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Thermodynamic Theory of Freezing and Melting of Water and Aqueous Solutions
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This paper examines the freezing and melting of water and aqueous solutions in the framework of classical
nucleation theory. On the basis of thermodynamical principles, general equations for the critical germ radius
and free energy are derived that express these properties as functions of temperature, solution molality, pressure,
and finite size of freezing/melting particles. This theory is applied to the study of lepatid phase
transitions: homogeneous, heterogeneous, and quasi-heterogeneous freezing of aqueous solutions and surface
melting of ice. Simple analytical expressions for the corresponding freezing and melting critical temperatures
are derived and solved numerically using an iteration procedure, whereby the melting and freezing temperatures
are calculated for solutions with various chemical compositions, concentrations, and pressures. Comparison
of the theory with experimental data shows good agreement and indicates that this approach allows reproduction
of measured melting and freezing temperatures as functions of solution molality (or water saturation ratio)
and pressure over wide ranges for many geophysical applications.

1. Introduction nucleation rate3?29:34,35,37.39.40. i cluding further development
] ] ) and refinements of the theory itséif5:21.22,28-36,39.41-44 \|gre

Freezing and melting of water and aqueous solutions plays frequently, models use various parametrizations of nucleation
an important role in many geophysical processes. The glaciationates or freezing temperatures that are explicitly or implicitly
of clouds~¢ influences their radiative properties, precipitation, e|ated to classical nucleation the @y 27:32:3338,39.44
planetary albedo, and climatel® Seawater freezing and melting Because laboratory data on freezing temperatures are still
control global sea ice cover, and formation of ice in leads and \ncertain and direct calculation of the nucleation rates is faced
polynyas in polar seas dominates the heat and moisture exchang@itn uncertainties in the input parameters, one of the most
between the polar atmosphere and ocedhice crystalsinthe  frequently used methods of determining freezing temperatures
polar stratosphere play a key role in the chemical reactions that;g 5, empirical linear relation between depressions of the
lead to formation of ozone holéd4 The processes of homogeneous freezing temperattie® ATipom and bulk

premelting (melting below bulk triple point) are involved in  melting temperaturesATm, as ATipom = AATm. This

environmental phenomena such as frost héavesliding of approach®2527.323%yjth | = 1.7 and experimental data ¥,

glaciler§j’17 and glectrlflcatlon of clouds and lightnirig®+? yields reasonable nucleation rates and crystal concentrations and
Cirrus clouds in the upper troposphere covet-30% of the is currently used in many models. However, recent laboratory

globe?® and substantially influence the global radiative budget observation®-2239indicate thati is not a universal constant:
and atmospheric chemisty®21-221t is commonly accepted  values ofi are different for various substances and depend on
that cirrus clouds form by direct freezing (homogeneous or temperature and molality of solution drops, varying over the
heterogeneous) of aqueous solution drops (haze partf#ét€8).  range 1.5-3, and may exce&® 5.
However, the mechanisms of freezing, and their parametrization  The question arises as to whether it is possible to derive both
in cloud and climate models, remain very uncerfaif®3°This ATthom and ATm and theATinom — AT relation from theory
uncertainty has stimulated numerous laboratory, field, and and to relatel to basic physical quantities. Although Rasmus-
theoretical studies of freezing at low temperatures of various serf> supposed that this relation cannot be explained by classical
aqueous solutions, directed to understanding cirrus formation. nucleation theory, the sufficiently close agreement of nucleation
Laboratory experiments on homogeneous freezing temperaturesates calculated with classical nucleation theory and withi.the
and nucleation rates for solutions have provided an understand-elatiort39suggests that this empirical relation could be derived
ing of the general features of homogeneous freezing at low from classical nucleation theory. Moreover, if such a derivation
temperatures. However, there are still significant discrepancieswas possible, then a link could be established between homo-
among the various experimental resglt:2229.3854 geneous freezing processes at low temperafliigs, < —35

Two different approaches have been used in theoretical °C (e.g., cirrus and polar stratospheric clouds) and freezing
studies and recent models of cirrus formation. Several modelsmelting processes at higher temperature® (o —30 °C) that
directly use classical nucleation theory for calculation of crystal govern such geophysical processes as formation of sea ice and

motion of glaciers.

* Author to whom correspondence should be addressed. Phone: (404) Another interesting link occurs between the solution and the

894-3948;.Fax: (404) 894-5638. E-mail: curryja@eas.gatech.edu. pressure effects of the freezing and melting processes. Labora-

10.1021/jp048099+ CCC: $27.50 © 2004 American Chemical Society
Published on Web 11/16/2004




11074 J. Phys. Chem. A, Vol. 108, No. 50, 2004 Khvorostyanov and Curry

tory experiments have showiP852athat the isomolal depend-  This equation provides a general description of phase equilib-
encies ofTthom(P), Tm(p) at varying pressure are equivalent to  rium that can be applied to a variety of phase transitfotfs.

the isobaric dependenci@g,om(M), T(M) with varying molality We consider here three particular cases under variable external
M. An interpretation of this fact was givef#8 in terms of pressure and solution concentration: (1) volume homogeneous
equivalent perturbation of a hydrogen bonding network by and heterogeneous freezing of aqueous solution drops; (2)
pressure and solution, and more recebtfyjn terms of surface freezing of solutions; and (3) surface melting of ice
“effective” solution concentration and water activigy, (or crystals.

saturation ratics,). However, it is not clear why this equivalence 2.1. Volume Freezing.For volume freezing, consider a
occurs and if it can be directly derived from nucleation theory solution drop with radiusy in humid air. An ice germ with
along with a simple relation between pressure and molality. radiusr¢ forms inside the drop either directly (homogeneous

Toward addressing these issues, this paper examines freezinyolume freezing) or on the surface of a foreign substrate
and melting processes using classical nucleation theory and(heterogeneous volume freezing); then phase 1 is the liquid
extending the treatment of critical radii and energies of solution and phase 2 is ice. Such a configuration was previously
nucleation. In section 2, we briefly outline the basic thermo- considered; > and the expressions for the critical radii were
dynamic equations and derive general expressions for the criticalderived under constant external pressife!28:30.3437,.4268
liquid/solid germ radius and energy as functions of temperature, Here, we consider variable pressure along with variable tem-
water saturation ratio (or molality), pressure, and finite size of Perature and saturation ratio. In the context of eq 2.2, all
freezing/melting particles, extending the previous equations of duantities denoted by “0” refer to pure water. Nucleation of a
classical nucleation theofy568:69 These expressions are em- New phase occurs if the size of the initial germ of the new phase
ployed in section 3 for derivation of the equations for homo- reaches a critical value. To derive a general dependence of the
geneous, heterogeneous, and quasi-heterogeneous freezinge germ critical radius., on temperaturd’, saturation ratio
temperatures and melting temperature. Results of calculationsSw, and pressure, we start from eq 2.2. If an ice germ is
for atmospheric pressure and comparison with experiments are2Pproximated by a sphere as in case of homogeneous fré&2ing
given in section 4, and applications to the pressure-induced O as a spherical cap at the surface of insoluble substrate as for

freezing and melting at high pressure are considered in sectionheterogeneous freezifid;>**then the internal pressures inside
5. a crystal,p;, and inside a liquid solution dromps can be

expressed in terms of external pressuwth use of conditions

2. Critical Radius and Free Energy of a Germ at of mechanical equilibrium

Freezing and Surface Melting

20;, 20,

: " _ dp; = dp,+d|—|, dp,=dp+d (2.3)

To derive the critical radius and free energy of a germ for Fer Fq

freezing or melting, we consider a spherical germ of the bulk o ) ) )
phase (2) forming in the volume or at the surface of another Where subscripts i and s refer to ice, and solution, respectively;
bulk phase (1). The entropy equation is writteR%% ois and os, are the surface tensions at the -@mlution and

solution—air interfaces. Equation 2.3 describes the equilibrium

wpTa)| hy - - between an ice germ and liquid solution drop and equilibrium
d——= + ) dT——=dp—RdIna, =0 (2.1) betweer) th.e liquid dr.op and enwronmle_nt.al air. _

T T T Substituting eq 2.3 into eq 2.2, and dividing Iy, we obtain
whereT is temperaturep is pressureR is the universal gas m ) 20, 1 (204 C.é
constant,h is the molar enthalpyu is the molar chemical _TdT_;d p+ r | ;d T | d o +
potential,a is the activity, andv is the specific volume. The : d A :
subscript 1 refers to phase 1, and the subscript O refers to the EI—d Ina, =0 (2.4)
pure substance. An analogous equation can be written for phase My
2.

