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Fluorescence microscopy tracks the three-dimensional motion of green fluorescent protein (GFP)-labeled
large dense-core secretory vesicles (LDCVs) within the actin cortex of live PC12 cells. In this study, we
achieve a 26-ms time resolution and a spatial accuracy of 5 nm or better in each dimension (one standard
deviation in one dimension,σ1D). The resulting high-resolution trajectories reveal not only heterogeneity
among vesicles but also heterogeneity within single-vesicle trajectories. As in earlier work, we observe three
apparent groups of vesicles: the immobile, mobile, and directed-motion groups, but the distinctions among
the groups are blurred. The directed trajectories exhibit segments with kinesin-like speed punctuated by pauses
and changes in speed and direction. The immobile vesicles nearest the plasma membrane jump among sub-
25-nm-diameter “mini-traps”. Comparison with microrheological data from entangled F-actin solutions suggests
that the jumps may be caused by local remodeling of F-actin. Motion within a mini-trap is quantitatively
modeled by a random walk in a parabolic restoring potential to yield single-trap restoring force constants of
∼0.04 pN/nm. As judged by mean-square displacement versus time, the mobile vesicles execute nearly free
random walks in an elastic medium. We find no clear evidence of quasi-linear, directed motion in the mobile
group. However, heterogeneity is evident in the distribution of frame-to-frame displacements,P(r), which
requires a two-component fit. Evidently, mobile vesicles move by a combination of diffusion and motor-
driven motion, with the direction changing rapidly as myosin-V crisscrosses the dense F-actin meshwork.
The frequency of long frame-to-frame displacements of 25-70 nm suggests the presence of one or more
myosin-V motors on the mobile vesicles. We argue that the motors on the immobile vesicles are less active
or completely inactive. This suggests a regulatory mechanism for motor activity that may be related to the
cell’s ability to mobilize vesicles upon stimulation by Ca2+.

Introduction

In neuroendocrine cells (Figure 1), secretory vesicles carry
neuropeptides and hormones from the trans-Golgi network
(TGN) through the actin cortex to the plasma membrane (PM).1

These 100-200-nm-diameter vesicles dock at the PM and await
cell depolarization and the sudden influx of Ca2+ that triggers
exocytosis, the rapid release of the vesicle contents to the
extracellular medium. This tightly regulated process controls
the delivery of chemical signals throughout the nervous and
endocrine systems. In the late stages of transport to the PM,
the vesicle must traverse the actin cortex, a viscoelastic medium
comprising actin filaments in a dense, cross-linked network
∼0.5-1.0 µm thick with a mesh size of∼50 nm.2 Motion
through the cortex may involve a combination ofpassiVe
transport, meaning Brownian motion in a time-varying field of
filamentous and other barriers, andactiVe transport, which could
involve the propulsion of vesicles by actin polymerization or
the pulling of vesicles along microtubules (MTs) and actin
filaments by kinesin and myosin motor proteins.3-5 In resting
cells, vesicles establish a steady-state concentration distribution
strongly peaked in the actin cortex near the PM, which suggests
binding between the vesicles and the cortex. It is largely an
open question what specific factors establish this spatial
distribution and allow it to respond to stimulation and exocytosis.

Different types of cells may use different combinations of
transport and binding mechanisms.6 An elegant series of studies
has shown that melanosome trafficking in mouse melanocytes
is controlled bythree typesof motor proteins.4,7-9 Kinesin and
dynein motors enable fast, bidirectional motion between the
TGN and the PM on microtubule filaments. Within the actin
cortex, myosin-Va is involved at least in the binding of
melanosomes (thecapture model). In rat pheochromocytoma
(PC12) cells, recent work provided strong biochemical evidence
that at least half of the large dense-core secretory vesicles
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Figure 1. Schematic of a PC12 cell showing the trans-Golgi network,
where large dense-core secretory vesicles (LDCVs) are formed; the
actin cortex; and the plasma membrane, where LDCVs dock and carry
out Ca2+-triggered exocytosis.
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(LDCVs) carry myosin-Va motors.10 In addition, the same
LDCVs exhibit fast, seemingly unidirectional motion from the
TGN to the PM at speeds characteristic of kinesin motors.
Within the actin cortex, the coarse motion was characterized as
random movement. As for melanosomes, the expression of a
dominant negative tail domain of myosin-Va depleted the
number of LDCVs in the actin cortex.11 The faster components
of the speed distribution were also depleted. Related earlier
studies of the motion of green fluorescent protein (GFP)-labeled
LDCVs in PC12 cells5,12found that LDCV motion stopped when
the remodeling of F-actin was prevented by the addition of
phalloidin or the withdrawal of MgATP. Motion also slowed
when the cortex was degraded by latrunculin. These results
suggest that cortical actin filaments hinder vesicle motion by
acting as a physical barrier but also mediate the motion.

Several groups13-17 have used total internal reflectance
fluorescence microscopy (TIRFM) to track secretory vesicles
in the actin cortex of live chromaffin and PC12 cells. The time
and spatial resolution have typically been about 0.5 s and 50
nm. In chromaffin cells, Oheim and co-workers achieved∼15-
20-nm lateral and 5-nm axial accuracy (one standard deviation
in each dimension,σ1D).18 Here, we use TIRFM to track LDCVs
that carry a neuropeptide-GFP fusion protein within undif-
ferentiated PC12 cells. Owing to the high S/N ratio, a fast
camera, and Gaussian fitting of thexy images, we can track the
centers of bright vesicles withσ1D ) 5 nm or less inx, y, and
z with a 26-ms time resolution. The resulting high-resolution
vesicle trajectories reveal new levels of detail in vesicle motion.
As in previous work,5,18-21 plots of single-vesicle mean-square
displacement versus time suggest three groups of vesicles: an
immobile group which undergoes diffusive motion within
confinements or among barriers or obstacles; amobile group
which carries out more nearly field-free diffusion without
confinement; and a small subset of vesicles that clearly undergo
directed motion, evidently driven by the motor protein kinesin
and perhaps by myosin-V as well. This is heterogeneityamong
Vesicles. Our temporal and spatial resolution are capable of
resolving individual myosin-Va steps and dwells between steps.
Within the mobile and immobile groups, the distribution of one-
step frame-to-frame displacements,P(r), reveals fast and slow
modes of motion on the 26-ms time scale. We interpret these
as arising from periods of myosin-Va activity and inactivity.

The high-resolution trajectories further blur the distinctions
among mobile, immobile, and directed-motion vesicles by
revealing states of motion thatchange in timefor a single
vesicle. This is heterogeneitywithin single trajectories.Many
vesicles change character from immobile to mobile or from
directed to mobile; some change speed and stop and start. The
time-correlation function ofr2(t), the squared displacement
versus time, reveals heterogeneity in a subset of individual
trajectories on two different time scales, 0-0.1 s and 0-5 s. In
addition, the immobile vesicles nearest the PM migrate among
a series of “mini-traps” with diameters on the order of 50 nm
or less. We analyze the motion within mini-traps by comparison
to confined random walk models. The data are well fit by
random walks with a central restoring force (“elastic traps”)
but not by simple random walks within a confining sphere. We
find heterogeneity in the diffusion coefficient and force constant
of the elastic traps that correlates with the apparent distance
above the plasma membrane. Comparison of these results with
microrheological studies of fluorescent microspheres embedded
in F-actin solutions suggests that cross-linking and remodeling
of the cortex in vivo lead to a characteristic positive curvature

in log-log plots of mean-square displacement (MSD) versusτ
that is not observed in vitro.

Materials and Methods

Cell Culture. PC-12 cells were obtained from the Martin
lab at UW-Madison Biochemistry.12 These cells are stably
transfected to express the neuropeptide-GFP fusion protein
ANF-Emd (emerald GFP) within undifferentiated PC12 cells.
ANF-Emd is brighter than ANF-EGFP. Cells were cultured
at 37°C in a humidified atmosphere of 10% CO2 in 100-mm
dishes in Dulbecco’s modified Eagle’s medium (DMEM), with
4.5 mg/mL glucose, 3.7 mg/mL NaHCO3, 5% horse serum, and
5% iron-supplemented calf serum. One day prior to experiments,
cells were plated on Mattek 35-mm glass-bottom culture dishes
precoated with 50µg of collagen I and poly-D-lysine. To obtain
isolated single cells for study, cells were plated at a density of
1 × 104 cells/cm2 in a Petri dish. Prior to the experiment, the
culture medium is replaced with an incubation buffer of 150
mM NaCl, 4.2 mM KCl, 1 mM NaH2PO4, 0.7 mM MgCl2, 10
mMN-(2-hydroxyethyl)piperazine-N′-ethanesulfonicacid(HEPES),
and 2 mM CaCl2 (pH 7.4). All experiments are performed at
25 °C. The cells chosen for study were single cells of
intermediate brightness, which optimizes the ability to track
individual vesicles accurately for long periods of time.

