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A realistic 1D model of a bistable two-variable chemical system with a stable focus (SF) surrounded by a
stable limit cycle (SLC) is investigated. Initial excitations of a subinterval of the system can generate two
types of wave sources depending on the value of the bifurcation parameter which determines the basin of
attraction of SF. For a sufficiently small basin of attraction of SF, an initial local excitation of a finite system
generates a finite sequence of traveling impulses. Each subsequent impulse is wider than the previous one,
and this is the reason finite sequences of impulses can be observed in finite systems. In infinite systems, an
infinite number of impulses is generated. If the basin of attraction of SF is sufficiently large, another type of
wave source is induced by the initial excitation. Traveling impulses of excitation have a local minimum
between their front and back. The wave source generates an infinite number of impulses both in finite systems
and in infinite ones.

1. Introduction

Target patterns (trains of circular impulses) in chemical
systems were observed for the first time in 1970 by Zaikin and
Zhabotinsky.1 In a thin layer of a solution containing appropriate
concentrations of bromate, bromomalonic acid, ferroine, and
sulfuric acid, concentric blue rings (high concentration of the
oxidized form of ferroine) spread from a few wave sources,
which oscillate with greater frequency than the rest of the
medium. The wave sources appear spontaneously. However,
they can also be generated by local excitations of the unexcited
(red) area, for example, by taking a small drop from an excited
blue ring and transferring it to an unexcited region.2 Target
patterns were subsequently observed in many variations of the
Belousov-Zhabotinsky (B-Z) reaction,3,4 in uncatalyzed bro-
mate oscillators5 and in chlorite-iodide oscillators.6 They also
appear in heterogeneous systems at the oscillatory oxidation of
carbon monoxide on a platinum surface.7

Two kinds of explanations of the creation of target patterns
are known in the literature. One of them is based on the
assumption that some heterogeneities (pacemakers) exist in the
reaction mixture or on the Petri dish. Small impurities in the
reaction mixtures or scratches on the surface of the Petri dish
can play the role of pacemakers. By definition, the system
oscillates with higher frequency at pacemakers than in their
homogeneous neighborhood. Each pacemaker excites its neigh-
borhood and forces the system to oscillate with its own
frequency. In this case, the reaction-diffusion equations8,9

contain kinetic terms which depend explicitly on the place where
the pacemakers are localized.

The other explanation is based on the assumption that wave
sources (leading centers) appear in systems without heteroge-
neities. A local increase of oscillation frequency is induced by
local excitation and is entirely generated by chemical dynamics
itself. Appropriate local excitations may appear due to internal

fluctuations. In the deterministic description of leading centers,
initial conditions play the role of local excitations. The reaction-
diffusion equations contain kinetic terms which do not depend
explicitly on the spatial coordinates and are the same in the
whole system.9,10

Experimental observations2 with artificial heterogeneities and
transferring a drop of the solution from the excited to the
unexcited region corroborate the possibility of both types of
wave sources in the B-Z system. It is noteworthy that known
models of leading centers in excitable or oscillatory systems
consist of at least three or more variables.9,10

In this paper, we present a two-variable model of wave
sources in a one-dimensional (1D) system. The model does not
contain any heterogeneous terms with explicit dependence on
the space coordinate. The idea of the model is based on the
coexistence of a stable steady state and a stable limit cycle above
the subcritical Hopf bifurcation. In the model, two different types
of sustained wave sources can appear. It should be stressed that
the wave sources described in the present paper have different
features than the target patterns observed in the experiments as
well as in the models known so far. In particular, they have
nearly the same frequency of generation of impulses as the
frequency of stable limit cycle oscillations.

In the next section, we describe a reasonable chemical
scheme, whose dynamics is reduced to two variables and
exhibits the subcritical Hopf bifurcation. The properties of two
types of sustained wave sources and two types of impulses of
excitation spreading from them are then described. The role of
the initial conditions in the formation of the sources and
interactions between them are discussed. The last section
contains the discussion and suggestions for experiments in real
chemical systems.

2. Model

Let us consider the following scheme of elementary reactions
(mono- or bimolecular reactions without autocatalysis):* Corresponding author. E-mail: alk@ichf.edu.pl.
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whereS2E, EP, SEP, andS2EP are nonactive complexes of the
catalyst (enzyme)E. Throughout the paper, capital letters denote
reagents and their concentrations as well, because this notation
does not introduce misunderstandings.

