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This paper examines the freezing and melting of water and aqueous solutions in the framework of classical
nucleation theory. On the basis of thermodynamical principles, general equations for the critical germ radius
and free energy are derived that express these properties as functions of temperature, solution molality, pressure,
and finite size of freezing/melting particles. This theory is applied to the study of liquid-solid phase
transitions: homogeneous, heterogeneous, and quasi-heterogeneous freezing of aqueous solutions and surface
melting of ice. Simple analytical expressions for the corresponding freezing and melting critical temperatures
are derived and solved numerically using an iteration procedure, whereby the melting and freezing temperatures
are calculated for solutions with various chemical compositions, concentrations, and pressures. Comparison
of the theory with experimental data shows good agreement and indicates that this approach allows reproduction
of measured melting and freezing temperatures as functions of solution molality (or water saturation ratio)
and pressure over wide ranges for many geophysical applications.

1. Introduction

Freezing and melting of water and aqueous solutions plays
an important role in many geophysical processes. The glaciation
of clouds1-6 influences their radiative properties, precipitation,
planetary albedo, and climate.6-10 Seawater freezing and melting
control global sea ice cover, and formation of ice in leads and
polynyas in polar seas dominates the heat and moisture exchange
between the polar atmosphere and ocean.9-11 Ice crystals in the
polar stratosphere play a key role in the chemical reactions that
lead to formation of ozone holes.12-14 The processes of
premelting (melting below bulk triple point) are involved in
environmental phenomena such as frost heave,15,16 sliding of
glaciers,9,17 and electrification of clouds and lightning.6,18,19

Cirrus clouds in the upper troposphere cover 20-30% of the
globe20 and substantially influence the global radiative budget
and atmospheric chemistry.5-10,21,22 It is commonly accepted
that cirrus clouds form by direct freezing (homogeneous or
heterogeneous) of aqueous solution drops (haze particles).21-44

However, the mechanisms of freezing, and their parametrization
in cloud and climate models, remain very uncertain.21,22,39This
uncertainty has stimulated numerous laboratory, field, and
theoretical studies of freezing at low temperatures of various
aqueous solutions, directed to understanding cirrus formation.
Laboratory experiments on homogeneous freezing temperatures
and nucleation rates for solutions have provided an understand-
ing of the general features of homogeneous freezing at low
temperatures. However, there are still significant discrepancies
among the various experimental results.5,21,22,29,38-54

Two different approaches have been used in theoretical
studies and recent models of cirrus formation. Several models
directly use classical nucleation theory for calculation of crystal

nucleation rates,28,29,34,35,37,39,40,72including further development
and refinements of the theory itself.1-5,21,22,28-36,39,41-44 More
frequently, models use various parametrizations of nucleation
rates or freezing temperatures that are explicitly or implicitly
related to classical nucleation theory.23-27,32,33,38,39,44

Because laboratory data on freezing temperatures are still
uncertain and direct calculation of the nucleation rates is faced
with uncertainties in the input parameters, one of the most
frequently used methods of determining freezing temperatures
is an empirical linear relation between depressions of the
homogeneous freezing temperatures,55,56 ∆Tf,hom, and bulk
melting temperatures,∆Tm, as ∆Tf,hom ) λ∆Tm. This
approach23-25,27,32,39with λ ) 1.7 and experimental data on∆Tm

yields reasonable nucleation rates and crystal concentrations and
is currently used in many models. However, recent laboratory
observations21,22,39 indicate thatλ is not a universal constant;
values ofλ are different for various substances and depend on
temperature and molality of solution drops, varying over the
range 1.5-3, and may exceed52c 5.

The question arises as to whether it is possible to derive both
∆Tf,hom and∆Tm and the∆Tf,hom - ∆Tm relation from theory
and to relateλ to basic physical quantities. Although Rasmus-
sen55 supposed that this relation cannot be explained by classical
nucleation theory, the sufficiently close agreement of nucleation
rates calculated with classical nucleation theory and with theλ
relation22,39suggests that this empirical relation could be derived
from classical nucleation theory. Moreover, if such a derivation
was possible, then a link could be established between homo-
geneous freezing processes at low temperaturesTf,hom < -35
°C (e.g., cirrus and polar stratospheric clouds) and freezing-
melting processes at higher temperatures (∼0 to -30 °C) that
govern such geophysical processes as formation of sea ice and
motion of glaciers.

Another interesting link occurs between the solution and the
pressure effects of the freezing and melting processes. Labora-
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tory experiments have shown57,58,52athat the isomolal depend-
encies ofTf,hom(p), Tm(p) at varying pressure are equivalent to
the isobaric dependenciesTf,hom(Mh ), Tm(Mh ) with varying molality
Mh . An interpretation of this fact was given57,58 in terms of
equivalent perturbation of a hydrogen bonding network by
pressure and solution, and more recently,52a in terms of
“effective” solution concentration and water activityaw (or
saturation ratioSw). However, it is not clear why this equivalence
occurs and if it can be directly derived from nucleation theory
along with a simple relation between pressure and molality.

Toward addressing these issues, this paper examines freezing
and melting processes using classical nucleation theory and
extending the treatment of critical radii and energies of
nucleation. In section 2, we briefly outline the basic thermo-
dynamic equations and derive general expressions for the critical
liquid/solid germ radius and energy as functions of temperature,
water saturation ratio (or molality), pressure, and finite size of
freezing/melting particles, extending the previous equations of
classical nucleation theory.1-5,68,69 These expressions are em-
ployed in section 3 for derivation of the equations for homo-
geneous, heterogeneous, and quasi-heterogeneous freezing
temperatures and melting temperature. Results of calculations
for atmospheric pressure and comparison with experiments are
given in section 4, and applications to the pressure-induced
freezing and melting at high pressure are considered in section
5.

2. Critical Radius and Free Energy of a Germ at
Freezing and Surface Melting

To derive the critical radius and free energy of a germ for
freezing or melting, we consider a spherical germ of the bulk
phase (2) forming in the volume or at the surface of another
bulk phase (1). The entropy equation is written as2,3,5

whereT is temperature,p is pressure,R is the universal gas
constant,h is the molar enthalpy,µ is the molar chemical
potential,a is the activity, andV is the specific volume. The
subscript 1 refers to phase 1, and the subscript 0 refers to the
pure substance. An analogous equation can be written for phase
2.

If phase 2 is solid (e.g., ice) that nucleates heterogeneously
on the surface of a foreign substrate, then an additional term
should be added toµ2, which arises from the elastic strainε
caused by the misfit between ice and substrate lattices.1,4,5,70

This term was not accounted for in previous derivations of
equations for critical radius and free energy,2,3,5 but it is
frequently added1,5 to the final equations. The term associated
with the elastic strain is formulated70 as M2Cεε

2/F2, with M2

andF2 being the molecular weight and the density of phase 2
andCε ) 1.7 × 1011 dyn cm-2. Substituting (2.1) forµ1 and
the corresponding expression forµ2 into the condition of
equilibrium d(µ1/T) ) d(µ2/T), we obtain the general equation
for phase equilibrium

This equation provides a general description of phase equilib-
rium that can be applied to a variety of phase transitions.2,3,5

We consider here three particular cases under variable external
pressure and solution concentration: (1) volume homogeneous
and heterogeneous freezing of aqueous solution drops; (2)
surface freezing of solutions; and (3) surface melting of ice
crystals.