Microscopy: High-Resolution Trajectories. In TIRFM, a
continuous-wave laser beam illuminates a thin slab some 200
nm thick at the base of live cells adhered to a coverslip.14,21,22

We use through-the-objective TIR with an Olympus 60×, 1.45
NA objective adapted to an inverted Nikon microscope (resulting
magnification, 66.7×). An Ar+ laser intensity of 0.65 mW at
488 nm is focused to an elliptical spot size of 11µm × 18 µm
full width at half-maximum (fwhm) at the glass-cell interface.
Fluorescence was isolated using a 495-nm long-pass dichroic
mirror and a 20-nm band-pass filter centered at 520 nm to limit
cell autofluorescence. Widefield two-dimensional movies in the
xy plane are recorded with a fast charge-coupled device (CCD)
camera (CoolSnap HQ, 1392× 1040 pixels, 6.45µm pixels
corresponding to 97 nm at the sample). A full cell image
typically fits in a region of interest of about 100× 100 pixels,
enabling a frame duration of∆t ) 26.2 ms (frame rate, 38.2
Hz). The density of readily observed vesicles is typically 1.0
µm-2; the vesicles under study vary by about a factor of 5 in
intensity within a typical cell. Increasing laser intensity increases
the S/N ratio but shortens the useful duration of a movie due to
photobleaching. We have obtained high quality movies for 500
frames (12.5 s).

After the filtering of the images in Fourier space (0.5-µm-1

high-pass filter), a computer tracking algorithm written in the
interactive data language extracts 3D trajectories from the time
sequence of images. We accept only those trajectories that last
at least 20 frames while suffering no “fusion” or “fission” events
(see below). First, eachxy spot in each frame is fit to a 2D
Gaussian function on a 7× 7 pixel grid using nonlinear least
squares with all pixels equally weighted. The fitting parameters
include the center position (x0, y0), the peak intensity, the angle
of rotation of the Gaussian coordinates relative to the pixel
coordinates, the independent full width at half-maximum (fwhm)
parameters along the two Gaussian axes, and the local baseline
amplitude. For spatially well resolved vesicles, the Gaussian
fits are statistically good and have consistent fwhm’s of 217(
10 nm (one standard deviation) along bothx and y, strongly
suggesting we are tracking single vesicles.

We use the time-dependent total intensity to calculate a
relatiVe zposition from the exponential decay of laser intensity
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alongz, I ) I0 exp(-z/z0). Here,I0 is the intensity at the glass-
cell interface (wherez ) 0) andz0 depends on the laser angle
of incidence and wavelength as well as the refractive index of
glass and of the cell. We measure the angle of incidence as 70
( 1° (close to the limit of 72° for the 1.45 NA objective) and
estimate the effective refractive index for the cell as 1.365(
0.01518 to obtain the estimatez0 ) 90 ( 10 nm. To assess the
extent of photobleaching, we fixed PC12 cells in formaldehyde
and measured the approximately exponential decay of fluores-
cence intensity for stationary single vesicles. The 1/edecay times
vary from 20 to 80 s. For vesicles that move alongz,
photobleaching should be multiexponential and is difficult to
assess. On a 50-frame time scale, bleaching is unimportant; it
should contribute a monotonic drift in apparentz of only 2-6
nm, depending on the vesicle’sz trajectory in time. On a 200-
frame time scale, the drift corresponds to 6-24 nm. Thus,
changes inz on short time scales can be measured with a 4-nm
precision, unaffected by bleaching.21 Comparison of apparentz
values between different vesicles can be misleading due to the
distribution of intrinsic vesicle brightness (GFP copy number).
For the fixed cells, if we assume thebleach lifetimefaithfully
reports the relativez values across different vesicles, then the
range of initial intensities for vesicles with similar lifetimes gives
information about the range of intrinsic brightnesses. This range
is roughly a factor of 2 in our PC12 cells, which corresponds
to an error of∼60 nm or less in comparing apparentz values
across vesicles. In chromaffin cells, LDCVs varied by about a
factor of 3 in intrinsic brightness.21

The algorithm forms trajectories by “connecting the dots”
between nearest neighbors in thexyplane of successive frames,
keeping track of newcomers and of vesicles that leave the field
of view. The algorithm ignores pairs of vesicles that lie within
300 nm center-to-center. Since the largest step sizes observed
are 70-100 nm, this essentially eliminates difficulties in tracking
the same vesicle from frame to frame. Fusion events (coales-
cence of two vesicles in thexy plane vs time) are thus
eliminated, and fission events (splitting of two initially coin-
cident vesicles in thexyplane into two distinguishable vesicles)
are eliminated by visual inspection. For fewer than 1% of the
frame-to-frame steps, the goodness-of-fit statisticø2 jumps above
a threshold that sensitively indicates distortion of the image by
a nearby bright vesicle. For these rare frames, both Gaussian
and centroid fitting methods fail, so we interpolate positions to
avoid distortion ofr and r2 statistics. Our analysis procedure
generally discriminates against long, rapidly moving trajectories
because they are likely to cross other vesicles. TIRFM neces-
sarily cuts off trajectories that move more than 200-300 nm
in z.

The measurement accuracy of the vesiclexy center position
is limited not by the wavelength of light but by the signal-to-
noise ratio, pixel size, instrument vibration and drift, and
statistical uniformity of background light.23,24 To test the
theoretical limit on accuracy under our conditions, we used the
Gaussian fitting routine to track computer-simulated pixellated
images that include shot noise, readout noise, 2D Gaussian
widths, and pixel size matched to experiment.25 As the image
S/N ratio averaged over the nine most intense pixels varies from
25 to 15 to mimic the range of most of the tracked vesicles, the
root-mean-square (rms) fitting errorσ1D (standard deviation
along one dimension) increases from 2.5 to 4.5 nm, while the
average bias remains below 0.2 nm. A centroid algorithm
introduces bias as large as 2 nm. In the actual experimental
trajectories, we observe many small “traps”, stretches of 20 to
150 frames during which a vesicle is approximately stationary.

Such features frequently exhibitσ1D alongx, y, or z in the range
4-6 nm. Trajectories that exhibit clear directional motion
frequently deviate from a smooth path by<5 nm rms. This is
comparable to a recent study of single myosin steps.23

Since real trajectories in live cells include genuine thermal
motion, we estimate that the one-dimensional measurement
uncertaintyσ1D is at most 5 nm along each ofx, y, andz. The
three-dimensional, frame-to-frame displacement of the particle,
r ) ((x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2)1/2, then has variance
σ2(r) ) 2σ1D

2 < 50 nm2, and the squared displacement,r2, has
varianceσ2(r2) ) 8σ1D

2r2 < 200r2 in nm4.
Apparatus vibration sometimes appears in movies as a

correlated periodic motion of nearby “immobile” vesicles and
is most troublesome at low frequencies of 1-3 Hz. The
amplitude of such vibration was limited to<3 nm rms. Thermal
drift would appear as a correlated translational motion of all
vesicles in thexy plane but was not in evidence in the reported
data. To corroborate the measurement accuracy, we fixed PC12
cells in formaldehyde and tracked the apparent motion of the
LDCVs. MSD(τ) levels off after two to three frames at a value
of 50-100 nm2; the variation among vesicles suggest the
presence of some real thermal motion. This corresponds toσ1D

in the range 4-6 nm, consistent with estimates from the
narrowest observed features. In the unfixed cells, even the slow-
moving vesicles have one-step MSD(τ ) 0.026 s) values in the
range 250-1000 nm2, so the measured one-step MSD is
dominated by real motion. The time and space resolution are
well matched.

Random Walk Models. We have examined three random
walk models in three-dimensional space:26 force-free random
walks, characterized by a diffusion coefficient,D; walks
constrained to lie within a sphere of radiusR0 with no restoring
potential, characterized byR0 andD; and walks within a central
restoring potential of the formV(R) ) 1/2κR2, characterized by
D andκ. Here,κ is the (positive) restoring force constant and
R measures the distance from the center of force. The latter
model mimics an elastic medium. In each case, fine-grained
steps were generated with∆t ) 0.000 262 s (one-hundredth of
the camera frame time scale) by sampling∆x, ∆y, and∆z from
a Gaussian distribution whose width determines the short-time
diffusion coefficient,D. In all models, coarse-grained walks
directly comparable to experiment were obtained by sampling
every hundredth position of the fine-grained walks. Results were
not distinguishable from those obtained by averaging each one
hundred positions to obtain the coarse-grained walk.

For the free walks, we mimic the limited range ofzaccessible
in our experiments by rejecting steps that would move belowz
) 0 nm and terminating a walk if it moves beyond a distance
of z ) 250 nm. Walks begin at randomz within that range. For
walks within a sphere, the particle begins at the origin; steps
that would take the fine-grained walk beyond distanceR0 from
the origin are rejected. The results did not depend on the choice
of initial position for the 200-step walks of interest. The walks
in the restoring potential use Monte Carlo methods to choose
steps that generate a canonical distribution of positions at
temperatureT: P(R) ) AR2 exp(-1/2κR2/kT), with A being a
normalization constant,k being the Boltzmann constant, andT
) 300 K. Particles begin at the center of force. Results were
independent of initial position for the 200-step walks of interest.