The model is based on two coupled catalytic (enzymatic)
reactions described by the Langmuir-Hinshelwood (Michaelis-
Menten) scheme. The first reaction is inhibited by an excess of
its reactantSand productP. We take the identical rate constants
for reactions 5-7, which is a reasonable assumption if the
inhibition by the productP has an allosteric character. The
product of the first reaction is the reactant for the next one.
The system is open to the reactant and to the product due to
the first and the last two reactions in the above scheme.

Note that the total concentrations of both catalysts remain
constant. This allows us to eliminate the concentrations of the
complexesSEandPE′ from the dynamics of the system, which
can be described by the following eight kinetic equations for
dimensionless variables:

where s ) S/Km, p ) K5P, e ) E/E0, s2e ) S2E/E0, ep )
EP/E0, sep ) SEP/E0, s2ep ) S2EP/E0, and e′ ) E′/E0 are
dimensionless concentrations of the reactantS, the productP,
the free enzymeE, the nonactive complexes of the enzymeE
with the reactant and product, and the free enzymeE′,
respectively,t ) k3E0/Kmt′ is the dimensionless time (t′ is real
time), K5 ) k5/k-5, Km ) (k-2 + k3)/k2, andε ) E0/Km.

We reduce the dynamics described by eq 10 in a rigorous
way using the quasi-stationary state approximation. Note that
ε-1 appears as the multiplier in the right-hand sides of eqs 10c-h
but not in eqs 10a and b. Moreover, allgi(‚) are linear functions
of the argumentse, s2e, ep, sep, s2ep, ande′. The solutions to
the equationsgi(‚) ) 0 can be written asφi(s,p). For given values
of s andp, the solutions to eqs 10c-h have the general form
ψi ) ψi0 exp(-t/ε). If ε f 0, then according to the Tikhonov
theorem,11 the solutions to eqs 10a-h for time greater than
τ ∼ ε|ln ε| approach the solutions to eqs 10a and b with the
values ofe, s2e, ep, sep, s2ep, ande′ given byφi(s,p). We assume
that ε , 1, which is consistent with experimental conditions,
because usually total concentrations of catalysts (enzymes) are
10-5-10-6, that is, several orders lower than the concentrations
of reactants and products. In a dimensionless time scale, we
can describe the dynamics of the system by the equations for
the reactantS and the productP in the following form:
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wherea1 ) k1S0/(k3E0), a2 ) k-1Km/(k3E0), a3 ) k4/k-4Km, b )
KmK5, b1 ) k7E0′/(k3E0), b2 ) Km′K5, andKm′ ) (k-6 + k7)/k6.
For simplicity, we assume that the reaction with the second
catalystE′ occurs in its saturation regime. Then,p . b2, and
finally,

The nullclines of eqs 11 and 13 have the following form:

Note that the nullclines have one intersection point, which
corresponds to the stationary state with coordinates (see Figure
1)

It is easy to check, using the Descartes theorem, that the
necessary condition for an N-shaped form ofps (the existence
of two extremes for positive values ofs) is a1a3 > a2. We
assume below such values ofa1, a2, anda3 that the nullcline
for s is an N-shaped curve on the phase plane (s,p). Moreover,
for selected values of the parameters, the stationary state is
positioned on the middle (repelling) branch of the nullcline for
s, so the stationary state may be unstable.

Note that the parameterb does not change the positions of
the nullclinepp and the stationary state. It only changes the
vector field in the direction of the variablep, and therefore,b
is the most convenient bifurcation parameter.

It follows from the theory of ordinary differential equations
that there are two possible types of bifurcations14 in eqs 11 and
13. The stable focus (SF) may become an unstable one (UF)
due to the supercritical or subcritical Hopf bifurcations. It
follows from the linear stability theory that the stable focus
becomes an unstable one at

In the case of the supercritical Hopf bifurcation, a stable limit
cycle (SLC) with a “radius” growing from zero appears ifb
decreases belowbcr. For the subcritical Hopf bifurcation, the
radius of an unstable limit cycle (ULC) shrinks to zero atb )
bcr, and below this value, the UF is surrounded by the SLC.
Which of these two bifurcations occurs depends on the sign of
the first focus number.12-14 To ensure the appearance of the
subcritical Hopf bifurcation, the following values of the
parameters have been chosen:a1 ) a2 ) 0.005,a3 ) 250,
b1 ) 0.0026. For these values, the coordinates of the stationary
state ares0 ) 0.48 andp0 ) 2.124 837 248. At these values,
the first focus number is negative, and for values ofb ∈(bcr,bs),
the SF coexists with the SLC, wherebcr ) 0.227 501 800 and
bs ) 0.425 42. The last value has been determined numerically.
Note that, in the above range ofb, oscillations can be observed
if the initial values ofsandp are positioned outside of the ULC.
For initial values of the reagents inside the ULC, the system
evolves to the SF.

