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Two Types of Sources of Wave Trains in a Two-Variable Chemical Model of a Bistable
Reaction—Diffusion System
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A realistic 1D model of a bistable two-variable chemical system with a stable focus (SF) surrounded by a
stable limit cycle (SLC) is investigated. Initial excitations of a subinterval of the system can generate two
types of wave sources depending on the value of the bifurcation parameter which determines the basin of
attraction of SF. For a sufficiently small basin of attraction of SF, an initial local excitation of a finite system
generates a finite sequence of traveling impulses. Each subsequent impulse is wider than the previous one,
and this is the reason finite sequences of impulses can be observed in finite systems. In infinite systems, an
infinite number of impulses is generated. If the basin of attraction of SF is sufficiently large, another type of
wave source is induced by the initial excitation. Traveling impulses of excitation have a local minimum
between their front and back. The wave source generates an infinite number of impulses both in finite systems
and in infinite ones.

1. Introduction fluctuations. In the deterministic description of leading centers,
. . ) . ) initial conditions play the role of local excitations. The reaction
Target patterns (trains of circular impulses) in chemical gifysion equations contain kinetic terms which do not depend

systems were observed for the first time in 1970 by Zaikin and explicitly on the spatial coordinates and are the same in the
Zhabotinskyt In a thin layer of a solution containing appropriate whole systenf:10

concentrations of bromate, bromomalonic acid, ferroine, and
sulfuric acid, concentric blue rings (high concentration of the
oxidized form of ferroine) spread from a few wave sources,
which oscillate with greater frequency than the rest of the
medium. The wave sources appear spontaneously. However
they can also be generated by local excitations of the unexcited
(red) area, for example, by taking a small drop from an excited
blue ring and transferring it to an unexcited regfolarget
patterns were subsequently observed in many variations of the

Experimental observatiofwiith artificial heterogeneities and
transferring a drop of the solution from the excited to the
unexcited region corroborate the possibility of both types of
wave sources in theBZ system. It is noteworthy that known
models of leading centers in excitable or oscillatory systems
consist of at least three or more variabiég.

In this paper, we present a two-variable model of wave
sources in a one-dimensional (1D) system. The model does not

Belousov-Zhabotinsky (B-Z) reaction®# in uncatalyzed bro- contain any heterogeneous terms with explicit dependence on

mate oscillatorsand in chlorite-iodide oscillator$. They also the space coordinate. The idea of the model IS pased on the
: {coexistence of a stable steady state and a stable limit cycle above

the subcritical Hopf bifurcation. In the model, two different types

of sustained wave sources can appear. It should be stressed that
the wave sources described in the present paper have different
features than the target patterns observed in the experiments as
Svell as in the models known so far. In particular, they have
nearly the same frequency of generation of impulses as the
frequency of stable limit cycle oscillations.

carbon monoxide on a platinum surface.

Two kinds of explanations of the creation of target patterns
are known in the literature. One of them is based on the
assumption that some heterogeneities (pacemakers) exist in th
reaction mixture or on the Petri dish. Small impurities in the
reaction mixtures or scratches on the surface of the Petri dish
can play the role of pacemakers. By definition, the system In the next section, we describe a reasonable chemical

oscillates with higher frequency at pacemakers than in their scheme, whose dynamics is reduced to two variables and

homogeneous neighborhood. Each pacemaker excites its neigh=", - . e - . .
borhood and forces the system to oscillate with its own exhibits the subcritical Hopf bifurcation. The properties of two

frequency. In this case, the reactiediffusion equation® types of sustained wave sources and two types of impulses of

contain kinetic terms which depend explicitly on the place where ?hxecni?]tilt(i)a?l ngﬁggilgr?sfr?nm tLh:To?rrne‘a;ihoenn g?stﬁrébesg'u}r:eesr(zﬁ dOf
the pacemakers are localized.

o . interactions between them are discussed. The last section
The other explanation is based on the assumption that wave,ptains the discussion and suggestions for experiments in real
sources (leading centers) appear in systems without heterogexnamical systems.
neities. A local increase of oscillation frequency is induced by
local excitation and is entirely generated by chemical dynamics

itself. Appropriate local excitations may appear due to internal 2. Model

Let us consider the following scheme of elementary reactions
* Corresponding author. E-mail: alk@ichf.edu.pl. (mono- or bimolecular reactions without autocatalysis):
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whereSE, EP, SER, andS;EP are nonactive complexes of the ds,ep K
catalyst (enzymelt. Throughout the paper, capital letters denote =P 1 ;S(p-sze —sep = 1'95(p,sze,szep) (10g)
reagents and their concentrations as well, because this notation dt € K €

does not introduce misunderstandings.