Results

Overview of Trajectory Types. We have examined some
200 nonoverlapped, high-resolution trajectories of 20-500
frames collected from five representative PC-12 cells. We can

9816 J. Phys. Chem. A, Vol. 108, No. 45, 2004 Konopka and Weisshaar



extract 40-50 nonoverlapping trajectories of 20 frames or longer
from a typical cell. Quantitative statistical studies that combine
data from many cells are not a good way to investigate vesicle-
to-vesicle heterogeneity because the mean frame-to-frame step
length varies by a factor of 2 or more among cells plated in the
same dish. Here, we focus primarily on specific trajectories from
three different cells and a detailed statistical analysis of 37
trajectories from a single representative cell.

A gallery of high-resolution trajectories showing three
apparently different behaviors is presented in Figure 2 as two-
dimensional projections. Below, we will classify the vesicles
as “immobile”, “mobile”, and “directed-motion” vesicles, cor-
responding to parts a-c of Figure 2, respectively. Some vesicles
jiggle within seeming traps or “cages” for several seconds
(Figure 2a). These trapped vesicles tend to be the brightest; that
is, traps seem more common very close to the PM. Frequently,

these vesicles migrate, either rapidly or slowly, among a
succession of such traps. For vesicle #4, we show the same
trajectory with every 20th point plotted to illustrate the loss of
detail that occurs when sampling at only 2 Hz. Other vesicles
sample space widely; seldom move in long, straight segments;
and largely avoid traps or cages (Figure 2b). Finally, a small
minority of vesicles, perhaps 5%, move very rapidly along
smooth, quasi-linear paths (Figure 2c). Next, we discuss the
motion in detail.

Heterogeneity among Vesicles.Force-free random walks
tend to sample local space thoroughly before slowly moving to
a substantially different region.26 Short samples of free random
walks vary widely in the shape and range of their trajec-
tories.20,27-29 In treating single-particle tracking data, we must
address the question of whether the observed motion could have
been produced with reasonable probability by a particular

Figure 2. Projections of high-resolution trajectories onto thexy plane. Color encodes time except for vesicle #16, for which it encodesz. Local
speed of directed segments in nanometers per second as indicated. (a) Three immobile trajectories, including two projections of #1 plus one 200-
frame trajectory generated by a Monte Carlo random walk in a parabolic restoring potential. (b) Three mobile trajectories. (c) Four directed trajectories.
The inset shows an image of a live PC12 cell. Scale bar) 2 µm.
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random walk model (e.g., free diffusion, diffusion within a
compartment, diffusion within a radial potential, and diffusion
among obstacles) with one set of model parameters. If so, the
motion ishomogeneous.If multiple models or sets of parameters
are required to encompass the observed behavior, then the
motion isheterogeneous. We distinguishheterogeneity across
Vesicles(vesicles moving differently from each other) from
heterogeneity within single trajectories(a single vesicle chang-
ing its “state of motion” with time). The latter is more difficult
to demonstrate. Vesicles may differ from each other in local
environment or in the number of attached motor proteins, for
example. For individual vesicles, motor activity may stop and
start; the vesicle may bind to a site and then release; the vesicle
may diffuse into a region of substantially different viscoelastic
properties; or the local actin cortex may reorganize.

While it is conceivable that the “trapped” trajectories of Figure
2a and the directed motion of Figure 2c might arise from force-
free random walks, it is highly unlikely. One way to assess this
possibility uses the closed-form expression for the probability
that a free walk in three dimensions with diffusion constantD
remains entirely within a sphere of radiusR0 for timeτ ) n∆t.30

To test the trapped trajectories, we set∆t ) 0.0262 s andD )
0.0044µm2/s, from the mean one-step diffusion coefficient for
the immobile group (defined below). The probability that a walk
remains in a sphere with a radius of 50 nm forn ) 20 steps is
2.2 × 10-4; it falls to 2.6× 10-10 and to 6.1× 10-40 for n )
50 and 200, respectively. Thus, the compact, 300-500-step
trajectories (e.g., vesicles #1, 2, and 4) are surely not free random
walks. We can also show that the small subtraps of 20-100
steps probably arise from a real restoring force or confinement
rather than a free random walk that happens to remain localized.
The probability of remaining within a sphere of radiusR0 ) 25
nm is 2.2× 10-4 for n ) 5 and only 3.1× 10-16 for n ) 20.
To analyze the directed segments of Figure 2c, we takeD )
0.0074µm2/s, the mean for the mobile group (defined below).
The longer and faster a quasi-linear segment, the less likely
that it would occur in a random walk. At a typical contour speed
of 1500 nm/s (Figure 2c), the particle moves a net distance of
200 nm in 5 steps (400 nm in 10 steps). The probability that a
random walkexits a sphere of that radius in that amount of
time is 2.4× 10-4 (1.1 × 10-8). Thus, a5-step quasi-linear
segment at 1500 nm/s might arise from random motion in a
data set as large as ours, but a 10-step segment at the same
speed is highly improbable. Segments moving 10 steps at only
700 nm/s have a probability of 0.029, which is likely to occur
in a large data set. However, there is a substantial margin of
safety in assuming these trajectories are primarily due to directed
motion, since they all achieveseVeral such improbable quasi-
linear segments within thesametrajectory.

In Figure 3a, we show the scatter plot of three-dimensional
mean-square displacements (MSD(τ) values) for 37 well-isolated
individual trajectories from a single cell. Each MSD(τ) datum
is the average over the complete trajectory of all measurement
intervals with the same lag time,τ ) n∆t:

Here, the frame interval is∆t ) 0.0262 s,N is the total number
of frames in the trajectory, and for eachn the sum runs over all
possible intervals of lengthτ ) n∆t. The single-vesicle MSD(τ)
plots typically increase monotonically forτ up to about half
the total trajectory length and then may increase or decrease

rapidly depending on the peculiarities of each trajectory. The
heavy black line in the figure shows〈MSD(τ)〉, the mean of all
single-vesicle MSD(τ) values. ThisVesicle-aVeragedquantity
is different from the average over all frame-to-frame steps of
all vesicles, which would weight vesicles with 500-frame
trajectories 10 times more heavily than vesicles with 50-frame
trajectories at smallt.

For comparison, Figure 3b shows the same type of scatter
plot for 50-frame free random walks (blue curves) and for 200-
frame walks in a parabolic restoring potential (red curves). We
chose 50 and 200 frames as representatives of the duration of
the more mobile and less mobile trajectories. The experimental
distribution of MSD(n∆t) at each value ofn is much broader
than that from a particular free random walk model. That is the
signature of substantial heterogeneity across vesicles.

To characterize the heterogeneity more quantitatively, in the
inset of Figure 4, we pool and bin frame-to-frame step lengths,
ri ) ((xi - xi+1)2 + (yi - yi+1)2 + (zi - zi+1)2)1/2, from
all trajectories except the directed ones and plot the distribu-
tion P(r). Trajectories longer than 50 frames were truncated at
50 to avoid strong overweighting. For free diffusion of a
homogeneous population of vesicles in three dimensions with
diffusion coefficientD, the distribution would be

MSD(τ ) n∆t) )
1

(N - n)
∑
i)1

N-n

[(xi+n - xi)
2 +

(yi+n - yi)
2 + (zi+n - zi)

2] (1)

Figure 3. (a) Experimental single-vesicle MSD(τ) plots for 37 vesicles
(thin lines) from a single representative cell. Color shows division into
the mobile group (blue) and the immobile group (red). Bold lines show
the vesicle-averaged〈MSD(τ)〉 for the mobile group (blue), the
immobile group (red), and all 37 vesicles combined (black). (b) Same
as part a but for 25 free random walks of 50 frames each from a model
with D ) 0.0074µm2/s (blue lines) and for 25 random walks in a
parabolic restoring potential withD ) 0.0044µm2/s and force constant
κ ) 0.009 pN/nm (red lines).

P(r; n∆t) ) Ar2e-r2/4Dn∆t (2)
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with A being a normalization constant.31 We carried out a
nonlinear least-squares fit of the data to this function withn )
1; each bin is weighted asNi

-1, appropriate for a Poisson
distribution with the mean and variance equal toNi, the number
of counts in bini.32 The fitting results are given in Table 1. For
the complete data set, the fit to eq 2 is poor (Figure 4, inset,
dashed line), as judged by the reduced chi-square statisticøν

2

) 3.2 (the probability is,10-3 that øν
2 would be so large by

chance). The data are well fit by a sum oftwosuch distributions
with the diffusion coefficientsD1 ) 0.0023µm2/s andD2 )
0.0082µm2/s; now,øν

2 ) 0.83 (p ) 0.7, which is reasonable).
We have similarly fit the distribution of squared displacements,
r2 values, and the distributions of projections of steps∆x, ∆y,
and ∆z to the appropriate functions for free diffusion. One-
component fits are again poor, and two-component fits again
succeed. In all cases, the best-fit values ofD1 and D2 are
consistent with the two-component fits toP(r). These fitting
results confirm the existence of heterogeneity among vesicles
on the shortest time scale sampled, 0.0262 s. Forn ) 10 (n∆t
) 0.262 s), theP(r) andP(r2) distributions are again not well
fit by a single diffusion coefficient (øν

2 ) 3.9). Thus, the
heterogeneity persists att ) 0.262 s and longer.

