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Full dimensional (15 df) quantum Monte Carlo calculations of vibrational energies;@fHare reported

using the OSS3(p) potential energy surface of Ojamial. [Ojania, L.; Shavitt, I.; Singer, S. J. Chem.
Phys.1998 109 5547]. The protonated water dimers®}*, is an important case for vibrational study for the
purpose of understanding the potential energy surface of the smallest agueous proton-transfer system. Vibrational
calculations are quite difficult for this system because of its high dimensionality and strong coupling between
anharmonic low-frequency coordinates, among them motion of the central proton, which is associated with
the most intense vibrational modes. In our study, the correlation function quantum Monte Carlo (CFQMC)
method is employed for a full-dimensional treatment of the system. The development of an improved trial
wave function gave a better starting point for understanding the excited states and was a crucial step that
enabled us to obtain a set of converged energy eigenvalues using the CFQMC method. Several methods of
extrapolating energy eigenvalues from the CFQMC data were evaluated. Transition moments were calculated
to help identification of the excited states and allowed us to obtain exact information about most of the
fundamental frequencies of thes®," ion.

1. Introduction frequency modes involving central proton motion. The result

Water is one of the most abundant substances of the earth'sS & V€Y complicated vibrational structure that makes normal-

. ) RN . mode analysis based on the harmonic approximation almost
crust. All of chemical reactions occurring in living organisms . ) -
. X meaningless, especially for the description of the proton-transfer
take place in an aqueous environment. Water has unusual

. . i . mode. Because of the high dimensionality ¢fd4™, traditional
physiochemical properties and plays a central role in many key .~ : . -
; - . X . S variational methods based on a basis set expansion have limited
industrial and biological reactions as well. Thus, it is no wonder

that water has been a focus of experimental and theoreticalapphcab.'“ty' I " .
) . Experimental vibrational data for 48,7 had been quite
research for a long period of time. One of the well-known

" ) . o
fundamental properties of water is its extremely high proton limited except for the terminal OH stretching modB4> The

mobility, which cannot be understood as an ordinary diffusion most important modes yet to be (esolved are those involving
. X ' the central proton-transfer coordinate. Very recently, a low
process. Proton transport in water is best pictured asasequence .o infrared spectrum ofed," in the gas phase was
of proton-transfer events between water molecules that belong P 2 gas p
to a hydrogen bond network. Because of the importance of reported that covered the Ce”?”’" proton-tra_nsfer_ _re@ﬁon.
proton-transfer processes in many biological systems and forHowever, fund_amental fre_quer_lmes were not |dent|f|ed f“’“_"
. : . among the various bands in this low resolution of this experi-
other types of aqueous chemistry, extensive theoretical andment and the assignment of observed spectral lines are still in
experimental efforts have been devoted to understanding similar debated42.47.49
phenomena in small water clusters. )
As the smallest purely agqueous proton-transfer systef,H
has been studied for more than 30 yéar$.Despite the small
size of this species, characterization of the vibrational excited
states of HO,™ has been a major challenge. A proton is equally
shared by two water molecules in the ground state. However,
the potential energy surface along the central proton coordinate
is so flat that the motion of the central proton exhibits large
amplitude motion even in the ground state, as shown in our
previous study of the ground vibrational stdteSuch large
amplitude motion naturally incurs change in character from the
symmetric nonclassical ion to ans8&/H,O pair when the
central proton departs from its equilibrium. Bond lengths and
bond angles change between those characteristic of water t heir minimum energy values as functions of the active
those characteristic of hydronium as the central proton oscillates coordinates
betwgen the_ tWO oxygens. Therefore, cpnsiderable anharmonic Two studies using the OSS3(p) surface have recently ap-
coupling arises between many vibrational modes and low- peared®49 First, in conjunction with our QMC study of the
" Part of the “Gert D. Billing Memorial Issue”. ground vibrational state, the Bowman group performed MUL-
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There have been several previous attempts to theoretically
calculate the vibrational spectrum of®:". Harmonic frequen-
cies have been reported in conjunction with ab initio studies of
the equilibrium geometry and potential surf46¢ 216171926368
Anharmonic effects have been estimated using molecular
dynamics simulation$3-46:50.51Chaban et &’ reported vibra-
tional self-consistent field calculations fog®,* corrected with
perturbation theory. They used a two-mode representation of
the potential surface, which may be inadequate because many
coordinates in EO," are strongly coupled. Vener et &I37
devised reduced three- and four-dimensional models {6,H
taking the coordinates of the central proton and oxygeygen
stretch as active while fixing the remaining coordinates at
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approximate and exact calculations for reduced dimensional N (t) = & "% e 2 O
models similar to those of Vener et al., but based on the 0SS3- ! ' !
(p) surface, and compared them to full-dimensional MULTI- — deldRZfi(RZ)[R2|e_tH|Rll:ﬂj(Rl) 4)

MODE results. Dai et al. criticized the way in which Vener et
al. sqlved their rgduc_ed dimensional '_“Ode" showing that those assuming a real primitive basis 4df . At the projection time
previous approximations led to _consu;lerable error. They a_lso t= 0, the CFQMC reduces to a conventional variational Monte
demonstrated that the reduced dimensional model was of l'm,'tedCarlo estimate of the ground and excited eigenvalues.iffhe
value for important modes such as the proton-transfer motion.
The MULTIMODE calculations were based on a four-mode
representation of the potential surface. While perhaps the most
extensive treatment of the vibrations of®" to date, the
MULTIMODE results are approximate due to the representation lim(t) = E (5)

of the potential and truncation of the basis. The ground-state t—oo ! !