The model is based on two coupled catalytic (enzymatic) de’ _ 1 k;s(l —e)— ﬁ o —l—ﬁ(l — )} =
reactions described by the Langmuiiinshelwood (Michaelis dt ks K5k3p Ks
Menten) scheme. The first reaction is inhibited by an excess of 1
its reactanSand producP. We take the identical rate constants ZQG(p,e') (10h)
for reactions 57, which is a reasonable assumption if the
inhibition by the product® has an allosteric character. The \wheres = K, p = KsP, e = E/Ey, ¢ = SE/E,, ep =
product of the first reaction is the reactant for the next one. gp/g, sep= SERE,, sep = SEP/E,, and€ = E'/E, are
The system is open to the reactant and to the product due togimensionless concentrations of the reac@rthe product,

the first and the last two reactions in the above scheme. the free enzymE’ the nonactive Comp|exes of the enzyﬁe
Note that the total concentrations of both catalysts remain with the reactant and product, and the free enzyRige

constant. This allows us to eliminate the concentrations of the respectivelyt = ksEo/K,t' is the dimensionless timé (s real
complexesSEandPE from the dynamics of the system, which  time), Ks = ke/k_s, Kim = (k-2 + ka)/ko, ande = Eo/Kpn,.
can be described by the fOllOWing e|ght kinetic equations for We reduce the dynamics described by eq 10 in a rigorous

dimensionless variables: way using the quasi-stationary state approximation. Note that
e Lappears as the multiplier in the right-hand sides of eqs-hOc

ds kS Kk Ky but not in eqs 10a and b. Moreover, @ll-) are linear functions

dt kE, K&, s+ of the arguments, s,e, ep, sep sep, ande. The solutions to

the equationgi(+) = 0 can be written ag(s,p). For given values

-2 2 of s andp, the solutions to eqs 16t have the general form
73(1 —e—se—sep-sep—ep — k_3Kme's_ Wi = Pio exp(tle). If e — 0, then according to the Tikhonov
theoremt! the solutions to eqs 16é for time greater than

S 11— e—se—sep—sep—ep) + &1 o— 7 ~ €|ln €| approach the solutions to egs 10a and b with the
kg ™ S, 2 ks S, values ofe, e, ep, sep s,ep, ande given bygi(s,p). We assume
thate < 1, which is consistent with experimental conditions,
fi(sesesepsepep (10a) because usually total concentrations of catalysts (enzymes) are

1075—1078, that is, several orders lower than the concentrations

dp _ 1—e—se— sep— sep— ep— ;5( e—ep— of reactants and products. In a dimensionless time scale, we
dt = P~ SEP—€ep Ky P P can describe the dynamics of the system by the equations for
K the reactant and the producP in the following form:
—5
—[p(l—e—s,e—sep—sep—ep —sed — ds S
k -
3 - =a, —asS— (11)
, dt (1+s+as)(1l+p)
k—5 k—6 kﬁ EO
o Pse—sep + |~ (1-€) - el =
3 3 513 E d_p s b,p (12)

=h _
f,(p.esesepsepepe) (10b) dt 1+s+ a3sz)(1 +p) b, +p
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12 It follows from the theory of ordinary differential equations
that there are two possible types of bifurcatitfris eqs 11 and