2.1. Volume Freezing.For volume freezing, consider a
solution drop with radiusrd in humid air. An ice germ with
radiusrcr forms inside the drop either directly (homogeneous
volume freezing) or on the surface of a foreign substrate
(heterogeneous volume freezing); then phase 1 is the liquid
solution and phase 2 is ice. Such a configuration was previously
considered,1-5 and the expressions for the critical radii were
derived under constant external pressure.1-5,21,28,30,34-37,42,68

Here, we consider variable pressure along with variable tem-
perature and saturation ratio. In the context of eq 2.2, all
quantities denoted by “0” refer to pure water. Nucleation of a
new phase occurs if the size of the initial germ of the new phase
reaches a critical value. To derive a general dependence of the
ice germ critical radiusrcr on temperatureT, saturation ratio
Sw, and pressurep, we start from eq 2.2. If an ice germ is
approximated by a sphere as in case of homogeneous freezing2,3,5

or as a spherical cap at the surface of insoluble substrate as for
heterogeneous freezing,1,4,5,36then the internal pressures inside
a crystal, pi, and inside a liquid solution drop,ps, can be
expressed in terms of external pressurep with use of conditions
of mechanical equilibrium

where subscripts i and s refer to ice, and solution, respectively;
σis and σsa are the surface tensions at the ice-solution and
solution-air interfaces. Equation 2.3 describes the equilibrium
between an ice germ and liquid solution drop and equilibrium
between the liquid drop and environmental air.

Substituting eq 2.3 into eq 2.2, and dividing byMw, we obtain

whereLm ) (hw0 - hi0)/Mw is the specific latent heat of melting,
and the densities of water and ice are given byFw ) Mw/Vw

andFi ) Mw/Vi. AF ) 1 - Fi/Fw is the density function,aw is
the water activity, and we have assumed that the ice activityai

) 1 due to the small retention coefficient.5,15Equation 2.4 differs
from analogous equations2,3,5by the presence of additional terms
with p andε. We can integrate eq 2.4 fromT to the triple point
temperatureT0, and from p to p0 with the usual boundary
conditions2,3,5 (aw ) 1, rcr ) rd ) ∞, p ) p0, andε ) 0 atT )
T0), to obtain

whereLm
ef ) ∫T

T0[Lm(T)/T] dT/ln(T0/T) is the effective average
melting heat,∆p ) p - p0, and AK ) 2Mwσsa/FwRT is the
Köhler’s parameter. The water activityaw is often assumed30,52a

to be equal to the water saturation ratioSw or is calculated27

from the Köhler equationAK/rd + ln aw ) ln Sw. We also use

dpi ) dps + d(2σis

rcr
), dps ) dp + d(2σsa

rd
) (2.3)

-
Lm

T
dT -

AF

Fi
d(p +

2σsa

rd
) - 1

Fi
d(2σis

rcr
) - d(Cεε

2

Fi
) +

RT
Mw

d ln aw ) 0 (2.4)

Lm
ef ln

T0

T
)

2σis

Fircr
+

2σsa

Fird
+

AF

Fi
∆p +

Cεε
2

Fi
- RT

Mw
(AK

rd
+ ln aw)

(2.5)

d[µ1(p,T,a1)

T ] +
h10

T2
dT -

V10

T
dp - Rd ln a1 ) 0 (2.1)

-
(h10 - h20)

T
dT + V10 dp1 - V20 dp2 - M2T d(Cεε

2

F2
) +

RTd ln(a1

a2
) ) 0 (2.2)
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this equation and substitute it into the last term in eq 2.5. Note
that each term on the right-hand side of eq 2.5 is positive, so
that ln(T0/T) g 0 andT e T0 (i.e., eq 2.5 describes lowering of
the bulk triple point by all of the above factors). Solving forrcr

from eq 2.5, we obtain

whereG is a dimensionless parameter, and∆F ) Fw - Fi. This
equation accounts for the effects of temperature, water saturation
ratio, pressure, elastic misfit strain, and finite size of a freezing
drop on rcr and is valid for both heterogeneous (ε * 0) and
homogeneous (ε ) 0) freezing.

Equation 2.6 can be compared with previously derived
expressions by considering particular cases. For the simplest
case with constant pressure (∆p ) 0), no misfit strain (ε ) 0),
and a bulk solution (1/rd ) 0), we haveHfr ) 0. If additionally
Sw ) 1 (pure water and no external sources of supersaturation),
then eq 2.6 is simplified to be the classical equation68

whereσiw is the surface tension at the ice-water interface. This
equation is often used to describe the triple point lowering in
polycrystalline crystals and melting point shifts due to varying
crystal size (Gibbs-Thomson effect).2,3,15,64,71If misfit strain
is included, then eq 2.6 becomes

This generalization of Thomson’s equation forrcr has been
determined previously1,4,6 for heterogeneous nucleation. In the
presence of a solvent or external source of supersaturation,Sw

* 1, but still forε ) 0 and∆p ) 0, we have from eq 2.6 another
expression previously derived34,35

Similar equations for the case of homogeneous nucleation were
obtained previously,2,21,28,30,42but rcr was expressed in a slightly
different form using water activityaw or molar fractionXs. The
use ofSw instead ofaw or Xs can be more convenient in some
applications such as cloud models whereSw is a readily
determined environmental variable. (Althoughaw and Sw are
close in many cases atSw < 1, they may differ and even have
different signs atSw ≈ 1 due to the curvature effects, thus
leading to differentrcr.) For applications in cloud models, note
that in a rising or sinking air parcel, the environmentalSw can
somewhat differ from the equilibrium value near the drop used
in the derivation above; however, a solution drop atSw < 1
grows or shrinks rapidly until the equilibrium size andSw are
reached.5,34,36The characteristic time of adjustment to equilib-
rium varies from 10-4 s for rd ) 10-2 µm to a few seconds for
rd of a few micrometers, and equilibrium exists in most cases
with moderate vertical velocities,5,34,36,39 even with rapid
turbulent fluctuations.5 In cases with updrafts of a few meters

per second and a very cold environment, deviations of haze
particles from equilibrium may last longer and corrections to
environmentalSw may be required;39,36nonetheless, even under
these conditions, many cloud models assume equilibriumSw

with reasonable accuracy.39 The cloud drops grow at slight
supersaturationδw > 0, and when considering their freezing
via immersion or contact modes,Sw near the drop surface can
be obtained by subtractingδw from the environmentalSw; this
correction is rather small becauseδw generally does not exceed
0.5-1% and is commonly<0.1%.

In the presence of a solvent or external source of supersatu-
ration, Sw * 1, but still for ∆p ) 0, we have from eq 2.6 the
following equation

This equation was obtained for heterogeneous nucleation36 and
has been used to simulate ice crystal formation in atmospheric
clouds.36b,40,72Note that in the caseε ) 0 andT f T0 or for
concentrated solutions, eq 2.6 converts into

and resembles Kelvin’s69 expression for nucleation of a crystal
from the vapor except that it containsσis instead ofσiv for
nucleation from the vapor. Becauseσis ≈ 1/4σiv, eq 2.6e shows
that ice nucleation by water freezing is energetically much more
favorable than direct nucleation from the vapor. The pressure
dependence in eq 2.6 has not been previously accounted for.
So, eq 2.6 generalizes and unifies all of these particular cases
for the critical germ radius and is used below to establish
equivalence between pressure, solution, and temperature effects
on freezing and melting.

Applicability of eq 2.6 can be illustrated as follows. Because
the denominator of eq 2.6 should be positive, we have an
inequality

Solving eq 2.8 forrd provides a condition for the minimum
size of the freezing drops

An estimation for standard pressure (∆p ) 0), ε ) 0, and pure
water (Sw ) 1) gives rd g 1.3 × 10-6 cm at T ) 263.15 K
(-10 °C) andrd g 3.2× 10-7 cm atT ) 233.15 K (-40 °C).
However, freezing experiments5,45,46show that the drops never
freeze homogeneously at-10 °C and freeze at-40°C with
larger radii≈ 0.2-0.5 µm. Thus, this condition is necessary
but not sufficient, because it corresponds to zero nucleation rates.
A generalization to finite nucleation rates is given in section 3
based on eq 2.6.