energy estimated in the MULTIMODE calculations is 101¢ém

higher than the true ZPE for the OSS3(p) surface obtained from As proposed by Ceperley and Bernu, the matrix elements in
our QMC calculations. The ZPE obtained from our QMC €gs 3 and 4 can be cast in a form suitable for QMC evaluation
calculations is the result of a careful extrapolation with respect using a guiding functiony(R).

to the imaginary time step and is estimated to be within T'm

of the exact resul® A rough estimate of the error in the () = : ) H\E

MULTIMODE fundamental frequencies is provided by assum- Hy() = [ dR;dRF (R)EL(RIG(R RiDF(RYP(R,)  (6)

ing harmonic behavior, where the fundamental frequency is _ :

tw?ce the zero-point energy for each mode. The 1OIJgenror / N; O = deldRZFi(RZ)G(RZ*Rllt)Fj(RDP(Rl) (7)

in the ZPE would then translate into a net (summed over all
modes)~200 cnt? error in the fundamental frequencies. The
HsO," ion is highly anharmonic, so this estimate is only a rough

eigenvalueli(t), for the moment not considering statistical error,
is an upper bound to the true energy eigenv&uend converges
exponentially toE; as the projection time grows:

In the equation aboves;i(R) andP(R) are

guide. Part of the motivation for the current work is to help (R) = @ (8)
identify the modes which might be in error and to provide : Y(R)
benchmarks, within the limits of excited-state QMC methods
(as discussed in section 5.3), for future calculations. and
In this report, we present our recent full-dimensional excited
state study of 50,™ using correlation function quantum Monte P(R) = p4R) 9)

Carlo (CFQMC) method with the potential energy surface

0SS3(p) that was used in the ground state studys@hH The respectively.

CFQMC is briefly reviewed in section 2. Construction of trial ELi(R) is the local energy of the primitive basis functién
excited-state basis functions is described in section 3. Technicalwhich is defined as

details of the simulations are given in section 4. In section 5,

we present results for ground and excited vibrational states of Hf(R)

HsO,". Our conclusions are summarized in the final section. Ei(R) = —f-(R) (10)
I
2. Correlation Function Quantum Monte Carlo Note thatEj(R) is different from the local energy of the guiding
. . . . function E_,(R).
The CFQMC methott is essentially a traditional variational The matrix elements;(t) and N;(t) can be estimated as

calculation method augmented by basis relaxation and Monte 5yerages over poin®, sampled from a random walk governed
Carlo sampling for multidimensional integrals. The CFQMC by the pure diffusion short time Green’s function.
method has attracted recent atterftfof? because it makes high-
dimensionality problems tractable within the framework of o 312
traditional variational treatment. G ) —
. Loz P aitf(Rn R 7) =

Relaxed basis functiodd;} are generated from an initial set I_1\4Dzr

{fi} by application of the imaginary time propagator,

~(Rns1 — Ry =~ DitF (RY) a
- _ ex
fi=e "4, ) 4Dt
whereH is the full Hamiltonian operator artds the (imaginary) where the index runs over thenp dimensions of the system,
time. The resulting generalized eigenvalue equation is D; = h?%/2m;, 7 is the time step, anB(R) is the quantum force
defined as
H®C(1) = 4,(ON®C() (2) )
_ F'(R) =—=Viy(R) (12)
whereH(t) andN(t), to be evaluated using quantum Monte Carlo P(R)

(QMC) techniques, are given by
In terms of elements from random walk of lengih

HU(t) — m|e—tH/2He—tH/2| fJD L ok D
= [dR,dR,f(R,)R,[He "|R,H(R,) ®) Mk = Q;f@n_ Fi(ROWyniFi(Rapd| | (13)
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1 bk Acioli and Soares Neto suggested a basis set of the form
Hij(kT) = D k) Fi(Rn)Wn,n+ij(Rn+k)ELj(Rn+k) (14) Np
- n= .
fi = Yial HASJV(I)) (16)

where the angle brackets denote averaging over multiple walkers

and the weight is defined as where yyia IS an approximation to the ground-state wave

ke gqnction,{AfS,} arﬁ local ml(q)des dglfitr:Qd as g{::da(r'lge.in interat(f)mic

_ istances from those at the equilibrium, i)} isaseto
bk ex% _5 Z (B, (R) + ELW(R'“)]] (15) integers assigned to local modes in basis function
- This form of excited basis set has been tested in vibrational
studies of small molecules up to tetra-atomic molecules and
has proven to be effectivi. There have been more complex
forms of basis sets proposed by other auttfdisbased on
Morse oscillator eigenfunctior?s.
While previous works used a Gaussiamsatzfor s, we
und that better approximations were rewarded with signifi-
cantly reduced statistical error. Our trial wave function is
expressed in terms of the internal coordinates specified in Table
1 with the labeling scheme illustrated in Figure 1.

The trial wave function is of the form

W,

n,

Finally, the matrixes are symmetrized in practice to reduce the
statistical noise.

Because the length of the random walk cannot be made
infinitely long in practice, the estimated matrix elements are
subject to statistical errors. Ceperley and Burnu presented ag,
detailed analysis on the errors involved in the CFQMC
proceduré? One of the major consequences of the error analysis
is that the error grows exponentially with the projection time
and the excitation energy. Thus, the CFQMC method is best
suited to computation of low-lying excited quantum states in
general.

