Matrix Isolation Infrared Spectroscopic and Density Functional Theoretical Studies of the Reactions of Scandium Atoms with Methanol

Mohua Chen, Zhengguo Huang, and Mingfei Zhou*

Department of Chemistry & Laser Chemistry Institute, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China

Received: April 15, 2004; In Final Form: May 17, 2004

The reactions of scandium atoms and methanol molecules have been investigated by matrix isolation infrared absorption spectroscopy. The reaction intermediates and products were identified on the basis of isotopic IR studies with ¹³CH₃OH, CH₃¹⁸OH, and CH₃OD, as well as density functional theory calculations. In solid argon, the ground-state scandium atoms reacted with methanol to form the inserted CH₃OScH molecules spontaneously but not the thermodynamically more favorable CH₃ScOH. The inserted CH₃OScH molecule underwent photochemical rearrangement to form the (CH₄)OSc complex upon ultraviolet–visible irradiation. In addition, the CH₃OSc molecule and its photoinduced CH₃ScO isomer were also observed.

Introduction

The catalytic conversion of methane to methanol has gained much attention due to its great economic and scientific importance.¹ The study of the $CH_4 + MO \rightarrow M + CH_3OH$ reaction and its reverse reaction can potentially provide quantitative information regarding the thermodynamics and mechanisms for the catalytic methane-to-methanol conversion process. Considerable studies have been focused on the gas-phase reactions of various transition metal oxide ions with methane.²⁻⁴ The results showed that the late transition metal oxide ions can efficiently convert methane to methanol, while the early transition metal oxide ions cannot. In an FeO⁺ + CH₄ reaction study, a HOFe⁺CH₃ molecule has been suggested as a key intermediate in the reaction process.² Density functional calculations suggested that the $MO^+ + CH_4 \rightarrow M + CH_3OH$ reactions proceeded via the initial formation of a OM⁺(CH₄) complex followed by isomerization to the HOM⁺CH₃ and M⁺(CH₃OH) intermediates via two transition states.5 The results showed that the experimentally observed reaction efficiency and methanolto-methyl branching ratio could be rationalized in terms of the predicted barrier heights at the transition states.

The reactions of neutral metal oxides with methane have received much less attention. Theoretical calculations showed that NiO and PdO are reactive toward methane and can form molecular complexes with CH₄ bound by 9-10 kcal/mol, but ScO is not reactive with respect to methane.⁶ The insertion of these metal oxides into the C-H bond of methane leading to the CH₃MOH molecules (M = Sc, Ni, and Pd) was predicted to have significant energy barriers. No experimental studies have been reported on the reactions of neutral transition metal oxides with CH₄. However, the reactions of neutral metal atoms with methanol molecules have been studied by matrix isolation spectroscopy, a powerful method for delineating reaction mechanisms by facilitating the isolation and characterization of the reactive intermediates.^{7–13} Previous studies have shown that metal atoms, in general, formed complexes with methanol molecules in solid matrixes. Photoexcitation of the complexes with visible or UV light induced oxidative insertion of the metal atoms into the O–H and/or C–O bonds of methanol. Recent investigations in our laboratory on the reactions of beryllium and magnesium atoms with methanol in solid argon have shown that the ground-state beryllium atoms spontaneously inserted into the O–H bond of methanol to form CH₃OBeH; the thermodynamically more favorable CH₃BeOH and CH₃MgOH were only formed upon broad-band irradiation.^{12,13} In this paper, we report combined matrix isolation Fourier transform infrared (FTIR) spectroscopic and density functional theory (DFT) calculations on the reactions of Sc atoms with methanol.

Experimental and Theoretical Methods

The experimental setup for pulsed laser ablation and matrix isolation FTIR spectroscopic investigation has been described previously.¹⁴ Briefly, the 1064 nm Nd:YAG laser fundamental (Spectra Physics, DCR 150, 20 Hz repetition rate and 8 ns pulse width) was focused onto the rotating scandium metal target, and the ablated metal atoms were codeposited with methanol in excess argon onto a 12 K CsI window for 1 h at a rate of approximately 2-4 mmol/h. Typically, 5-10 mJ/pulse laser power was used. Methanol was subjected to several freezepump-thaw cycles to minimize possible atmospheric contamination. The isotopic CH₃OD (Merck, 99%) and ¹³CH₃OH and CH3¹⁸OH (99%, Cambridge Isotopic Laboratories) and selected mixtures were used in different experiments. Infrared spectra were recorded on a Bruker IFS 113V spectrometer at 0.5 cm⁻¹ resolution by use of a DTGS detector. Matrix samples were annealed at different temperatures, and selected samples were subjected to broad-band irradiation with a 250 W high-pressure mercury arc lamp.