Let us now consider a one-dimensional (1D) bounded system
of the lengthL′. We assume that the diffusion coefficients of
the catalysts and their complexes can be neglected in comparison
with the diffusion coefficients of the reactant (DS) and the
product (DP). This assumption is fulfilled in experiments if the
catalysts and their complexes are immobilized. Then, changes
of the concentrations ofs and p in the 1D system can be
described by two nonlinear parabolic partial differential equa-
tions, which in dimensionless variables have the following form:

wherex ) xk3E0/(DSKm)x′ is the dimensionless spatial coor-
dinate (x′ is the coordinate in a physical one-dimensional space)
andD ) DP/DS. In numerical calculations, we assume that the
diffusion coefficients of the reactant and the product are identical
(D ) 1).

Let us consider the initial-boundary (Fourier) problem with
the zero flux (Neumann) boundary conditions

and the following initial conditions:

wheres* and p* belong to the basin of attraction of the SLC.

Figure 1. Nullclines of eqs 11 and 13 on the phase plane (s,p) with
the stable focus (red), the stable limit cycle (red), and the unstable limit
cycle (blue) fora1 ) a2 ) 0.005,a3 ) 250,b1 ) 0.0026, andb ) 0.4.
The arrows schematically show the directions of the vector field.
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Below, we present the dependence of evolutions of initial
excitations on the bifurcation parameterb for values of the
remaining parameters given above.

3. Results

The bifurcation parameterb controls the positions of the ULC
and the SLC on the phase plane (s,p). For b close tobcr, the
ULC is small and is positioned very close to the SF, whereas
the SLC is far from the SF. With increasingb, the ULC nears
the SLC. The ULC moves away from the SF, and the basin of

attraction of SF increases. A sufficiently strong vector field
around the SF can induce a bend of the part ofs(x,t) andp(x,t)
which is positioned inside the ULC. Therefore, the size of the
basin of attraction of SF plays a crucial role in the evolution of
this part of the initial excitation, and in consequence, it may
qualitatively change the form of the impulses of excitation.

Equations 19-23 have been solved numerically for selected
values of the bifurcation parameter using the Cranck-Nicholson
scheme of the second order in respect to the spatial step (dx)
for diffusion terms and the Runge-Kutta algorithm of the fourth
order in respect to the time step (dt) for the kinetic terms.

Figure 2. Solutions to the system (eqs 19-23) for b ) 0.24 with the remaining parameters the same as those in Figure 1 andL ) 2.4,s* ) 0.01,
p* ) p0, andl* ) 0.015 at the following times: 23 000 (a and f), 45 000 (b and g), 66 500 (c and h), 261 500 (d and i), and 1 706 500 (e and j).
dt ) 1.0, and dx ) 0.0006.
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The initial excitation (eqs 22 and 23) withs* ) 0.01,p* )
p0, andl* ) 0.015 forL ) 2.4 atb ) 0.24 causes the appearance
of a sequence of traveling impulses of excitation. This value of
b is slightly greater thanbcr, which means that the ULC is very
small. The subsequent impulses move to the right boundary and
disappear. The width of each impulse decreases during its
spreading and attains asymptotic size sufficiently far from the
interval of the initial excitation (see Figure 2). Each next impulse
is initially wider than the previous one, because its back is
formed later than the back of the previous impulse. Because
the system is finite (L < ∞), the width of some new generated
impulse becomes larger thanL. The back of the impulse is not

formed, and finally, the system oscillates homogeneously with
the period characteristic for a SLC. Therefore, in a finite system,
one can observe the generation of a finite sequence of impulses
only. The sequential increasing of the initial widths of the
impulses is illustrated in Figures 2 and 3. Figure 3 shows the
distributions ofs and p projected on the “phase plane”. The
subsequent impulses generate trajectories which are closer and
closer to the SLC and asymptotically attain it. This limit
corresponds to homogeneous oscillations of the reagent con-
centrations in the whole system. Of course, the correct phase
space for the partial differential equations of the parabolic type
has an infinite, uncountable dimension. However, projections

Figure 3. Parts a-e are projections of the distributions ofs(x,t) andp(x,t) (green) on the phase plane corresponding to the solutions shown in
Figure 2. Parts f-j show the projections of the backs of the impulses at the same times.
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of the distributions ofsandp on the phase plane (s,p) are helpful
for our qualitative explanations.