. . . whereLy, = (hwo — hio)/Myy is the specific latent heat of melting,
Iftrp])hasefz IS s?lldf(e.g_., |ce)bth:;1t tnuctlﬁates het(;a(;_c:gen?c:uslyand the densities of water and ice are givenpay= My/vy
on the surface of a foreign substrate, then an additional term andpi = My/oi. A, = 1 — pilpw is the density functiona, is

should be added_tp_z, which ari_ses from the elastic _straa'_:n the water activity, and we have assumed that the ice actyity
?ﬁ?:?grayvf’gi r;‘('f';gf;‘gfg& ']f:; ?r?d sut_;stratg Ia.‘&'é[éép ¢ = 1 due to the small retention coefficient? Equation 2.4 differs

. oo . previous derivations of ¢, analogous equatioh®by the presence of additional terms
equations for critical racﬁus and .free enefdy; but it IS with p ande. We can integrate eq 2.4 fromto the triple point
frequently addetP to the final equations. The term associated temperatureTo, and fromp to po with the usual boundary
with the elastic strain is formulatétas M,C.e%p,, with M, condition§v3v5(():aw = 1,1 = I = 0, p= po, ande = 0 atT =
and p, being the molecular weight and the density of phase 2 To), to obtain e ’ ’
andC, = 1.7 x 10" dyn cnT2. Substituting (2.1) fop; and o
the corresponding expression fap into the condition of . 2
equilibrium dg,/T) = d(u2/T), we obtain the general equation L;f In T?O = 201 + 203a+ ﬁAp + Ci — Kr(;k +1n aw)

for phase equilibrium Pfer Pifa P pi Myl\rg
(2.5)
_ M dT + vy, dp, — v, dp, — M,Td Céez + where Lﬁf =7 P[Lm(T)/'I] dT/In(To/T) is the effective average
T WEFL Teome 2R ), melting heat,Ap = p — po, and Ax = 2My0osdpwRT is the

a Kohler's parameter. The water activisy, is often assumef>22
RTdInl=] =0 (2.2) to be equal to the water saturation ra8g or is calculatedf
7 from the Kdhler equationAx/rq + In a, = In S,. We also use
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this equation and substitute it into the last term in eq 2.5. Note per second and a very cold environment, deviations of haze
that each term on the right-hand side of eq 2.5 is positive, so particles from equilibrium may last longer and corrections to
that In(To/T) = 0 andT < Ty (i.e., eq 2.5 describes lowering of  environmental, may be required?-*®nonetheless, even under
the bulk triple point by all of the above factors). Solving fgr these conditions, many cloud models assume equilibi84m
from eq 2.5, we obtain with reasonable accuraéy.The cloud drops grow at slight
supersaturatiom,, > 0, and when considering their freezing
P 207 (2.6) via immersion or contact modeS,, near the drop surface can
cr | ef - ) be obtained by subtracting, from the environmenta,; this
Pilm anTO/T)ﬁ expCHy )] correction is rather small becaudggenerally does not exceed
0.5-1% and is commonly<0.1%.
5 of of In the presence of a solvent or external source of supersatu-
(ApAplp,, + 204 fry + Ce)l(ply), G=RT(M,Ly) (2.7) ration, Sy = 1, but still for Ap = 0, we have from eq 2.6 the
following equation

H

v,fr

whereG is a dimensionless parameter, akd = py — pi. This

equation accounts for the effects of temperature, water saturation 20
ratio, pressure, elastic misfit strain, and finite size of a freezing ler = [Ty — C.e2 (2.6d)
drop onre and is valid for both heterogeneous # 0) and pilm IN[(TY/T) €

homogeneouse(= 0) freezing.

Equation 2.6 can be compared with previously derived 1h
expressions by considering particular cases. For the simples 36b.40 7 ; <
case with constant pressurgp(= 0), no misfit strain ¢ = 0), clouds>#"Note that in the case = 0 andT — To or for
and a bulk solution (g = 0), we haveH; = 0. If additionally concentrated solutions, eq 2.6 converts into

This equation was obtained for heterogeneous nuclé4iom

Sy = 1 (pure water and no external sources of supersaturation), M. o
then eq 2.6 is simplified to be the classical equéfion M= WS (2.6e)
RTp; In §,
20,
rer = et (2.6a) and resembles Kelvir®8 expression for nucleation of a crystal
pilm IN(TG/T) from the vapor except that it contairgs instead ofoy, for

nucleation from the vapor. Becausg ~ Y401, €q 2.6e shows
that ice nucleation by water freezing is energetically much more
favorable than direct nucleation from the vapor. The pressure
dependence in eq 2.6 has not been previously accounted for.
So, eq 2.6 generalizes and unifies all of these particular cases
for the critical germ radius and is used below to establish

whereoy, is the surface tension at the ie@/ater interface. This
equation is often used to describe the triple point lowering in
polycrystalline crystals and melting point shifts due to varying
crystal size (GibbsThomson effect$:3156471f misfit strain

is included, then eq 2.6 becomes

2. equivalence between pressure, solution, and temperature effects
ro= w (2.6b) on freezing and melting.
cr ef 2 . - .
piLm IN(T/T) — Ce Applicability of eq 2.6 can be illustrated as follows. Because

the denominator of eq 2.6 should be positive, we have an
This generalization of Thomson's equation figr has been inequality
determined previoush*® for heterogeneous nucleation. In the
presence of a solvent or external source of supersatur&jon, e [To Ap , 204
= 1, but still fore = 0 andAp = 0, we have from eq 2.6 another pilmIn ?Sﬁv - pWAp G g z0 (28
expression previously derivét?>

Solving eq 2.8 forry provides a condition for the minimum

= L size of the freezing drops
Fer of (2.60)
pilm IN[(Ty S]] o
sa
Similar equations for the case of homogeneous nucleation were fa= i [To Ap ) (2.9)
obtained previously;21:28:304%ut ., was expressed in a slightly piLm In ?ﬁ - p—Ap — Ce
W

different form using water activitg,, or molar fractionXs. The

use ofS, instead ofay or Xs can be more convenient in some A, astimation for standard pressurn(= 0), ¢ = 0, and pure
applications such as cloud models whe®g is a readily water Gy = 1) givesrq > 1.3 x 1076 cm z;tT _ ’263 15 K
determined environmental variable. (Although and S, are (~10°C) andrg = 3.2 x _10_'7 cm atT = 233.15 K &4(') °C).