Density functional calculations were performed with the Gaussian 98 program.¹⁵ The three-parameter hybrid functional according to Becke with additional correlation corrections due to Lee, Yang, and Parr (B3LYP) and the $6-311++G^{**}$ basis sets were utilized.^{16–19} The geometries were fully optimized; the harmonic vibrational frequencies were calculated with analytic second derivatives, and zero-point vibrational energies (ZPVE) were derived. Transition-state optimizations were done with the synchronous transit-guided quasi-Newton (STQN) method²⁰ at the B3LYP/6-311++G** level followed by the

^{*} Corresponding author: e-mail mfzhou@fudan.edu.cn.

Figure 1. Infrared spectra in the 1500–1450 and 1320–1100 cm⁻¹ regions from codeposition of laser-ablated scandium atoms with 0.2% CH₃OH in argon: (a) 1 h of sample deposition at 12 K, (b) after 24 K annealing, (c) after 30 min of broad-band irradiation, and (d) after 30 K annealing.

Figure 2. Infrared spectra in the $1050-900 \text{ cm}^{-1}$ region from codeposition of laser-ablated scandium atoms with 0.2% CH₃OH in argon: (a) 1 h of sample deposition at 12 K, (b) after 24 K annealing, (c) after 30 min of broad-band irradiation, and (d) after 30 K annealing.

vibrational frequency calculations showing the obtained structures to be true saddle points.

Results and Discussion

The infrared spectra of the reaction products were reported, and the product absorptions will be assigned by consideration of the frequencies, isotopic shifts, and splittings of the observed bands and by comparisons with theoretical frequency calculations.

Infrared Spectra. The infrared spectra in selected regions from co-condensation of laser-ablated Sc atoms with 0.2% methanol in argon are shown in Figures 1 and 2, respectively, and the product absorptions are listed in Table 1. The behaviors of the product absorptions upon stepwise annealing and broadband irradiation are also shown in the figures. After sample deposition, very strong CH₃OH absorptions and weak CH₄ absorption (1305.4 cm⁻¹)²¹ were observed. Weak absorptions due to CH₂OH (1182.7 and 1047.5 cm⁻¹),²² H₂CO (1742.1 cm⁻¹), and HCO (1863.4 and 1084.8 cm⁻¹)²³ formed from CH₃-OH fragmentation were also observed when relatively high laser energy was employed. Besides the above-mentioned absorptions, new product absorptions at 1482.7, 1167.4, 1158.5, and 1154.3 (Figures 1 and 2, trace a) and at 583.5 and 562.2 cm⁻¹ (not shown) were observed after sample deposition. These product

 TABLE 1: Infrared Absorptions^a from Codeposition of Laser-Ablated Scandium Atoms with Methanol in Excess Argon

CH316OH	CH318OH	¹³ CH ₃ OH	CH ₃ OD	assignment	
1482.7 1290.5 1167.4 1158.5 1154.3 952.1 912.7 583.5	1482.7 1290.5 1126.3 1118.7 912.3 874.8 578.7	1482.7 1283.0 1142.9 1137.6 952.1 912.6 574.5	1063.5 1160.1 1154.3 952.1 912.7 583.5	CH ₃ OScH, ν (Sc-H) (CH ₄)OSc, δ (CH ₂) CH ₃ OScH, δ (CH ₃) CH ₃ OScH, ν (C-O) CH ₃ OSc, ν (C-O) (CH ₄)OSc, ν (Sc-O) CH ₃ ScO, ν (Sc-O) CH ₃ OSc, ν (Sc-O)	
562.2	556.4	554.7		$CH_3OSCH, \nu(SC=0)$	

^a IR absorption values are given in reciprocal centimeters.

Figure 3. Infrared spectra in the $1200-1100 \text{ cm}^{-1}$ region from codeposition of laser-ablated scandium atoms with isotopic substituted CH₃OH in excess argon. Spectra were taken after 1 h of sample deposition followed by 24 K annealing: (a) 0.2% CH₃OH, (b) 0.2% CH₃¹⁸OH, (c) 0.1% CH₃¹⁶OH + 0.1% CH₃¹⁸OH, (d) 0.2% ¹³CH₃OH, and (e) 0.1% ¹²CH₃OH + 0.1% ¹³CH₃OH.

absorptions markedly increased on sample annealing to 24 K (Figures 1 and 2, trace b). Subsequent broad-band irradiation with the high-pressure mercury arc lamp destroyed these absorptions, and produced new absorptions at 1290.5, 952.1, and 912.7 cm⁻¹, as well as the ScO⁺ (976.4 cm⁻¹) and ScO (954.9 cm⁻¹) absorptions.²⁴ The ScO⁺ and ScO absorptions and the 1290.5, 952.1, and 912.7 cm⁻¹ absorptions remained almost unchanged upon further annealing to 30 K (Figures 1 and 2, trace d).