Having established heterogeneity among vesicles, we next
divide the vesicles into two groups labeledmobileandimmobile
according to whether the MSD(0.157 s) is greater or less than
2300 nm2. This yields 22 mobile and 15 immobile vesicles for
this representative cell. The division is shown by color in Figure
3a. It represents an attempt to find two groups of vesicles each
of which is reasonably well described by a single random walk
model, the immobile group by a confined random walk and the
mobile group by force-free diffusion. Any such sharp division
is somewhat arbitrary, since the outcomes of random walks from
a single model vary widely for trajectories of 25-500 steps.
Plots of vesicle-averaged〈MSD(τ)〉 for the two groups are
shown in Figure 3a. For the mobile group,〈MSD(τ)〉 is fairly
linear at long times up to 1 s, although negative curvature is
evident in the first few steps (inset). For the immobile group,
〈MSD(τ)〉 shows strong negative curvature in the first few steps
but does not saturate even on a time scale of 5 s.

In Figure 4, we compare pooled frame-to-frame step length
distributions,P(r), for n ) 1 across three groups of vesicles:
mobile, immobile, and directed. For the five directed trajectories,
all steps were pooled in order to obtain a reasonably smooth
histogram; the diffusive motion at the end of trajectory #D1
was excluded. The mobile and immobile groups have overlap-
ping but substantially different distributions ofr even at the
shortest time sampled. A one-step diffusion coefficient computed
directly from the data as〈r2〉/6∆t differs by a factor of 1.7 for
the groups:D1-step ) 0.0074µm2/s for the mobile group and
0.0044µm2/s for the immobile group. By the 40th step (τ ) 1
s), the〈MSD〉 values of the two groups differ by a factor of 5.
Perhaps surprisingly,P(r) for the five directed trajectories is
not very different from that of the immobile group and the
mobile group, although the directed trajectories do exhibit a
somewhat longer tail at larger.

Importantly, even after dividing the trajectories into mobile
and immobile groups, heterogeneity remains within each group
(Table 1). That is, each group’sP(r) for n ) 1 remains too
broad to be well fit by a single component. For the one-
component fits,øν

2 is 1.37 for the mobile group (p ) 0.05) and
1.60 for the immobile group (p ) 0.01). The two-component
fits to the mobile and immobile groups yield acceptably low
values oføν

2 and give essentially the same values for the two
diffusion coefficientsD1 andD2 for the two groups within the
fitting uncertainty. The mobile and immobile groups differ
primarily in their relative weighting of the fast and slow
components, which will be important in our interpretation below.

We also searched fororientational correlation between
successive steps on the theory that directed motion along quasi-
linear tracks would cause a preferred orientation to persist in
time. For each trajectory, we computed then-frame velocity
autocorrelation function:21

wherer i is the frame-to-frame three-dimensional displacement
vector measured from framei to frame i + 1 and 〈r2〉 is the
mean-square displacement over the entire trajectory.G(n)
measures the correlation in the orientation of pairs of frame-
to-frame steps spaced byn frames. For a free random walk,
G(n) drops from 1 atn ) 0 to zero (within the noise) for all
successiven because the steps are uncorrelated in direction.

As shown in Figure 5, in the immobile group, the vesicle-
averaged〈G(n)〉 value dips to-0.31 ( 0.09 (one standard
deviation) atn ) 1, perhaps remains slightly negative forn )
2-3, and then fluctuates about zero. Within the immobile group,
all individual trajectories show significantly negativeG(1)
values. For the mobile group,〈G(n)〉 dips to-0.17( 0.13 (one
standard deviation) atn ) 1, which appears to be significantly
negative beyond the noise level. Only half of the individual
trajectories from the mobile group exhibit significantly negative
G(1) values. The group of five directed trajectories shows〈G(n)〉
values that remain substantiallypositiVeover at least 15 frames,
in contrast to the mobile and immobile groups. This is consistent
with directed motion along quasi-linear tracks (Figure 2c) that
persists on average for∼0.3 s.

Especially for nearly stationary vesicles, random measurement
error or apparatus vibration might contribute significantly to
the negative values ofG(1). To test this possibility, we measured
500 displacements from 19 different vesicles withinfixed cells.
The apparent motion is a superposition of measurement error,
apparatus vibration, and genuine thermal motion, so it sets an

Figure 4. Probability distribution for pooled frame-to-frame step
lengths,r’s, for the immobile, mobile, and directed-trajectory groups
of vesicles from the same cell as that in Figure 2, with∆t ) 0.0262 s
between frames. The mobile and immobile trajectories were truncated
at 50 frames each to avoid gross overweighting of long trajectories.
Solid lines are least-squares fits to the sum of two distributions of the
form of eq 2. Fits to a single diffusion coefficient are poor in each
case. Inset:P(r) for the combined mobile and immobile groups showing
the best one-component fit (D1 ) 0.0053µm2/s) and two-component
fit (solid line, D1 ) 0.0023( 0.0002µm2/s, A1 ) 0.83,D2 ) 0.0080
( 0.0004µm2/s, A2 ) 0.17). See Table 1 and text for fitting details.

G(n) )
1

(N - n)〈r2〉
∑
i)1

N-n

(r i‚r i+n) (3)
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upper bound on the possible contribution of random error to
G(1) for the mobile and immobile vesicles. For the fixed cells,
we find 〈r2〉 ) 165 nm2 and〈G(1)〉 ) -0.5, that is, the average
over vesicles of the mean dot product〈〈r i‚r i+1〉〉 ≈ 〈r2〉〈G(1)〉
) -82.5 nm2. For comparison, the immobile vesicles have〈r2〉
) 790 nm2 and〈G(1)〉 ) -0.31( 0.09, yielding〈〈r i‚r i+1〉〉 ≈
-240( 70 nm2; the mobile vesicles have〈r2〉 ) 1580 nm2 and
G(1) ) -0.17( 0.13, yielding〈〈r i‚r i+1〉〉 ≈ -270( 200 nm2.
The averagerelatiVe contribution of measurement error and
vibration to 〈r i‚r i+1〉 is evidently 30% at most. The negative
values ofG(1) are evidently dominated by real motion at least
for the immobile vesicles, and probably for the mobile vesicles
as well.

We also measured the distribution of angles,P(θ), between
successive steps (inset of Figure 5), withθ defined as 0° for
antiparallel steps. For a random walk with no correlation
between successive directions,P(θ) ) 1/2 sin θ, which peaks at
90°. Both vesicle groups show substantial and comparable
“backward peaking”, consistent with negativeG(1) values.

Dependence of〈r2〉 on z. Part of the heterogeneity among
vesicles is apparently due to the increase in local〈r2〉 with
increasingz. In Figure 6a, we truncate trajectories at 50 frames
and pool single steps to plot〈D3D〉 ) 〈r2〉/6∆t versusapparent
z for the mobile group, the immobile group, and the two groups
combined. Here,〈D3D〉 is the mean of individual steps. The
truncation avoids the effects of photobleaching. The range of
r2 values contributing to each〈D3D〉 point is very large.〈D3D〉
increases exponentially with increasing apparentz; the increase
is a factor of 10 for each 225 nm. Analogous plots of the mean
two-dimensional diffusion constant in thexyplane,〈Dxy〉 versus
z, and of the mean one-dimensional diffusion constant alongz,

〈Dz〉 versusz, are also exponential and have essentially the same
slope. There is no evidence that the motion in thexy plane is
different from the motion alongz.

Recall that the distribution of intrinsic vesicle brightness
makes detailed interpretation of intensity as directly related to
z inappropriate for individual vesicles. However, here, we seek
trends in averages over many trajectories. In the earlier
chromaffin study,21 dispersion in the GFP copy number
broadened the distribution of〈Dz〉 at eachz but affected the

TABLE 1: Fits of Distributions of Frame-to-Frame Displacements,P(r), for Different Vesicle Groupsa

vesicle groupa A1 D1 (µm2/s) A2 D2 (µm2/s) % fastb øν
2 c

mobile+ immobile (one) 0.47(2) 0.0053(1) 3.2
mobile+ immobile (two) 0.76(6) 0.0023(2) 0.15(2) 0.0082(3) 0.57 0.83
mobile (one) 0.181(10) 0.0068(2) 1.37
mobile (two) 0.21(3) 0.0028(8) 0.089(19) 0.0087(4) 0.70 0.85
immobile (one) 0.37(2) 0.0036(1) 1.60
immobile (two) 0.52(4) 0.0022(2) 0.050(16) 0.0075(6) 0.37 0.70

a Vesicle groups as defined in text. The trajectories are truncated at 50 steps to avoid overweighting of long trajectories. Nonlinear least-squares
fits to the functionP(r; ∆t) ) ∑j)1

2 Ajr2e-r2/4Dj∆t, with ∆t ) 0.0262 s; the fitted parameters areAj andDj. The fits labeled (one) and (two) include
one and two components ofDj, respectively. Each bin is weighted asNi

-1, appropriate for a Poisson distribution with the mean and variance equal
to Ni, the number of counts in bini. b Fraction of steps arising from the faster component atD2 according to the fit. Note that this differs from
A2/(A1 + A2) because the two components have different “widths” inP(r). c Reduced chi-square statistic for each fit.