close in many cases &, < 1, they may differ and even have ., yeyer freezing experimefité$46show that the drops never
d|ffe_rent signs ats, ~ 1 due to the curvature effects, thus  feeze homogeneously at10 °C and freeze at-40°C with
leading to different..) For applications in cloud models, note larger radii~ 0.2—0.5 um. Thus, this condition is necessary

that in ?]”S('j'?f? orf smkurw]g air p?k;qel, thelenV|ronm|$|ﬁad lcan 4 butnot sufficient, because it corresponds to zero nucleation rates.
somewhat differ from the equilibrium value near the drop used A generalization to finite nucleation rates is given in section 3
in the derivation above; however, a solution dropSat< 1 based on eq 2.6

grows or shrinks rapidly until the equilibrium size aBg are Solving (2.8) for T provides a condition for the freezing
reached:3436The characteristic time of adjustment to equilib- temperaturdT,

rium varies from 10 s forrq = 1072 um to a few seconds for fhom
rq of a few micrometers, and equilibrium exists in most cases 1 (A 20,

with moderate vertical velociti€s3*36.3% even with rapid Tt hom = TS ex%— (—pAp +Ce+ )] (2.10)

fl
turbulent fluctuations$.In cases with updrafts of a few meters iLm\ Pw Ty
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which yields an upper boundary fdnom as a function of limitations of classical nucleation theof§with its predictions
molality, pressure, and the radius of a freezing drop. This symmetric relative tdo; this symmetry is absent in the density
expression will be generalized further in section 3 to account functional theory that avoids freezing point elevati@iNow,
for finite nucleation rates. replacing agaira, with S, in eq 2.13, we obtain finally the

2.2. Surface FreezingThere are several possible geometrical critical radiusre of an ice germ at the solutierair interface
configurations of an ice germ forming at the surface of a solution

drop. We consider the case when an ice germ is located at the P= 203, (2.14)
interface between the humid air and solution drop. A similar o L NI exp(—H :
configuration was discusskd-36for the case of the liquid/solid b (T TS expt s

interface when an ice germ forms heterogeneously at the surface ApA 20

of a foreign substance. Here, we deal with the situation when He = (p_ — —Sa)/(pWL;f) (2.15)
solid forms at the interface of its own melt and gas (vapor or i Mg

humid air). A similar configuration was recently described ) .
conceptually and called “pseudoheterogeneous frees#$gand Note that eq 2.14 for surface freezing contains the surface
the criterion for surface freezingia — 0sa < 0is, Was derived tension ice-air oia mstgad ofois for solutlop—lce in eq 2.6 for.
for this process. Here, we consider this process in more detailVolume freezing, which reflects the difference in freezing
and derive its critical radius and energy. Assume that an ice Mechanisms. _ _
germ represents a spherical segment (lens or “tiny pancake ice”) 2-3- Surface Melting. The numerous theories of surface
bounded by two surfacésAn outer surface (in contact with melting mentioned in the Introduction include intergranular
air) is a spherical segment with radiugand the inner surface ~ Melting in polycrystalline crystals, melting at grain and vein
(in contact with the solution drop) is planar. This case representsiunctions, and evaluatiuon of the lowering of the bulk triple
a mixture of homogeneous and heterogeneous processes becauB@ints and melted film thickness, which account for various
(a) it proceeds homogeneously without a foreign substance and,meChf"‘,r”Sgrésls ?Jlsplrgesg‘ggg?'m effects of crystal size, and
(b) due to incomplete wettability (i.e., small but nonzero contact MPUIIES:™ =525 555 o _ _
angles between ice and w8} 6373 the geometrical decrease We consider here one simple mechanism of surface melting:
of free energy is similar to those in heterogeneous freezing asnucleation of a liquid drop at the crystal/gas interface when
described in section 3. melting is incomplete (i.e., drops occur instead of a liquid fifm).
Because both the ice germ and the solution drop are in We consider a quasi-heterogeneous process of nucleation of a
mechanical equilibrium with the environmental air, it follows liquid germ at the surface of its own solid at small but finite
that the pressures inside the solution drpp.and ice crystal  contact angles. This type of surface melting with occurrence of

cap,pi, with corresponding radii andr., are described by the small drops at the crystal surface has been observed in laboratory
: iments$:1560-62 This case is similar to surface freezin
Laplace equation experiments _ _ . g
considered in the previous section except with reversed con-
A figuration of the liquid and ice. To determine the droplet critical
(2.11) radiusrq and melting temperatur&,, we again begin with eq
2.2. For melting, phase 1 is ice, phase 2 is the liquid, -ahgl
where oiy is the surface tension at the ieair interface. ;e(h;?]t;r?ggzl\g"]ﬁ' t\il1vee g?n;:e;r? d“cﬂ]l:;g]%eg;: tgr?:jlsrgoﬁséiig a
Substituting eq 2.11 into eq 2.2 without the strain teer(0) . Y P
spherical segment (lens) bounded by two surfaces. An outer

because we do not consider undissolved particulates here, we . : ST ;
surface (in contact with vapor or humid air) is a spherical

20 20;

a), dpi=dp+d(r

dp.,=dp + d(

rd cr

obtain segment with radius, and the bottom surface (in contact with
L, 1 1 20, 20,, ice crystal) is appr'oximated by a.planar §grface. '
——=dT+|——=]dp+d d + Using the conditions of mechanical equilibrium, we write for
T w o Pi Puld Pilcr the pressures inside the liquid lemsand crystap; the Laplace
RldIna,=0 (2.12)  equations
Ile
B 20, _ 20i,
Integration of eq 2.12 with the boundary conditi®a8r¢ = rq dp,=dp+d rg | dp; = dp+d Mo (2.16)

= o, ay =1, andp = po at T = Ty, yields
Substituting eq 2.16 into eq 2.2, we obtain

ef —
L,In—

— 2O'ia 203a+ (1 1
T plg pulg

RT,
- =——=]Ap—+-Ina, (2.13) L 2.
P pw) Mu de—i—(l l)dp-l—d( 'a)—

T Pi Pw, pircr

It is interesting to note that Dufour and Defagonsidered a 2

different configuration, drop and crystal coexisting in air, and d( S8l ﬂd Ina, =0 (2.17)

obtained a similar equation except without the pressure term Pufal My

and having a more complicated expression for the solution term.

One can see that eq 2.13 contains both positive and negativentegration of eq 2.17 with the same boundary conditans-

terms on the right-hand side. In particular, the terms with 1,Td = rer = 0, andp = po atT = To yields

pressure and, are positive, causing the lowering of the freezing

temperature with increasing pressure and molality, described Lef TO_ _ 205, | 203 + (1 1)Ap _ %In a, (2.18)
w

; : . o : In—== =
in the next sections. These equations predict situations Tvith meT eufa Pfe \Pi Pw

< To, which is a physical state, and with> Ty, which predicts
existence of ice above bulk triple point (superheating of crystals) which formally coincides with eq 2.10, except that the unknown
and is an unobservable stdtélhis problem is caused by is hererg. The terms with pressure Ap > 0 and solution effects
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are positive, shifting the melting temperatuiigsbelow the bulk
triple point. At negative pressurdp < 0) (e.g., in the case of

internal melting of ice caused by strong radiative heating and

formation of “Tyndall flowers”) when ice may exist in
metastable equilibriufat up to+8 °C andAp ~ —10® bar, eq

2.18 describes competition of the negative pressure, which

causes elevation dfy, (possibly to well above 0C) and the
counteracting solution effecte{ < 1) that tend to loweily,.
Again replacingay with Sy, we find from eq 2.18 the critical
radiusrgq of a liquid germ

20,
rg=——3 - (2.19)
—puli IN[(TYTS; exp(—H,)]
20;
Hi = @(—p—A ARy —'a)/(pWLﬁI) (2.20)
pi pw rcr

Equation 2.19 differs from eqs 2.6 and 2.14 for freezing by the
opposite sign of the temperature termTgT).