Experiments were repeated with the ¹³CH₃OH, $CH_3^{18}OH$, ¹²CH₃OH + ¹³CH₃OH, $CH_3^{16}OH$ + $CH_3^{18}OH$, and CH_3OH + CH₃OD samples. The isotopic frequencies are also listed in Table 1. The infrared spectra in selected regions for different isotopic samples are shown in Figures 3–5.

Calculation Results. DFT/B3LYP calculations were performed on the potential reaction products. Five ScCH₃OH structural isomers, namely, the Sc(CH₃OH) and (CH₄)OSc complexes and the inserted CH₃ScOH, CH₃OscH, and HScCH₂-OH molecules were considered. The optimized geometric parameters are shown in Figure 6, and the vibrational frequencies and intensities are listed in Table 2. All five structural isomers were predicted to be local minima on the doublet potential energy surface and to be stable with respect to the ground-state reactants: Sc + CH₃OH.

Similar calculations were also done on the CH₃OSc and CH₃-ScO molecules. The optimized structures are also shown in Figure 6, and the vibrational frequencies and intensities are listed in Table 2.

CH₃OScH. Absorptions at 1482.7, 1167.4, 1158.5, and 562.2 cm^{-1} are assigned to the CH₃OScH molecule. These bands

TABLE 2: Calculated Vibrational Frequencies and Intensities of the ScCH₃OH and CH₃ScO Isomers at the B3LYP/ $6-311++G^{**}$ Level

molecule	frequency (intensity)
Sc(CH ₃ OH) (² A")	3645.1 (309), 3159.7 (6), 3129.8 (8), 3050.7 (38), 1498.0 (14), 1491.7 (1), 1454.6 (13), 1332.8 (91), 1156.0 (2), 1070.1 (53), 966.8 (53), 292.0 (9), 263.1 (12), 139.2 (6), 60.2 (1)
CH ₃ OscH (² A')	3052.9 (33), 3052.1(39), 2991.4 (131), 1522.2 (485), 1494.1 (3), 1493.3 (5), 1473.4 (17), 1172.8 (245), 1169.3 (2), 1163.7 (276), 553.4 (86), 314.6 (68), 171.1 (46), 141.4 (14), 29.5 (35)
CH ₃ ScOH (² A')	3962.1 (218), 3052.1 (8), 3036.8 (13), 2968.0 (11), 1430.0 (14), 1423.3 (0), 1149.1 (22), 707.7 (182), 495.6 (67), 416.8 (17), 396.4 (40), 357.2 (83), 338.0 (145), 119.3 (2), 18.9 (0)
$(CH_4)OSc(^2A_1)$	3130.2 (0), 3115.2 (32 × 2), 3013.7 (17), 1565.2 (0 × 2), 1354.5 (12 × 2), 1329.5 (14), 996.6 (250), 147.8 (1 × 2), 55.9 (1), 44.9 (16 × 2)
$CH_3OSc(^1A_1)$	3076.9 (21 × 2), 3007.3 (107), 1490.3 (5 × 2), 1470.7 (4), 1185.1 (425), 1164.7 (1 × 2), 584.6 (15), 161.5 (7 × 2)
$CH_3ScO(^1A')$	3048.0 (22), 3046.1 (30), 2977.5 (33), 1442.5 (1), 1435.3 (1), 1140.3 (2), 965.3 (289), 517.4 (32), 453.5 (70), 423.7 (70), 151.8 (19), 53.5 (13)

^a Vibrational frequencies are given in reciprocal centimeters; intensities (in parentheses) are given in kilometers per mole.

Figure 4. Infrared spectra in the 990–870 cm⁻¹ region from codeposition of laser-ablated scandium atoms with isotopic substituted CH₃OH in excess argon. Spectra were taken after 1 h of sample deposition followed by 24 K annealing and 30 min broad-band irradiation: (a) 0.2% CH₃OH, (b) 0.2% CH₃¹⁸OH, (c) 0.1% CH₃¹⁶OH + 0.1% CH₃¹⁸OH, and (d) 0.2% ¹³CH₃OH.

