figure 2 illustrates the fitting procedure described in section
VB. Iso-ø2 curves are plotted as a function of the parameters
λ1 andλ1′ for given f andλ2′ values. This shows clearly how
optimum values can be obtained for the Lagrange multipliers
even if their number is as large as four.

Figures 3 and 4 show the experimental and the fitted
distributions for the undeuterated and perdeuterated compounds.
The obtained values of the parameters are given in Table 1. In
particular, the branching parameterf is found to be of the order

Figure 1. Schematic representation of two possible ways of partitioning
the excess energy in the dissociation process leading to Tr+. The zero
of the energy scale is the vibrationless ground state of the toluene ion.

PTr
0 (ε|E) ) CTr(E)ε1/2NTr(E - ETr

0 + Eb - ε) (6.4)

Figure 2. Example of least-squares fitting procedure. Top: Example
of iso-ø2 curves plotted as a function of the Lagrange multipliersλ1

and λ1′ for fixed values of the branching ratiof and of the second
multiplier λ2′. Bottom: three-dimensional view of theø2 surface as a
function of the same parameters.

Figure 3. Experimental and fitted KERDs for the metastable dissocia-
tion of the toluene ion. Fragment ion translational energy in the
laboratory frame equal to 3 keV. Open symbols: experimental results.
Solid line: MEM fit. Dashed-dotted line: contribution of the Bz+

channel. Dashed line: same for the Tr+ channel.

P̃(ε) ) f ∫EBz
0 +ε

+ ∞
D(E)PBz

0 (ε|E) e-λ0e-λ1ε
1/2

dE +

(1 - f) ∫ETr
0 +ε

+ ∞
D(E)PTr

0 (ε|E) e-λ′0e-λ′1εe-λ′2ε2
dE (6.5)
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of 0.5 (Figure 5), in agreement with the results obtained by
Lifshitz,22,23 Ausloos,19 and Dunbar.18

To check the stability of the results, a second, more
approximate model has been considered. In this model, as
schematically illustrated in Figure 1b, it is assumed that a fixed
part, ∆, of the reverse barrier,Eb, is not redistributed but is
directly released as relative translational energy of the fragments.
This generates a shift in the kinetic energy release curve by an
amount∆. PTr(ε|E) is then equal to zero forε e ∆. As a result,
a discontinuity in the derivative of the KERD is introduced at
ε ) ∆. The complementary part (Eb - ∆) and the energy in
excess of the barrier (E - ETr

0 ) are completely redistributed
among all internal degrees of freedom.

Such a model has been previously adopted to analyze the
reverse barrier contribution in the C6H5Cl+ f C6H5

+ + Cl
(2P1/2) dissociation.32 The main drawback of this procedure is
the discontinuity atε ) ∆, which, of course, is not observed in
any experimental measurement.

The prior distribution for the Bz+ channel is again given by
eq 6.3. For the Tr+ channel, it is piecewise defined:

The full kinetic energy distributionP̃(ε) is again a weighted
sum of the Bz+ and Tr+ contributions. Assuming that a single
constraint operates in each channel, one derives, from eqs 5.8,
6.1, 6.2, 6.3, and 6.6:

This equation contains five unknown quantities: the isomeric
branching ratiof, the shift ∆ which appears in the prior
distribution (eq 6.6), the Lagrange multipliersλ1 andλ1′, and
the unknown powerR that adequately represents the constraint
acting on the tropylium channel. The values of the multipliers
λ0 and λ0′ are determined by normalizing separately each
component, as usual.

Several methods of fitting were tried. However, it turned out
to be impossible to determine the value of these five unknowns
by fitting eq 6.7 to the experimentally observed KERD. The
origin of the difficulty is the discontinuity atε ) ∆ for the Tr+

channel, which contributes significantly to the value ofø2.

Clearly, the higher the assumed contribution of the Tr+ + H
pathway (that is, the lower thef value), the more significant
the discontinuity zone. As a result, large Tr+ contributions lead
to artificially exaggeratedø2 values. It is therefore not possible
for this model to determine the Tr+/Bz+ branching ratio based
on the ø2 criterion, because large Tr+ contributions are
automatically penalized.