3. Critical Freezing and Melting Temperatures

J. Phys. Chem. A, Vol. 108, No. 50, 20041077

fmx) = M){1+ [(1 — mIN®+x°@2 — 3y + ¢°) +
3mxX(y — 1)} (3.4)

p=x-—mly, y=(1-_2mx+x)"

wherex = rn/rer, with ry being the radius of insoluble particle
on which surface a crystal forms for the case of heterogeneous
freezing,x = rglrer, @and x = relrg; for the cases of surface
freezing and melting@s is the corresponding contact angle,
andms = cos0s is the wettability parameter at the iesubstrate
interface for the case of heterogeneous freezing and at the ice
solution interface for surface freezing and ice melting. For
constant pressureAp = 0) and freezing of bulk solutions or
large drops Iy = ), the factorH, s becomes(:éezlpiLﬁf, and

eq 3.3 reduces to the expression derived earlier for heteroge-
neous freezing

_ (167/3)0f(myX)

AF, =

cr T 2
[pi L In(?oﬁ) - CGEZ]

(3.3a)

To derive the critical temperature of both homogeneous and Which for pure water & = 1) converts into the previous

heterogeneous freezing, we can use equatiéngor the
nucleation rates],

AF(T) + AF(T.S,)
kT

3(TS) = Cy(T) exp(— (3.1)

where AF¢(T,Sy) is the critical Helmholtz free energy of an
ice germ for freezing or of a liquid germ for meltingFac: is
the activation energy is the Boltzmann constant, ai@} is a
normalizing factor. The quantitie}, and C, will be denoted
later with indices “hom” and “het” for homogeneous and
heterogeneous processes, respectively.

In classical nucleation theory, the free energy of germ
formation AF.(T, Sy) is written~® as a sum of the positive
surface term;~r2, and a negative volume term, proportional to
r3, and to the difference of the free energies of waigrand
ice F;

AF(r) = —(F, — F)(l)ar’o, + 4mr’cy  (3.2)
The critical energyAF. is obtained by differentiating\F(r)
by rer, then Ew — Fi) is expressed vie; and is substituted into
eq 3.2 to yieldAF¢ = (47/3)oisr o2 for a spherical crystal or
AFg = (4n/3)oisr 2f(mis,X) for a crystal with geometry of a
spherical cap, anffms,X) is a geometrical factdr® Substituting
eq 2.6 forr, for solution into the last expression, we obtain the
critical free energy for volume freezing as a function of

expressions*® for AF.

3.1. Homogeneous Freezing-or homogeneous freezins
= 180, ms = —1, andf(ms,X) = 1, C. = 0; equations for¢,
and AF are simplified

o= 2% (3.5)
" L"‘f[ | e exp(— AAP 20,01 rd).] |
LT plm
4
AFcr = éﬂoisrtz:r =
l6n % )
3 o [T AAp+ 20 Jr 2
piLm In B T
piLm

We consider first the case of homogeneous nucleation for
variable pressure and chemical composition. Then the preex-
ponential factoiCrom in eq 3.1 i€

- \1/2
Coon(T) = 2Nc(@ k—T)(E—T) (3.7)

pi h

whereh is Planck’s constant and. is the number of molecules
in contact with a unit area of ice surface. Using egs 3.1 and

temperature, solution concentration (supersaturation), pressure3-6, We can write

and misfit strain

4
AFcr = énaisrcrzf(msvx) =
167 ef(MeX)

3 { oL In[%ﬁ exp(- Hv,fr)]} 2

(3.3)

Here,H, « is defined in eq 2.7, anfims,X) is the geometrical
factor derived by Fletchérfor the cap

J
AF, = —KkTIn22" — AF, =
Chom
l6r % )
3 [ ol o ] A0 2002
pilm In| S, ex o
piLm

Solving forT, we obtain an equation for the critical temperature
of homogeneous freezing
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temperature
1 [ApAp 20
Tion(AP) = ToS” exp[_ _f( z' P+ r:a) 2
L 1 [ApA o,
: vz T o(Ap) = ToS " ex —_ef(- PAp _ ) y
exdl — 1| 1l6n Ojg 9 yE. )
Lo, 3 KTIN(/Crom) + AF o o P

1 1/2
exp — 3.14

p{ e i\ 3 KTI@y/Cop) + APy ] G149
whereJs - andCs r are the nucleation rate and normalizing factor
for surface freezing; their exact appearance is not important for
us now for the reason explained below.

3.3. Surface Melting.For incomplete wettability, a particular
case of surface melting considered here is a quasi-heterogeneous
process of a liquid germ nucleation on the surface of a crystal.
The critical free energy for the type of surface melting
considered here can be written as for the solid/air intefface
and using eq 2.19 fory as

whereLemf, i, Chom, Ois, aNdAF4¢t are functions of temperature
and should be evaluated at the same valu€eg gf, as on the
left-hand side of eq 3.9. An equation follows from eq 3.9

de,hom - _
dp

AlOTf,hom

o (3.92)
PwPilm

that formally resembles the Clapeyron equation valid for melting
transition in a one-component systehiut is derived here for

freezing with finite nucleation rate and a multicomponent
system. For the particular case of constant external pressure

(Ap = 0) and large dropsr{ — ), the first exponent on the 4
right-hand side of eq 3.9 vanishes. For pure water dréps; AR, = §”Usar§f(ms:x) =
1, and only nucleation rate in the last exponent reguldtgs..
167 ()

For solutionsS, < 1, this leads to the lowering OF;hom as Lot
shown in the next section. 3 o | To

3.2. Volume Heterogeneous and Surface Quasi-Hetero- ~pulmIn Tﬁ exp—Hy)
geneous Freezing.For the case of volume heterogeneous
freezing of an ice crystal, the heterogeneous nucleation rate iswheref(ms) andHn are defined by eqgs 3.4 and 2.20 andis
described by eq 3.1, where the normalizing factor for hetero- again the cosine of the contact angle between ice and its own
geneous freezing on the surface of an aerosol particle with radiusliquid. Equating eq 3.11 to 3.15 feékF, and solving forT, we

 (3.15)

ry ist®
Cioi~ (KT/h)c 4 (3.10)

wherecys is the concentration of water molecules adsorbed on

1 cnm2 of a surface. Solving eq 3.1 for a heterogeneous process

we obtain

J
= —KTIN==' — AF,_

AF,
Chet

(3.11)

Now, equating eq 3.11 to eq 3.3 fAF. and solving forT, we
obtain the volume heterogeneous freezing temperature

ApA
Tf,het(Ap) $(T)ex4 Lef( P p+ rd +C )

Pw
1 1/2
of 2]
I-m Oi

When a solid is incompletely wettable by its own melt with
the contact angl®;s, surface freezing in the absence of the

3
167 95 f(MsX)
3 KTIN(3he{Che) + AF

(3.12)

foreign substances can be considered as a quasi-heterogeneous T, [f(m,) — 0] =

nucleation of an ice germ at the drop surface. Then the critical
free energy of an ice germ at the liquid/air interface can be
written as in Defay et aP which using eq 2.14 for; becomes

Taf(MeX)
ef TO . z
pilm In| =S5 expH, )
(3.13)

wheref(ms) andHs ¢ are defined by eqs 3.4 and 2.15, and

is the cosine of the contact anglg between ice and its own
liquid (water or aqueous solution). Equating eq 3.13to eq 3.11
for AF¢ and solving forT, we obtain the surface freezing