Figure 5. Infrared spectra in the 590–550 cm⁻¹ region from codeposition of laser-ablated scandium atoms with isotopic substituted CH₃OH in excess argon. Spectra were taken after 1 h of sample deposition followed by 24 K annealing: (a) 0.2% CH₃OH, (b) 0.2% CH₃¹⁸OH, (c) 0.1% CH₃¹⁶OH + 0.1% CH₃¹⁸OH, (d) 0.2% ¹³CH₃OH, and (e) 0.1% ¹²CH₃OH + 0.1% ¹³CH₃OH.

exhibited the same relative intensities in experiments with different laser energy and CH₃OH concentrations, suggesting that these bands are due to different vibrational modes of the same molecule. The 1482.7 cm⁻¹ band showed no isotopic frequency shift when CH₃¹⁸OH and ¹³CH₃OH samples were used. It shifted to 1063.5 cm⁻¹ with CH₃OD. The H/D isotopic frequency ratio of 1.3942 is indicative of a Sc–H stretching vibration. Both the band position and isotopic frequency ratio

Figure 6. Optimized structures (bond lengths in angstroms, bond angles in degrees) of the ScCH₃OH and CH₃ScO isomers.

are very close to those of the Sc-H stretching mode of HScOH in solid argon (1482.6 cm⁻¹ with H/D ratio of 1.3876).²⁵ The 1158.5 cm⁻¹ band is assigned to the C–O stretching mode. This band shifted to 1126.3 cm⁻¹ with CH₃¹⁸OH and to 1142.9 cm⁻¹ with ¹³CH₃OH, giving ¹⁶O/¹⁸O and ¹²C/¹³C isotopic frequency ratios of 1.0286 and 1.0136, respectively. In the mixed CH3¹⁶- $OH + CH_3^{18}OH$ (Figure 3, trace c) and ${}^{12}CH_3OH + {}^{13}CH_3OH$ (Figure 3, trace e) experiments, only the pure isotopic counterparts were observed, indicating that only one CO subunit is involved in the molecule. The 1167.4 cm⁻¹ band is assigned to the CH₃ deformation mode. The carbon-13 and oxygen-18 counterparts of the 1167.4 cm⁻¹ band could not be observed due to isotopic effect. The 562.2 cm^{-1} band is due to Sc-O stretching vibration. This band shifted to 556.4 cm⁻¹ with CH₃¹⁸-OH and to 554.7 cm⁻¹ with ¹³CH₃OH. In the mixed CH₃¹⁶OH + CH₃¹⁸OH (Figure 5, trace c) and 12 CH₃OH + 13 CH₃OH (Figure 5, trace e) experiments, only the pure isotopic counterparts were observed.

The assignment is supported by the DFT calculations. As shown in Figure 6, CH₃OScH was predicted to have a ${}^{2}A'$

 TABLE 3: Comparison of the Observed and Calculated

 Vibrational Frequencies^a and Isotopic Frequency Ratios of

 the Observed Products

		freq		¹⁶ O/ ¹⁸ O		¹² C/ ¹³ C	
molecule	mode	obs	calc	obs	calc	obs	calc
CH ₃ OScH	$\nu(Sc-H)$	1482.7	1522.2	1.0000	1.0000	1.0000	1.0000
	$\delta(CH_3)$	1167.4	1172.8		1.0057		1.0091
	v(C-O)	1158.5	1163.7	1.0286	1.0317	1.0136	1.0131
	$\nu(Sc-O)$	562.2	553.4	1.0104	1.0097	1.0135	1.0139
CH ₃ OSc	$\nu(C-O)$	1154.3	1185.1	1.0318	1.0367	1.0147	1.0139
	$\nu(Sc-O)$	583.5	584.6	1.0083	1.0079	1.0157	1.0162
(CH ₄)OSc	$\delta(CH_2)$	1290.5	1354.5	1.0001	1.0000	1.0058	1.0062
	$\nu(Sc-O)$	952.1	996.6	1.0436	1.0438	1.0000	1.0000
CH ₃ ScO	$\nu(Sc-O)$	912.7	965.3	1.0433	1.0436	1.0001	1.0001

^a Vibrational frequencies are given in reciprocal centimeters.

ground state with C_s symmetry. The Sc-H stretching, CH₃ deformation, C-O stretching, and Sc-O stretching modes were computed at 1522.2, 1172.8, 1163.7, and 553.4 cm⁻¹ with 485, 245, 276, and 86 km/mol IR intensities, respectively, which are in excellent agreement with the experimental values. The C-H stretching modes were also predicted to have appreciable IR intensities but may be overlapped by the strong CH₃OH absorptions. As listed in Table 3, the calculated isotopic frequency ratios for the three stretching modes fit the experimental values very well. Moreover, the calculated relative intensities of the CH₃ deformation and C-O stretching modes for different CH₃OScH isotopomers are in complete accord with the experimental observations. Experimentally, both the CH₃ deformation and C-O stretching modes were observed in the CH₃OH experiments, but only one mode was observed in the ¹³CH₃OH and CH₃¹⁸OH experiments. As listed in Table 2, the predicted IR intensity of the CH3 deformation mode (245 km/ mol) is comparable to that of the C–O stretching mode (276 km/mol). The frequencies of these two modes were predicted at 1166.1 and 1127.9 cm⁻¹ with 8 and 459 km/mol IR intensities for the CH318OScH isotopomer and at 1162.2 and 1148.7 cm⁻¹ with 75 and 447 km/mol IR intensities for the ¹³CH₃OScH isotopomer. This suggests that there is coupling between the CH₃ deformation mode and the C-O stretching mode. The frequencies of these two modes of CH₃OScH are very close. The CH₃ deformation mode may gain intensity via strong coupling with the C-O stretching mode. The coupling effect became weaker in the CH318OScH and 13CH3OScH isotopomers, as the frequency differences between two vibrational modes are larger than that in CH₃OScH.