Solving (2.8) for T provides a condition for the freezing
temperatureTf,hom

rcr )
2σis

FiLm
ef ln[(T0/T)Sw

G exp(-Hv,fr)]
(2.6)

Hv,fr )

(∆F∆p/Fw + 2σsa/rd + Cεε
2)/(FiLm

ef), G ) RT/(MwLm
ef) (2.7)

rcr )
2σiw

FiLm
ef ln(T0/T)

(2.6a)

rcr )
2σiw

FiLm
ef ln(T0/T) - Cεε

2
(2.6b)

rcr )
2σis

FiLm
ef ln[(T0/T)Sw

G]
(2.6c)

rcr )
2σis

FiLm
ef ln[(T0/T)Sw

G] - Cεε
2

(2.6d)

rcr )
2Mwσis

RTFi ln Sw
(2.6e)

FiLm
ef ln(T0

T
Sw

G) - ∆F
Fw

∆p - Cεε
2 -

2σsa

rd
g 0 (2.8)

rd g
2σsa

FiLm
ef ln(T0

T
Sw

G) - ∆F
Fw

∆p - Cεε
2

(2.9)

Tf,hom e T0Sw
G exp[- 1

FiLm
ef(∆F

Fw
∆p + Cεε

2 +
2σsa

rd
)] (2.10)
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which yields an upper boundary forTf,hom as a function of
molality, pressure, and the radius of a freezing drop. This
expression will be generalized further in section 3 to account
for finite nucleation rates.

2.2. Surface Freezing.There are several possible geometrical
configurations of an ice germ forming at the surface of a solution
drop. We consider the case when an ice germ is located at the
interface between the humid air and solution drop. A similar
configuration was discussed1-6,36 for the case of the liquid/solid
interface when an ice germ forms heterogeneously at the surface
of a foreign substance. Here, we deal with the situation when
solid forms at the interface of its own melt and gas (vapor or
humid air). A similar configuration was recently described
conceptually and called “pseudoheterogeneous freezing”,66,67and
the criterion for surface freezing,σia - σsa < σis, was derived
for this process. Here, we consider this process in more detail
and derive its critical radius and energy. Assume that an ice
germ represents a spherical segment (lens or “tiny pancake ice”)
bounded by two surfaces.3 An outer surface (in contact with
air) is a spherical segment with radiusrcr and the inner surface
(in contact with the solution drop) is planar. This case represents
a mixture of homogeneous and heterogeneous processes because
(a) it proceeds homogeneously without a foreign substance and
(b) due to incomplete wettability (i.e., small but nonzero contact
angles between ice and water6,60-63,73) the geometrical decrease
of free energy is similar to those in heterogeneous freezing as
described in section 3.

Because both the ice germ and the solution drop are in
mechanical equilibrium with the environmental air, it follows
that the pressures inside the solution drop,ps, and ice crystal
cap,pi, with corresponding radiird andrcr are described by the
Laplace equation

where σia is the surface tension at the ice-air interface.
Substituting eq 2.11 into eq 2.2 without the strain term (ε ) 0)
because we do not consider undissolved particulates here, we
obtain

Integration of eq 2.12 with the boundary conditions2,3,5 rcr ) rd

) ∞, aw ) 1, andp ) p0 at T ) T0, yields

It is interesting to note that Dufour and Defay2 considered a
different configuration, drop and crystal coexisting in air, and
obtained a similar equation except without the pressure term
and having a more complicated expression for the solution term.
One can see that eq 2.13 contains both positive and negative
terms on the right-hand side. In particular, the terms with
pressure andaw are positive, causing the lowering of the freezing
temperature with increasing pressure and molality, described
in the next sections. These equations predict situations withT
< T0, which is a physical state, and withT > T0, which predicts
existence of ice above bulk triple point (superheating of crystals)
and is an unobservable state.2 This problem is caused by

limitations of classical nucleation theory,73 with its predictions
symmetric relative toT0; this symmetry is absent in the density
functional theory that avoids freezing point elevation.73 Now,
replacing againaw with Sw, in eq 2.13, we obtain finally the
critical radiusrcr of an ice germ at the solution-air interface

Note that eq 2.14 for surface freezing contains the surface
tension ice-air σia instead ofσis for solution-ice in eq 2.6 for
volume freezing, which reflects the difference in freezing
mechanisms.

2.3. Surface Melting. The numerous theories of surface
melting mentioned in the Introduction include intergranular
melting in polycrystalline crystals, melting at grain and vein
junctions, and evaluatiuon of the lowering of the bulk triple
points and melted film thickness, which account for various
mechanisms of premelting, effects of crystal size, and
impurities.3,6,15,16,18,19,59,62-65,71,73

We consider here one simple mechanism of surface melting:
nucleation of a liquid drop at the crystal/gas interface when
melting is incomplete (i.e., drops occur instead of a liquid film).3

We consider a quasi-heterogeneous process of nucleation of a
liquid germ at the surface of its own solid at small but finite
contact angles. This type of surface melting with occurrence of
small drops at the crystal surface has been observed in laboratory
experiments.6,15,60-62 This case is similar to surface freezing
considered in the previous section except with reversed con-
figuration of the liquid and ice. To determine the droplet critical
radiusrd and melting temperatureTm, we again begin with eq
2.2. For melting, phase 1 is ice, phase 2 is the liquid, and-Lm

) (hi0 - hw0)/Mw. We consider a liquid germ that is located at
the interface of the crystal and humid air and represents a
spherical segment (lens) bounded by two surfaces. An outer
surface (in contact with vapor or humid air) is a spherical
segment with radiusrd, and the bottom surface (in contact with
ice crystal) is approximated by a planar surface.

Using the conditions of mechanical equilibrium, we write for
the pressures inside the liquid lensps and crystalpi the Laplace
equations

Substituting eq 2.16 into eq 2.2, we obtain

Integration of eq 2.17 with the same boundary conditionsaw )
1, rd ) rcr ) ∞, andp ) p0 at T ) T0 yields

which formally coincides with eq 2.10, except that the unknown
is hererd. The terms with pressure at∆p > 0 and solution effects

dps ) dp + d(2σsa

rd
), dpi ) dp + d(2σia

rcr
) (2.11)

-
Lm

T
dT + ( 1

Fw
- 1

Fi
) dp + d(2σsa

Fwrd
) - d(2σia

Fircr
) +

RT
Mw

d ln aw ) 0 (2.12)

Lm
ef ln

T0

T
)

2σia

Fircr
-

2σsa

Fwrd
+ (1

Fi
- 1

Fw
)∆p - RT

Mw
ln aw (2.13)

rcr )
2σia

FiLm
ef ln[(T0/T)Sw

G exp(-Hs,fr)]
(2.14)

Hs,fr ) (∆F∆p
Fi

-
2σsa

rd
)/(FwLm

ef) (2.15)

dps ) dp + d(2σsa

rd
), dpi ) dp + d(2σia

rcr
) (2.16)

Lm

T
dT + (1

Fi
- 1

Fw
) dp + d(2σia

Fircr
) -

d(2σsa

Fwrd
) - RT

Mw
d ln aw ) 0 (2.17)

Lm
ef ln

T0

T
) -

2σsa

Fwrd
+

2σia

Fircr
+ (1

Fi
- 1

Fw
)∆p - RT

Mw
ln aw (2.18)

11076 J. Phys. Chem. A, Vol. 108, No. 50, 2004 Khvorostyanov and Curry



are positive, shifting the melting temperaturesTm below the bulk
triple point. At negative pressure (∆p < 0) (e.g., in the case of
internal melting of ice caused by strong radiative heating and
formation of “Tyndall flowers”) when ice may exist in
metastable equilibrium6 at up to+8 °C and∆p ≈ -103 bar, eq
2.18 describes competition of the negative pressure, which
causes elevation ofTm (possibly to well above 0°C) and the
counteracting solution effects (aw < 1) that tend to lowerTm.
Again replacingaw with Sw, we find from eq 2.18 the critical
radiusrd of a liquid germ

Equation 2.19 differs from eqs 2.6 and 2.14 for freezing by the
opposite sign of the temperature term ln(T0/T).

