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The Voget-Fulcher-Tammannr-Hesse (VFTH) equation has been the most widespread tool for describing
the temperature dependence of the characteristic times of the cooperative dynamics of glass-forming liquids,
both in low-molecular-weight and macromolecular systems near and above the glass transition temperature.
Previous arguments have shown that statistical correlation could exist between the three parameters. The
analysis of a representative experimental data set of poly(vinyl acetate) dielectric relaxation (RidPleysiéa

A 200Q 287, 26) allowed us to conclude that correlation exists mainly betwee tied T, parameters. It

was found that the best fitting procedure should use a singular value decomposition implementation of the
Levenberg-Marquardt nonlinear fitting algorithm. Simple criteria to diagnose (fitting matrix singular values)

and minimize (linear combinations of fitting parameters responsible for instabilities edited to zero)
ill-conditioned problems are given. The constaftconfidence limit ellipsoids are presented, and it was
concluded that the expected association between fitted parameters should always be made with the partial
correlation instead of the more familiar correlation matrix. Some qualitative arguments are presented, stressing
the need to properly weight experimental data points whenever unequal statistical weights are present in
actual data because of either the merging of data sets obtained from different methods or the transformation
from the measured value into a different fitted variable. It is expected that the same trends will be evident to
a greater or lesser degree for all instances of VFTH data analysis.

Introduction relaxation phenomena in glass-forming and viscous systems,

] ) o ) being able to modet(T) over a broad temperature range
Glass-forming materials are able to maintain a disordered

liquidlike structure below their melting temperature, if crystal- B

lization is prevented. The viscosity or the relaxation time (M =1 epr -T, To=Ty (1)

of the supercooled liquid increases strongly with decreasing

temperaturé. 3 The glass transition is attained at temperatures wherer, is a preexponential factor ariland Ty are specific

wheren ~ 10" Poise orr ~ 100 s, below which the system is  adjustable parameterd; is a diverging temperature, close to

no longer capable of equilibrating within the time scale of the the so-called Kauzmann temperature, dhd= B/T, is the

experiment. This approach to the glass transition features astrength parameter, which can be related with fragility, in the

number of common properties for chemically different sub- classification proposed by AngéliaD value ¢ 30) represents

stances, such as those involving van der Waals forces ora strong behavior, and a lowD value (<30) is for afragile

hydrogen, metallic, or covalent bonds. In all cases, the responsehehavior?

function is clearly nonexponential and the associated relaxation The VFTH function is equivalent to the so-called Williams

behavior (usually labeled-relaxation) is observed through a LandelFerry (WLF) equatiof

wide frequency range and is characterized by a broad spectrum

of relaxation times. Moreover, the temperature dependence of 7(T) Cy(T — Ty

its mean value,r, often deviates from a simple thermally log a; = log (T, )= C,+(T—-T,)
. . . _ 1-3 ref, 2 ref

activated or Arrhenius behavior(T) = 79 expEJ/RT).1 = In

fact, it seems that the relaxation time increases more rapidly inwherecl and C, depend on the material and @y (chosen

the approach to the glass transition, diverging at temperaturesygerence temperature). This equation can be obtained from the

below Ty but well aboveT = 0 K. free volume theory. It is based on the Doolittle equation that
The three-parameter VogeFulcher-Tammanna-Hesse relates the viscosity to the fraction of free volunfie=(u/v) as

(VFTH) functiort~¢ serves as a basis for the treatment of y ~ exp@/f), whereu is the free volumey is the specific

volume, andb is a material parameter. Equation 2 may be

)
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where the temperature dependence of their sizes allows one tahat the study of the VFTH fitting procedure will also reveal
relate the structural relaxation time with both the temperature the same trends present in the Arrhenius case.

and the configurational entrop: This study is an attempt to clarify relevant issues related to
the use of the VFTH equation, when it is pretended to extract
7(T) = 7, exp[CITS(T)] 3) the corresponding parameters (plus realistic error bounds and

possible correlations) from the fit. General quantitative criteria

where, and C are constantsS, can be calculated from the  to diagnose (and minimize) numerical instabilities in the fit and
excess heat capacithC, = Cp(liquid) — Cy(glass),S(T) = pc_)ssible_artifacts in the expected (linear) correlation coe_fficients
JIIACK(T)T] dT', where aff, the entropies of the liquid and will be given. As a general rule of thumb, the use of singular
solid states are equah(= 0). Assuming that in the supercooled value decomposition techniques within the well-known Leven-

state AC, varies with temperature a&C, = o/T, the VFTH berg—Marquardt nonlinear fitting algorithm is advocated. It will
equationp is obtained, witB = CTy/a.. P ’ also be demonstrated that, in order to discuss the physical

From the models exposed, one may conclude that releVamintrinsic association between VFTH parameters, the estimation

information may be obtained from the VFTH parameteaxs ( of the partlall correlation matrix is mandgtory.