Figure 5. Vesicle-averagedG(n), then-step velocity autocorrelation
function (eq 3) averaged over each group (immobile, mobile, and
directed-motion trajectories) including all steps. Inset: Distribution of
angles,θ’s, between two successive steps for immobile and immobile
groups as indicated;θ ) 0 means the two velocities are antiparallel.
The solid line shows the sinθ distribution expected for a free random
walk.

Figure 6. (a) Dependence of the one-step, three-dimensional diffusion
coefficient onapparentrelativez. (The data are not corrected for the
variation of intrinsic brightness of vesicles.) Each〈D3D〉 is the mean
over all single steps occurring within a small range ofz for one cell
(black), for the immobile group (red), and for the mobile group (blue).
Long trajectories were truncated at 50 frames to minimize the effects
of photobleaching and to minimize overweighting of long trajectories.
The brightest intensity observed definesz ) 0. The solid line is a least-
squares fit to the combined mobile+ immobile data.〈D3D〉 increases
a factor of 10 over a 225-nm change in apparentz. The vertical bars
show one standard deviation of data contributing to each point. The
trap data (green) are best-fit modelD values from walks within a
parabolic restoring potential plotted against the mean apparentz for
each trap (see Table 1 and text). (b) Distribution of apparentz for the
mobile, immobile, and directed-motion groups averaged over all
vesicles. Long trajectories truncated as above.
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slope of the log plot very little. Thezdependence in PC12 cells
is milder than that in chromaffin cells, for which〈Dz〉 increased
a factor of 10 for each 130-nm increase inz.

Figure 6b shows histograms of the apparentz locations
sampled by the mobile and immobile groups, again with steps
pooled from only the first 50 frames of each trajectory to avoid
photobleaching effects. The peak atz) 50 nm for the immobile
group is dominated by the four brightest vesicles in the whole
cell (vesicles #1-4; see Figure 2a). These are the same vesicles
that carry out sequential visits among small traps. Other
immobile vesicles and the directed-motion vesicles evidently
sample a similar range ofz as the mobile group.

Heterogeneity within Single Trajectories.Some changes
in the single-vesicle state of motion are fairly obvious to the
eye. The directed-motion vesicles of Figure 2c pause, change
speed, and change direction; trajectory #D1 changes from
directed motion to more diffusive motion like that of the mobile
group. The immobile vesicles at low apparentz jump quickly
or migrate slowly among small mini-traps with a diameter of
∼50 nm or less. Other vesicles evidently change their diffusion
coefficient (〈r2〉) in subtle ways. A useful test of memory in
r2(t) that averages out much of the noise is the time-correlation
function:33,34

Here, (δr2)i ) (r2)i - 〈r2〉 measures positive and negative
fluctuations ofr2 about its mean value calculated over the entire
trajectory. N is the number of steps in the trajectory. The
denominator normalizesC(r2; n) to 1 at n ) 0. If during the
trajectory r2 persistently takes on values that are larger than
average (or smaller than average) over the time rangeτ ) n∆t,
then the average of the product of the fluctuations will be
nonzero andC(r2; n) will remain positive (or negative) overn
frames. For free random walks,r2(t) has no memory from frame
to frame, soC(r2; n) decays immediately to the noise level atn
) 1.

As shown in Figure 7,C(r2; n) exhibits diverse behavior.
Among the mobile group, we find examples such as vesicles
#16, 27, and 68 for whichC(r2; n) remains positive over 3-10
frames (75-260 ms). Evidently, these vesicles have short
periods of above-averager2 that persist longer than such periods

in free random walks.C(r2; n) is not seriously affected by
deleting any particular short run of 5-10 frames. Thirteen of
the 22 mobile vesicles (59%) haveC(r2; n ) 1) > 0.1. To test
the statistical significance of this result, we ran 10 000 force-
free random walks with a distribution of step lengths that mimics
that observed in the mobile group so that the noise level is
representative of that in the real data. Only 18% of these walks
had C(r2; n ) 1) > 0.1, so the observed effect is significant.
PositiveC(r2; n) could signal a transient increase in diffusion
constant or engagement and disengagement of a motor protein
from the actin cortex. In contrast, vesicle #80 and many others
haveC(r2; n) that decays to zero within the noise atn )1, like
a free random walk. Visual inspection of trajectories #68 and
80 in Figure 2b shows howC(r2; n) discerns correlations not
readily detected by the eye. If motor activity led primarily to
stretches ofquasi-linear motionwith longer-than-average step
lengths, we might expect bothC(r2; n) and the velocity
autocorrelation function,G(n), to remainpositiVe for similar
periods, but this is not observed.

For vesicles #1, 3, and 4 from the immobile group,C(r2; n)
remains positive in the range 0.10-0.35 atn ) 1. Most of the
vesicles from the immobile group behave similarly. This may
be related to the strong negative values ofG(1) exhibited by
the immobile group, as if long “second displacements” tend to
reverse direction from long “first displacements”. The model
random walks with restoring potential (see below) capture some
of this behavior, predictingC(r2; n ) 1) ) 0.06-0.13.

Beyondn )1, vesicles #1 and 4 showC(r2; n) that decreases
slowlyand nearly linearly from positive to negative values over
300 frames (inset of Figure 7). Several other vesicles from the
immobile group exhibit this behavior. Vesicle #3 showsC(r2; n)
that gradually sags below zero and then rises above zero.
Vesicles #1 and 4 sample a series of traps whose physical
properties differ in a way captured byC(r2; n). Evidently, the
traps vary in size, local diffusion coefficient, or elasticity. To
see how this causesC(r2; n) to decreaselinearly, suppose there
were only two traps, one favoring larger-than-average values
of r2 and the other favoring smaller-than-average values ofr2.
At small time lags,C(r2; n) multiplies values ofr2 by other
values within the same trap, so that a positiveδr2 value tends
to be multiplied by a positiveδr2 value and a negativeδr2 value
tends to be multiplied by a negativeδr2 value, causingC(r2; n)
to remain positive. As the lag time increases to delay times
comparable to the dwell time within traps, positiveδr2 values
are more often multiplied by negativeδr2 values andC(r2; n)
gradually decreases. At sufficiently largen, positiveδr2 values
will be multiplied primarily by negativeδr2 values andC(r2; n)
goes negative. If the time sequences of the large-r2 and small-
r2 traps were reversed,C(r2; n) would still decreasemonotoni-
cally from positive to negative values. A sequence of traps of
gradually increasing (or decreasing) local averager2 behaves
the same.C(r2; n) plots that “sag” in the middle (e.g., vesicle
#3, inset of Figure 7) occur when the local average ofr2 varies
slowly but innon-monotonic fashion, as in a period of positive
δr2 followed by a period of negativeδr2 followed by another
period of positiveδr2. Long negative-positive-negative se-
quences give the same result.

Mechanical Model of “Mini-Traps”. Close inspection of
the immobile trajectories often reveals sequential visits to a
series ofsmaller regions with a diameter of∼50 nm or less,
separated by 50-200 nm in space. Good examples are vesicles
#1 and 4 in Figure 2. The calculations presented above under
“Random Walk Models” show that it is highly unlikely that
force-free random walks would remain so confined for so long.

Figure 7. Time-correlation function ofr2(t) for individual vesicles as
labeled. See eq 4 for the definition ofC(r2; n). The persistence of
positive C(r2; n) indicates prolonged periods of above-averager2

compared with a free random walk. Inset:C(r2; t) for immobile vesicles
#1, 3, and 4 over 300 frames.

C(r2; n) ) ((N - n)-1∑
i)1

N-n

(δr2)i(δr2)i+n)/(N
-1∑

i)1

N

(δr2)i
2) (4)
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Most of these mini-traps are roughly spherical. The transition
between two smaller regions often occurs as a rapid, 50-100-
ms “jump”, after which the vesicle dwells in the next small
region for 0.5-1 s or more. We believe this motion isnotcaused
by the thermal drift of the entire sample relative to the
microscope. If it were, we would expect other slow-moving
vesicles to show correlated drift in the samexydirection during
the same movie frames, but this does not occur. If the mini-
traps were fixed locations in space, the vesicles might visit a
mini-trap, move on to another mini-trap, and later revisit the
first mini-trap. This does not seem to occur.