3. Critical Freezing and Melting Temperatures

To derive the critical temperature of both homogeneous and
heterogeneous freezing, we can use equations1-6 for the
nucleation rates,Jh

where∆Fcr(T,Sw) is the critical Helmholtz free energy of an
ice germ for freezing or of a liquid germ for melting,∆Fact is
the activation energy,k is the Boltzmann constant, andCh is a
normalizing factor. The quantitiesJh and Ch will be denoted
later with indices “hom” and “het” for homogeneous and
heterogeneous processes, respectively.

In classical nucleation theory, the free energy of germ
formation ∆Fcr(T, Sw) is written1-6 as a sum of the positive
surface term,∼r2, and a negative volume term, proportional to
r3, and to the difference of the free energies of waterFw and
ice Fi

The critical energy∆Fcr is obtained by differentiating∆F(r)
by rcr, then (Fw - Fi) is expressed viarcr and is substituted into
eq 3.2 to yield∆Fcr ) (4π/3)σisrcr

2 for a spherical crystal or
∆Fcr ) (4π/3)σisrcr

2f(mis,x) for a crystal with geometry of a
spherical cap, andf(mis,x) is a geometrical factor.1,5 Substituting
eq 2.6 forrcr for solution into the last expression, we obtain the
critical free energy for volume freezing as a function of
temperature, solution concentration (supersaturation), pressure,
and misfit strain

Here,Hv,fr is defined in eq 2.7, andf(mis,x) is the geometrical
factor derived by Fletcher1 for the cap

wherex ) rN/rcr, with rN being the radius of insoluble particle
on which surface a crystal forms for the case of heterogeneous
freezing,x ) rd/rcr, and x ) rcr/rd; for the cases of surface
freezing and melting,θis is the corresponding contact angle,
andmis ) cosθis is the wettability parameter at the ice-substrate
interface for the case of heterogeneous freezing and at the ice-
solution interface for surface freezing and ice melting. For
constant pressure (∆p ) 0) and freezing of bulk solutions or
large drops (rd ) ∞), the factorHv,fr becomesCεε

2/FiLm
ef, and

eq 3.3 reduces to the expression derived earlier for heteroge-
neous freezing36

which for pure water (Sw ) 1) converts into the previous
expressions1,4-6 for ∆Fcr.

3.1. Homogeneous Freezing.For homogeneous freezing,θis

) 180°, mis ) -1, andf(mis,x) ) 1, Cε ) 0; equations forrcr

and∆Fcr are simplified

We consider first the case of homogeneous nucleation for
variable pressure and chemical composition. Then the preex-
ponential factorChom in eq 3.1 is5

whereh is Planck’s constant andNc is the number of molecules
in contact with a unit area of ice surface. Using eqs 3.1 and
3.6, we can write

Solving forT, we obtain an equation for the critical temperature
of homogeneous freezing

rd )
2σsa

-FwLm
ef ln[(T0/T)Sw

G exp(-Hm)]
(2.19)

Hm )
Fw

Fi
(∆F∆p

Fw
+

2σia

rcr
)/(FwLm

ef) (2.20)

Jh(T,Sw) ) Ch(T) exp(-
∆Fact(T) + ∆Fcr(T,Sw)

kT ) (3.1)

∆F(r) ) -(Fw - Fi)(
4/3)πr3Fi + 4πr2σis (3.2)

∆Fcr ) 4
3
πσisrcr

2
f(mis,x) )

16π
3

σis
3f(mis,x)

{FiLm
ef ln[T0

T
Sw

G exp(-Hv,fr)]}2
(3.3)

f(m,x) ) (1/2){1 + [(1 - mx)/y]3 + x3(2 - 3ψ + ψ3) +

3mx2(ψ - 1)} (3.4)

ψ ) (x - m)/y, y ) (1 - 2mx+ x2)1/2

∆Fcr )
(16π/3)σis

3f(mis,x)

[FiLm
ef ln(T0

T
Sw

G) - Cεε
2]2

(3.3a)

rcr )
2σis

FiLm
ef{ln[T0

T
Sw

G exp(-
AF∆p + 2σsa/rd

FiLm
ef )]}

(3.5)
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πσisrcr
2 )

16π
3

σis
3

{FiLm
ef ln[T0

T
Sw

G exp(-
AF∆p + 2σsa/rd

FiLm
ef )]}2

(3.6)

Chom(T) ) 2Nc(Fw

Fi

kT
h )(σis

kT)1/2

(3.7)

∆Fcr ) -kT ln
Jhom

Chom
- ∆Fact )

16π
3

σis
3

{FiLm
ef ln[T0

T
Sw

G exp(-
AF∆p + 2σsa/rd

FiLm
ef )]}2

(3.8)
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whereLm
ef, Fi, Chom, σis, and∆Fact are functions of temperature

and should be evaluated at the same values ofTf,hom as on the
left-hand side of eq 3.9. An equation follows from eq 3.9

that formally resembles the Clapeyron equation valid for melting
transition in a one-component system5,9 but is derived here for
freezing with finite nucleation rate and a multicomponent
system. For the particular case of constant external pressure
(∆p ) 0) and large drops (rd f ∞), the first exponent on the
right-hand side of eq 3.9 vanishes. For pure water drops,Sw )
1, and only nucleation rate in the last exponent regulatesTf,hom.
For solutionsSw < 1, this leads to the lowering ofTf,hom as
shown in the next section.

3.2. Volume Heterogeneous and Surface Quasi-Hetero-
geneous Freezing.For the case of volume heterogeneous
freezing of an ice crystal, the heterogeneous nucleation rate is
described by eq 3.1, where the normalizing factor for hetero-
geneous freezing on the surface of an aerosol particle with radius
rN is1,5

wherec1s is the concentration of water molecules adsorbed on
1 cm-2 of a surface. Solving eq 3.1 for a heterogeneous process
we obtain

Now, equating eq 3.11 to eq 3.3 for∆Fcr and solving forT, we
obtain the volume heterogeneous freezing temperature

When a solid is incompletely wettable by its own melt with
the contact angleθis, surface freezing in the absence of the
foreign substances can be considered as a quasi-heterogeneous
nucleation of an ice germ at the drop surface. Then the critical
free energy of an ice germ at the liquid/air interface can be
written as in Defay et al.,3 which using eq 2.14 forrcr becomes

wheref(mis) andHs,fr are defined by eqs 3.4 and 2.15, andmis

is the cosine of the contact angleθis between ice and its own
liquid (water or aqueous solution). Equating eq 3.13 to eq 3.11
for ∆Fcr and solving forT, we obtain the surface freezing

temperature

whereJs,fr andCs,fr are the nucleation rate and normalizing factor
for surface freezing; their exact appearance is not important for
us now for the reason explained below.