B, andTo) associated to a given system; this includes insights _ 1he experimental data explored in this work correspond to
about the fragility, free volume, temperature of diverging d|glectrlc results obtal_ned in th(_a frequency domain on poly-
relaxation times, or limit frequency that may be correlated to (Vinyl acetate), compiled by Richeft. The data cover 16
the system’s structure. Moreover, the VFTH parameters may _decades in frequency, and 45 points are numerically available

be used to predict the system’s dynamics at temperatures beyond that work. We will assume that the main conclusions that
the experimental ones. come from the analysis of this set of experimental data may be

The VFTH model and its modifications are widely used for €Xt€nded to the general features of the VFTH equation.

the study of the cooperative thermal relaxation process. Most
of the works dealing with the dynamics of liquids above or close Linearization of the VFTH Equation
to Ty use it to treat the temperature dependence on viscosity,
relaxation times, or relaxation frequencies [l z1). In most
cases, a direct nonlinear fitting algorithm is used. An immediate
and fundamental question arises about the reliability of fitted
VFTH parameters. What are the error bounds for a given
confidence level, and what are the statistical correlations
between individual parameters? Are there situations in which a
very different set of parameters fits equally well the experimental
data? And, in these ill-conditioned situations, which are far more [_3 In T(-D] e — B’l’z(T -T) (4)
common than the experimentalist would like to admit, does a oT 0
high correlation between parameters signal the inability of the
data to discriminate between linear combinations of parameter The VFTH function is now expressed as a linear relationship
values? Or, does it quantify a real, statistically meaningful petween the left-hand side of eq 4 and temperature, Where
association between corresponding physical quantities? Signsand T, can be obtained from the corresponding slope and
from previous work point out the possibgatistical fragility intercept. The major disadvantage of using eq 4 is the need to
of the VFTH equation. For example, in the structural relaxation numerically derivate the In(T) experimental data with tem-
investigation of polymers, GofmeRibelles et at''?used a  perature, a numerically nontrivial point. Lunkenheimer et al.
phenomenological model, based on the configurational entropy, numerically differentiate a high-order interpolating polynomial,
to describe the glass transition. The experimental data werebut given the possible artifacts, cubic-spline interpolation should
adjusted to the model using a conventional minimization be used insteatf Apart from this detail, the use of this method
procedure. It was found that convergence during the fitting (Stickel's method) has been tremendously suce$sfi® The
would demand one to fix, for example, ti& parameter.  real value of this approach lies, however, in being especially
However, different fixed values @ lead to the same fina(T) suited to the following tasks: (i) clarification of a transition
curves. This suggests that the actual data is not able tofrom a VFTH to an Arrhenius behavior (the derivative in the
discriminate theB value, and therefore, that a statistical |ater case is a constant) and (i) identification of the range of
correlation between the VFTH parameters should exist. Thesevalidity of a VFTH lawl? Although bothB and Ty can be
are precisely the questions that this paper will try to answer. gbtained from the slope and intercept of the Stickel plot, we do
Thermally stimulated recovery is a mechanical spectroscopy not advocate this approach, because the alternative full nonlinear
technique that allows us to investigate relaxation processes infit is free from possible numerical artifacts from the numerical
the low-frequency region, being complementary to the dynamic differentiation of experimental data and the information on
mechanical spectroscopy technidde'® It is usually assumed  confidence intervals, and the possible association between fitted
in the data treatment that the dynamics of the studied processparameters (derived from the correlation matrix) is much more
follows Arrhenius behavior within a narrow frequency range. reliable. Figure 1 shows the results of nonlinear Levenberg
This allows one to obtain, from the thermal sampling procedure, Marquardt fit of Table 1 data together with the weighted
the temperature dependence of the apparent activation energyesiduals and the eq 4 linearized form of the VFTH model.
of the relaxation, which is normally characterized by a distribu- Random residuals and a linear relationship in the inset, according
tion of characteristic times. If the Arrhenius parameters are to eq 4, are easy graphical judgments of how good the
calculated from a direct fit of the experimental data to a simple experimental data is following the VFTH empirical law. The
Voigt—Kelvin model, a clear dependence betwegandE; is best fits of Figure 1 are log(s) = —11.845+ 0.019,Ty/K =
observed. Mathematically, the Arrhenius equation is a particular 250.81 + 0.12, andB/K = 1651.2060+ 0.0025, the error
case of the VFTH equation whdi = 0; thus, one should expect bounds for a 95.4% confidence level.