There are several other schemes for calculation of excited
states using QMC methods. (See refs 52 and 63 for surveys ofwhere
excited state QMC methods.) Eigenvalues can be extracted by
inverse Laplace transformation of an imaginary time correlation
function4-66 In general, a single correlation function would f= v1(d) + v3(dy) + vo(R) + v5(2) + ) v,(doy) +
not contain enough information to obtain many fundamental =
frequencies, especially for a system as larges@3H However, US(dHHa) + Us(dHHb) + vg(Wy) + v5(Wy) + v7(0q) + vg(6,) +

U}trial 0 eif (17)

4

projection operator methods can enhance the efficiency of 4

inverse Laplace transform methods’! Excited-state energies ve(Op) + Y vo(d) + vyo(Irg — r3l) + vyo(Ire — r3l) +

can be estimated by introducing a node in the wave funétioh. =

This method can be extended by optimizing the nodal coupling terms (18)

surface?®76-79 The optimized node method has been applied ) o
to rather large sytems in the context of rigid-body diffusion the coupling terms are specified in Table 2, and
Monte Carlo® The very floppy nature and strong coupling of
all degrees of freedom in4®," precludes the use of a rigid-
body approximation for this system. Fixed or optimized node (distances between central and outer hydrogens)
methods work best when one has some guidance where the node i=1,234
should appear, either from symmetry or a good zero-order
model. Such methods might have applicability to a system like
HsO,*, especially if one focused on a particular excited level.
In this work we attempt to calculate a broad selection of
fundamental frequencies ofsB5", and CFQMC appears most ,(y y = lK-(x —x2)? + lL-(x —x2y3 + lM-z(x — X2y
appropriate for this task. The review by Prudent é8alescribes A - T e
several cases where CFQMC methods have been used to obtain j=2(19)
accurate rovibrational eigenvalues.

d=1[ris—ryl

1 .
Uj(Xlu) = EKJZ(X‘u - XSJ)Z J >2

A trial wave function with 36 parameters was optimized by

minimizing th nergy in variational Mon rlo (VM
3. Trial Excited Basis Functions g the energy ariational Monte Carlo (VMC)

calculations.
3.1. General Aspects and Considerationdn the CFQMC We employed both distances and angles in the construction
method, the quality of the initial basis functiof} is crucial of excited basis functions instead of local modes as in eq 16.

for obtaining useful information before statistical error over- The general form of our excited-state basis is
whelms the calculation at long projection time. Ny

Although there have been some suggestions in the literature f = ( Agny(i)) (20)
as to the form of trial basis functions for rovibrational : rial | R
problems33.5463.81.8ow to choose a simple, yet good quality
trial basis set is still an open question. In our calculation, we whereyyiy is the trial guiding function used in the ground state
employed trial basis functions in the form proposed by Acioli study, N, is the number of modes included to construct given
and Soares Net.This is a slightly modified version from what  basis functions, and thi,(i)} is a set of integers assigned to
Bernu et al. suggested origindllyand has been successfully the coordinates involved in basis functiom, is similar to the
used for the vibrational study of small molecu¥é&Ve devised local mode in eq 16 but is not limited to distances. Instegpd,
coordinates that were suited for the description of some low- can be distances, angles, or any coordinates which are designed
energy states which arise from the floppy motion of water to represent specific modes. For the description of central proton
monomers within HO,™. motion and oxygeroxygen stretchingg, is an interatomic
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TABLE 1: Coordinates Used for HsO,™ Trial Guiding Function 2

Cho and Singer

coordinate definition characterization

da [r2 —r3 inner proton to oxygen stretch

dy [ry—ral inner proton to oxygen stretch

R [re—ro oxygen—oxygen distance

z [r3—ral deviation of inner proton from oxygerbxygen axis

dow, [r1—r4| outer oxygen-hydrogen stretch

do, [re—rel outer oxyger-hydrogen stretch

doh, [r2 — 15| outer oxygen-hydrogen stretch

don, [ra—r4| outer oxyger-hydrogen stretch

o IR [ra—rg outer hydrogerhydrogen distance, a water bend coordinate

(o 1PN [rs —r7| outer hydrogerrhydrogen distance, a water bend coordinate

Wy (re—ra)(ri—ro) water molecule wag

Wh (rc—r2)(rz2—r1) water molecule wag

Oan {[(ra—re)(rs — ra))/[Ira—rellrs—r7|]}2 torsional coordinate measuring alignment of outer waters

0a {l(ra—re)(rz-ra)lIra— rel}? torsional coordinate measuring alignment of waters with
the direction by which the central proton deviates from
the oxyger-oxygen bond

O {[(rs = r7)-(rs—ra)l/|rs —r7|]}? torsional coordinate measuring alignment of waters

a Definitions make use of several intermediate points: the midpoint
outer hydrogen pairsg = Y(r4 + re) andrc = Yy(rs + r7).

HH

b

Figure 1. Top view: HO," in its equilibrium geometry, indicating
the labeling of the atoms used in Table 1. Bottom viewOkt drawn

to illustrate an axis system for the torsion coordinates of the terminal
water molecule. The molecular bisector vector points outward from
the oxygen atom perpendicular to the plane of the page.

distance. To represent the complex torsional motion of water
monomers within HO,™, new coordinates are defined.