3.3. Surface Melting.For incomplete wettability, a particular
case of surface melting considered here is a quasi-heterogeneous
process of a liquid germ nucleation on the surface of a crystal.
The critical free energy for the type of surface melting
considered here can be written as for the solid/air interface3

and using eq 2.19 forrd as

wheref(mis) andHm are defined by eqs 3.4 and 2.20 andmis is
again the cosine of the contact angle between ice and its own
liquid. Equating eq 3.11 to 3.15 for∆Fcr and solving forT, we
obtain the melting temperature

whereJs,mandCs,mare the nucleation rate and normalizing factor
for surface melting. For complete wettabilityθis ) 0, mis ) 1,
f(mis ) 1) ) 0, and∆Fcr ) 0, there is no energy barrier for
nucleation. For ice surface freezing or melting,θis is nonzero
but very small,60-63 θis ≈ 0.5-2° andf(mis) f 0, the arguments
in the second exponents in eqs 3.14 and 3.16 tend to zero, and
the exponents tend to 1. Then the expressions for the surface
freezing and melting temperatures are simplified

These expressions do not depend onJh andCh, owing to the
small contact angle between water and ice. For substances when
θis is not so small (e.g., some metals15,62,63), eqs 3.14 and 3.16
should be used, and the last exponent can make contributions
loweringTs,fr and raisingTm. Equation 3.18 allows for a simple
calculation of the melting point depression with increasing
pressure. Differentiating eq 3.18 byp, we obtain

Tf,hom(∆p) ) T0Sw
G(T) exp[- 1

FiLm
ef(∆F∆p

Fw
+
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rd
)] ×
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efFi
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(3.9a)
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For a particular case of bulk pure ice (rcr f ∞, Sw ) 1), eq
3.19 is simplified and converts into the Clapeyron equation used
for explanation of the dependenceTm(p) near the triple point,6

T0 ) 273.15 K, and yields dTm/dp ) -1/138 K atm-1, close to
the experimental values.5,6,15

3.4. Liquidus Curves.Equations 3.17 and 3.18 forTs,fr and
Tm at ∆p ) 0 and largerd andrcr or bulk solutions are reduced
to

which indicates the reversibility of slow surface freezing and
melting. Equation 3.20 is nonlinear in solution concentration
and is valid not only for dilute solutions but for all concentra-
tions. It describes liquidus curves with high accuracy over a
wide range of solution concentration, as will be illustrated in
section 4. For the particular case of a dilute solution,Sw ≈ 1 -
Xs, with Xs being the mole fraction, and expanding eq 3.20 in
power series,Ts,fr can be presented in a linear approximation
as

where eq 2.7 is used forG and ml is a slope of the liquidus
curve. Equation 3.20a is a known linear approximation for the
liquidus9,15,16 or for the ideal freezing point depression. Note
that the difference betweenTs,fr andTm for ice may be caused
by the small values of the segregation coefficientks (ratio of
amount of salt trapped in ice on freezing to amount in solution),
which is typically5,9,15∼10-6 to 10-4, although the amount of
salt trapped on seawater freezing in the Arctic can be as high
as 14 practical salinity units (psu) due to entrapped brine
pockets,9 almost half of the salt concentration in the upper
ocean,9 30 psu.

3.5 Freezing and Melting Point Depressions.The freezing
and the melting point depressions,∆Tf,hom and∆Tm, and their
relation are often given as21-27,32,39,47-54,55

whereTf0 ) 38 K (spontaneous freezing is assumed to start
around-38 °C, or T0 - Tf0 ) 235 K which is therefore a
reference point for the freezing depression) andTf,hom andTm

are evaluated from experimental data on freezing and melting.
The definition ofλ from eq 3.21a is an empirical relation, and
the value of∆Tf,hom required for numerical cloud models or
analysis of the laboratory experiments is taken usually from
experimental data55,56on ∆Tm, and the averageλ ) 1.7 is often
used.21-27,32,39We can now calculateλ from the theory as

whereTf,hom andTm are evaluated from eqs 3.9 and 3.20.

4. Comparison with Observations of Melting and
Freezing Temperatures

The equations derived in section 3 representTf and Tm as
functions of Sw and nucleation ratesJhom and Jhet. These

equations contain several functions ofTf or Tm on the right-
hand side; they are transcendental algebraic equations and can
be solved using an iterative procedure. Numerical tests show
that two to three iterations provide a convergent solution.
Calculation of Tf and Tm requires data on the temperature
dependence of the melting heatLm(T) or Lm

ef(T), ∆Fact, water
and ice densities, and data on the temperature and composition
dependence of the surface tensions. These data remain uncertain,
especially atTc below -38 °C, due to the difficulties of
measurements at these temperatures.1-6,9,21,22,27-30,38-44,74It was
emphasized in a recent international Cirrus Parcel Model
Comparison Project (CPMCP)39 that seldom are all of the
quantities available from direct measurements for a given
solution. Typically, direct data for one to two parameters are
used, and the others are inferred from measurements of the
nucleation rates or freezing temperatures. One of the most
successful recent attempts to reproduce experimental data on
sulfuric acid solution drops freezing at low temperatures47,48

was performed by Tabazadeh et al.,30,43 where fits were found
for Lm(T) andσis(T, Xs).

Here, we adopt a similar method. First, choosing the data on
Lm(T) that is very similar in different sources,2,43,74 we ap-
proximate it asLm(T) ) cLT[tanh(T - T1)/T2 + 1.6]; the best
fit down to 160 K was found withT1 ) 215 K, T2 ) 40 K, cL

) 8.82, whereLm is in cal g-1 andT is in K. This representation
allows integration overT to obtain the effectiveLm

ef(T) defined
after eq 2.5. The values ofσsawere determined by using data30,43

with subsequent tuning in order to obtain the best agreement
for Tf over the entire temperature range. The best fits were for
ammonium sulfate,σsa ) 143.8- 0.249T - 0.97w + 3.4 ×
10-2(Tw) - 3.5× 10-5(w3), and for sulfuric acid,σsa) 137.56
- 0.225T -0.98w + 3.395× 10-2(Tw) -5.1 × 10-5(w2) -
1.24 × 10-4(w3), whereσsa is in ergs,T in K, and w is the
percentage concentration by weight. The values ofσis were
calculated from Antonoff’s rule5,43 with σia ) 105 erg cm-2;
the values ofσis for pure water match the values measured by
Ketcham and Hobbs.60 Numerical tests show that the values of
Tf are less sensitive to the∆Fact. The choice75 of ∆Fact was
satisfactory. The effects of the particle curvature on surface
tensions are small2,5 in the range of sizesg0.2 µm were
considered in the following sections and were neglected.

Data on freezing of solution drops are contradictory. The data
generally converge around-40 °C for pure water, but values
of Tf,hom diverge as solution concentration increases andTf,hom

decreases.21,22,47-51,53,54Here, we tuned the parameters to data
that are in the middle of that diverging range.48,51,52If the initial
concentration of drops before freezing isN0, then the concentra-
tions of frozenNf and unfrozenNu drops are determined by the
relations5

whereVd ) 4/3πrd
3 is the drop volume,rd is the droplet radius,

andτfr is the characteristic “freezing time”. We assumed in most
calculations thatJhomVdτfr ) 1 (i.e., freezing temperatureTf is
defined by an e-folding decrease ofN0 during τfr). This
assumption implies that the nucleation rate is determined by
Jhom ) (Vdτfr)-1. It is seen from eq 4.1 that 99% of drops freeze
during 4.6τfr. In most calculations,τfr ) 1 s,rd was varied, and
thenJhom was evaluated as indicated.

For ease of comparison with observations, the results of
calculations are presented as functions of water saturation ratio
Sw and weight concentrationw ) ms/(ms + mw)100%, where
ms and mw are the masses of solute and water in solution,

Ts,fr(∆p ) 0) ) Tm(∆p ) 0) ) T0Sw
G(T) ) T0Sw

RT/MwLm
ef

)

T0aw
RT/MwLm

ef
(3.20)

Ts,fr ) T0(1 - Xs)
G ≈ T0 - GT0Xs ≈ T0 + mlXs (3.20a)

ml ) -RvT0
2/Lm) -103.1 K

∆Tf,hom ) λ∆Tm (3.21a)

∆Tf,hom ) T0 - Tf0 - Tf, ∆Tm ) T0 - Tm (3.21b)

λ(T) )
T0 - Tf0 - Tf,hom(Sw,rd)

T0 - Tm(Sw)
(3.22)

Nu ) N0 exp(-VdJhomτfr), Nf ) N0 - Nu (4.1)
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respectively. Water saturation ratios and activities were related
to w and molalityM̂ using the usual relation5,21 M̂ ) 10w/[Ms/
(1 - w/100)], with Ms being the molecular weight, and
parametrizations ofaw via M̂ or w for ammonium sulfate,76

sulfuric acid,32,77 and NaCl.9,79

The homogeneous freezing temperatureTf,hom for p ) 1 atm
is presented in Figure 1. Calculations were performed using eq
3.9 for sulfuric acid (Ms ) 98) and ammonium sulfate (Ms )
132),τfr ) 1 s, and for the solution drop radiird ) 5 µm and
0.2 µm. Figure 1 shows that the values ofTf for pure water (w
) 0, Sw ) 1) are 231 K (-42 °C) for rd ) 0.2 µm and 235.2
K (-38 °C) for rd ) 5 µm. Thus, eq 3.9 along with the fits for
the parameters described above yields the well-known temper-
atures near-40 °C, typically referred to as “the temperature of
spontaneous freezing of pure water drops”.1-6 Calculated
variation of Tf,hom with w, being in excellent agreement with
parametrizations of laboratory data,48,51depends on the chemical
nature of the solute (Figure 1a).