16w

4:10 r
3

AF 3"Via crf(MS-X)

obtain the melting temperature

20
_ ief (ApAp+_fi) %
piLm pW rcr
167 Tif(MX)
3 KTIn(, rr/C ) AF,

To(AP) = ToS "V ex

1/
ex;{ Leflp ’ Z] (3.16)

whereJs mandC; nare the nucleation rate and normalizing factor
for surface melting. For complete wettabiliie = 0, mis = 1,

f(ms = 1) = 0, andAF¢ = 0, there is no energy barrier for
nucleation. For ice surface freezing or meltiml, is nonzero

but very smalB°-63 9, ~ 0.5—2° andf(ms) — 0, the arguments

in the second exponents in eqs 3.14 and 3.16 tend to zero, and
the exponents tend to 1. Then the expressions for the surface
freezing and melting temperatures are simplified

20
Tolf(mg — 0] = To5 exg — —— P42 —)
’ puLm\ Pi lg
3.17)
20;
TS50 exp — —L — [ApAP —'a)
Le pW rCr
(3.18)

These expressions do not dependlpandC;, owing to the
small contact angle between water and ice. For substances when
0is is not so small (e.g., some mef&l&?53, eqs 3.14 and 3.16
should be used, and the last exponent can make contributions
lowering Ts ¢ and raisingl . Equation 3.18 allows for a simple
calculation of the melting point depression with increasing
pressure. Differentiating eq 3.18 Ipy we obtain

0.8 ey p[ 1 (ApAp a)l (3.19)

}O”OWLef Lef Pw rcr

daT,,

dp

ApT,
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For a particular case of bulk pure ice;(— o, Sy = 1), eq
3.19is simplified and converts into the Clapeyron equation used
for explanation of the dependen€g(p) near the triple poing,
To = 273.15 K, and yields B/dp = —/133 K atm™, close to
the experimental valués:15

3.4. Liquidus Curves.Equations 3.17 and 3.18 fdk ¢ and
TmatAp = 0 and large4 andr, or bulk solutions are reduced
to

To (AP = 0) = T (Ap = 0) = T, = TSy =

Tak™ubn™ (3.20)
which indicates the reversibility of slow surface freezing and
melting. Equation 3.20 is nonlinear in solution concentration
and is valid not only for dilute solutions but for all concentra-
tions. It describes liquidus curves with high accuracy over a
wide range of solution concentration, as will be illustrated in
section 4. For the particular case of a dilute solutfgnz 1 —

Xs, With Xs being the mole fraction, and expanding eq 3.20 in
power seriesTs s can be presented in a linear approximation
as

Tor=To(l — X)®~ Ty — GTX, ~ To+mX, (3.20a)
m = —R,T,/L,= —103.1 K

where eq 2.7 is used fdd andm is a slope of the liquidus
curve. Equation 3.20a is a known linear approximation for the
liguidus>1516 or for the ideal freezing point depression. Note
that the difference betwe€ly s and T, for ice may be caused
by the small values of the segregation coefficikn{ratio of
amount of salt trapped in ice on freezing to amount in solution),
which is typically®15~107% to 1074, although the amount of
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equations contain several functions Bfor Ty, on the right-

hand side; they are transcendental algebraic equations and can
be solved using an iterative procedure. Numerical tests show
that two to three iterations provide a convergent solution.
Calculation of T; and Ty, requires data on the temperature
dependence of the melting heat(T) or L¥(T), AFa, water

and ice densities, and data on the temperature and composition
dependence of the surface tensions. These data remain uncertain,
especially atT; below —38 °C, due to the difficulties of
measurements at these temperattir@g21.22.2730.38-44.74|t \ygs
emphasized in a recent international Cirrus Parcel Model
Comparison Project (CPMCP)that seldom are all of the
guantities available from direct measurements for a given
solution. Typically, direct data for one to two parameters are
used, and the others are inferred from measurements of the
nucleation rates or freezing temperatures. One of the most
successful recent attempts to reproduce experimental data on
sulfuric acid solution drops freezing at low temperattifé%

was performed by Tabazadeh et3*3where fits were found

for Lm(T) and ais(T, Xs).

Here, we adopt a similar method. First, choosing the data on
Lm(T) that is very similar in different sourcég?’* we ap-
proximate it asm(T) = c T[tanh(T — T1)/T, + 1.6]; the best
fit down to 160 K was found witil; = 215 K, T, = 40 K, ¢,
= 8.82, wherd_p, is in cal gt andT is in K. This representation
allows integration oveT to obtain the effectivé;frf('l') defined
after eq 2.5. The values of,were determined by using d&i43
with subsequent tuning in order to obtain the best agreement
for T; over the entire temperature range. The best fits were for
ammonium sulfategsy = 143.8— 0.2491 — 0.9% + 3.4 x
1074(Tw) — 3.5 x 10-3(w?3), and for sulfuric acidgs,= 137.56
— 0.225T —0.98v + 3.395 x 10°4Tw) —5.1 x 1073(w?) —

1.24 x 1074w?), whereos, is in ergs,T in K, andw is the

salt trapped on seawater freezing in the Arctic can be as highPércentage concentratio? by Wseig_ht. Thi valuesyigfwegg
as 14 practical salinity units (psu) due to entrapped brine calculated from Antonoffs rufe*® with ois = 105 erg cm?

pockets’ almost half of the salt concentration in the upper
ocear? 30 psu.

3.5 Freezing and Melting Point DepressionsThe freezing
and the melting point depressionsTt nom and ATy, and their
relation are often given &k?27:32,39.4754,55

AT, pom = AAT,, (3.21a)

AThom=To— T =T, AT,=T,—T, (3.21b)
where Ty = 38 K (spontaneous freezing is assumed to start
around—38 °C, or Top — Tip = 235 K which is therefore a
reference point for the freezing depression) dnghm and T,

are evaluated from experimental data on freezing and melting.
The definition ofA from eq 3.21a is an empirical relation, and
the value of AT;hom required for numerical cloud models or
analysis of the laboratory experiments is taken usually from
experimental daf&@5¢on AT, and the average= 1.7 is often
used?1-27.3239\We can now calculaté from the theory as

— Tio = Tinom(Swld)
To— T(SW)

whereT;hom and T, are evaluated from egs 3.9 and 3.20.

AT = To (3.22)

4. Comparison with Observations of Melting and
Freezing Temperatures

The equations derived in section 3 represénand Tr, as
functions of S, and nucleation rateShom and Jret These

the values obis for pure water match the values measured by
Ketcham and Hobb%® Numerical tests show that the values of
T¢ are less sensitive to th&F,.. The choicé of AF,¢ was
satisfactory. The effects of the particle curvature on surface
tensions are smalp in the range of sizes=0.2 um were
considered in the following sections and were neglected.

Data on freezing of solution drops are contradictory. The data
generally converge around40 °C for pure water, but values
of Tinom diverge as solution concentration increases &g
decreasesl 2247515354 Here, we tuned the parameters to data
that are in the middle of that diverging rant§é1-52If the initial
concentration of drops before freezingNg then the concentra-
tions of frozenN; and unfrozer\, drops are determined by the
relation$

Nu = I\IO exp(_vd‘-]homrfr)!

No=N,— N, (4.1)

u

whereVy = 4/3nr§ is the drop volumeryq is the droplet radius,
andry, is the characteristic “freezing time”. We assumed in most
calculations thadhomVatyr = 1 (i.e., freezing temperaturg is
defined by an e-folding decrease &f during ). This
assumption implies that the nucleation rate is determined by
Jhom= (Vat#r) L. It is seen from eq 4.1 that 99% of drops freeze
during 4.6%. In most calculationsg;, = 1 s,rg was varied, and
then Jhom Was evaluated as indicated.