(CH₄)OSc. The 1290.5 and 952.1 cm⁻¹ absorptions appeared together on broad-band irradiation. The 952.1 cm⁻¹ band is only 2.8 cm⁻¹ lower than the Sc–O stretching frequency of ScO in solid argon. This band exhibited no shift with ¹³CH₃OH and CH₃OD but shifted to 912.3 cm⁻¹ in the CH₃¹⁸OH experiment. The ${}^{16}\text{O}/{}^{18}\text{O}$ isotopic frequency ratio of 1.0436 is about the same as the ratio of diatomic ScO (1.0434). The mixed $CH_3^{16}OH +$ CH₃¹⁸OH spectrum (Figure 4, trace c) clearly indicates that only one O atom is involved in this mode. These observations indicate that the 952.1 cm⁻¹ band is due to a terminal Sc–O stretching vibration of a ScO complex. The 1290.6 cm⁻¹ band showed no shift with CH₃¹⁸OH but shifted to 1283.0 cm⁻¹ when the ¹³CH₃-OH sample was used. The band position and isotopic frequency shift suggest the assignment of this band to a CH₂ deformation mode. The triply degenerated CH₂ deformation mode of CH₄ was observed at 1305.4 cm⁻¹. Accordingly, we assign the 1290.5 and 952.1 cm⁻¹ bands to the (CH₄)OSc complex.

The (CH₄)OSc complex was predicted to have a ${}^{2}A_{1}$ ground state with C_{3v} symmetry. The complex was predicted to be

coordinated between the O atom of the ScO subunit and one of the H atoms of the CH₄ subunit. The small deformation of the CH₄ and ScO subunits and the rather long O–H distance (2.579 Å) indicate weak interaction between the CH₄ and ScO subunits. The binding energy with respect to ScO + CH₄ was predicted to be only 0.4 kJ/mol, significantly lower than that of the (CH₄)-NiO and (CH₄)PdO complexes, which were predicted to be coordinated between the metal and C atoms.⁶ The Sc–O stretching frequency was predicted to red-shift about 3.2 cm⁻¹ by CH₄ complexation, consistent with the observed shift of 2.8 cm⁻¹. However, the calculation predicted the CH₂ deformation mode to be blue-shifted from that of CH₄, in disagreement with the experimental observation. It is known that B3LYP is not good at predicting some loosely bound weak complexes.

CH₃OSc. The 1154.3 and 583.5 cm⁻¹ bands appeared together on annealing. The upper band shifted to 1118.7 cm⁻¹ with $CH_3^{18}OH$ and to 1137.6 cm⁻¹ with ¹³CH₃OH. The ¹⁶O/ ¹⁸O and ¹²C/¹³C isotopic frequency ratios of 1.0318 and 1.0147 are very similar to those of the C-O stretching vibration of the above-characterized CH₃OScH molecule, which suggests that the 1154.3 cm^{-1} band is due to a C–O stretching vibration. In concert, the lower band went to 578.7 cm⁻¹ in the CH₃¹⁸OH experiment and to 574.5 cm⁻¹ when the ¹³CH₃OH sample was used; the ¹⁶O/¹⁸O isotopic frequency ratio of 1.0083 and the ¹²C/¹³C isotopic frequency ratio of 1.0157 are quite similar to those of the Sc-O stretching mode of CH₃OScH. These observations imply the involvement of a CH₃OSc unit in the new species. No absorptions in the Sc-H stretching frequency regions were observed to track the 1154.3 and 583.5 cm^{-1} bands. Therefore, we assign the 1154.3 and 583.5 cm^{-1} bands to the C-O and Sc-O stretching vibrations of CH₃OSc. The C-O stretching frequency of CH₃OSc red-shifted by 4.2 cm⁻¹, whereas the Sc-O stretching frequency blue-shifted by 21.2 cm⁻¹, when compared to the frequencies of the corresponding vibrations in CH₃OScH. As shown in Figure 6, the CH₃OSc molecule was predicted to have a ${}^{1}A_{1}$ ground state with C_{3v} symmetry. As listed in Tables 2 and 3, the calculated C-O and Sc-O stretching frequencies and isotopic frequency ratios matched the experimental values very well. The geometry parameters of CH₃OSc are very similar to those of the CH₃-OSc subunit in CH₃OScH, with the C–O bond length 0.003 Å longer and the Sc–O bond length 0.052 Å shorter. These bond differences are consistent with the relative frequency shifts of the C-O and Sc-O stretching modes mentioned above.