For vesicle #4, the MSD(τ) plot averaged over the entire
trajectory (Figure 8) is a composite of two types of motion.
After an abrupt initial step up, it exhibits mildpositiVecurvature
over 1 s. On that time scale, the vesicle has made several abrupt
migrations among traps substantially displaced in space. The
MSD(t) plots for immobile vesicles #1 and 3 also take a similar
sharp initial step up. In the range 0-1 s, the MSD for vesicle
#1 subsequently growslinearly, while the MSD for vesicle #3
showsnegatiVe curvature. Such plots are quite sensitive to the
distribution of mini-trap durations and the distances between
mini-traps; they do not faithfully report on the size and
viscoelastic properties of the mini-traps themselves.29,35-37

To extract quantitative information about the traps themselves,
we excised individual localized segments of trajectories #1 and
4, as judged by the eye, for comparison with confined random
walk models. These vary in length from 20 to 150 frames. The
MSD(n) plots for individual localized traps saturate at long times
and are thus appropriate for analysis as confined random walks
(Figure 8, inset). In modeling such data as a walk within a
restoring potential or confined to a sphere, we need a procedure
for finding the model parameters that best fit the MSD(τ) data.
First, we fit the data to a function of the form MSD(τ) ) Aτ2/
(B + τ2), with A andB being adjustable parameters chosen in
a least-squares sense. We generate 10 000-step walks with
various combinations of parameters (D and κ or D and R0)
chosen on a grid that covers the range required by the range of
trap MSD(τ) data. For each parameter pair, the MSD(τ) was
generated from the corresponding random walk. We found that
the potential parameterκ (or R0) can be obtained directly from
the high-τ asymptote of MSD(τ) from the equationκ ) 6kT/A
(or R0 ) (0.86A)1/2). The microscopic diffusion coefficient,D,
depends on both the asymptote and the initial slope. We fitD
to a function of the formD ) a1 + a2(A/B) + a3(A/B)2 + a4-
(A/B)3, with (D, A/B) pairs generated from 10 000-step walks.
These equations allow us to find the best random walk model

parameters directly from single-trap MSD(τ) data. Using the
best combination ofD and κ (or D and R0), we generate a
10 000-step walk whose MSD(τ) closely fits the experimental
data by design. Those results provide the speed distribution,
P(r), the time-correlation function,C(r2; n), and the velocity
autocorrelation function,G(n), for further tests of the validity
of the model.

As described above, we have modeled the data with two
different types of random walks: force-free walks confined
within a sphere and walks with a central restoring potential of
V(R) ) 1/2κR2, with R being the distance from the center of
force. Figure 9 contrastsxyprojections of 100-step walks within
a sphere and with a restoring potential using the parameters
that best fit MSD(τ) for a particular trap, trap #2. The force-
free walk fills the sphere uniformly, while the restoring potential
model concentrates points near the center of force and allows
a softer “edge” to the distribution.

For the restoring potential model, the inset of Figure 8 shows
best fits to MSD(τ) for two traps from trajectory #4, one small
and the other large. In both cases, the model fits both the rising
portion and the asymptote, including the sharp step upward
at n ) 1. Importantly, the restoring force model tuned to fit
MSD(τ) also fits experimentalP(R) quite well (øν

2 ) 0.89). It
appears that we are cutting segments of essentially homogeneous
motion from a full trajectory which is heterogeneous. For
sufficiently long walks, we haveP(R) ) AR2 exp(-1/2κR2/kT),
the canonical ensemble. The model predicts negativeG(n ) 1)
values in qualitative accord with experiment, but the magnitude
is 20-40% too small. In the model, negativeG(n) values persist
to n ) 3-4. This is not easy to see in noisy, single-trap data.

Figure 8. (a) For immobile vesicles #1, 3, and 4, MSD(τ) averaged
over the entire trajectory. Inset: MSD(τ) for two individual traps sliced
from trajectory #4 (Figure 2). The solid lines are the best fits to the
model of a random walk in a parabolic radial restoring potential. See
Table 1 for the best-fit parameters.

Figure 9. (a) Two confined random walks projected onto a plane.
Each walk was tuned to fit MSD(τ) for trap #10 in Table 1. On the
left-hand side: walk within a sphere. On the right-hand side: walk
within a restoring potential. (b)P(R) experimental distribution for trap
#10. The solid lines are modelP(R) for the walk within a restoring
potential and the walk within a sphere that best fit the experimental
MSD(τ) data. Theøν

2 statistic is 3 times lower for the walk within a
restoring potential, 0.89 vs 2.48.
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However, G(n) values averaged both over all the immobile
vesicles (Figure 4) and over the pooled trap data (not shown)
hint at such persistence. The average over all mobile vesicles
does not. The model also predicts the positive first step of the
time-correlation function,C(r2; n), for traps, although only at
∼50% of the experimental value.

Model walks confined to a sphere with no restoring potential
can be tuned to fit MSD(τ) andG(n) just as well as the walks
with restoring potential (fits not shown). However, these walks
fill the sphere uniformly (Figure 9), that is,P(R) ) AR2, which
gives a qualitatively incorrect shape compared with experiment.
The fit to P(R) is quantitatively poor, with theøν

2 value being
typically 3 times larger than that for the restoring potential
model. The data clearly support an elastic model of the medium
surrounding the vesicle.

The best-fit parameters from restoring force models for 17
mini-traps are collected in Table 2. The short-time diffusion
constant,D, varies from 0.0008 to 0.0065µm2/s. The force
constant,κ, varies from 0.023 to 0.050 pN/nm. Taking account
of both the fitting error for single-trap data and the variation in
outcomes for short trajectories from a single motional model,
we estimate thatD is accurate to(30% andκ is accurate to
(15%. Thus, the apparent heterogeneity in parameters among
mini-traps is real. SmallD correlates with largeκ. There is
substantial variation of bothD and κ with apparentz, in the
direction thatD increases and the traps become less stiff as the
distance from the PM increases. The fitted values ofD for each
trap are plotted in Figure 6 as a function of the mean value of
z within the trap. The data generally track the trend of〈D3D〉
versusz for the entire immobile group.

Discussion

Comparisons with Previous Work.Several excellent studies
have tracked LDCV motion in PC12 cells and chromaffin
cells,18,21,38-41 including the effects of F-actin stabilizing and
destabilizing drugs and of differentiation with nerve growth
factor (NGF). A landmark PC12 study5 with a 0.8-Hz frame
rate and a 50-nm spatial resolution observed a few vesicles that

moved in a directed manner over micrometer distances, many
that moved randomly, and many that remained stationary within
the measurement accuracy. However, no stationary vesicles were
observed to start moving, and only one rapidly moving vesicle
was observed to stop. That study also stained the actin cortex,
measured its thickness to be at least 390 nm, revealed
filamentous actin within the cortex, and directly observed its
remodeling on a time scale of tens of seconds. A recent detailed
study of LDCVs in the processes of PC12 cells differentiated
with NGF found a broad distribution of one-step mean-square
displacements (atτ ) 0.5 s), quite similar to that observed here
for undifferentiated cells.20 Under the assumption that each
vesicle has a particular,time-inVariant diffusion coefficient, the
existence of adistribution of diffusion coefficients was dem-
onstrated by a rigorous statistical analysis. In addition to
demonstrating such vesicle-to-vesicle heterogeneity on much
shorter time and length scales, our study reveals heterogeneity
within a subset of single-vesicle trajectories.

An earlier 3D tracking study of chromaffin cells with a 5-10-
nm resolution18 focused on the motion of vesicles just prior to
docking. Mobile vesicles evolved into docked vesicles, which
preferentially exocytosed upon stimulation. The docked vesicles,
which lie closer to the PM than mobile vesicles, sampled mini-
traps quite similar in radius (24( 9 nm) to those we describe
here for PC12 cells. As in the present work, vesicles were
observed to change states from mobile to immobile and back
again. PC12 and chromaffin cells seem quite similar with regard
to many details of vesicle motion. We have avoided calling the
immobile vesiclesdocked(which suggests readiness for exo-
cytosis), since there is evidence that in PC12 cells themobile
vesicles are more likely to carry out exocytosis immediately
after depolarization than the immobile vesicles.12

Motor-Dominated Motion. A dual-motor transport system
evidently operates in chromaffin cells42 and neurons,4,43 and a
trimotor system operates in melanocytes.4,8 Vesicles are trans-
ported from the trans-Golgi network (TGN) to the actin cortex
by kinesin walking on microtubules (MTs). The melanocytes
also harbor dynein motors that transport them from the cortex
back to the TGN. Recent work showed that, in PC12 cells,
kinesins transport immature LDCVs from the Golgi to the actin
cortex via MTs and suggested that myosin-Va is involved in
tethering and subsequent motion of mature vesicles on a shorter
length scale within the cortex.10,11 The directed-motion trajec-
tories of Figure 2c are almost surely dominated by motor
activity. On the basis of known mean speeds of motors in vitro,
most of these trajectories seem to involve kinesin walking on
MTs. Kinesin is a processive motor which takes 8-nm steps
with a dwell time on the order of 5 ms between steps. It moves
at a mean speed on the order of 1500 nm/s,44 consistent with
the most typical segment speeds in Figure 2c. Under our
conditions, such motion should create a trajectory of fairly
uniform local speed with frame-to-frame displacements on the
order of 40 nm. This is consistent with the appearance of many
of the short segments of the directed-motion trajectories. The
directed-motion vesicles are never among the brightest vesicles
(Figure 6), indicating that the purported microtubules lie some
100-300 nm above the PM.