It is noteworthy that in an infinite system there is no limit
for the widths of the generated impulses. Therefore, different

from the finite system, in infinite systems, an infinite sequence
of impulses will be generated.

For larger values ofb, the initial excitation induces the
generation of impulses with concentration profiles shown in

Figure 4. Solutions to the system (eqs 19-23) for b ) 0.4,L ) 1.2, andl* ) 0.01 at the following times: 102 000 (a and g), 105 000 (b and h),
108 000 (c and i), 111 000 (d and j), 114 000 (e and k), and 116 500 (f and l). The values ofs* and p* are the same as those in Figure 2. dt ) 1.0,
and dx ) 0.0004.
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Figure 4. The impulse ofs(x,t) has a small local minimum
between the front and the back, whereas the impulse ofp(x,t)
has a corresponding small maximum. The appearance of these
extremes can be explained by the qualitative analysis of the
projections of the concentration distributions on the phase plane
(s,p). The back of the impulse is partially positioned inside the
ULC, where its further evolution is governed by the vector field
around the SF (see Figure 5a). This part of the trajectory forms
a bend, which in further evolution forms a loop (see Figure
5b). The formation of the bend on the projection means that a
local minimum appears between the front and the back of the
impulse ofs(x,t). Further evolution leads to the formation of a
loop. This means that, beside the local minimum ins(x,t), a
local maximum appears between the back and the front inp(x,t)
(see Figure 4).

For values ofb nearbs, where the ULC is close to the SLC,
for a sufficiently small width of excitationl*, we can observe
only a single impulse traveling to the right boundary (see Figure
6), and then, the distributions of the reagents return to their
stationary values. However, a finite number of impulses appears
for the same value ofb but greater values ofl*. The number of
the impulses increases by one withl*. Figure 7 shows the
generation of four traveling impulses. The length of excitation
above which the nonsustained wave source appears increases
with the valueb.

It follows from our numerical calculations that the period of
oscillations observed at the pointx ) x1, where the traveling
impulses have their asymptotic form, is slightly greater than
that for homogeneous oscillations. For example, forb ) 0.4, it
is equal to 14 348 (in arbitrary time units), whereas the
homogeneous oscillations at the same value ofb have a period
equal to 14 029. The period of oscillations observed atx ) x1

does not depend on the initial conditions (eqs 22 and 23) but
only on the parameters.

It is evident that, in order to create the impulses, one must
initially excite a sufficiently large interval. Otherwise, the
diffusion will disperse the initial excitation and the impulse will
not be formed. Moreover, we have checked that initial excita-
tions with (s*,p*) placed on the left lower horizontal part of
the SLC (s ∈ (0.01,0.3)) induce wave sources on the shortest
intervalsl*. Such initial excitation forms the back of the impulse,
which is not dispersed by the diffusion. The back starts to run
to the right boundary almost immediately. Increasingl* for these
values of (s*,p*) causes the first impulse to be formed at a
greater distance from the left boundary. However, this distance
slowly decreases for subsequent impulses. If (s*,p*) is situated
on the vertical parts of the SLC, then longer intervalsl* are
needed to initiate the sources. For (s*,p*) placed on the upper
part of the SLC, wave sources are formed only for relatively
large l*. In these cases, the distributions ofs andp in [0, l* )
evolve almost homogeneously to the left lower part of the SLC,
where the formation of the back of the traveling impulse begins.
Note that the period of oscillations observed at a sufficiently
large distance from the left boundary, where the traveling
impulses have their asymptotic form, does not depend on the
width of the initial excitationl*. This property allows one to
predict the interaction of various sources generated in the same
system. Many sources may coexist in the system, because each
of them generates traveling impulses with the same frequency.
However, the place where the impulses from different wave
sources meet depends on the lengths of the left (l l

/) and the
right (lr

/) excitations with values ofsl
/, pl

/, sr
/, and pr

/. The
solutions to eqs 19-21 for the initial excitations in the following
form:

whereL ) 2.0, l l
/ ) 0.0125,lr

/ ) 1.0, sl
/ ) sr

/ ) 0.01, pl
/ )

pr
/ ) p0, are shown in Figure 8. Ifsl

/ ) sr
/ andpl

/ ) pr
/, then the

meeting point is shifted to the source which has been initialized
on the shorter interval. This point is motionless, and for the
case shown in Figure 8, it is equal to≈0.8. If l l

/ ) lr
/ but sl

/ *
sr
/ or pl

/ * pr
/, then the meeting point is shifted to the source

whose back was formed earlier.