However, Figure 1b shows thatTf,hom(Sw) exhibits colligative
properties, whereby the curves for ammonium sulfate and
sulfuric acid forrd ) 5 µm almost coincide and merge with the
experimental parametrizations presented here as functions of
Sw. This is in agreement with the results showing experimental

data onTf,hom for 18 substances52aand for several alkali halides78

that, being plotted as a function of water activity (aw ≈ Sw), lie
nearly on the same curve,52 and with the explanation of this
fact with the water-activity-based theory of homogeneous ice
nucleation by Koop et al.52 Figure 1b shows that the decrease
in rd from 5 to 0.2µm results in a decrease ofTf,hom by 4 K,
which is also in agreement with experimental data.1,4,5,45Tf,hom

calculated forrd ) 0.2 µm lies lower as a whole, which can
contribute to the residual difference for polydispersed drop
spectra (seemingly noncolligative, i.e., depending not only on
Sw).

Similar calculations with eq 3.20 of the melting temperature
Tm or surface freezing temperatureTs,fr (liquidus curves) atp
) 1 atm for ammonium sulfate, sulfuric acid, and NaCl are
shown in Figure 2, again exhibiting a good agreement with
experimental data. Note that these results do not depend on

Figure 1. (a) Homogeneous freezing temperatureTf,hom as a function
of the weight concentration. Calculations from eq 3.9 for solution drops
of 5 µm for ammonium sulfate (solid circles) compared to the
parametrization from Bertram et al.51 (B00) and calculations for sulfuric
acid droplets of 5µm (diamonds) compared to the parametrization from
Koop et al.48 (K98). (b) Homogeneous freezing temperaturesTf,hom as
functions of water saturation ratio calculated from eq 3.9 as described
in the text after secondT iteration for the haze drop radiusrd ) 0.2
µm (solid circles) and forrd ) 5 µm (diamonds), parametrizations of
Bertram et al.51 for Tf,hom of ammonium sulfate (asterisks, B00), and of
Koop et al.48 for sulfuric acid (triangles, K98) recalculated from their
weight concentrations toSw.

Figure 2. (a) Melting temperatures as functions of weight %, calculated
(labeled “mod”) from eq 3.20 for ammonium sulfate (closed circles),
sulfuric acid (closed diamonds), and NaCl (crosses), compared to the
corresponding experimental data (labeled “exp”). Saturation ratioSw

is assumed to be equal to water activity, which is calculated for
ammonium sulfate with eqs from Tang and Munkelvitz76 and for sulfuric
acid from Chen77 and DeMott et al.32 Experimental data onTm for
ammonium sulfate and sulfuric acid are taken from corresponding
figures in DeMott.22 The experimental parametrization ofTm(s) for NaCl
as a function of salt concentrations (psu) is taken from Curry and
Webster9 and Millero79 and recalculated froms to water activity. (b)
The sameTm calculated with eq 3.20 as in Figure 2a, but recalculated
from the weight percent to water activity (or saturation ratio).
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surface tension or droplet radius and weakly depend on the
melting heat in the considered range. Again, the results as a
function of weight concentrationw differ for the three indicated
chemical species (Figure 2a) but merge as a function ofSw,
exhibiting a colligative property ofTm (Figure 2b), in agreement
with Koop et al.52a,bThus, Figure 2 shows that eq 3.20 can be
used with sufficient accuracy for calculations ofTm for standard
pressure.

One of the most interesting and important applications of this
theory is calculation of the freezing and melting point depres-
sions,∆Tf,hom and∆Tm, and their ratio,λ, which is used in cloud
models. Measured values of∆Tf,hom and∆Tm for micron-sized
drops for several substances exhibit a linear relation.55 It was
hypothesized55 that this is in conflict with classical nucleation
theory, and it could be explained by the relation of thermody-
namic and kinetic processes and by spinodal decomposition in
ice formation of aqueous electrolytes. This conjecture was
challenged by Martin21 who stressed that an explanation of this
relation remains an open question. At present, the nature and
magnitude ofλ still remain unclear. Here we use eqs 3.9 and
3.20 to calculate∆Tf,hom and∆Tm for rd ) 5 µm with the same
parameters as used for Figures 1 and 2 and then calculateλ
with eq 3.22 and compare with laboratory data22,55 and the
experimental parametrization for sulfuric acid48 (Figure 3).

To illustrate also the effect of drop radii, we have chosen the
freezing thresholdTf0 ) 38 K in the definition eq 3.21b of
∆Tf,hom for rd ) 5 µm as it is usually done in retrievals ofλ
from experimental data (Figure 1b). As seen in Figure 3a, the
calculated freezing point depression exhibits a relation that looks
quasi-linear on the∆Tf,hom - ∆Tm diagram. The experimental
data forTf,hom lie mostly between the regression linesλ ) 1.5
and 2 up to∆Tf ≈ 10 K, and the curve calculated here forrd )
5 µm matches the observations. For higher values of∆Tf up to
∼45 K, experimental data48 lie closer toλ ) 2 and so does the
calculated curve. We can draw the following conclusions from
Figure 3a: (a) classical nucleation theory is capable of describ-
ing the quasi-linear relation between the freezing and melting
point depressions and can be used in cloud models for evaluation
of λ or directly forTf,hom; (b) a more detailed theoretical analysis
should include kinetic simulation of the freezing of a polydis-
persed drop ensemble (as it is done in some cloud
models28,29,36b,39) because freezing proceeds from larger to
smaller drop sizes and the values ofTf,hom andλ determined in
experiments may depend on the fraction and size of frozen
drops.

Direct calculation of the parameterλ ) ∆Tf/∆Tm with eq
3.22 (Figure 3, parts b and c) shows that it is not a constant
because it depends on chemical composition andSw. The
calculatedλ(w) for ammonium sulfate and sulfuric acid (Figure
3b) depends on the chemical composition, but the curves are
relatively close to each other and to the curves derived from
laboratory data.47,48λ(w) varies mostly between 1.9 and 2.2, in
agreement with the previous analysis of experimental data for
these substances.22 When plotted asλ(Sw) (Figure 3c), the curves
almost merge, exhibiting again colligative properties as both
∆Tf,hom and ∆Tm (Figures 1b and 2b), in agreement with
previous concepts.52 The valuesλ(Sw) are not constant but
exhibit a monotonic growth with decreasingSw, and use of
constantλ in cloud models may lead to the errors in∆Tf,hom.
The difference slightly increases at smallw or Sw f 1, but both
calculations and measurements become less reliable at small
solute concentrations (orSw f 1) because both∆Tf,hom and∆Tm

decrease and even a small error in each of these quantities may
lead to an increasing error in their ratioλ.