The wide variability in local speed (460-2200 nm/s) could
arise from the presence of different types of kinesins or dyneins
on the same motor or from changes in the local degree of viscous
drag due to the variation of F-actin density or morphology. In
addition, the melanosome study8 showed that functional myosin-
Va on akinesin-driven vesicle may impede progress by transient
binding to F-actin as it streams by, causing the local speed to

TABLE 2: Properties of 17 Traps Fit to a Random Walk
Model with Restoring Potential

vesicle #
(trap #)

duration
of trap

(frames)

mean
apparent
z (nm)

best-fit force
constant,κ,a

(pN/nm)
best-fitDa

(µm2/s)
D1-step

b

(µm2/s)

#1 (#1) 36 33 0.049 0.0010 0.0013
#1 (#2) 21 34 0.050 0.0020 0.0015
#1 (#3) 42 41 0.034 0.0008 0.0011
#1 (#4) 45 47 0.050 0.0019 0.0017
#2 (#5) 48 51 0.026 0.0012 0.0019
#1 (#6) 67 56 0.044 0.0010 0.0014
#4 (#7) 71 65 0.036 0.0009 0.0014
#1 (#8) 84 73 0.037 0.0010 0.0016
#1 (#9) 62 87 0.031 0.0008 0.0018
#4 (#10) 50 107 0.047 0.0018 0.0017
#1 (#11) 20 123 0.037 0.0065 0.0032
#4 (#12) 98 124 0.045 0.0016 0.0021
#1 (#13) 67 128 0.030 0.0035 0.0030
#71 (#14) 53 129 0.023 0.0033 0.0037
#1 (#15) 50 138 0.036 0.0057 0.0033
#72 (#16) 69 156 0.023 0.0036 0.0042
#4 (#17) 151 171 0.029 0.0064 0.0044

a D is the short-time model diffusion coefficient;κ is the restoring
force constant in the model potentialV(R) ) 1/2κR2. See text for further
explanation. Estimated accuracy of(30% for D and (15% for κ.
b Calculated from single-trap MSD(t ) 0.0262 s) asD1-step ) MSD/
6t.
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vary in time and space. The stall force of kinesin is 5-8 pN,44

twice as large as the stall force for myosin-V45 and much larger
than the restoring force of the observed mini-traps (∼1 pN at
extensionR ) 25 nm). Kinesin thus wins in competition with
myosin-V and also would readily pull LDCVs through mini-
traps of the size and strength measured near the PM.

Most of the directed segment speeds are too fast for average
speeds of myosin-V, which lie in the range 200-500 nm/s.44

However, the frame-to-frameP(r) distribution for the directed-
motion group (Figure 3) shows a small fraction of displacements
in the range 50-80 nm, which may be more consistent with
myosin-V motion, as described below. The backtracking
behavior might be due to the added presence of dynein on the
same vesicle, although there is no biochemical evidence at the
present time for dyneins on LDCVs.

Capture and Assisted Diffusion.Myosin-Va is bound to at
least 50% of the large dense-core secretory vesicles (LDCVs)
of PC12 cells.10,11What is its purpose? In the “capture model”
that evolved from the melanosome study,8 myosin-Vaat least
plays the role of concentrating melanosomes in the actin cortex
by binding them to F-actin. For both melanosomes and LDCVs,
such transient binding can explain the steady-state preponder-
ance of vesicles in the cortex relative to the rest of the cell.
Within the actin cortex itself, vesicle binding to F-actin via
myosin-Va would also cause the vesicle density to mimic the
density of F-actin binding sites, although other mechanisms for
docking such as SNARE complexes at the PM must be
considered as well.

Myosin-Va shouldwalk on F-actin unless it is subject to an
unknown regulation mechanism. Strong evidence for active
transport within the cortex comes from two studies that
expressed a dominant negative tail fragment of myosin-Va
lacking the motor domains. This construct blocks normal
vesicle-myosin-Va binding. In both mouse melanocytes8 and
PC12 cells,11 this depleted the frame-to-frame step length
distribution,P(r), at the high end. The depleted range was about
0.1-0.3 µm/s for melanocytes and 0.28-0.8 µm/s for PC12,
roughly comparable to myosin-V average speeds in vitro (0.2-
0.5 µm/s).44 Neither study found evidence of directed motion
with a spatial resolution of∼50 nm and frame rates of 1-2
Hz, which would average over several 80-ms dwell periods
between motor steps, as detailed below.

Additional evidence consistent with motor-driven active
transport of the mobile group comes from the effects on vesicle
motion of F-actin disruption or stabilization by drugs in
undifferentiated PC12 cells.5 LDCV diffusive motion slowed
when the actin cortex was degraded by latrunculin andstopped
completelywhen the remodeling of F-actin was prevented by
phalloidin or the withdrawal of MgATP.5 Almers and co-
workers suggested that F-actin provides tracks for active
transport but a rigidified actin cortex is too stiff and has pore
sizes too small to allow even diffusive transport to occur.

One of our goals in this high-resolution work was to look
closely for short segments of directed, myosin-driven motion.
While positiveC(r2; n ) 1) in the mobile group could be caused
by brief periods of processive motor activity interspersed with
periods of local diffusion,directedmotion is not in evidence.
There are a modest number of quasi-linear segments in the
mobile trajectories, but they are neither longer nor more frequent
than the seemingly directed segments that appear in a free
random walk. It seems highly unlikely that still better temporal
and spatial resolution would reveal directed motion.

The best model for the motion of themobileLDCVs in the
actin cortex evidently involves motor-assisted transport, also

known asassisted diffusion, within a viscoelastic medium.
Myosin-Va intermittently binds the LDCVs to the actin cortex
and enhances transport by dragging the vesicles along cross-
linked, entangled F-actin filaments. Our observation of subdif-
fusion on a 100-ms time scale and the absence of significant
directed motion in our high-resolution trajectories constrain this
model severely. The apparently diffusive motion must be due
to the complexity of the actin meshwork itself. Recent in vitro
studies of myosin-V at 25°C and excess ATP concentration
revealed 37-nm steps and average dwell times of 80 ms between
steps, yielding an average speed of∼500 nm/s.45 If the mesh
size of the F-actin network is∼50 nm, with a high density of
cross-links and branches,moststeps might transfer myosin-V
to another filament. If the power stroke is fast and successive
steps along the same quasi-linear filament are rare, directed
motion will not be observed and the motion will appear diffusive
even at a high resolution.

Our spatial and temporal resolution can resolve individual
steps and dwell periods (26-ms resolution vs 80-ms mean dwell
time). Thus, the mobile group’sP(r) may be a composite of
two modes of motion on the 25-ms time scale: longer, motor-
assisted frame-to-frame displacements (primarily the fast com-
ponent; see Figure 4 and Table 1) interspersed with shorter
displacements during dwell times (primarily the slow compo-
nent). The fast and slow components overlap significantly, so
our statements can be only semiquantitative. The slow compo-
nent has frame-to-frame displacements primarily in the range
5-30 nm; only 25% of this distribution hasr > 20 nm. We
suggest it arises from periods in which the vesicles move
thermally within a viscoelastic medium unassisted by motor
action; such motion may involve confinement within “holes”
of the actin network and tethering to F-actin by a myosin-V
motor. We draw this inference from the similarity between the
minority, slow component ofP(r) of the mobile group and the
majority, slow component of the immobile group (Table 1). The
length of the tail region of myosin-Va is∼30 nm, so wagging
or bending motions of the tail and its cargo can explain the
5-30-nm range of displacements. This motion cannot simply
involve jiggling of the LDCV about a fixed position but rather
must involve motion of the center of gravity of the vesicle for
∼25 ms, perhaps accommodated by local adjustment of F-actin.