CH₃ScO. The band at 912.7 cm⁻¹ appeared on broad-band irradiation. This band showed a very small C-13 shift (0.1 cm⁻¹) but a large O-18 shift (to 874.8 cm^{-1} in the CH₃¹⁸OH experiment). The ¹⁶O/¹⁸O isotopic frequency ratio of 1.0433 is about the same as the diatomic ScO ratio (1.0434). In the mixed $CH_3^{16}OH + CH_3^{18}OH$ spectrum (Figure 4, trace c), only the pure isotopic counterparts were observed, indicating that only one O atom is involved in the mode. The small shift with ¹³CH₃-OH suggests that this mode is very weakly coupled to another structural subunit involving C. The 912.7 cm⁻¹ band is assigned to the Sc-O stretching mode of CH₃ScO. In the Sc + H₂O reaction, the HScO molecule was produced on broad-band irradiation and has a Sc-O stretching mode at 922.3 cm^{-1.25} DFT calculations predicted the CH₃ScO molecule to have a ¹A' ground state with C_s symmetry. The Sc–O stretching mode of CH₃ScO was predicted at 965.3 cm⁻¹. This mode has the largest IR intensity. The Sc-O stretching frequency of HScO was calculated to be 977.4 cm⁻¹ at the same level of theory.²⁵ The frequency difference between HScO and CH₃ScO, 12.1 cm⁻¹,

Figure 7. Potential energy profile for the reaction of $Sc + CH_3OH$ (relative energies are given in kilojoules per mole).

is in good agreement with the experimentally observed frequency difference of 9.6 cm^{-1} .

Reaction Mechanisms. Previous matrix isolation studies on the reactions of metal atoms with methanol in solid matrixes have shown that the primary reaction, in general, is the formation of the 1:1 metal-methanol complex.⁷⁻¹³ The Sc(CH₃OH) complex was predicted to have a ${}^{2}A''$ ground state with C_{s} symmetry. The Sc(CH₃OH) complex has been calculated by Hwang and Mebel⁶ at the B3LYP/6-31G(d,p) and B3LYP/6-311+G(3df,2p) levels.⁶ The Sc(CH₃OH) complex was predicted to have C_1 symmetry. We note that the present calculated C_s geometry is actually very similar to that of Hwang and Mebel's C_1 geometry, the only difference being the relative positions of the H atoms in the CH3 subunit. The complex was predicted to have quite strong O-H and C-O stretching vibrations (Table 2), which were red-shifted from those of free CH₃OH. In our experiment, no evidence was found for the formation of the Sc(CH₃OH) complex. On the contrary, the CH₃OScH absorptions markedly increased on annealing. The CH₃OScH molecules were formed by the ground-state Sc atom insertion into the O-H bond of methanol, reaction 1, which was predicted to be exothermic and requires no activation energy:

Sc (²D) + CH₃OH
$$\rightarrow$$
 CH₃OScH (²A') (1)

Previous studies on the reactions of metal atoms and methanol showed that the metal atoms could insert into not only the O-H bond but also the C-O bond of methanol.⁷⁻¹³ The C-O bond insertion product CH₃ScOH was predicted to have a ²A' ground state with C_s symmetry (Figure 6), in agreement with the previous theoretical calculations.⁶ The CH₃ScOH molecule was predicted to be 82.8 kJ/mol more stable than the CH₃OScH isomer. It is very interesting to note that ground-state Sc atoms reacted with methanol to form CH₃OScH but not the thermodynamically more favorable CH₃ScOH. To have a better understanding of the experimental observations, potential energy profiles on the doublet surfaces of the $Sc(^{2}D) + CH_{3}OH$ reaction were calculated at the B3LYP/6-311++G(d,p) level. The results are shown in Figures 7 and 8. Similar to the previously reported metal atom and methanol reactions, the initial step of the Sc + CH₃OH reaction is the formation of the Sc(CH₃OH) complex,^{12,13} which proceeds without any energy barrier. DFT calculations showed that this reaction was exothermic by about 55.6 kJ/mol. From the complex, three reaction paths are possible. The first path is the Sc atom insertion into the O-H bond of methanol to form CH₃OScH via a transition state (TS1). The second path is the formation of the $ScOH + CH_3$ dissociation products via a transition state (TS2); the $CH_3 + ScOH$ products

Figure 8. Optimized structures (bond lengths in angstroms, bond angles in degrees) of the transition states on the potential energy profiles shown in Figure 7.