13. The stable focus (SF) may become an unstable one (UF)
due to the supercritical or subcritical Hopf bifurcations. It
follows from the linear stability theory that the stable focus

becomes an unstable one at

1+p _
by = —p BT PIE % ) — &l (18)

o
|

In the case of the supercritical Hopf bifurcation, a stable limit
cycle (SLC) with a “radius” growing from zero appearshif
decreases below,. For the subcritical Hopf bifurcation, the
radius of an unstable limit cycle (ULC) shrinks to zerdoat

ber, and below this value, the UF is surrounded by the SLC.
Which of these two bifurcations occurs depends on the sign of
~ the first focus numbe¥2~1* To ensure the appearance of the

'S 02 0 06 08 10 subcritical Hopf bifurcation, the following values of the
_ _ $ _ parameters have been chosem: = a, = 0.005,a3 = 250,
Figure 1. Nullclines of egs 11 and 13 on the phase plas)p) (with by = 0.0026. For these values, the coordinates of the stationary

E:t;/eclsete(ltt))llﬁef??g; (redg, th%ségg";;imitz%cf (reg)bgged IZﬁd‘;”Stglﬂe limit state aresy = 0.48 andpy = 2.124 837 248. At these values,
17— g = UAVD,Ag T a9V, L U ’ o the first focus number is negative, and for valueb ef(b,bs),
The arrows schematically show the directions of the vector field. the SF coexists with the SLC, whebg = 0.227 501 800 and
wherea, = ki Sy/(ksEo), a2 = k_1Kn/(ksEo), as = kafk_aKm, b= bs = 0.425_42. The last value has be_en _determined numerically.
KinKs, b1 = kiEg'/(KsEo), b = Ku'Ks, andKnt = (kg + k7)/ke. !\Iote j[h_qt, in the above range b,fOS.C.I”a'[IOI‘IS can be observed
For simplicity, we assume that the reaction with the second if th? 'f‘!t'a| values ofsandp are p03|'t|or.1ed outside of the ULC.
catalystE' occurs in its saturation regime. Them> by, and For initial values of the reagents inside the ULC, the system
finally, evolves to the SF.
Let us now consider a one-dimensional (1D) bounded system
dp _ b s b (13) of the lengthL'. We assume that the diffusion coe_fficients o_f
dt (l+s+a 52)(1 +p) 1 the catalysts and their complexes can be neglected in comparison
s with the diffusion coefficients of the reactanbd) and the
product Dp). This assumption is fulfilled in experiments if the
catalysts and their complexes are immobilized. Then, changes
of the concentrations o and p in the 1D system can be

The nuliclines of egs 11 and 13 have the following form:

ps= s - (24) described by two nonlinear parabolic partial differential equa-
(1+ s+ a8)(a — as) tions, which in dimensionless variables have the following form:
S 2
pp=—"—""5—1 (15) as(x,t)  97s(xt s
" b(1+s+as) Xy _ I )=al—a25— (19)
ot EYe (1+s+as)(1+p)
Note that the nullclines have one intersection point, which 5
corresponds to the stationary state with coordinates (see Figure ap(x.t) _ Da p(x.t) _ S —b,| (20)
1) ot X A+s+adl+p
a,—b
= . (16) wherex = \/KE/(DK )X is the dimensionless spatial coor-
& dinate (' is the coordinate in a physical one-dimensional space)
andD = Dp/Ds. In numerical calculations, we assume that the
Po = %0 -1 (17) diffusion coefficients of the reactant and the product are identical
by(1+ s, + a5, (O =1).

Let us consider the initial-boundary (Fourier) problem with
It is easy to check, using the Descartes theorem, that thethe zero flux (Neumann) boundary conditions
necessary condition for an N-shaped fornpe{the existence
of two extremes for positive values @j is ayjaz > ap. We as _0s _ap _ap _
assume below such values &f, a,, andag that the nullcline &(O’t) - &(L’t) - &(O’t) - &(L’t) =0 (1)
for sis an N-shaped curve on the phase plasyg.(Moreover,
for selected values of the parameters, the stationary state isand the following initial conditions:
positioned on the middle (repelling) branch of the nullcline for

s, so the stationary state may be unstable. s(x0)=s, p(x0)=p* for xe[0,*] (22)
Note that the parametdr does not change the positions of .
the nuliclinep, and the stationary state. It only changes the s(x0)=s, PX0)=p, for xe(*L]  (23)

vector field in the direction of the variablg and thereforeb
is the most convenient bifurcation parameter. wheres* and p* belong to the basin of attraction of the SLC.
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Figure 2. Solutions to the system (eqs-123) for b = 0.24 with the remaining parameters the same as those in Figurellari4,s* = 0.01,
p* = po, andl* = 0.015 at the following times: 23 000 (a and f), 45 000 (b and g), 66 500 (c and h), 261 500 (d and i), and 1 706 500 (e and j).
dt = 1.0, and & = 0.0006.