However, by setting the Tr+/Bz+ ratio to one (i.e.,f ) 0.5),
in conformity with the data reported by Lifshitz,23 we could
estimate that the fraction of the reverse activation barrier that
contributes to the kinetic energy release (i.e., the quantity∆/Eb)
is equal to 0.4( 0.1. This value compares well with other
estimates given in the literature for systems of similar size. For
example, for the dissociation of the protonated fluorobenzene,
Lorquet and Lorquet51 found that about 46( 8% of the barrier
is released as kinetic energy. As will be seen in the discussion
(section VII), this fraction is also compatible with the data
obtained using eq 6.5. Also, the appropriate value of the
exponentR is found to be equal to 1/2. Unexpectedly, the
Lagrange multipliersλ1 andλ1′ are found to be negative, which
indicates that, for both channels, more translational energy is
released in the reaction coordinate than the statistical expecta-
tion.

VII. Discussion

It has been shown in section VI how the experimentally
observed KERD can be decomposed into two contributions
resulting from the Bz+ and Tr+ dissociation pathways. The main
features of each one are now discussed. However, this discussion
and the confrontation of our results with earlier investiga-
tions13,18,19,21-23 require that we first examine a more general
question.

A. Validity of OTST. Considering the simple barrierless
reaction leading to generation of Bz+, Moon et al.13 premised
that “the statistical phase space theory provides a rather accurate
prediction for KERDs in such a simple bond cleavage reaction”.
This statement has been questioned by Lifshitz.5 We now wish
to examine the reliability of OTST in the case of hydrogen loss
reactions.

OTST is reliable only if the assumption of an isotropic ion-
induced dipole potential is fulfilled, i.e., if the rotational barrier
is located in a range where an effective potential can be defined
in the form

whereq is the charge carried by the ion,l is the orbital angular
momentum,R is the polarizability of the released atom, andµ
is the reduced mass of the pair of fragments.

Figure 4. Experimental and fitted KERDs for the metastable dissocia-
tion of the perdeuterated toluene ion. Fragment ion translational energy
in the laboratory frame equal to 3 keV. Open symbols: experimental
results. Solid line: MEM fit. Dashed-dotted line: contribution of the
Bz+ channel. Dashed line: same for the Tr+ channel.

PTr
0 (ε|E) ) 0 for ε e ∆

) CTr(E)xε-∆NTr(E - ETr
0 + Eb - ε) for ε g ∆

(6.6)

P̃(ε) ) f∫EBz
0 +ε

+ ∞
D(E)PBz

0 (ε|E) e-λ0e-λ1ε
1/2

dE +

(1 - f) ∫ETr
0 +ε

+ ∞
D(E)PTr

0 (ε|E) e-λ′0e-λ′1εR
dE (6.7)

Figure 5. Determination of the branching ratiof by the least-squares
method. At eachf value, all other parameters are set at their least-
squares optimized value.

Veff(r) ) -Rq2/2r4 + l2/2µr2 (7.1)
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For a hydrogen loss reaction, this condition can be fulfilled
at very low energies only. This can be seen as follows. The
distance rc at which the effective potentialVeff(r) has its
maximum is related tol by the equation

For hydrogen loss reactions, which are characterized by a small
polarizabilityR and a small reduced massµ, the maximum value
of l is given by

whereε is the kinetic energy that results from the conversion
of the orbital barrier into translational energy. Substituting eq
7.3 into eq 7.2 leads to

In the toluene molecule, the distance between the center of
the phenyl ring and one of the hydrogen atoms of the methyl
group is about 3.45 Å. Therefore, OTST can meaningfully
describe KERDs only up to a translational energyε that fulfills
the inequality

i.e., ε , 0.034 eV! This result illustrates the inadequacy of
OTST for the study of hydrogen loss reactions. In fact, the
central field ion-induced dipole equationV(r) ) - Rq2/2r4 starts
to be credible when the distance between the center of mass of
the benzylium ion and the hydrogen atom is larger than about
6 or 7 Å. This implies [eq 7.4] that the KERD calculated by
OTST is valid up to 2 meV only! Hence, the procedure adopted
by Moon et al.13 to subtract a component calculated by OTST
from an experimental KERD seems to us unreliable. A more
extensive discussion of the validity of OTST for KERD
calculations will be published elsewhere.

B. Benzylium Channel.For benzylium ion generation, both
methods of analysis reported in the previous section essentially
agree. The constraint bears onε1/2, which has been already
observed for barrierless reactions.30-33 However, they also agree
on the fact that the associated Lagrange multiplierλ1 is negative,
which means that more energy flows into the reaction coordinate
than would be expected on statistical grounds. This situation is
quite unusual: all barrierless reactions examined so far are
characterized by a positive value ofλ1.30-34 The observation
that the kinetic energy release is smaller than the statistical share
could be explained in terms of a “momentum gap law” (which
can be viewed as a consequence of the Franck-Condon
principle).30,32,52,53We suspect that the anomaly observed in the
present case is again a hallmark of hydrogen loss reactions.