For ease of comparison with observations, the results of
calculations are presented as functions of water saturation ratio
Sy and weight concentratiow = mJ(ms + m,)100%, where
ms and m, are the masses of solute and water in solution,
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Figure 1. (a) Homogeneous freezing temperatilirg,m as a function 200 - .
of the weight concentration. Calculations from eq 3.9 for solution drops
of 5 um for ammonium sulfate (solid circles) compared to the . +
parametrization from Bertram et&I(B00) and calculations for sulfuric
acid droplets of m (diamonds) compared to the parametrization from 180 T T T T T T T 1
Koop et al*® (K98). (b) Homogeneous freezing temperatufagm as 1.0 0.8 0.6 0.4 0.2
functions of water saturation ratio calculated from eq 3.9 as described Saturation ratio Sy (or ay)

in the text after second iteration for the haze drop radiug = 0.2
um (solid circles) and forq = 5 um (diamonds), parametrizations of
Bertram et aP! for Trhom Of ammonium sulfate (asterisks, B0O), and of
Koop et al*8 for sulfuric acid (triangles, K98) recalculated from their
weight concentrations t8y.

Figure 2. (a) Melting temperatures as functions of weight %, calculated
(labeled “mod”) from eq 3.20 for ammonium sulfate (closed circles),
sulfuric acid (closed diamonds), and NaCl (crosses), compared to the
corresponding experimental data (labeled “exp”). Saturation &tio

is assumed to be equal to water activity, which is calculated for

. . . . ammonium sulfate with egs from Tang and MunkeRfitmd for sulfuric
respectively. Water saturation ratios and activities were related acid from Chef# and DeMott et af? Experimental data offy for

to w and molalityM using the usual relatié* M = 10w/[M{ ammonium sulfate and sulfuric acid are taken from corresponding
(1 — w/100)], with Ms being the molecular weight, and figures in DeMot&? The experimental parametrization(s) for NaCl
parametrizations o, via M or w for ammonium sulfaté® as a function of salt concentratian(psu) is taken from Curry and

; 43277 79 Webstet and Millero’® and recalculated frors to water activity. (b)
sulfuric acid®27” and NaCP - bl

. The saméeT,, calculated with eq 3.20 as in Figure 2a, but recalculated

_ The homogen(-_)ous freezing temperat'tm,m forp=1 atm from the weight percent to water activity (or saturation ratio).
is presented in Figure 1. Calculations were performed using eq
3.9 for sulfuric acid s = 98) and ammonium sulfatévis = data oriTs nom for 18 substancé®and for several alkali halidé&
132),7+ = 1 s, and for the solution drop radiy = 5 um and that, being plotted as a function of water activigy & Sy), lie
0.2um. Figure 1 shows that the valuesTffor pure water ¢ nearly on the same curv&,and with the explanation of this

=0,Sy=1) are 231 K {42°C) forrg = 0.2um and 235.2  fact with the water-activity-based theory of homogeneous ice
K (—38°C) forrq = 5um. Thus, eq 3.9 along with the fits for  nucleation by Koop et & Figure 1b shows that the decrease
the parameters described above yields the well-known temper-in rq4 from 5 to 0.2um results in a decrease ®fnom by 4 K,
atures near-40 °C, typically referred to as “the temperature of  which is also in agreement with experimental det&:45T; hom
spontaneous freezing of pure water drops”.Calculated  calculated forg = 0.2 um lies lower as a whole, which can
variation of Trhom With w, being in excellent agreement with  contribute to the residual difference for polydispersed drop
parametrizations of laboratory defe;' depends on the chemical ~ spectra (seemingly noncolligative, i.e., depending not only on

nature of the solute (Figure 1a). SHE

However, Figure 1b shows thathor(Sy) exhibits colligative Similar calculations with eq 3.20 of the melting temperature
properties, whereby the curves for ammonium sulfate and Ty, or surface freezing temperatufes (liquidus curves) ap
sulfuric acid forrg = 5 um almost coincide and merge with the = 1 atm for ammonium sulfate, sulfuric acid, and NaCl are

experimental parametrizations presented here as functions ofshown in Figure 2, again exhibiting a good agreement with
Sv. This is in agreement with the results showing experimental experimental data. Note that these results do not depend on
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surface tension or droplet radius and weakly depend on the
melting heat in the considered range. Again, the results as a
function of weight concentratiow differ for the three indicated
chemical species (Figure 2a) but merge as a functio,of
exhibiting a colligative property of, (Figure 2b), in agreement
with Koop et al®22bThus, Figure 2 shows that eq 3.20 can be
used with sufficient accuracy for calculationsTef for standard
pressure.

One of the most interesting and important applications of this
theory is calculation of the freezing and melting point depres-
sions,AT; hom @andATr, and their ratiod, which is used in cloud
models. Measured values AfT; hom and ATy, for micron-sized
drops for several substances exhibit a linear relatdhwas
hypothesizet that this is in conflict with classical nucleation
theory, and it could be explained by the relation of thermody-
namic and kinetic processes and by spinodal decomposition in
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ice formation of aqueous electrolytes. This conjecture was

challenged by Martitt who stressed that an explanation of this 0 3 0. © 15 20 25
relation remains an open question. At present, the nature and m

magnitude ofl still remain unclear. Here we use eqgs 3.9 and 4.0 (b)

3.20 to calculate\ Tt hom and ATy, for rg = 5 um with the same & mod, (NHa);50

parameters as used for Figures 1 and 2 and then calcllate ] O BO0-DO2, (NH),S0;

with eq 3.22 and compare with laboratory da&& and the 30 T mod, HyS0

experimental parametrization for sulfuric afidFigure 3).

To illustrate also the effect of drop radii, we have chosen the
freezing thresholdly, = 38 K in the definition eq 3.21b of
ATtpom fOr rg = 5 um as it is usually done in retrievals af
from experimental data (Figure 1b). As seen in Figure 3a, the
calculated freezing point depression exhibits a relation that looks
quasi-linear on the\T; hom — ATm diagram. The experimental
data forT; nom lie mostly between the regression lines= 1.5
and 2 up toAT; ~ 10 K, and the curve calculated here fgr=
5 um matches the observations. For higher valueABfup to
~45 K, experimental daflie closer tod = 2 and so does the
calculated curve. We can draw the following conclusions from
Figure 3a: (@) classical nucleation theory is capable of describ-
ing the quasi-linear relation between the freezing and melting
point depressions and can be used in cloud models for evaluation
of 4 or directly forT;om (b) @ more detailed theoretical analysis
should include kinetic simulation of the freezing of a polydis-
persed drop ensemble (as it is done in some cloud
model@8.29.36b.39 phecause freezing proceeds from larger to
smaller drop sizes and the valuesTefom and4 determined in
experiments may depend on the fraction and size of frozen
drops.

Direct calculation of the parametér= AT:/AT, with eq

—o—  K98-D02, H,S0,

AT§/ AT

A

0 10 20 30 40
Weight concentration (%)

(NH4);50,

2.0

AT§/ATm

A=

1.5 T T T T T 1
1.0 0.9 0.8 0.7
Saturation raio S,

Figure 3. (a) Calculated relatiol\T; — ATy, for the 5um solution

3.22 (Figure 3, parts b and c) shows that it is not a constant groplets of sulfuric acid (diamonds) compared to the experimental data
because it depends on chemical composition &d The by Koop et al¥8 for sulfuric acid and to the experimental data compiled
calculatedi(w) for ammonium sulfate and sulfuric acid (Figure by DeMott?? correlationsl = AT/AT,, = 1.5 andl = 2 are given for

3b) depends on the chemical composition, but the curves arecomparison. (b) Parameté(w) calculated with eq 3.22 for the drop

relatively close to each other and to the curves derived from radii of 5 um as a function of weight concentration for ammonium
laboratory datd?48), - tlv bet 1.9and 2.2 i sulfate and sulfuric acid comparediealculated with the experimental
aboratory data. (w) varies mostly between 1.9 and 2.2, in Tinom from Koop et al® and DeMott? for sulfuric acid (K98-D02)

agreement with the previous analysis of experimental data for ang from Bertram et &t and DeMott2 (B00-D02) for ammonium
these substancésWhen plotted ag(Sy) (Figure 3c), the curves  sulfate and withT,, shown in Figure 2. (ci as a function of water
almost merge, exhibiting again colligative properties as both saturation ratio for ammonium sulfate and sulfuric acid.