Below, we present the dependence of evolutions of initial attraction of SF increases. A sufficiently strong vector field
excitations on the bifurcation parameterfor values of the around the SF can induce a bend of the pad(xt) andp(x,t)

remaining parameters given above. which is positioned inside the ULC. Therefore, the size of the
basin of attraction of SF plays a crucial role in the evolution of
3. Results this part of the initial excitation, and in consequence, it may
qualitatively change the form of the impulses of excitation.
The bifurcation parametércontrols the positions of the ULC Equations 19-23 have been solved numerically for selected
and the SLC on the phase plargp]. For b close tobg, the values of the bifurcation parameter using the Crariglcholson

ULC is small and is positioned very close to the SF, whereas scheme of the second order in respect to the spatial st¢p (d
the SLC is far from the SF. With increasify the ULC nears for diffusion terms and the Rungéutta algorithm of the fourth
the SLC. The ULC moves away from the SF, and the basin of order in respect to the time stept)dor the kinetic terms.
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06 08 1.0 o o1 02 03 04 05 06

Figure 3. Parts a-e are projections of the distributions s(i,t) and p(x,t) (green) on the phase plane corresponding to the solutions shown in
Figure 2. Parts-fj show the projections of the backs of the impulses at the same times.

The initial excitation (eqs 22 and 23) wi#i = 0.01,p* = formed, and finally, the system oscillates homogeneously with
po, andl* = 0.015 forL = 2.4 atb = 0.24 causes the appearance the period characteristic for a SLC. Therefore, in a finite system,
of a sequence of traveling impulses of excitation. This value of one can observe the generation of a finite sequence of impulses
b is slightly greater thah.,, which means that the ULC is very  only. The sequential increasing of the initial widths of the
small. The subsequent impulses move to the right boundary andimpulses is illustrated in Figures 2 and 3. Figure 3 shows the
disappear. The width of each impulse decreases during itsdistributions ofs and p projected on the “phase plane”. The
spreading and attains asymptotic size sufficiently far from the subsequent impulses generate trajectories which are closer and
interval of the initial excitation (see Figure 2). Each nextimpulse closer to the SLC and asymptotically attain it. This limit
is initially wider than the previous one, because its back is corresponds to homogeneous oscillations of the reagent con-
formed later than the back of the previous impulse. Because centrations in the whole system. Of course, the correct phase
the system is finitel( < o), the width of some new generated space for the partial differential equations of the parabolic type
impulse becomes larger than The back of the impulse is not  has an infinite, uncountable dimension. However, projections
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Figure 4. Solutions to the system (eqs223) forb = 0.4,L = 1.2, and* = 0.01 at the following times: 102 000 (a and g), 105 000 (b and h),
108 000 (c and i), 111 000 (d and j), 114 000 (e and k), and 116 500 (f and ). The valsieanaf p* are the same as those in Figure 2=1.0,
and & = 0.0004.

of the distributions o andp on the phase plansg,) are helpful from the finite system, in infinite systems, an infinite sequence
for our qualitative explanations. of impulses will be generated.

It is noteworthy that in an infinite system there is no limit For larger values ob, the initial excitation induces the
for the widths of the generated impulses. Therefore, different generation of impulses with concentration profiles shown in
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For values ob nearbs, where the ULC is close to the SLC,
for a sufficiently small width of excitatiot*, we can observe
only a single impulse traveling to the right boundary (see Figure
6), and then, the distributions of the reagents return to their
stationary values. However, a finite number of impulses appears
for the same value dj but greater values df. The number of
the impulses increases by one with Figure 7 shows the
generation of four traveling impulses. The length of excitation
above which the nonsustained wave source appears increases
with the valueb.