3.2. Coordinates for Central Proton and Torsional Motion.
A molecule fixed coordinate system is set withig@4" with
the oxyger-oxygen axis taken as thedirection. Thez-axis is
perpendicular ty and points toward the position of the central
proton. Thex-axis is naturally chosen mutually perpendicular
toy andz and forms a right-handed coordinate system. Then,
we define a vector which represents deviation of the central
proton from the midpoint of the oxygeroxygen axis as

r=rg—r, (21)

whererj is the coordinate vector of the central proton apd
is the average of the two oxygen positions. By definition, the
x-component of is always zero. The direction of the rotation

with the direction by which the central proton deviates from
the oxyger-oxygen bond

of oxygrygen bondra = ¥5(r1 + ), and the two midpoints between

vector Ry, perpendicular to the bisector, can provide this
reference,
a= Roo - (R00°Bi)Bi= i=12 (22)

Finally, a third vectorp;, completes a right-handed coordinate
system.

b=Bxa, i=12 (23)
The a—b coordinate system for each water molecule provides
a way to specify the torsion coordinate and fully determine the
orientation of the water units. We employed the components
of the hydroger-hydrogen vectorRyy,; along thea andb axes
as torsional coordinates.

Uyi = Ry°8 (24)

Upi = Ryioby

(25)
Multiplying the trial ground-state wave function hy; places
a node at the equilibrium torsion angle and thereby generates
an initial approximation to a torsionally excited basis (before
combiningu, 1 and uy, to form symmetry-adapted combina-
tions). Alternatively, multiplying byu,; places a node near the
transition state for internal rotation of a water unit about the
bisector, the motion that leads to exchange of the two hydrogens
of the outer water unit.

Another torsional coordinate is generated by the projections
of the bisectors on theandz axis defined by the central proton.

t; = By (26)

t,, =Bz (27)
In the above equatiorx, andz are components of the vector
defined in eq 21. We prefer to project ormtoand z, and not
unit vectors in those directions, to avoid singularities which arise
when the central proton passes near the oxygygen axis.

axis of the outer water monomers is specified by the instanta- (The same consideration led us to not takandb; in eq 22

neous molecular bisectoB;, i = 1, 2. Description of the
orientation of two outer hydrogen atoms about this bisector

and eq 23 as unit vectors.) The two sets of torsion coordinates,
(uaji, Up,;) and ¢x;, tz;), transform differently under permutation-

needs another reference direction perpendicular to it. As showninversion group operations, as discussed in section 3.3. At the

in Figure 1, a vectog;, the component of the oxygemxygen

equilibrium position, neithety; nort,; are zero.
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TABLE 2: Coupling Terms Used for HsO,™ Guiding Function?
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term

characterization

ouf(don; — 02)(drh, — a3) + (don, — 02)(AhH, — O3)
+ (dow; — 02) (A, — 0t3) + (dow, — 02) (A, — 03)]
(X.4(da + db - 2(116)(R - (15)

06[(0a — at16)(dhn, — 03) + (do — at16) (A, — 03)]
+ a7[(db — t16) (A, — 03) + (da — tae)(dhmy, — @3)]
ag(R — as)(don, + dom, + dom, + dor, — 40tz)

a1o(R — as)(Wa + Wh — 201s)

(111[(d1 - (112)(d3 - (112) + (dz - (112)(d4 - (112)]

OH—HH coupling

R, central proton stretch coupling
water HH, central proton stretch coupling

R, OH coupling
water wag, R coupling
hydronium bending coupling

(dom, — oug)[oua(ds — ata2) + ous(ds — 0] OH, hydronium bending coupling
+ (dow, — auz)[as(di — o2) + oaa(ds — o)l

+ (don; — oug)[aia(dz — 0u2) + ous(ds — ai2)]

+ (don, — auz)[as(da — 02) + oaa(dz — 0]

(da - ale)(dl + d3 - 20.12) + (db - (115)(d2 + d4 - 20.12)
07[(da — ote)(Wa — ag) + (0 — ote)(Wh — ag)] +
a1g[(dp — 0l1)(Wa — ag) + (da — atze)(Wh — Otg)]

a{oy} are parameters of the guiding function which were optimized in a variational Monte Carlo calculation prior to the CFQMC calculation.

central proton stretch, hydrogen bending coupling
wag, central proton stretch coupling

TABLE 3: Symmetry-Adapted g, Factors Used To
Construct Excited Basis Functions for HO,"

discussed in section 3.2. Many of the choices in Table 3 are
obvious, but some require some explanatiogOft can exist

in two nonsuperimposable isomers related by a mirror reflection.
The torsion coordinatg; is unchanged by this operation, but
txi changes sign. To work with the sange factors for both
isomers of HO,™, we used t§;)? instead ofty;. This did not

A BY E*
da + db da + db Ua, 1, Ua 2
don, + don, + don, +  down, + don, — don, — dor& — dom,, don, —
oH,

OH, OH,
di+d2+d3+ds di+ds—d2—ds

dp—ds, dp—ds change the nature of the excited states from a fundamental to
\?VHH-?-_CV[?HHI) \‘Ij\'I*HiTNSHHb an overtone becausg is nonzero in the equilibrium geometry
tzi N tzi ., of HsO,*. Analysis of the zero-point fluctuations o&8," (see
(tx2)? + (tx2)? (tx2)? — (t2)? Figure 6 of ref 48) reveals significant correlation between the
R hindered rotational motion of the two outer water molecules.
fafi Accordingly, we included several product terms among the
tﬁtizz excited-state basis involving torsional coordinates.
(Ua1Ua 2)2 The number of coordinates &' symmetry we constructed