Calculations with varyingrd (not shown here) demonstrate
thatλ also may depend on the drop size, becauseTf0 increases
with decreasing drop sizerd (recall, the threshold temperature
Tf0 ≈ 38 K for rd ) 5 µm and 42 K for 0.2µm, Figure 1), and
no single value is representative for the ensemble of drops. So,
different thresholdsTf0 should be chosen for various drop radii,
which illustrates a problem in the analysis of experimental data

Figure 3. (a) Calculated relation∆Tf - ∆Tm for the 5 µm solution
droplets of sulfuric acid (diamonds) compared to the experimental data
by Koop et al.48 for sulfuric acid and to the experimental data compiled
by DeMott;22 correlationsλ ) ∆Tf/∆Tm ) 1.5 andλ ) 2 are given for
comparison. (b) Parameterλ(w) calculated with eq 3.22 for the drop
radii of 5 µm as a function of weight concentration for ammonium
sulfate and sulfuric acid compared toλ calculated with the experimental
Tf,hom from Koop et al.48 and DeMott22 for sulfuric acid (K98-D02)
and from Bertram et al.51 and DeMott22 (B00-D02) for ammonium
sulfate and withTm shown in Figure 2. (c)λ as a function of water
saturation ratio for ammonium sulfate and sulfuric acid.
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obtained with polydispersed drops and in the evaluation ofλ
using the theory as it is done here.

A preliminary recommendation for the cloud models could
be as follows: (a) if a model allows, then use directly the
approaches based on the classical theory for the nucleation rates
rather than theλ-approach; (b) if such calculations are too time-
consuming for a specific model, then the average values ofλ
can be used, but with caution, especially in models with
polydispersed drops.

5. Comparison with Experimental Data for Variable
Pressure

Calculations of freezing and melting point temperatures under
conditions of variable pressure are sensitive to variations in the
density of liquid and solid water,Fw(T,p) andFi(T,p). We use
a standard parametrization5 for Fi(T) for ice Ih. Experimental
data onFw(T,p) below T ) -40 °C is scarce, andFw(T,p) is
taken from the equation of state for liquid water,75,80molecular
dynamics simulations,81-83 or experiment where possible.84 We
have used available data and, in addition, eq 3.9a to estimate
variations ofFw(T,p) from the slopes dTf,hom/dp in the experi-
mental data of Kanno and Angell57,58 for Tf,hom. We have from
eq 3.9a for∆F ) Fw - Fi

The results described below were obtained using referenced
values75,80-85 of ∆F and values estimated from eq 5.1 using the
corresponding data57,58,84,85on dTf,hom/dp and dTm/dp.

Equation 3.9 includes the simultaneous effects of pressure
and chemical composition onTf,hom(∆p). The effects of com-
position (Sw < 1) atp ) constant were analyzed in the previous
section, and now Figure 4 presents freezing temperatures
Tf,hom(p) calculated with eq 3.9 as a function of pressure for
pure water (Sw ) 1). A comparison of theoretical and experi-
mental results in Figure 4 exhibits good agreement over the
entire temperature and pressure ranges, indicating the validity
of eq 3.9. Note that the experimental data show the change of
the sign of the slope atp ≈ 2 kbar. This is caused by the
nucleation of ice III, which begins atp ≈ 1.8 kbar and prevails57

at pressures higher than 2 kbar (a possible relatively wide
temperature range of coexistence of ice I and ice III atp )1

atm was explained86 by the polydispersed structure of finely
dispersed ices). This transition in Figure 4 is explained simply
by eqs 2.6, 3.9, and 5.1 because the pressure dependence of
freezing temperature is determined by the difference (Fw - Fi)
and the density of ice III is greater6 than that of ice Ih, the
slopes dTf,hom/dp may vary and change sign at abrupt changes
of the ice densities. We do not analyze this effect here in detail,
because this requires more precise data onFi andFw.

Similar calculations were performed for pressure-induced
melting ice temperatureTm using eq 3.16 for bulk ice (rcr ) ∞)
andSw ) 1 (pure water) (calculations using eq 3.18 give similar
values due to small contact angle at water-ice interface). The
results are compared in Figure 5 with experimental data.84,85,87

One can see that the experimental curve84,85 has two distinct
branches and the slopes change atp ≈ 0.5 GPa, which also is
explained84,85 by the change near this point of ice type from
hexagonal Ih to the other types of ice with higher densities (ice
III or ice V). Figure 5 shows that the values ofTm calculated
from eq 3.16 and 3.18 are very close to both experimental curves
up to p ) 0.5 GPa, but the difference between calculated and
observed values increases at higher pressures withFi(T) )
constant. Agreement becomes a little better with a linear increase
in Fi(T) by 0.04 g cm-3 over the rangep ) 0.6-0.8 GPa (this
could imitate admixture of the other denser ice84,85); however,
the discrepancy still remains. Computer lattice dynamics simula-
tions82,83 determined that melting is caused by thermodynamic
instability up top ≈ 0.5 GPa and by mechanical instability at
higher pressures. Our results are consistent with this conclusion,
satisfactorily describing the upper branch of theTm curve top
≈ 0.5 GPa but worsening for higherp values. Thus eqs 3.16
and 3.18 can serve for simple calculations ofTm(p) for pure
water up top ) 0.5 GPa; its predictions for pressure-induced
melting with account of solutions (Sw < 1) could be verified
experimentally.

An interesting question on the equivalence of the pressure
and solution effects on freezing and melting temperatures57,58,88

was explained by the similar effect of solution and applied
pressure on the hydrogen bonding network and by showing that
the plots ofTf(aw) andTf(p) are similar; this effect was described
by introducing the “effective” solution concentration.52a A
simple quantitative expression for this equivalence can be easily

Figure 4. Homogeneous nucleation temperaturesTh,homcalculated with
eq 3.9 for pure water as a function of pressure (circles) and compared
to the experimental data from Kanno and Angell57 (triangles, KA77).

∆F ≈ -
FwFiLm

Tf,hom
(dTf,hom

dp ) (5.1)

Figure 5. Melting temperature for the pressure-induced melting of
ice calculated using eq 3.16 as a surface melting process withFi(T) )
constant (crosses) and with linear increase of ice densityFi(T) by 0.04
g cm-3 in the rangep ) 0.6-0.8 GPa (solid circles) compared to the
experimental data of Mishima and Stanley84,85 down to∼80 K (open
circles, MS) and to Wagner et al.87 down to 251 K (triangles, WSP).
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found from eq 2.6 forrcr(T, Sw, p), which shows that variations
in solution concentration (Sw) are equivalent to pressure varia-
tions. It is seen from eq 2.6 that this equivalence can be
expressed asSw

G ) exp(-Hv,fr), which is simplified for bulk
solutions (rd ) ∞) and homogeneous freezing (ε ) 0) as

Equation 5.2 expressesSw (or equivalent molality) as a function
of p. Solving for ∆p, we obtain

This equation shows that a decrease inSw (increase in solution
molality) is equivalent to an increase in∆p, with proportionality
determined by the functionQ that depends on the densities and
temperature. The proportionality is∆p ∼ -T ln Sw with the
constant densities, although they in turn depend onp and T.
The value ofQ is very large,Q ≈ 104 atm atT ≈ 273 K and
increases with decreasingT so that a saturation ratioSw ) 0.9
(ln Sw ≈ -0.1) is equivalent to a pressure of 103 atm atT ≈
273 K. Thus, eqs 5.2 and 5.3 establish the equivalence of the
distortion of the crystalline lattice by the chemical forces and
mechanical pressure. This is illustrated in Figure 6, which
presents the∆p-Sw relation calculated with eq 5.3 in the same
way as the previous two figures. For comparison, we plotted
also the two experimental points57 that show the equivalence
of p ) 1000 bar to molality of NaClM̂ ) 2.75 (R ) 20) and
p ) 1500 bar toM̂ ) 4.65 (R ) 12) for both freezing and
melting temperatures (recalculated from molalities toSw). Figure
6 shows good agreement of the curve calculated with eq 5.3
with the experimental data and confirms the validity of these
equations, which therefore can be used for the prediction of
the pressure effects onTf,hom andTm given the solution effects,
or vice versa.