ATihom and ATy (Figures 1b and 2b), in agreement with
previous concept® The valuesA(S,) are not constant but

exhibit a monotonic growth with decreasii®y, and use of . .
constantl in cloud models may lead to the errors ATt pom. that4 also may depend on the drop size, becaligtncreases

The difference slightly increases at smalbr S, — 1, but both with decreasing drop size (recall, the threshold temperature
calculations and measurements become less reliable at smalfifo ~ 38 K forrq =5um and 42 K for 0.2¢m, Figure 1), and
solute concentrations (&, — 1) because bothAT;pom andATp, no single value is representative for the ensemble of drops. So,
decrease and even a small error in each of these quantities maglifferent threshold3y should be chosen for various drop radii,
lead to an increasing error in their ratio which illustrates a problem in the analysis of experimental data

Calculations with varyingg (not shown here) demonstrate
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Figure 4. Homogeneous nucleation temperatufggmcalculated with Figure 5. Melting temperature for the pressure-induced melting of
eq 3.9 for pure water as a function of pressure (C|_rcles) and comparedice calculated using eq 3.16 as a surface melting processoWifth=
to the experimental data from Kanno and Angletriangles, KA77). constant (crosses) and with linear increase of ice depgify by 0.04

. . . . . g cnt 2 in the rangep = 0.6-0.8 GPa (solid circles) compared to the
obtained with polydispersed drops and in the evaluatioi of  experimental data of Mishima and Starft&¥ down to~80 K (open
using the theory as it is done here. circles, MS) and to Wagner et @ldown to 251 K (triangles, WSP).

A preliminary recommendation for the cloud models could
be as follows: (a) if a model allows, then use directly the
approaches based on the classical theory for the nucleation rate
rather than the-approach; (b) if such calculations are too time-
consuming for a specific model, then the average values of
can be used, but with caution, especially in models with
polydispersed drops.

atm was explainéd by the polydispersed structure of finely
dispersed ices). This transition in Figure 4 is explained simply
By egs 2.6, 3.9, and 5.1 because the pressure dependence of
freezing temperature is determined by the differenge= pi)
and the density of ice Ill is greafethan that of ice Ih, the
slopes dinom/dp May vary and change sign at abrupt changes
of the ice densities. We do not analyze this effect here in detalil,
because this requires more precise datgjcamd py,.
Similar calculations were performed for pressure-induced
melting ice temperatur&;, using eq 3.16 for bulk icer§ = )
Calculations of freezing and melting point temperatures under andS, = 1 (pure water) (calculations using eq 3.18 give similar
conditions of variable pressure are sensitive to variations in the values due to small contact angle at watiee interface). The
density of liquid and solid watep,(T,p) and pi(T,p). We use results are compared in Figure 5 with experimental &a%a8’
a standard parametrizatiofor pi(T) for ice Ih. Experimental ~ One can see that the experimental cét$ehas two distinct
data onpy(T,p) below T = —40 °C is scarce, angy(T,p) is branches and the slopes change at 0.5 GPa, which also is
taken from the equation of state for liquid wateéf°molecular explained*8s by the change near this point of ice type from

5. Comparison with Experimental Data for Variable
Pressure

dynamics simulation8!-83 or experiment where possibiéWe hexagonal Ih to the other types of ice with higher densities (ice
have used available data and, in addition, eq 3.9a to estimatell or ice V). Figure 5 shows that the values ®f, calculated
variations ofpw(T,p) from the slopes & hon/dp in the experi- from eq 3.16 and 3.18 are very close to both experimental curves
mental data of Kanno and Ang#lf8for Trpom We have from  up top = 0.5 GPa, but the difference between calculated and
eq 3.9a forAp = pw — pi observed values increases at higher pressures m(th =
constant. Agreement becomes a little better with a linear increase
Ap s — pwpiLm(de,hom) (5.1) N Ai(T) by 0.04 g cm? over the range = 0.6-0.8 GPa (this
Tihom \ P ' could imitate admixture of the other denser®t®); however,

the discrepancy still remains. Computer lattice dynamics simula-
The results described below were obtained using referencedtions®283determined that melting is caused by thermodynamic
valueg®89-85 of Ap and values estimated from eq 5.1 using the instability up top ~ 0.5 GPa and by mechanical instability at

corresponding dat&>8:84.85n dT¢pon/dp and dr/dp. higher pressures. Our results are consistent with this conclusion,
Equation 3.9 includes the simultaneous effects of pressuresatisfactorily describing the upper branch of hgcurve top
and chemical composition oF hom(Ap). The effects of com- ~ 0.5 GPa but worsening for highgrvalues. Thus eqgs 3.16

position &y < 1) atp = constant were analyzed in the previous and 3.18 can serve for simple calculationsTafp) for pure
section, and now Figure 4 presents freezing temperatureswater up top = 0.5 GPa; its predictions for pressure-induced
Tihom(p) calculated with eq 3.9 as a function of pressure for melting with account of solutionsS§ < 1) could be verified
pure water &, = 1). A comparison of theoretical and experi- experimentally.

mental results in Figure 4 exhibits good agreement over the An interesting question on the equivalence of the pressure
entire temperature and pressure ranges, indicating the validityand solution effects on freezing and melting temperatirES®

of eq 3.9. Note that the experimental data show the change ofwas explained by the similar effect of solution and applied
the sign of the slope gb ~ 2 kbar. This is caused by the pressure on the hydrogen bonding network and by showing that
nucleation of ice Ill, which begins @t~ 1.8 kbar and prevait$ the plots ofTi(ay) andTi(p) are similar; this effect was described

at pressures higher than 2 kbar (a possible relatively wide by introducing the “effective” solution concentratié®. A
temperature range of coexistence of ice | and ice llp atl simple quantitative expression for this equivalence can be easily
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1.00 & classical nucleation theory, with the goal of improving under-
4 standing of melting and freezing processes. General equations
0.95 — - are derived for the critical radii and energies of the ice and liquid
AN germs that are expressed as functions of temperd@ueater
| Ne saturation ratidS, (or solution concentratiow), and external
0.90 4 R20 pressurep. The derived equations for the critical radii and
8 \‘ energies of the ice and liquid germs can be applied to both
& 085 homogeneous and heterogeneous nucleation, including variable
| pressure, and reduce to the traditional expressions for particular
R12\ cases of homogeneous nucleation of pure water, heterogeneous
0.80 o nucleation, constant pressure processes, and solutions.
T ‘ By use of these expressions, equations are derived for the
0.75 heterogeneous, quasi-heterogeneous, and homogeneous freezing
4 . temperatureSt, whereby freezing is considered as a process
0.70 — ‘l | of ice germ formation that occurs on the surface of the foreign