can recombine to form the CH₃ScOH molecule without energy barrier, as the previous theoretical study indicated.⁶ The third path is the Sc atom insertion into the C-H bond of methanol to form HScCH₂OH via a transition state (TS3). The HScCH₂-OH molecule was predicted to have a three-membered ring structure with Sc-C and Sc-O bond lengths of 2.198 and 2.123 Å. The transition state (TS3) exhibited longer Sc-C and Sc-Obond lengths and shorter Sc-H bond length than those of HScCH₂OH. The intrinsic reaction coordination (IRC) calculations confirmed the energy paths from the transition structures to the corresponding minima. All three insertion products were stable with respect to the Sc(CH₃OH) complex. The HScCH₂-OH molecule is less stable than the other two insertion molecules, and the C-H bond insertion path proceeds via the highest energy barrier. Although the CH₃OScH molecule lies higher in energy than the CH₃ScOH isomer, the energy barrier for the formation of CH₃OScH is 46.8 kJ/mol lower than the energy barrier for the formation of CH₃ScOH. Moreover, both the transition states for the formation of HScCH₂OH and CH₃-ScOH lie higher in energy than the ground-state reactants, Sc (^{2}D) + CH₃OH $(^{1}A')$, whereas the transition state for the formation of CH₃OScH lies 19.6 kJ/mol lower in energy than the ground-state reactants. As the formation of the Sc(CH₃OH) complex is initially exothermic by 55.6 kJ/mol, which is sufficient to surmount the energy barrier for the O-H bond insertion reaction, the formation of CH₃OScH is spontaneous in solid argon. This also suggests that the Sc(CH₃OH) complex is very short-lived, rapidly rearranging to form the CH₃OScH molecule.

The CH₃OScH absorptions were destroyed under broad-band UV–visible light irradiation, during which the (CH₄)OSc complex absorptions increased. It appears that UV–visible light initiates isomerization reaction 2:

$$CH_3OScH + h\nu \rightarrow (CH_4)OSc$$
 (2)

DFT calculations predicted that the (CH₄)OSc complex is 41.0 kJ/mol more stable than the CH₃OScH isomer. This process requires activation energy. We tried to calculate the energy barrier for this process but failed to locate a transition state, which suggests that the process may not be a one-step reaction. A recent theoretical study on the CH₃ScOH to ScO + CH₄ reaction found a transition state lying 134.6 kJ/mol higher in energy than CH₃ScOH.

Besides the above-mentioned product molecules, the CH₃-OSc absorptions were also observed to increase on annealing. CH₃OSc could be formed either by preliminary Sc insertion into the O–H bond via a CH₃OScH intermediate, followed by H atom detachment, or by CH₃O + Sc association reaction in solid argon. The formation from Sc + CH₃OH was predicted to be endothermic by about 2 kJ/mol and hence does not seem very likely. The CH₃O + Sc reaction is exothermic. Condensation of laser-ablated Sc atoms with CH₃OH in excess argon at 12 K resulted in partial fragmentation of CH₃OH. Weak absorptions due to CH₂OH, H₂CO, and HCO were observed when relatively high laser energy was employed. Although the infrared absorption spectrum of CH₃O in solid argon has not been reported, it has been trapped in solid argon and detected by laser-induced fluorescence spectroscopy.²⁶

The CH₃OSc absorptions disappeared on broad-band irradiation, during which the CH₃ScO absorption was produced. This suggests that CH₃ScO was formed by photoinduced isomerization of CH₃OSc, reaction 3:

$$CH_3OSc + h\nu \rightarrow CH_3ScO$$
 (3)

The CH₃ScO molecule was predicted to be 92.4 kJ/mol more stable than the CH₃OSc isomer. This isomerization reaction was predicted to proceed via a transition state (TS4, as shown in Figure 8) with an energy barrier of 143.8 kJ/mol.

From the results on the reactions of Mg, Be, and Sc atoms with CH₃OH, some trends can be observed. For all three metal atoms, the O–H bond insertion CH₃OMH (M = Mg, Be, and Sc) products are thermodynamically less stable than the C–O bond insertion CH₃MOH products. However, the energy barrier for the O–H bond insertion process is lower than that for the C–O bond insertion process. The CH₃OMH molecules are potential important intermediates on the potential energy surfaces of the M + CH₃OH \leftrightarrow MO + CH₄ reactions, which have not been considered in most previous studies.^{2–6}

Conclusions

The reactions of Sc atoms with methanol molecules have been investigated with matrix isolation FTIR spectroscopy and theoretical calculations. In solid argon, ground-state Sc atoms directly inserted into the O–H bond of methanol to form the CH₃OScH molecule without activation energy. The CH₃OScH molecule underwent photochemical rearrangement to form the (CH₄)OSc complex upon broad-band UV–visible irradiation. Theoretical analysis showed that the CH₃OScH molecule is less stable than the C–O bond insertion product CH₃ScOH. However, the energy barrier for the O–H bond insertion process was predicted to be lower than that of the C–O bond insertion process, and the transition state lies lower in energy than the ground-state reactants, consistent with the experimental observations. In addition, the CH₃OSc molecule, which may be formed by the $CH_3O + Sc$ reaction, was also observed. UV–Visible irradiation resulted in the isomerization of CH_3OSc to the more stable CH_3ScO isomer.