It follows from our numerical calculations that the period of
oscillations observed at the poirt= x;, where the traveling
impulses have their asymptotic form, is slightly greater than
that for homogeneous oscillations. For example fer 0.4, it
is equal to 14 348 (in arbitrary time units), whereas the
homogeneous oscillations at the same valule ladve a period
equal to 14 029. The period of oscillations observed &t x;
does not depend on the initial conditions (egs 22 and 23) but
only on the parameters.

It is evident that, in order to create the impulses, one must
initially excite a sufficiently large interval. Otherwise, the
diffusion will disperse the initial excitation and the impulse will
not be formed. Moreover, we have checked that initial excita-
tions with *,p*) placed on the left lower horizontal part of
the SLC 6 € (0.01,0.3)) induce wave sources on the shortest
intervalsl*. Such initial excitation forms the back of the impulse,
which is not dispersed by the diffusion. The back starts to run
to the right boundary almost immediately. Increadinfpr these
values of §*p*) causes the first impulse to be formed at a
greater distance from the left boundary. However, this distance
slowly decreases for subsequent impulsess*fpf) is situated
on the vertical parts of the SLC, then longer intervidlsare
needed to initiate the sources. Fer,p*) placed on the upper
part of the SLC, wave sources are formed only for relatively
largel*. In these cases, the distributions ®&ndp in [0, I*)
evolve almost homogeneously to the left lower part of the SLC,
where the formation of the back of the traveling impulse begins.
Note that the period of oscillations observed at a sufficiently
large distance from the left boundary, where the traveling
impulses have their asymptotic form, does not depend on the

Figure 5. Projections ofs(x,t) and p(x,t) (green) corresponding to : P P :
solutions to the System (eqs £93) for b = 0.4 andL — 0.8. The width of the initial excitationl*. This property allows one to

formation of a minimum (between the front and the back) on the predict the interaction of various sources generated in the same
distribution of the reactant is seen in part & at 15 625 as abend in ~ System. Many sources may coexist in the system, because each
the inset. The formation of a maximum (between the back and the front) of them generates traveling impulses with the same frequency.
on the distribution of the product is seen in part ki at 22 500 as a However, the place where the impulses from different wave
loop in the inset. The values ef, p*, I*, dt, and dcare the same as goyrces meet depends on the lengths of the Igftapd the
those in Figure 4. . * o . * % «
right (IY) excitations with values of, p/, s, and p;. The
solutions to egs 1921 for the initial excitations in the following
form:
Figure 4. The impulse o§(xt) has a small local minimum
between the front and the back, whereas the impulgg>qt) sx0)=s, px0)=p for xe[0,l] (24)
has a corresponding small maximum. The appearance of these
extremes can be explained by the qualitative analysis of the
projections of the concentration distributions on the phase plane
(s,p). The back of the impulse is partially positioned inside the
ULC, where its further evolution is governed by the vector field sSx0)=s, p(x0)=p, for xe(Iflf)  (26)
around the SF (see Figure 5a). This part of the trajectory forms
a bend, which in further evolution forms a loop (see Figure whereL = 2.0,1f = 0.0125,IF = 1.0, = § = 0.01,p] =
5b). The formation of the bend on the projection means that a pf = po, are shown in Figure 8. K = s andp; = pf, then the
local minimum appears between the front and the back of the meeting point is shifted to the source which has been initialized
impulse ofs(x,t). Further evolution leads to the formation of a on the shorter interval. This point is motionless, and for the
loop. This means that, beside the local minimums(rt), a case shown in Figure 8, it is equald.8. IfI| = I} buts" =
local maximum appears between the back and the frooixit) s or pf = p;, then the meeting point is shifted to the source
(see Figure 4). whose back was formed earlier.

s(x0)=¢5, p(x0)=p; for xe[L-1IL] (25)



Model of a Bistable ReactionDiffusion System J. Phys. Chem. A, Vol. 108, No. 38, 2004667