Figure 5. Projections ofs(x,t) and p(x,t) (green) corresponding to
solutions to the system (eqs 19-23) for b ) 0.4 andL ) 0.8. The
formation of a minimum (between the front and the back) on the
distribution of the reactant is seen in part a att ) 15 625 as a bend in
the inset. The formation of a maximum (between the back and the front)
on the distribution of the product is seen in part b att ) 22 500 as a
loop in the inset. The values ofs*, p*, l*, dt, and dx are the same as
those in Figure 4.

s(x,0) ) sl
/, p(x,0) ) pl

/ for x ∈ [0,l l
/] (24)

s(x,0) ) sr
/, p(x,0) ) pr

/ for x ∈ [L - lr
/,L] (25)

s(x,0) ) s0, p(x,0) ) p0 for x ∈ (l l
/,lr

/) (26)
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4. Discussion

The chemical system described in this paper is one of the
simplest models in which the subcritical Hopf bifurcation is
possible. It consists of nine elementary reactions excluding
autocatalytic steps. There are well-known other two-variable
chemical models, like the Oregonator,15 in which the subcritical
Hopf bifurcation is also possible. However, they were obtained
from chemical schemes with a dozen or more variables.16 There
are many enzymes which are inhibited by an excess of their
reactants and products. Examples include invertase inhibited by
sucrose (reactant) and by fructose and glucose (products),

xantine oxidase inhibited by xantine (reactant) and ureate
(product), acetylcholinesterase inhibited by acetylcholine and
choline, and many others.17,18 One can expect that, under
appropriate experimental conditions, the reactions with these
enzymes immobilized in a 2D continuously fed unstirred reactor
(CFUR) may generate the wave sources described in the present
paper.

Our two-variable model should be treated as the minimal one
in which the sources of waves described in this paper may
appear. We want to stress that the wave sources described above
may be observed in all chemical systems in which the SF is

Figure 6. Solutions to the system (eqs 19-23) for b ) 0.41,L ) 1.2, andl* ) 0.04 at the following times: 8000 (a and f), 24 000 (b and g),
32 000 (c and h), 40 000 (d and i), and 80 000 (e and j). The values ofs*, p*, dt, and dx are the same as those in Figure 4.
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surrounded by the ULC and SLC regardless of the dimension
of the corresponding phase space. Real chemical systems are
known such as the chlorite-iodide oscillator19 and the peroxi-
dase-oxidase reaction20 in which the coexistence of the stable
stationary state surrounded by a SLC has been observed. These
systems are described models with more than two variables,
but they are also possible candidates in which the wave sources
can be observed. It is noteworthy that in our concept of the
generation of wave sources not the number of variables in a
system dynamics but the existence of the subcritical Hopf
bifurcation is crucial. The generation of sources of waves in
the two-variable system exhibiting the subcritical Hopf bifurca-

tion was reported some years ago.21 These sources have
properties similar to one of the types of sources described above
for the case when the basin of attraction of SF is small. They
also have periods of generation close to the period of homo-
geneous oscillations.

We want to stress that the wave sources described in the
present paper have different properties from the leading centers
or pacemakers mentioned in the Introduction. The wave sources
described in this paper appear as a result of perturbations of
the stationary state, whereas leading centers have been observed
from perturbations of stationary states as well as by perturbations
of homogeneous periodic oscillations. Also, pacemakers may

Figure 7. Solutions to the system (eqs 19-23) for b ) 0.41,L ) 2.4, andl* ) 0.09 at the following times: 44 000 (a and f), 64 000 (b and g),
80 000 (c and h), 116 000 (d and i), and 148 000 (e and j). The values ofs*, p*, dt, and dx are the same as those in Figure 6.
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appear in systems with homogeneous stable stationary states
as well as in systems with homogeneous stable oscillations.
Moreover, to the best of our knowledge, all sources of waves
known so far generate impulses without a minimum between
their fronts and backs, whereas impulses with a minimum
between the fronts and backs may appear in our system as well
as in other systems exhibiting the subcritical Hopf bifurcation.

In our deterministic model, the wave sources appear due to
well-defined initial conditions. However, in real systems
exhibiting the subcritical Hopf bifurcation, they can appear
spontaneously due to internal fluctuations.
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