On the basis of reasons discussed below, we believe that
rotational energy flow into the reaction coordinate is responsible
for at least part of the observed behavior. The arguments are as
follows. Marcus54 has proposed to model the reacting molecule
as a rigid prolate symmetric top with the two smaller rotational
constantsB andC equal (A > B ) C). The rotational energy
levels are then quantized according to the equation

where the quantum numberK measures the component of the
angular momentum along the symmetry axis. Marcus then
assumes the doubly degenerate rotation to be adiabatic, i.e.,

inactive in intramolecular energy transfer. His argument45,54 is
that these two degrees of freedom provide the major contribution
to the strictly conserved angular momentum and therefore are
approximately conserved. However, the argument is based on
the principle of energy equipartition, which dates back to
Eyring’s postulate of thermodynamic equilibrium.

To dispense with the thermodynamic argument, it is preferable
to invoke the influence of the symmetry properties of the system.
There exists a conservation theorem which provides that the
projection of the total angular momentum on the axis of
symmetry is conserved when the system maintains cylindrical
symmetry throughout the dissociation process.55 We now
proceed to show how, as a result of this theorem, rotational
energy can flow into the reaction coordinate rather than to
vibrational energy. The theorem is applicable to a unimolecular
reaction only when the dissociation process is straightforward,
i.e., when important structural rearrangements can be excluded.
Note that the rotational constantB decreases all along the
reaction coordinate, whereasA can be expected to remain
approximately constant. Under this approximation, the degener-
ate external two-dimensional rotational energy is equal toB J
(J+1). As a result of the conservation of angular momentum,
this quantity is unavailable for energy randomization with the
vibrational degrees of freedom and is therefore termed inactive.
The rotational barrier converts totally into rotational energy of
the fragments only ifK ) J, whereas it converts into radial
motion (i.e., into relative translational energy) whenK ) 0.
Thus, the smallerK, the larger the fraction of the rotational
barrier that is released as translational energy of the fragments.

Channeling an additional amount of translational energy in
the reaction coordinate may account for a negative value of the
Lagrange multiplierλ1. As a rule, when both the polarizability
R and the reduced massµ of the pair of fragments are low, the
centrifugal term dominates the influence of the electrostatic
potential. Therefore, this effect is expected to show up only in
hydrogen loss reactions. Even ifK is not a strictly good quantum
number for a particular symmetric top because of curvature and
vibration-rotation coupling, some propensity can be thought
to be present, i.e., a substantial part of the orbital barrier can be
expected to be released as translational energy. Therefore, this
effect should be conspicuous only for hydrogen loss reactions,
because they are characterized by a large centrifugal barrier (of
the order of the entire rotational energy). Loss of a massive
particle such as iodine or bromine results in a very small barrier.

How good is the symmetric top model in the case of the
reaction C7H8

+ f Bz+ + H? The rotational constants of toluene
are equal to 0.185, 0.084, and 0.058 cm-1.56 The calculated
constants of the benzylium ion do not differ greatly:A ) 0.178
cm-1, B ) 0.093 cm-1, C ) 0.061 cm-1 (Table 1). Thus, neither
the toluene nor the benzylium ions are good approximations to
a symmetric top. However, what is needed are the rotational
constants or moments of inertia of the complex Bz+ + H along
the reaction path. The large rotational constantA is expected to
vary smoothly betweeen 0.185 and 0.178 cm-1 and thus not to
vary greatly. By contrast, it is easily seen that the moments of
inertia corresponding to the other two rotations can be expressed
ash2/2B + mH D(D′+D) andh2/2C + mH D(D′+D) wheremH

is the mass of the hydrogen atom, andD andD′ are the distances
between the center of mass of the complex benzylium+ + H
and the center of mass of each moiety. SinceD andD′ increase
steadily along the reaction coordinate, the symmetric top
approximation can be expected to become reasonable in the
range where the dynamics takes place. Thus, when the dynamics
is dominated by the long-range part of the reaction path, the

rc(l) ) (2µRq2)1/2/l (7.2)

lmax ) (8µ2Rq2
ε)1/4 (7.3)

rc(ε) ) (Rq2/2ε)1/4 (7.4)

(Rq2/2ε)1/4 . 3.45 Å

Erot ) B J (J + 1) + (A - B) K2 (7.5)
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symmetric top approximation should be adequate, which implies
that angular momentum conservation should result in the release
of a substantial amount of rotational energy into the radial
motion.