is relatively small. Consequently, our results for e block

3.3. The Symmetry of Basis FunctionsThe barrier for are of lower quality than thﬁ\;r or Bf blocks. We were only
hindered rotational motion of the two water monomers about successful in calculating the eigenenergies of one low-li#hg
their bisectors is the lowest among the internal rearrangementstate. Pinning down more excit&d states would require more
pathways of HO,".15 In our QMC sampling, exchange of the coordinates oE™ symmetry and inclusion of many, factors
two hydrogens of the outer water units occurred frequently, and built from direct products of coordinates with eith&f or B
all permutational isomers of this type were equally represented symmetry withE*™ coordinates.
in our sampled populatiorf§. The point symmetry group
analysis of molecular vibrations fors@," is based on a rigid 4. Details of Simulation
model which does not allow the hindered rotational motion of

the outer water units. To take this nonrigid character into _ 4-1- The Guiding Function. In practice, almost all of the
account, the nuclear permutation inversion (PI) group repre- CFQMC calculations reported to date have used rather a simple

sentation is adopted in our study. The choice of PI group is form of guiding function proposed by Bernu et & which is
determined by the set of exchange of pathways which are

significant, i.e., by the barrier heights, which is reflected in the Y= (Yyia) (28)
selection of a group of permutations deemed to be “feasible”.

The barrier for exchange_ of the c_:entral hyqlrogen with h_ydrogc_ans where yyia is the ground-state guiding function andis a

of the water monomers is considerably higher, and this motion parameter chosen to reduce the statistical fluctuations of the
is not considered as feasible in the present study. The Pl groupHamiltonian matrix. In this study, we found optimum perfor-
excluding this central proton exchangedg, which is isomor-  mance withy = 0.8 and used this value throughout all the
ph|C to that of the neutral water dimer. calculations reported in here.

Symmetry-adapted, factors were constructed from the 4.2. Automated Code GenerationBecause of the “anhar-
distances and angles introduced in the previous section. As amonic” terms in ouryyia [compare egs 1719 to the usual
result, the Hamiltonian separates im, B, andE* blocks. Gaussianansat? and the flexible form of ourg, factors,

In principle, we could have constructed basis functions belong- implementation ofyyia, EL(R), and EL,(R) in a computer

ing to other representations @i using g, factors of the program is a complex task. This difficulty was alleviated by
appropriate symmetry. These states would complete the tun-using the symbolic algebra progréto assemble all the
neling multiplets of HO,™. However, calculation of tunneling  necessary derivatives and to generate the required FORTRAN
splitting is beyond the scope of this work. The symmetry- code. The exponerit for yiq and g, factors were input as
adaptedy, factors we used to construct trial excited vibrational algebraic expressions. In total, roughly 15000 lines of FOR-
states are given in Table 3. Tigefactors are defined in terms  TRAN code were output from the symbolic algebra program
of coordinates specified in Table 1 or the torsional coordinates and imported to the appropriate subroutines.



8696 J. Phys. Chem. A, Vol. 108, No. 41, 2004 Cho and Singer

4.3. ldentification of States and Transition Moments same imaginary time propagator is used in both the diffusion
Calculation. Whether by direct diagonalization or via QMC  and breaching and CFQMC methods, we expect similar finite
methods, assignment of vibrational states is often troublesometime step errors and expect CFQMC to yield a ground-state
using exact numerical methods. Sometimes the true eigenstategnergy close to the diffusion and branching methodt 1
involve so many coupled coordinates that simple interpretation au, which was 12222 cn (see Figure 3 of ref 48).
is not possible. In other CFQMC calculations, even for systems  We explored several ways of extracting eigenenergies from
smaller than ours, assignment of the eigenstates was reportedhe CFQMC calculations. The most successful was diagonal-
to be problematic. To our knowledge, only the parentage of ization of the full Hamiltonian matrix in the projected basis,
the relaxed eigenvectors has been used to assign the charactdollowed by extrapolation of the eigenvalues to infinite projec-
of eigenstates in CFQMC calculations;®4* is so complicated tion time. A plot of the ground state eigenvalue as a function
that often parentage is not sufficient for assignment. In this work, of projection time is given in Figure 2a. Until a projection time

we calculated generalized transition moments of roughly 200 au the eigenvalue decays exponentially. Past
200 au growing statistical errors in the Hamiltonian matrix cause
|J.m = gﬁso|qm|(}5jm (29) severe bias error of the apparent ground-state energy, and the
lowest eigenvalue veers away from the true value. By a
to facilitate the interpretation of excited states. In eqggand projection time of 350 au, the eigenvalue drops below the
¢ are ground angth excited eigenfunctions, respectively, ata Physical ZPE. _ .
given projection time, andy, is a coordinate operator that Until bias error overwhelms the calculation, exponential

represents a specific vibrational motion and may not correspondconvergence to a true eigenvalue is expected as the imaginary
to a physical dipole transition operator. The transition moments time propagator eliminates high-lying contamination of the
or any matrix elements of a scalar operator can be evaluatedeigenstates. We found that a double-exponential fit to the time-
using the same random walks used in the estimation of the dependent eigenvalue, accounting for the possibility of two
Hamiltonian and overlap matrixes, as suggested by CeperleyMajor contaminants, was most successful at extrapolating the

and Bernip2 long time limit in a stable fashion. Figure 2b shows the ground-
4.4. Specification of the Basis and Simulation LengthThe state energy extrapolated from data in Figure 2a as a function
eXC|ted bas|s functions are assemb'ed as produolsrlgfv\“th Of the Upper ||m|t Of the time I‘ange used Ina d0ub|e-exp0nentla|

theg, factors defined in Table 3. THg, in eq 20 is limited to ~ fit: Over a wide range of time, between upper limits of roughly
<2 so that only coupling between two modes is considered. 125-200 au, the extrapolated energy varied4#0 cnr*. Since
The sum ofh,¢) in a basis functior, 3, n,), is also<2 except ~ the ground state is more strongly affected by bias than other
for several low-energy modes that are mostly from the terminal States, itis actually a difficult test case for the extrapolation of
water monomer wagging and torsion motions. For these low- €Nergy eigenvalues.