0.00 0.05 0.10 015 0.20 0.25 particles W|th|n the volume of supercooled |I.C1UI.d for hgtero-
p (GPa) geneous freezing, on the surface between liquid and its own
Figure 6. Equivalence of pressure and saturation ratio or molality solid for quasi-heterogeneous freezing, and within the bulk

expressed with egs 5.2 and 5.3. Calculated curve (circles) and two pointsV0lume for homogeneous freezing. Similar equations are
from Kanno and Ange¥f (crosses) that are expressed in that work as Obtained for the melting temperatufg, viewing melting as a

equivalence op = 1.0 kbar (0.1 GPa) t& = 20 (M = 2.75) andp = process of quasi-heterogeneous liquid germ formation on the
1.5 kbar (0.15 GPa) tR = 12 (M = 4.65); R is defined’ asR = ice crystal surface. The quantitids and T,, are expressed as
M/55.5. analytical functions of external variables (water saturation ratio

found from eq 2.6 for«(T, Sw, p), which shows that variations or solution concentration, pressure, nucleation rate, and contact
in solution concentrationS,) are equivalent to pressure varia- 2ndle) and on thermodynamic parameters (latent heat, interfacial
tions. It is seen from eq 2.6 that this equivalence can be surface tensions, activation energy, and densities of water and

ice). The derived expressions fof and Ty, are transcendental
algebraic equations that are solved numerically using an iterative
procedure, allowing simple and rapid calculation of freezing
_ ApAp and melting temperatures over the entire rang&06r w and
SV =exg - f) (5.2) values
[ P ' : icati
The theory has been illustrated here by application to pure
Equation 5.2 express& (or equivalent molality) as a function ~ water and aqueous solutions of several substances (ammonium
of p. Solving for Ap, we obtain sulfate, sulfuric acid, and NaCl); however, this method allows
easy calculations for many other solutions. The theory correctly
Ap=-QIns, QTp)= RTpipy (5.3) describes the decrease Bf and T, with increasing solution
’ ! M, (0w — £1) ) molality and pressure and decreasing drop radii. Comparison
of the calculated values offihom and Ty with existing
This equation shows that a decreas&jr(increase in solution  experimental data on freezihg45 485553555 and melt-

expressed aﬁ = exp(—Hy), which is simplified for bulk
solutions g = ») and homogeneous freezing € 0) as

molality) is equivalent to an increaseAp, with proportionality ing!®21.22525556hows in general good agreement. Calculated
determined by the functio® that depends on the densities and values ofT;xom andTr, plotted as a function of water saturation
temperature. The proportionality sp ~ —T In S, with the ratio, exhibit mostly colligative properties, in agreement with
constant densities, although they in turn dependocand T. experimental daté51.5257.58850me observed residual differ-
The value ofQ is very large,Q ~ 10* atm atT ~ 273 K and ences may be associated with the lower freezing temperatures
increases with decreasifigso that a saturation ratig, = 0.9 of smaller drops in polydispersed ensembles.

(In Sy ~ —0.1) is equivalent to a pressure of*l@tm atT ~ Having calculated the melting and freezing point depressions,

273 K. Thus, egs 5.2 and 5.3 establish the equivalence of theAT; and AT, we calculated the empirically derived parameter
distortion of the crystalline lattice by the chemical forces and 1 = AT{/AT,, and showed that the quasi-linear ratiés not in
mechanical pressure. This is illustrated in Figure 6, which conflict with classical nucleation theory as previously thoBght
presents thA\p—S, relation calculated with eq 5.3 in the same and thatA is not strictly a constant but is a function of
way as the previous two figures. For comparison, we plotted temperature, saturation ratio, and radius of freezing drops.
also the two experimental poifitsthat show the equivalence  However, the average values = 1.7-2 used in applica-

of p = 1000 bar to molality of NaCM = 2.75 @ = 20) and  tjons?-27:32.33.3%an be a realistic approximation for drops of a
p = 1500 bar toM = 4.65 R = 12) for both freezing and  few microns.

melting temperatures (recalculated from molalitie§p Figure This method reasonably describes the pressure dependence
6 shows good agreement of the curve calculated with eq 5.3 Tinom and T including the change of slopegitp when
with the experimental data and confirms the validity of these o yne of nucleated ice varies and allows establishment of a
equations, which therefore can be used for the prediction of g, antitative equivalence between pressure and solution effects
the pressure effects finom andTm given the solution effects, it 5 simple equation. However, this theory does not predict
orvice versa. the change of the ice type because it does not consider the
symmetry of the phases in its current state. The approach
described here can be used not only for freezing and melting
The processes of volume and surface freezing and meltingtemperatures but also for estimation of the spinodal temperatures
of aqueous solutions are considered in the context of generalizedncluding negative pressur@g?84994 where the pressure

6. Summary and Conclusions



11084 J. Phys. Chem. A, Vol. 108, No. 50, 2004

dependence af;; and AF; is often neglected. The evaluation
of glassy transitions with this method and more precise

Khvorostyanov and Curry

T, To, temperature and triple point temperature.
Tt, Tinom Tines hOomogeneous and heterogeneous freezing

evaluation of spinodal lines might be possible using an equation temperatures.

of state that predicts water dengf§* or considering Landau’s
parameter of ordé? for the phase symmet§:%4

Classical nucleation theory depends critically on the thermo-
dynamic parameters latent heat, interfacial surface tensions,
activation energy, and densities of water and ice; incorrect choice
of these parameters may result in apparent failure of the entire
theory>#! The impact of emulsions and other different experi-
mental conditions on these quantities could explain at least some
differences in the measuréld nom(w).21224754 There are dif-
ferent and sometimes contradicting parametrizations of these
guantities, because their determination at low temperatures is

not a simple task. Hence, rellablg measurements or reconstrucy | o ice interface.
tion of these parameters for various substances, especially at

low temperatures and high pressures, are needed to confirm and

advance our understanding of freezing and melting.

Note finally that the nonclassical nucleation theories
(e.g., kinetic or cluster approaches and density functional
theory?1.73.84.96.9f gre free of some limitations of the classical
theory (e.g., from the concept of surface tension) and hold
promise for the future. However, the nonclassical theories are

Tm, melting temperature.

AT:, ATq, freezing and melting point depressions.
Vg, drop volume.

vw, Ui, Specific volumes of water and ice.

w, weight concentration of solute.

ow = Sy — 1, water supersaturation.

€, elastic misfit strain.

A, an empirical coefficient I\T/ATy, relation.

Uk, molar chemical potential dth substance.

ko, chemical potential of pure kth substance.

0is, contact angle at the ieesubstrate interface or at the

ows pi, densities of water and ice.
Ap = pw — pi.
Ois, Osa Oia, SUrface tensions at the iesolution, solution-

air, and ice-air interfaces.

T, Characteristic “freezing time”.
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Nomenclature

Ak, coefficient in Kohler equation.

A, = 1 — pilpw, density function.

aw, &, the activities of water and ice.

Ch, Chom Ches preexponential factors.

C., constant of the misfit strain energy.

AF4c, activation energy.

AFg, critical germ energy.

f(ms, X), geometrical factor of heterogeneous freezing.

G= RT,(MWLﬁI), dimensionless parameter.

Hy.f, Hs.in Hm, functions defined by eqgs 2.7, 2.15, and 2.20.

h, molar enthalpy.

Jn, general notation for nucleation rate.

Jhom Jnes hOMogeneous and heterogeneous nucleation rates.

k, Boltzmann constant.

Lm, specific latent heat of melting.

Lﬁj, effective melting heat defined after eq 2.5.

M, molality.

Mw, Ms, molecular weights of water and solute.

ms = c0s 0, wettability parameter.

ms, My, Masses of solute and water in solution.

No, Nf, Ny, concentration of drops before freezing, and of
frozen and unfrozen drops.

p, Po, pressure and initial pressure.

Pw, Pi, pressures inside drop and crystal.

Ap =p — Ppo.

ren Fg, radii of ice/liquid germs and of crystal/drop.

rn, radius of insoluble particle.

R, universal gas constant.

Sy. water saturation ratio.
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