09 6

08 a f
07 5
06
=05 =t
- 3
2] .
23
03
02 2|
0.1
0 1
0 02 04 06 08 10 12 0 02 04 06 08 1.0 12
X X
09 5 6
08 9
0.7 5
06
05 =4
X N3
» 04 2 4
03
02 2
0.1
0 1
0 02 04 06 08 10 12 0 02 04 06 08 10 12
X X
09 6
08 c h
0.7 5
06
<05 =4
3 1%
» 04 =
3
03
02 )
0.1
0 1
0 02 0.4 06 038 1.0 12 o] 0.2 04 06 0.8 1.0 1.2
X X
09
d 6 i
08
0.7 5
06
=05 =4
% 04 z
2] .
=3
03
02 2
0.1
0 1
0 02 04 06 08 10 12 0 02 04 06 08 10 12
X X
09 S 6 ]
08
07 5
06
=05 =
Z 4 S
w K o 3}
03
02 5 F
0.1
0 1
0 02 04 06 08 10 12 0 02 04 06 08 10 12
X X

Figure 6. Solutions to the system (eqs-193) forb = 0.41,L = 1.2, andl* = 0.04 at the following times: 8000 (a and f), 24 000 (b and g),
32 000 (c and h), 40 000 (d and i), and 80 000 (e and j). The values @, dt, and c are the same as those in Figure 4.

4. Discussion xantine oxidase inhibited by xantine (reactant) and ureate
(product), acetylcholinesterase inhibited by acetylcholine and
choline, and many othef$:'® One can expect that, under
appropriate experimental conditions, the reactions with these
enzymes immobilized in a 2D continuously fed unstirred reactor
(CFUR) may generate the wave sources described in the present
paper.

The chemical system described in this paper is one of the
simplest models in which the subcritical Hopf bifurcation is
possible. It consists of nine elementary reactions excluding
autocatalytic steps. There are well-known other two-variable
chemical models, like the Oregonat8iin which the subcritical
Hopf bifurcation is also possible. However, they were obtained
from chemical schemes with a dozen or more variabl@here Our two-variable model should be treated as the minimal one
are many enzymes which are inhibited by an excess of their in which the sources of waves described in this paper may
reactants and products. Examples include invertase inhibited byappear. We want to stress that the wave sources described above
sucrose (reactant) and by fructose and glucose (products)may be observed in all chemical systems in which the SF is
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Figure 7. Solutions to the system (eqs-193) forb = 0.41,L = 2.4, andl* = 0.09 at the following times: 44 000 (a and f), 64 000 (b and g),
80 000 (c and h), 116 000 (d and i), and 148 000 (e and j). The valuss pf, dt, and c are the same as those in Figure 6.

surrounded by the ULC and SLC regardless of the dimension tion was reported some years a@joThese sources have

of the corresponding phase space. Real chemical systems ar@roperties similar to one of the types of sources described above
known such as the chloritdodide oscillatot® and the peroxi- for the case when the basin of attraction of SF is small. They
dase-oxidase reactiolf in which the coexistence of the stable also have periods of generation close to the period of homo-
stationary state surrounded by a SLC has been observed. Thesgeneous oscillations.

systems are described models with more than two variables, We want to stress that the wave sources described in the
but they are also possible candidates in which the wave sourcegresent paper have different properties from the leading centers
can be observed. It is noteworthy that in our concept of the or pacemakers mentioned in the Introduction. The wave sources
generation of wave sources not the number of variables in adescribed in this paper appear as a result of perturbations of
system dynamics but the existence of the subcritical Hopf the stationary state, whereas leading centers have been observed
bifurcation is crucial. The generation of sources of waves in from perturbations of stationary states as well as by perturbations
the two-variable system exhibiting the subcritical Hopf bifurca- of homogeneous periodic oscillations. Also, pacemakers may
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Figure 8. Solutions to the system (egs 123) with initial conditions (eqs 2426) whereL = 2.0,If = 0.0125,IF = 1.0,s" = 5§ = 0.01, and
P’ = pf = po at the following times: 1 015 500 (a and f), 1 019 500 (b and g), 1 023 000 (c and h), 1 026 500 (d and i), and 1 030 000 (e and j).
dt = 1.0, and & = 0.0005.
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