frequency modes higher overtone basis functions are also We explored a different route to derive eigenvalues from the
included to make the basis set as complete as possible in thisCFQMC calculations. Bias error in the eigenvalues arises during
Spectra| range and prevent C0||apse of h|gher energy states tdjiagonalizaﬂon of a Hamiltonian Subject to statistical noise. We
these overtones. For the rest of the modes such as bond stretcRbserved that combinations of the form

and bending modes, only vibrational fundamentals and the first

overtone basis functions are selected as the excited basis set Hy (1)

for the current study. A total of 131 basis functions wik N, () (30)
symmetry and 94 oBir symmetry were assembled in this

manner.

often exhibited plateau behavior, indicating that projected state
k was dominated by a single true eigenstate. Since diagonal-
ization is not involved, estimation of an eigenvalue in this way
is free of the most serious source of bias error. Of course, not
all projected states show plateausHi(t)/Ni«(t). We would

An exhaustive variational calculation at zero projection time
was performed with 40000 walkers for 100000 steps to construct
the best initial trial wave functions. After the variational
diagonalization, high-frequency states were omitted from the

tr|+aI wave functlo.n set, gnly keeplng the 90 Iowe;t states in the always expect the true ground-state combinatiaa(t)/Ny(t)
A, block and 66 in thé8, block as trial wave functions forthe 1 oxhibit plateau because there is no lower state to which it

CFQMC run to r_educe statis_tical nois_e and basis error. The c4n collapse. IndeedH1(t)/Ni(t) extrapolates to 12225 criy
CFQMC calculation was carried out with a large collection of agreement with our diffusion and branching QMC. This

5720 independent walkers. Each walker has been propagated.qnfirms that the CFQMC is properly relaxing the basis
over 500000 steps. The time step used for this simulation wasg,«tions.
1.0 in atomic units and the Hamiltonian and overlap mz_atri>_< While eq 30 has the obvious advantage of freedom from bias
elements were evaluated at every 5 steps. For the quantitativey oy it a1s0 has a drawback as an estimator of true eigenvalues.
estimation of.convergeld eigenvalues, we perfqrmed a d,Ol,JbIe'Contamination of eigenvalues from full diagonalization arise
expongnﬂal_ fit to the eigenvalue curve to the limit of infinite ¢, basis functions that are not included anywhere in the
projection time. projected basis. However, the estimator in eq 30 deviates from
plateau behavior when projected sthitis a true eigenfunction
contaminated by any other eigenfunction, lying either within
5.1. The Ground State.The energy of the ground vibrational  or outside the projected basis. As a consequence, the combina-
state for the OSS3(p) potential is a number that we have tion in eq 30, while having the desirable feature of not being
determined precisely from diffusion and branching QMC susceptible to bias error collapse like that of the full diagonal-
calculations. Our best estimate of the ZPE is 12218.3(6) ization eigenvalue in Figure 2b, must be monitored for a rather
cm~1 extrapolated to zero QMC time step. An extrapolation to long time before a reliable estimate of the eigenvalue is obtained.
zero time step was not feasible in the current CFQMC For exampleH1(t)/N1y(t) up to a projection time of at least
calculations, which were run with a time step 1 au. Since the 400 au was required to accurately estimate the ZPE. On the

5. Results and Discussion
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Figure 2. (a) The ground-state eigenvalue as a function of projection tirti® The extrapolated ground-state eigenvalue vs the upper limit of the
time range used in a double-exponential fit.

other hand, full diagonalization results gave an accurate ZPE susceptible to bias error than states that diagonalized the
by about 125 au, and data beyond 200 au were severelyHamiltonian, we were not able to accumulaté?(f)]; with
compromised by bias error. Nevertheless, for excited statessufficient statistical accuracy to make this a feasible alternative
tracking the combinatiorHy(t)/Nw(t) did prove useful in to diagonalization of the Hamiltonian matrix.
identifying stable, converged states in a crowded spectrum of 52 The Excited StatesMost of the fundamental vibrations
excited states. of HsO," could be identified from our CFQMC calculations
We also attempted to implement a minimum variance method ysing the generalized transition moments described in section
that circumvents diagonalization as a method of finding eigen- 4.3, Generalized transition moments corresponding to motion
values because eigenvalues from diagonalization are subject taf the central proton motion, oxygemxygen symmetric stretch,
large bias error at the low and high end of the eigenvalue and wagging, bending, and stretching of the outer water units
spectrum. We accumulated the expectation valueldin the are presented in this section. Of these, motion of the central
relaxed basis,H(t)];;, and then sought states that minimized proton is expected to correspond with a strong physical transition
the variancéH 21— [H3. As pointed out by Cerperley an Bernu,  moment. Some modes, like the oxygemxygen stretch, are IR
when eigenstateg(t) in eq 2 reach a plateau, the variance of inactive and have zero physical transition dipole associated with
the Hamiltonian operator vanishes. Thth state minimum  them. Assignment of the qualitative character of modes such

variance is an eigenvector of the matrix, as the oxygeroxygen stretch is facilitated using the generalized
transition moment [eq 29]. In this example, using the oxygen
2, [H; — Hﬁ (31) oxygen stretch coordinate gg, in eq 29 clearly identifies the
eigenstate associated with this motion.
where [E,[Jis the energy expectation val@HCy. This is a We were not able to extrapolate all excited state eigenvalues

nonlinear eigenvalue equation that has to be solved self-to infinite time like the ground state. Some of the projected
consistently. While states of minimum variance were far less states were strongly coupled to each other and their (imaginary)
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Figure 3. Transition moment intensity (in arbitrary units) for various motions gd¥f. The corresponding coordinates are given in the parentheses.
(a) The central proton displacemenfgq 21]). (b) The outer water wagging{ — wWy). (¢) the Central proton bending (tzecomponent of). (d)
O---O stretch R).