It is appealing to use linear fitting procedures, instead of the
more cumbersome nonlinear counterparts, because one can
rearrange experimental data in such a way as to judge the
goodness-of-fit criteria by an easy graphical method based on
how good the data is described by a linear relationship. The
VFTH equation may be linearized by introducing the féfm
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Figure 1. Singular value decomposition Levenbefgarquardt non-
linear fit of Table 1 reference data with VogdFulcheTammann-
Hesse equation. Best fit parameters for a 95.4% confidence level:
log(z/s) = —11.845+ 0.019, TYK = 250.81+ 0.12, andB/K =
1651.2060+ 0.0025 (see text). Also shown are weighted residuals
distribution (below) and Stickel's plot method showing that the VFTH
equation adequately describes experimental data (inset).

TABLE 1: Experimental Data by Richert 16 on Dielectric
Relaxation in Poly(vinyl acetate) Covering ca. 16 Decades in
Time?

Mano and Pereira

either by derivative methods, such as the Levenb&tgrquardt
(LM) method, or by nonlinear search algorithms, such as the
Simplex method. The quality of the result depends not only on
the algorithm used but also on the fitting function. In fact, the
adjustable parameters may or may not be intrinsically interde-
pendent. Let’s take, as a simple example, a function with two
adjustable parametergy and A,. Two limit cases may be
addressed: IA; andA; are independent and the convergence
is efficient, the 3D plot of versus A, A7) should display a
deep, well-like surface, wher& decreases quickly in all
directions wher®; andA; goes throughout the estimate values.
A dependency betweek, andA, would be evident if¥? would
present a slow convergence, at least throughout one direction
in the (A1, Az) space. Usually, this leads to a valley-shag2d
surface, where good estimates Af and A, are found in the
long, shallow bottom. In this case, there is definitely an
association betweefy; and A, parameters, but this can reflect
an intrinsic, physically meaningful association of the inability
of experimental data to discriminate linear combinationgof
andA; values (numerical artifact). If the function has more than
two fitting parameters, the same features could also be found,
though in a higher-dimensional space.

For the case of the VFTH equation, we will first analyze the
< versus (logro, B, To) surface by fixing independently the
three parameters around the best values obtained from the
nonlinear fitting. The corresponding 3D representation is then
represented in a 2D plot as the projectior8dbn the planes of
the three parameters. The results $f calculated with the
analyzed experimental data set are shown in Figure 2. In Figure
2a, To was fixed at different values around the best estimation.
It can be seen that th#& surface has a single minimum, but a

TK logt/s T/K logtr/s T/K logt/s T/K logtls certain interdependency is observed betwBemd logry. For
28815 753 30815 068 34515 —4.19 40312 —7.16 a fixed T, if Bincreases relative to the best values, one reaches
290.15 6.40 309.15 0.47 348.61—4.51 409.67 —7.35 again a reasonable fitting by decreasing tag

292,15 5.41 31015 0.31 352.44 —4.77 41594 —7.52 A smaller association is expected from the data obtained if
29415 4.63 31315 —-0.27 355.78 —5.01 422.07 —7.67 one changes logy and T while keepingB fixed (Figure 2b).
296.15 3.88 317.15 —0.94 359.09 —5.24 428.16 —7.81 The shape of the surface toward the best values for a fied
298.15 3.23 321.15 —1.54 365.49 —5.64 434.11 —7.94 ; . o
30015 2.63 32515 —2.08 372.03 —6.01 44051 —8.06 much_ more round an_d isotropic th_an that observed in Figure
301.15 2.35 329.15-2.58 378.60 —6.33 446.36 —8.17 2a. Finally, a much higher correlation betweBmand T, for a
302.15 2.08 333.15 —3.03 384.91 —6.59 452.63 —8.28 fixed log 7o is found (Figure 2c). It should be noted in Figure
304.15 1.56 337.15 —3.43 390.83 —6.79 458.61 —8.39 2 that the change of one fixed parameter lead$’tsurfaces
382-12 1163250 341.15-4.19 397.17 —7.00 464.52 —8.51 that changes locations in the plane of the other two parameters,

but the shape tends to be maintained. This is a clear indication

@ Bold-faced (derived from time-domain measurements) and other that a combined correlation between the three parameters must
values (based upon frequency domain data) were obtained with differentexjst.
methods and probably have different experimental accuracies.