If this interpretation is correct, then an isotope effect should
be observed both on the value of the Lagrange multiplierλ1

and on the ergodicity indexF. The former goes from-8 eV-1/2

(undeuterated) to-6 eV-1/2 (deuterated) (Table 1), which means
that the constraint becomes less efficient in the deuterated
isotopomer. The ergodicity indexF has been calculated for the
benzylium channel via eqs 5.1-5.6. It increases from (48(8)%
(undeuterated) to (62(6)% (deuterated). This shows that deu-
teration, which increases the reduced massµ, increases the
efficiency of phase space sampling by reducing the preferential
flux of rotational energy into the relative translational motion.

Note the difference between the present argument and OTST.
Both predict an efficient conversion of orbital energy into
translation and point out that the energy flow will be particularly
important for hydrogen loss reactions. However, the underlying
mechanism is different. OTST breaks down when the ion-
induced dipole central potential approximation becomes invalid.
This is always the case for hydrogen loss reactions except at
extremely low energies, as discussed in section VIIA. The
mechanism presented here is based on the conservation of a
cylindrical symmetry axis all along the reaction path.

C. Branching Ratio. The isomeric fraction Tr+/Bz+, ex-
pressed as (1- f)/f, was found to be 0.9( 0.3 in the internal
energy domain sampled, in good agreement with the values
obtained using photodissociation18 and charge exchange experi-
ments19 as well as with RRKM calculations.22,23It is, however,
in disagreement with the value (5(2) given by Moon et al.13

obtained by analyzing the KERD. We suggest that the origin
of this discrepancy is the questionable assumption that the Bz+

channel contribution can be calculated by OTST. The approach
used in our work differs radically. Instead of calculating a
theoretical KERD, we applied a MEM analysis to extract
information from the experimental data. The Bz+ channel
contribution is found to be quite broad, far from statistical, and
to have the same relative importance as the Tr+ pathway
contribution (Figures 3 and 4).

D. Partitioning the Average Kinetic Energy Release.In
the framework of the maximum entropy method, the single
internal energy KERD is given by

The average kinetic energy release, given in Figure 6 as a
function of the internal energy of C7H8

+, is calculated as the

first moment of this distribution

It is possible to partition the average kinetic energy release
by expressing it as a weighted sum of the contribution of each
isomer:

where

and

The graphs corresponding to equations 7.8-7.10 are represented
in Figure 6. The Bz+ channel contribution is seen to dominate
at high internal energy.

E. Analysis of the KERD for the Tropylium Channel. The
contribution of the Tr+ channel to the experimental KERD is
broader than its prior distribution and is shifted toward higher
kinetic energies. This results from the presence of a reverse
barrier in that channel, which shows itself in a release of kinetic
energy larger than the statistical expectation.

Based on these data, an interesting analysis of the reverse
barrier effect can be carried out. According to Zamir and
Levine’s “sum rule” approach,17 the energy in excess with
respect to the fragments can be split into two components: the
energy of the barrierEb and the nonfixed energy (E - ETr

0 ).
Then, the mean kinetic energy value for the Tr+ dissociation
pathway,〈ε〉Tr can be expressed as

The coefficienta represents the part of internal energy in excess
of the barrier that is converted into translational energy, while
coefficientb determines the contribution of the barrier to the
average translational energy. The inequalityb > a is expected
because the energy of the barrier is preferentially released as
translational energy. The internal energy in excess of the barrier
(E - ETr

0 ) contributes with a lower efficiency to the kinetic
energy released.

Figure 7 gives the evolution of〈ε〉Tr as a function of internal
energy for the hydrogenated and deuterated isotopomers. Within
the domain that corresponds to the internal energies sampled,

Figure 6. Solid line: average released translational energy〈ε〉 as a
function of the internal energyE. Dotted and dashed lines: weighted
contributions of the Bz+ and Tr+ channels, respectively.

P(ε|E) ) fPBz
0 (ε|E) e-λ0e-λ1ε

1/2
+

(1 - f)PTr
0 (ε|E) e-λ′0e-λ′1εe-λ′2ε2

(7.6)

Figure 7. Average translational energy〈ε〉 released in the tropylium
channel, as a function of the internal energyE, fitted to the sum rule
expression. Filled squares: results for C7H7

+ + H. Open triangles: results
for C7D7

+ + D.