The fast component ofP(r) for the mobile group (Table 1)
has frame-to-frame displacements primarily in the range 10-
60 nm; only 25% of the fast distribution hasr < 20 nm. We
suggest that these displacements primarily involve asuperposi-
tion of myosin-V-driven motion with thermal motion of the
vesicle on its tether. It is not easy to estimate the distribution
of measured displacements for a vesicle carrying one myosin-V
when exactly one of the two frames catches a motor step. Steps
that cross over to another F-actin strand can be substantially
shorter than 37 nm. In addition, when a myosin-V step occurs
near the middle of a camera frame, its effect will be distributed
roughly equally acrosstwo frame-to-frame displacements (in-
volving three successive frames). A single 37-nm step thus
sometimes contributes 15-20 nm of directed motion to two
successive displacements. This further shortens the measured
active displacements. It may also contribute to positive values
of C(r2; n ) 1). Thermal motion of the LDCV on its tether will
further broaden the distribution of displacements by perhaps
(15 nm, the range of observed displacements within the slow
component. In summary, we estimate that apair of frames that
catches exactly one active motor step will yield measured
displacements primarily in the range∼15-45 nm, which covers
most of the range of the fast component ofP(r).
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While most of the fast component ofP(r) for the mobile group
can be reasonably well understood in terms of single crossover
steps of a myosin-V motor, two factors subtly hint at the
presence of two or more active motors on at least some of the
mobile vesicles. First, the mean dwell time of 80 ms combined
with a duty factor for binding to F-actin that is<1 predicts
that<30% of the frames will catch a motor step, while the fast
component ofP(r) contributes 70% of the displacements (Figure
4). A two-motor LDCV should take steps more frequently than
a one-motor LDCV. Second,∼20% of the mobile group
displacements fall in the range 45-70 nm, somewhat longer
than that expected for single myosin-V steps. This may be due
to double steps within a frame. For only one active motor per
vesicle, we estimate the probability of two steps within a single
frame to be∼4%. Two motors acting independently would
double this probability and help explain the substantial fraction
of very long steps.

If the mobile group undergoes tethered diffusion like the
immobile group when its motors are dwelling between steps or
disengaged from F-actin entirely, a reasonable corollary is that
the immobile grouplacks actiVely walking motors or has fewer
actiVe motors. Do the immobile vesicles completely lack
myosin-Va? Competitive binding of the dominant negative tail
region of myosin-Va to LDCVs severely depletes their con-
centration in the cortex. This suggests that intact myosin-Va is
the transient binding agent that concentrates LDCVs in the actin
cortex and that the immobile vesicles harbor myosin-Va. If so,
our interpretation further suggests that the myosin-Va motors
on immobile vesicles are less numerous or are subject to a
regulatory mechanism that alters motor activity but not binding
to F-actin. The observed changes in the state of vesicle motion
within single trajectories supports this hypothesis of regulated
motor activity. Changes in the state of motion might also help
explain the substantial fast component ofP(r), which contributes
0.4 of the frame-to-frame displacements of the immobile group.
Regulation of motor activity might be related to the concept of
mobile and immobilepoolsof vesicles whose state changes in
response to cell stimulation and the rate of exocytosis. Alter-
natively, all myosin-Va may be active all of the time, but the
immobile vesicles harbor only one myosin-Va, while mobile
vesicles harbor two or more. We cannot distinguish these
possibilities by imaging the vesicles alone.

Microrheology. From the viewpoint of the field of rheology,
the actin cortex is a dense solution of entangled, semiflexible
polymer rods cross-linked by other proteins such asR-actinin,
filamin, and spectrin. In this context, our vesicle tracking
experiment is a one-particle microrheology experiment. Here,
we compare our results for LDCV motion in the actin cortex
of PC12 cells with earlier microrheology experiments on anionic
(carboxylated) fluorescent microspheres embedded in entangled
F-actin solutions in vitro46,47and in the cytoplasm of live Swiss
3T3 fibroblast cells.48 Weitz and co-workers47 tracked spheres
with a radius ofa ) 0.23-0.42µm in F-actin solutions with a
rod length of∼15 µm and a mesh size ofê ) 0.3 µm. The
smallest spheres hada/ê ∼ 0.8. These spheres exhibit anomalous
subdiffusion with MSD∼ τ0.6 at short times and significant
negatiVe curvature on a log-log plot (Figure 10), consistent
with slow permeation of the spheres through the network.
Spheres with only slightly higher values ofa/ê, ∼1.1 and∼1.4,
remain caged; that is, the MSD reaches a plateau related to the
mesh size and elasticity forτ > 0.1 s. An earlier study46 at a
lower F-actin density (ê ∼ 1 µm) found free diffusion for
particles with a/ê ) 0.15 (a ) 0.15 µm, MSD ∼ τ1) and
anomalous subdiffusion for particles witha/ê ) 1.4 (a ) 1.4

µm, MSD ∼ τ0.73, again with slight negative curvature of the
log-log plot). The in vitro work demonstrates the extreme
sensitivity of the motion to the ratioa/ê, analogous to the
sensitivity of diffusion to the density of obstacles as the
percolation limit is approached.

Perhaps the most detailed view of the actin cortex comes from
recent electron tomography images ofDictyosteliumcells.49

These reveal actin filaments of 100-500 nm in length with
many branches and cross-links. Open spaces among the rods
have dimensions on the order of 50 nm, which is the mesh size,
ê, typically cited for the actin cortex. The local density of actin
filaments varies substantially in space on a∼0.3-0.5-µm scale.
In PC12 cells adhered to glass, Almers and co-workers5 stained
the F-actin to reveal crisscrossing filaments interpreted as actin
bundles at the base of the cell. These bundles measured 1-5
µm in length, and about half the bundles were observed to move
on a 1-min time scale or less. The mini-traps examined here
have diameters<50 nm, consistent with a mesh size ofê ∼ 50
nm within the actin cortex. To explain the observed fwhm of
our Gaussian fitting functions, we must convolve a 120-nm
fwhm Gaussian (representing the real LDCV size) with the
point-spread function of the microscope. An LDCV radius ofa
∼ 60 nm is consistent with results from electron microscopy,50

so we estimatea/ê ∼ 1.1 in our study. The in vitro work
suggests we should observe anomalous subdiffusion and caging
of the LDCVs.

The mobile group exhibits MSD∼ τ0.7 at short times (Figure
10), more similar to the short-time limit of Weitz’ssmaller
spheres havinga/ê ∼ 0.8, for which MSD∼ τ0.6, than to
expectations fora/ê ∼ 1.1. Less confinement of the mobile
LDCVs than what is expected can be taken as further evidence
of motor-assisted diffusion.

In contrast, the immobile group of LDCVs indeed seem caged
at short times, and the log-log plot shows MSD∼ τ0.4 at short
times, quite similar to the short-time behavior of Weitz’s
intermediate-sized and large spheres havinga/ê ∼ 1.1 and 1.4
(Figure 10). This is consistent with the possibility that the
immobile LDCVs lack active motors. However, at longer times,
the LDCV log-log plot exhibitspositiVe curvature, which is
qualitatively different from the behavior of microspheres in
entangled actin filaments in vitro. This positive curvature arises

Figure 10. Comparison of〈MSD(τ)〉 for microspheres in F-actin
solution (data from ref 47, ratio of sphere radius to mesh size,a/ê, of
0.8 for open circles and 1.1 for open triangles); for mobile and immobile
LDCVs in PC12 cells (present work, filled squares and circles,
respectively); and for microspheres witha ) 50 nm injected into Swiss
3T3 cells (blue line, data from ref 48). The thin red lines show various
power-law slopes as indicated.
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from the “jump diffusion” observed for many of the immobile
vesicles, as described above. Such behavior is reminiscent of
the 2D “diffusion by hops” of a variety of integral membrane
proteins within the PM of erythrocytes,36 although it occurs
on much longer time scales.

The cause of these 3D jumps within the actin cortex is
uncertain. They are most evident among the immobile vesicles
with smallest apparentz. The similarity between mini-trap size
and the∼50-nm mesh size of the actin cortex suggests jumps
between holes in the mesh, possibly assisted by F-actin
remodeling events. Within the large trap at the end of trajectory
#4 (Figure 2a), the physical environment of the vesicle seems
to tighten up as a function of time over∼0.5 s, without
substantial change in location of the vesicle center-of-mass. This
suggests local remodeling of the surrounding F-actin in response
to a jump by the vesicle.

Remarkably, in their study of anionic fluorescent spheres of
a ) 50 nm microinjected into the cytoplasm of Swiss 3T3 cells,
Wirtz and co-workers48 obtained log-log MSD(τ) plotsquan-
titatiVely similar to ours for the immobile group, including the
unusual positive curvature (Figure 10). This similarity between
inert microspheres in vivo and the immobile LDCVs suggests
the occurrence of jump diffusion due to remodeling of actin in
both cases. However, the comparison is between LDCVs
embedded in the actin cortex of PC12 and spheres distributed
throughout 3T3 cells. Moreover, there is some evidence of
directed motion of the microspheres, which would also con-
tribute to positive curvature in the log-log plot.

Conclusion

This high-resolution tracking study of LDCVs within the actin
cortex of PC12 cells reveals interesting new quantitative details
of the vesicle motion. A better understanding of the factors
causing the heterogeneity observed here requires the measure-
ment of high-resolution vesicle trajectoriessimultaneouslywith
images of other labeled components, such as F-actin, the motor
proteins kinesin and myosin-Va, and SNARE complexes. This
may be most feasible using cracked cells, which give biochemi-
cal access to the actin cortex and associated vesicles and
proteins.
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