Convergence Surfaces

The analysis made in Figure 2 was made by looking at the
VFTH parameters two by two (the third being fixed). We should
extend the analysis of tH& surface by independently changing

Nonlinear routines for fitting data to functions are based on the three VFTH parameters. This analysis was done with the

methods for minimizing the sum of squared weighted residuals. stydied data. Th&? hypersurface is projected toward the three
To make it explicit that the actual experimental errors should possible planes in Figure 3. The three ellipse-like shapes
be used in the Computation of residuals, itis CUStomary to call observed in these graphics suggest that, in a-(&o@l TO) 3D

the appropriately weighted sum thé of the fit . Then, @ representationS? below a certain value should have a cigar-
goodness-of-fit criterion is the extent to which the redug&d  ike shape. The more elongated shapes in Figure 3 correspond
x>, the 42 divided by the number of degrees of freedom, is to the projection of? toward the B, To) and, to a lesser degree,
close to oné? If the actual experimental errors are not know a the (B, log 7o) planes. The data in Figures 2 and 3 give
priori, then it is customary to assume unit errors and representessentially the same qualitative information: There is always a
the sum of the residuals &. The absolute value of this sum  strong association between any pair of VFTH fitted parameters,
cannot be used to judge the quality of the fit, and the information and the correlation should decrease in the or8efTg) > (B,

that the experimentalist can have is reduced to use its value tolog 7o) > (log o, To).

estimate the a posteriori errors and to judge, on the basis of his .

knowledge, if the estimated errors are meaningfiburing the Levenberg—Marquardt Nonlinear Least-Squares

nonlinear fitting procedure, the space of the possible parameterAlgorithm

values is explored unti® reaches a minimum, preferably an The LevenbergMarquardt (LM) algorithm has become the
absolute minimum. The minimization problem is usually solved standard of the nonlinear least-squares fitting routines. Let us
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Figure 2. & surface obtained by fixing two by two the three VFTH parameters and letting the third parameter vary around the best estimate (three
possibilities). (part a) mapping throughout the (kagB) space. (part b) mapping throughout the (legTo) space. (part ¢) mapping throughout the

(B, To) space. S decreases with increasing darkness.
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Figure 3. Projection of theZ surface along three possible planes, resulting from the analysis of the data set analyzed in this work letting the three
VFTH parameters vary freely® decreases with increasing darkness.
the dependence of thg? value on the fitting parameters is

define the notation by saying that one has a tableNof
nonlinear, the algorithm makes the method an iterative procedure

experimental data points (indéxand wants to fit to these data
to a nonlinear function oM parameters (indek). Although of solving a set of linear equations in increments of the fitted
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parameters)a that, added to the current approximation, give TABLE 2: Linear Correlation Coefficients for

rise to a better estimate of the sought (true) parameters Levenberg—Marquardt Fit of Table 1 Data Obtained by the
Inverse Matrix Gauss—Jordan Elimination (GJ) and by the
Singular Value Decomposition (SVD, Maximum Condition

o' oa=f (6) Number 10°) Methods?
wherea!' is obtained from thex curvature matri%2L B —log(g) log(r) ~To B~ To
GJ full correlation —0.955 0.894 —0.981
S i 1 (wosa) (o) svo Rilcorelsion | 0903 0993 100
2088 A\ s || 9 Samplot y “oss o7 osos

aFull and partial correlation are for single fits of the Table 1 data

the summation extending over all experimental data points. it errors in the dependent variable log 7) only, and sample is the