6. Summary and Conclusions

The processes of volume and surface freezing and melting
of aqueous solutions are considered in the context of generalized

classical nucleation theory, with the goal of improving under-
standing of melting and freezing processes. General equations
are derived for the critical radii and energies of the ice and liquid
germs that are expressed as functions of temperatureT, water
saturation ratioSw (or solution concentrationw), and external
pressurep. The derived equations for the critical radii and
energies of the ice and liquid germs can be applied to both
homogeneous and heterogeneous nucleation, including variable
pressure, and reduce to the traditional expressions for particular
cases of homogeneous nucleation of pure water, heterogeneous
nucleation, constant pressure processes, and solutions.

By use of these expressions, equations are derived for the
heterogeneous, quasi-heterogeneous, and homogeneous freezing
temperaturesTf, whereby freezing is considered as a process
of ice germ formation that occurs on the surface of the foreign
particles within the volume of supercooled liquid for hetero-
geneous freezing, on the surface between liquid and its own
solid for quasi-heterogeneous freezing, and within the bulk
volume for homogeneous freezing. Similar equations are
obtained for the melting temperatureTm, viewing melting as a
process of quasi-heterogeneous liquid germ formation on the
ice crystal surface. The quantitiesTf andTm are expressed as
analytical functions of external variables (water saturation ratio
or solution concentration, pressure, nucleation rate, and contact
angle) and on thermodynamic parameters (latent heat, interfacial
surface tensions, activation energy, and densities of water and
ice). The derived expressions forTf andTm are transcendental
algebraic equations that are solved numerically using an iterative
procedure, allowing simple and rapid calculation of freezing
and melting temperatures over the entire range ofSw or w and
p values.

The theory has been illustrated here by application to pure
water and aqueous solutions of several substances (ammonium
sulfate, sulfuric acid, and NaCl); however, this method allows
easy calculations for many other solutions. The theory correctly
describes the decrease ofTf and Tm with increasing solution
molality and pressure and decreasing drop radii. Comparison
of the calculated values ofTf,hom and Tm with existing
experimental data on freezing1-6,45-48,51-53,55,56 and melt-
ing15,21,22,52,55,56shows in general good agreement. Calculated
values ofTf,hom andTm, plotted as a function of water saturation
ratio, exhibit mostly colligative properties, in agreement with
experimental data.48,51,52,57,58,89Some observed residual differ-
ences may be associated with the lower freezing temperatures
of smaller drops in polydispersed ensembles.

Having calculated the melting and freezing point depressions,
∆Tf and∆Tm, we calculated the empirically derived parameter
λ ) ∆Tf/∆Tm and showed that the quasi-linear ratioλ is not in
conflict with classical nucleation theory as previously thought55

and that λ is not strictly a constant but is a function of
temperature, saturation ratio, and radius of freezing drops.
However, the average valuesλ ) 1.7-2 used in applica-
tions21-27,32,33,39can be a realistic approximation for drops of a
few microns.

This method reasonably describes the pressure dependence
of Tf,hom and Tm including the change of slopes dTf/dp when
the type of nucleated ice varies and allows establishment of a
quantitative equivalence between pressure and solution effects
with a simple equation. However, this theory does not predict
the change of the ice type because it does not consider the
symmetry of the phases in its current state. The approach
described here can be used not only for freezing and melting
temperatures but also for estimation of the spinodal temperatures
including negative pressures,5,80,84,90-94 where the pressure

Figure 6. Equivalence of pressure and saturation ratio or molality
expressed with eqs 5.2 and 5.3. Calculated curve (circles) and two points
from Kanno and Angell57 (crosses) that are expressed in that work as
equivalence ofp ) 1.0 kbar (0.1 GPa) toR ) 20 (M̂ ) 2.75) andp )
1.5 kbar (0.15 GPa) toR ) 12 (M̂ ) 4.65); R is defined57 as R )
M̂/55.5.

Sw
G ) exp(- ∆F∆p

FiFwLm
ef) (5.2)

∆p ) -Q ln Sw, Q(T,p) )
RTFiFw

Mw(Fw - Fi)
(5.3)
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dependence ofrcr and∆Fcr is often neglected. The evaluation
of glassy transitions with this method and more precise
evaluation of spinodal lines might be possible using an equation
of state that predicts water density75,81or considering Landau’s
parameter of order95 for the phase symmetry.93,94

Classical nucleation theory depends critically on the thermo-
dynamic parameters latent heat, interfacial surface tensions,
activation energy, and densities of water and ice; incorrect choice
of these parameters may result in apparent failure of the entire
theory.5,41 The impact of emulsions and other different experi-
mental conditions on these quantities could explain at least some
differences in the measuredTf,hom(w).21,22,47-54 There are dif-
ferent and sometimes contradicting parametrizations of these
quantities, because their determination at low temperatures is
not a simple task. Hence, reliable measurements or reconstruc-
tion of these parameters for various substances, especially at
low temperatures and high pressures, are needed to confirm and
advance our understanding of freezing and melting.

Note finally that the nonclassical nucleation theories
(e.g., kinetic or cluster approaches and density functional
theory21,73,84,96,97) are free of some limitations of the classical
theory (e.g., from the concept of surface tension) and hold
promise for the future. However, the nonclassical theories are
used mostly for studies of fundamental features of phase
transitions and have not yet been incorporated into atmospheric
models, where classical theory still remains the main tool in
calculations of the nucleation rates as reviewed in the Introduc-
tion. The extensions of the theory presented in this paper allow
their simple direct inclusion into the cloud and other geophysical
models for evaluation of the nucleation rates of freezing and
melting for various temperatures, solution compositions, and
pressures, especially for the cases with simultaneous variation
of these parameters.

Nomenclature

AK, coefficient in Kohler equation.
AF ) 1 - Fi/Fw, density function.
aw, ai, the activities of water and ice.
Ch, Chom, Chet, preexponential factors.
Cε, constant of the misfit strain energy.
∆Fact, activation energy.
∆Fcr, critical germ energy.
f(mis, x), geometrical factor of heterogeneous freezing.
G ) RT/(MwLm

ef), dimensionless parameter.
Hv,fr, Hs,fr, Hm, functions defined by eqs 2.7, 2.15, and 2.20.
h, molar enthalpy.
Jh, general notation for nucleation rate.
Jhom, Jhet, homogeneous and heterogeneous nucleation rates.
k, Boltzmann constant.
Lm, specific latent heat of melting.
Lm

ef, effective melting heat defined after eq 2.5.
M̂, molality.
Mw, Ms, molecular weights of water and solute.
mis ) cosθis, wettability parameter.
ms, mw, masses of solute and water in solution.
N0, Nf, Nu, concentration of drops before freezing, and of

frozen and unfrozen drops.
p, p0, pressure and initial pressure.
pw, pi, pressures inside drop and crystal.
∆p ) p - p0.
rcr, rd, radii of ice/liquid germs and of crystal/drop.
rN, radius of insoluble particle.
R, universal gas constant.
Sw. water saturation ratio.

T, T0, temperature and triple point temperature.
Tf, Tf,hom, Tf,het, homogeneous and heterogeneous freezing

temperatures.
Tm, melting temperature.
∆Tf, ∆Tm, freezing and melting point depressions.
Vd, drop volume.
Vw, Vi, specific volumes of water and ice.
w, weight concentration of solute.
δw ) Sw - 1, water supersaturation.
ε, elastic misfit strain.
λ, an empirical coefficient in∆Tf/∆Tm relation.
µk, molar chemical potential ofkth substance.
µk0, chemical potential of pure kth substance.
θis, contact angle at the ice-substrate interface or at the

solution-ice interface.
Fw, Fi, densities of water and ice.
∆F ) Fw - Fi.
σis, σsa, σia, surface tensions at the ice-solution, solution-

air, and ice-air interfaces.
τfr, characteristic “freezing time”.
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