time evolution was more complex than could be captured with proton peak, least intense of the major central proton peaks, at
simple exponential fits. The appropriate fitting model for these 303 cnt?!in Figure 3a also shows up as the most intense peak
states would be multistate fits with adjustable coupling, in the transition moment spectrum of outer water wagging
something we did not attempt in this work. However, when the motion (Figure 3b). Hence, this peak is identified as the
coupling between crossing levels was weak, we were able to asymmetric proton transfer motion strongly coupled to wagging.
obtain smooth diabatic curves and perform reliable extrapolation. The other two major central proton peaks in Figure 3a also
We begin with a discussion of the modes associated with exhibit considerable wagging intensity in Figure 3b. The middle
central proton motion. The total transition moment intensity, peak in Figure 3a occurs at 737 chlt represents the transition
the square of all three components of the central proton vectorwith the highest contribution from proton-transfer motion. The
[see eq 21] is shown in Figure 3a. A significant amount of other peak at 870 cni is also mostly proton-transfer mode
central proton motion is associated with three eigenstates. Evencombined with mutual torsion motion of the two terminal water
previously calculated harmonic spectra fosO4" show large monomers.
intensity associated with more than one médée transition We also searched for modes that would correspond to a
moment intensity associated with only tlyecomponent of central proton bend, that is, motion of the central proton
central proton motion indicates that all of the three modes perpendicular to the oxygeroxygen vector. A candidate for a
associated with the central proton involve motion of the proton bending fundamental was visible near 1353 “énin the
along the oxygeroxygen axis. The lowest energy central transition moment spectrum for tkzecomponent of the central
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Figure 4. Transition moment intensity (in arbitrary units) for the motion of the outer waters. (a) Symmetric OH stretch. (b) Asymmetric OH
stretch. (c) Symmetric outer water bending. (d) Asymmetric outer water bending.

proton (see Figure 3c). Unfortunately, none of the states with al.#* identified only one mode as an-GH™-:-O asymmetric
strong proton bending intensity were ones we could extrapolate stretch and suggested that it was associated with the 921 cm
reliably. feature in the IRMPD experiments. More experimental and
The modes with strong central proton intensity at 737 and theoretical work is required before conclusive assignments can
870 cnt in our calculations correspond to features observed be made.
by Asmis et a2 in recent infrared multiphoton photodissocia- ~ The O--O stretch mode is a relatively pure mode in the
tion (IRMPD) experiments. A weak band centered at 788%m CFQMC calculations with a small amount of mixing with the
and strong features at 921, 1043, 1317, and 1741!amere water wagging mode. It is well-resolved at 516 @nwithout
observed in those experiments. Each of the strong bandsany confusion as seen in Figure 3d.
contained several features, and it is not clear from the experi- OH stretch modes of the outer water monomers are also of
ments what frequencies should be taken as the vibrationalinterest. Because these modes lie in a very high frequency
fundamentals. The ions in the experiment were estimated to beregion, by the nature of the CFQMC method it is more
at a temperature of 100 K. Our peaks at 737 and 870lcm challenging to obtain reliable results. We could describe the
might be candidates for assigning the experimental peaks at 788ymmetric OH stretch mode wit,hf symmetry without much
and 921 cm? (for which the latter has a feature at 888 ¢ trouble. Figure 4a shows the transition moment spectrum for
According to our generalized transition moment results, our this motion at 3375 cmt. The asymmetric OH stretch mode
peaks at 737 and 870 cthboth have &-H*---O asymmetric with BI symmetry proved difficult to obtain. We know that
stretch character and should have strong IR intensity. Dai et this mode exits near 3316 crhas illustrated in Figure 4b and
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Figure 5. Eigenvalue spectrum near asymmetric OH stretch mode of the outer water monomers. A thick dashed curve just below'3400 cm
designates the corresponding state. Note that there are many crossings with other states.

Figure 5, but we were not able to extract a precise fit for this TAbBLE 4: | Zero-Point Enefrgy alld_ Converged EXCitEd
mode. The degenerate OH stretch mode vith symmetry Vibrational Frequencies of H:O," in Wavenumberst
collapsed to lower energl™ states because of lack of basis vibrational energy

functions ofIE+ s;(/jmr;:?tr)(/j irl; our baﬁlis. The Smestretcrr:es are  CFQMC 15DVCI  sym. assignment
very strongly red-shifted by roughly 440 rom their "

harmonic frequencies. This indicates that the OH stretching 12222(1) 123206 A ZPE