〈ε〉 ) ∫0

∞
εP(ε|E) dε (7.7)

〈ε〉 ) f〈ε〉Bz + (1 - f)〈ε〉Tr (7.8)

〈ε〉Bz ) ∫0

∞
εPBz

0 (ε|E) e-λ0e-λ1ε
1/2

dε (7.9)

〈ε〉Tr ) ∫0

∞
εPTr

0 (ε|E) e-λ′0e-λ′1εe-λ′2ε2
dε (7.10)

〈ε〉Tr ) a(E - ETr
0 ) + bEb (7.11)
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the “sum rule” expression (eq 7.11) has been fitted to the
measured〈ε〉Tr values. For the nondeuterated species, one finds
a ) 0.055( 0.003 andb ) 0.41 ( 0.07. For the deuterated
isotopomer,a ) 0.043( 0.003 andb ) 0.44 ( 0.07.

The lower value of the coefficienta observed for the
deuterated isotopomer indicates that for this species a lower
fraction of the excess energy flows into translation. For the
deuterated species the vibrational frequencies are lower than
for the hydrogenated isotopomer. Therefore, at a given energy,
the rovibrational density of states is higher for the deuterated
species. In other words, in the deuterated isotopomer the
translational energy is in competition with a higher density of
rovibrational states and its share will be lower.

The value ofb derived from the sum rule analysis indicates
that 42(7% of the energy of the barrier is released as
translational energy. This agrees with the result derived from
the fit of the KERD to eq 6.7, which leads to the conclusion
that about 0.4( 0.1 of the reverse barrier is released as relative
translational energy. Similar orders of magnitude have previ-
ously been obtained for other reactions.51,57-60 However, values
of b of the order of up to 70% have been derived for reactions
involving high reverse energy barriers.61-63

VIII. Concluding Remarks

The present study provides a contribution to the rich corpus
of toluene and tropylium ion chemistry. By and large, the picture
resulting in particular from the work of Lifshitz,22,23Dunbar,18,21

and co-workers has been confirmed. However, it is equally
interesting to try to generalize the obtained results. We had to
deal with a competition between two unimolecular reactions.
For one of them, we have tried to clarify the role played by a
reverse activation barrier in the release of the translational
energy. For the barrierless channel, the unreliability of OTST
for hydrogen loss reactions has been emphasized. Some of our
assertions have been substantiated by the observed isotope effect
upon perdeuteration.

The reverse activation barrier along the pathway leading to
Tr+ requires the introduction of two constraints (ε andε2). In
agreement with data on other molecular systems,51,57-60 about
40% of the reverse activation barrier is released as relative
translational energy of the fragments. The nonfixed energy is
released to translation with a much smaller probability.

Possibly the most unexpected conclusion of the present work
concerns the barrierless reaction leading to Bz+. More transla-
tional energy is observed to be released in the reaction
coordinate than predicted by statistical theory. Our interpretation
suggests preferential flow of rotational energy in the reaction
coordinate, resulting from the presence of a cylindrical symmetry
axis during the dissociation process. However, for nonrigid
systems such as a decaying molecule, conservation of theK
quantum number has often been criticized, because its validity
depends on the smallness of Coriolis interactions. This problem
is best studied by the reaction path Hamiltonian method.64-66

At high internal energies, the dynamics takes place in a region
where the ion-induced dipole potential is contaminated by
anisotropic short-range valence contributions leading to a
breakdown of the central field approximation. In the reaction
path Hamiltonian method, the potential energy surface is
modeled as a many-dimensional “harmonic valley” about the
reaction path. The coordinates used in this model ares, the
reaction coordinate (i.e., the arc length along the reaction path),
plus (3N - 7) normal coordinates that describe vibrations
orthogonal tos. This procedure leads to a Hamiltonian that
containss-dependent coupling matrix elements. Some of them

describe the Coriolis interaction, the remainder result from the
curvature of the reaction path.

Miller et al.64-66 could show that under reasonable conditions
(moderate curvature, internal energy not too high) the vibrations
can be expected to remain adiabatic, i.e., to show reluctance to
transfer their energy to the reaction coordinate. For this reason,
we feel that vibrational energy is much less likely to flow in
the reaction coordinate than rotational energy. We intend to
investigate that matter more fully in future work.
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