Acknowledgment. We gratefully acknowledge financial support from NSFC (20125311) and the NKBRSF of China.

References and Notes

(1) Gesser, H. D.; Hunter, N. R.; Prakash, C. B. Chem. Rev. 1988, 85, 235.

(2) Schröder, D.; Schwarz, H. Angew. Chem., Int. Ed. Engl. 1990, 29, 1433.

(3) (a) Schroder, D.; Fiedler, A.; Hrusak, J.; Schwarz, H. J. Am. Chem. Soc. 1992, 114, 1215. (b) Ryan, M. F.; Fiedler, A.; Schroder, D.; Schwarz, H. J. Am. Chem. Soc. 1995, 117, 2033. (c) Ryan, M. F.; Fiedler, A.; Schroder, D.; Schwarz, H. Organometallics 1994, 13, 4072. (d) Schroder, D.; Schwarz, H. Angew. Chem., Int. Ed. Engl. 1995, 34, 1973.

(4) (a) Clemmer, D. E.; Aristov, N.; Armentrout, P. B. J. Phys. Chem. 1993, 97, 544. (b) Chen, Y. M.; Clemmer, D. E.; Armentrout, P. B. J. Am. Chem. Soc. 1994, 116, 7815.

(5) (a) Yoshizawa, K.; Shiota, Y.; Yamabe, T. *Chem. Eur. J.* **1997**, *3*, 1160. (b) Yoshizawa, K.; Shiota, Y.; Yamabe, T. *J. Am. Chem. Soc.* **1998**,

120, 564. (c) Shiota, Y.; Yoshizawa, K. J. Am. Chem. Soc. 2000, 122, 12317.
 (6) Hwang, D. Y.; Mebel, A. M. J. Phys. Chem. A 2002, 106, 12072.

(7) Park, M.; Hauge, R. H.; Kafafi, Z. H.; Margrave, J. L. J. Chem. Soc., Chem. Commun. **1985**, 1570.

(8) Maier, G.; Reisenauer, H. P.; Egenolf, H. Monatsh. Chem. 1999, 130, 227.

(9) Khabashesku, V. N.; Kudin, K. N.; Margrave, J. L.; Fredin, L. J. Organomet. Chem. 2000, 595, 248.

(10) Lanzisera, D. V.; Andrews, L. J. Phys. Chem. A 1997, 101, 1482.
 (11) Joly, H. A.; Howard, J. A.; Arteca, G. A. Phys. Chem. Chem. Phys. 2001, 3, 750.

(12) Huang, Z. G.; Chen, M. H.; Liu, Q. N.; Zhou, M. F. J. Phys. Chem. A 2003, 107, 11380.

(13) Huang, Z. G.; Chen, M. H.; Zhou, M. F. J. Phys. Chem. A 2004, 108, 3390.

(14) Chen, M. H.; Wang, X. F.; Zhang, L. N.; Yu, M.; Qin, Q. Z. Chem. Phys. **1999**, 242, 81.

(15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

(16) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

(17) Lee, C.; Yang, E.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

(18) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639.
 (19) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys.

1980, 72, 650.

(20) Head-Gordon, M.; Pople, J. A.; Frisch, M. Chem. Phys. Lett. 1988, 153, 503.

(21) Ogawara, Y.; Bruneau, A.; Kimura, T. Anal. Chem. 1994, 66, 4354.
(22) (a) Jacox, M. E.; Milligan, D. E. J. Mol. Spectrosc. 1973, 47, 148.
(b) Jacox, M. E. Chem. Phys. 1981, 59, 213.

(23) Milligan, D. E.; Jacox, M. E. J. Chem. Phys. **1969**, *51*, 277.

(24) Bauschlicher, C. W., Jr.; Zhou, M. F.; Andrews, L.; Johnson, J. R.

T; Panas, I.; Snis, A. J. Phys. Chem. A **1999**, 103, 5463 and references therein.

(25) Zhang, L. N.; Dong, J.; Zhou, M. F. J. Phys. Chem. A 2000, 104, 8882.

(26) Chiang, S. Y.; Hsu, Y. C.; Lee, Y. P. J. Chem. Phys. 1989, 90, 81.