1 :
modes are strongly coupled to other coordinates s@#4. In 2421;(:&23)) 21 v”\;;:gftlgfsrisolsn of outer waters
fact, the VMC eigenstates at projection time zero show a large 303:1) 521 Bi water wag
degree of mixing between OH stretch basis functions and many 440(2) s water torsion about bisectors
other coordinates. On the basis of the generalized transition 56¢4) 569 Al O--Ostretch
moments displayed in Figure 4, we can identify the outer water 737¢3) B,  O-+H*--Oasym. stretch
bends as one of the coordinates coupling strongly with the OH g70¢6) 902 B,  O--H-Oasym. stretch
stretches. The symmetric OH stretches and bends show common 583 1656 Al sym.outer water bend
peaks in Figure 4a and Figure 4c, as do the corresponding 1788 1860 B/  asym.outer water bend
asymmetric motions in Figure 4b and Figure 4d. The red shift 3375 3420 A sym. outer water OH stretch
of the OH stretches from their harmonic frequencies predicted 813 4) A7 OO stretch+ mutual torsion
by the OSS3(p) potential is too large. The experimental of outer waters
frequencies lie at 3609 cmh for symmetric stretch and 3684  1023(t4) A firstovertone of G--O stretch
cm~1 for asymmetric stretc? 646(-4) AL

The water-bending transition moment intensity is given in  1058€-4) A
Figure 4c and Figure 4d for each symmetry. The symmetric 572(4) By
water-bending fundamental can be extracted from the CFQMC 645€:9) By
data and appears at 1583 thiThe asymmetric water-bending ~ 1114€12) By

. ! . . +
mode is not as clear as the symmetric one as seen in Figure 4d. 1276 B,

We assigned the peak at 1788 ¢has the asymmetric water- R . . .

. o : . Vibrational frequencies are relative to the CFQMC zero-point
bendmg fundamental b_ased on t[he rglatlve intensity. Add't'onal energy of 12222 crrt. Miscellaneous vibrational frequencies for which
vibrational eigenenergies are given in Table 4 for which clear \ye were not able to make a conclusive assignment are also reported.
extrapolations were possible but for which assignments were Corresponding 15D VCI results from ref 49 are listed for comparison.
problematic. The statistical error estimated for selected CFQMC eigenvalues are

5.3. DiscussionIn Table 4 we compared exact fundamental standard deviations estimated by breaking the entire data set into four
frequencies from the CFQMC calculations with the MULTI- subsets and evaluating eigenvalues for each subset. This method
MODE results of Dai et a9 In all cases where we could make SUPPOSes that the subset results behave as Gaussian random vériables,

- . ) . which is probably not accurate in some cases. However, it was not
a firm comparison, the exact result was downshifted from the feasiple to further divide the data sets and verify scaling of the variance
MULTIMODE frequency, typically 26-80 cnt!. The O--O with sample size. Other sources of error are discussed in section 5.3.
stretch, symmetric water bend, and symmetric outer water OH
stretch are all firm comparisons where the assignment is clear
and the CFQMC eigenvalues can be extrapolated to infinite time. Evidently, the MULTIMODE program provides an excellent
The downshifts of the exact CFQMC eigenvalues from MUL- set of approximate eigenvalues for this very complex system,
TIMODE results were 53, 73, and 45 cip respectively. but the magnitude of these errors should be considered when
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attempting a quantitative comparison with experiment. There stretching of the outer water units were successfully resolved.
are other cases in Table 4 where we listed correspondingAs for the central proton transfer mode, we found three intense
CFQMC and MULTIMODE eigenvalues. In these cases com- peaks associated with asymmetric proton stretch motion. We
parison is not as firm for various reasons. For example, we found also found that low-energy eigenstates mostly due to the outer
several modes with a significant @H*---O asymmetric stretch ~ water torsion and wagging motion were coupled with proton
component, and it is not clear which one corresponds to the stretch mode. Comparing with the experimental spectrum, the
one identified by Dai et al. Furthermore, what is called a “wag” fundamental frequency of the OH stretch modes of the outer
or “twist” may be open to interpretation, or the MULTIMODE  water monomers were underestimated significantly by the OSS3-
and CFQMC eigenvectors may have a different nature. (p) surface. The experimental frequencies lie at 3609 dior

The error estimate associated with the CFQMC eigenvaluesthe symmetric stretch and 3684 chfor the asymmetric stretch,
in Table 4 is only one component of the possible error. It is the downshifted from harmonic frequencies of 3796 and 3700'cm
statistical error associated with variability in the results arising respectively. The OSS3(p) surface overestimates the harmonic
from a finite amount of statistical sampling. The error reported frequencies of the OH stretches and underestimates the funda-
in Table 4 is calculated by breaking the total data set into 4 mentals when coupled to the rest of the molecules. The OSS3-
blocks and generating results for each of the blocks sepafétely. (p) surface should be more accurate for the low-frequency, large-
However, the statistical error is not the only source of error. (A amplitude modes where greater attention was focused in the
useful discussion of the sources of error in CFQMC calculations design of the surface.
can be found in ref 52.) Another source of error is the bias  To understand the complex vibrational motion of thgOpt"
error, which arises because eigenvalues are a nonlinear functiormolecular ion, improved potential surfaces need to be developed
of the elements oN; andHjj [egs 13 and 14], and therefore and vibrational eigenvalues computed for comparison with
averages of finite numbers of data points will systematically experiment. This work demonstrates that CFQMC methods can
deviate from the true expectation value. We have designed ourprovide useful benchmarks to assist these developments.
procedure for extracting vibrational eigenvalues from the data
to minimize the effect of bias error. Specifically, the exponential _ Acknowledgment. We acknowledge NSF Grant No. CHE-
fit is applied within a range of projection times in which the 0109243 for supporting this work and the Ohio Sup_ercomputer
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