The B vector is given by sample correlation obtained from fits of 1000 synthetic data sets (text
and Figure 4) with errors in the dependent varialglddg 7) only or
] P 1 39{2 ®) in both dependent and independent variabledog 7; x, T).
k= Pk="T55,
2 08y compute: A~ = V[diag(1iw)]UT. This should substitute the

inverse in eq 9 and the SVD solution to the set (eq 6) is, finally
The solution to the linear set (6) can be obtained by a matrix

inversion procedure M (U B MV

da = V[diag(1i)](U'B) = Z Vil =S —
k= W =1 W

(12)

oa=[a] P 9)

and this is the most usual implementation. Reference 18 has a

popular implementation of the algorithm that uses Gaussdan where the last summation is the error term. The last form shows
(GJ) elimination with full pivoting that the columns of the matri¥ are orthogonal unit vectors

In the minimum of they? hypersurface, one computes the defining the principal axes of the cpnstagﬁtboundqrieé? anq
matrix C = [o] 2, which is the estimated formal covariance therefore, these constant ellipsoids have semi-axes with
matrix of the standard errors in the fittedparameters? The lengths equal to the reciprocal of the singular valugssmaller

discussion of possible correlations between parameters is beswkjvﬁonmbu“?}? more tct) the OV?"?” error thar! h'l?herl onest.
made after normalization of the individual parameter variances, enever the curvature matrix 1S numerically close 1o

because the covariance matrix entries are scale-dependent. Thi ingular, the solgtion obtained by editing to Zero the values of
is made by transforming the covarian€ = [02] into the M for all the singular values smaller than a given threshold
correlation matrix by K is often better than both the direct GJ elimination and the SVD

solution where the smalli’s are left nonzero: When some
combination of fitted parameters is irrelevant to the fit, that
combination is driven down to a small value, rather than pushed
up to numerically instable canceling infinitiés24.25

The covariance matrix is obtained from tkfecolumns as

R=D'cD* (10)

whereD is a diagonal matrix given b = D1 = [1/gy].??
The entries of the correlation matrix are the familiar (linear)
correlation coefficients. Moq
It is well-known that GJ elimination is rather susceptible to CcC= Z_Vk® V, (13)
roundoff error. Moreover, whenever the fitting matrix is very =
close to singular (one or more very small pivot elements), one
gets fitted parameters with large magnitudes but delicately andwhere again the 4 should be edited to zero for sufficiently
unstably balanced to cancel out aimost precisely when the fitting small wy's. Equation 12 also shows that the increments in the
function is evaluatedf This can occur if the experimental data  fitted parameters are linear combinations of theolumns with
is not very sensible to individual (or combinations of) fitting the weighted3 vector, a point to be addressed later.
parameters. Because the LM is, in fact, an iterative algorithm  To test the ability to recover meaningful parameters from
for a linear set of equations, one can take advantage of thethe fitting procedure, a Monte Carlo scheme of obtaining
extensive knowledge of computational linear algebra avail- constant/? confidence limit ellipsoids from synthetic data sets
able®®23-25 and suggest an alternative to the solution of eq 9 was adopted. The reference data of Table 1 was Levenberg
based on the well-known singular value decomposition (SVD) Marquardt (SVD)-fitted, and a set of fitted parametagshus

k

of a matrix obtained. This was adopted as our best estimate of the sought
(true) parametersye. The ap set was then used to generate
A=uwv' (11) 1000 synthetic data sets adding Gaussian noise, and each data
set was fitted as if it was experimental data to obtain the
whereU andV are column orthonormal matrices akd = recovered parameter saf To the extend that the; — ap

[wy] is a diagonal matrix with positive or zero elements (the distribution resembles the shape of the— ayye distribution
singular values). Among the most desirable properties of the (reasonable), the distribution of tlag— ag parameter sets will
SVD solution of the LM method is minimization of roundoff — quantify the distribution of the probable errors in thgset.
error and numerical instabilitié§:2*Moreover, the magnitudes  For a more sound justification of the procedure, see ref 18.
of the singular values allow a clear diagnosis of possible ill-  Table 2 shows the pairwise correlation coefficients for both
conditioned problems (reciprocal of the condition number, ratio the inverse GJ matrix method as well as the SVD solution
of the largest to the smallest of thg's, comparable to machine  (editing to zero singular values smaller than-1@imes the
precision). The inverses of the matrices in eq 11 are trivial to higher value) for a single fit to the Table 1 reference data. It
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Figure 4. Distribution of the differences of the actual fitted parameters from the sample mean corresponding to the same 1000 sets of synthetic
data obtained from a single fit of the reference data of Table 1 and adding.05 Gaussian noise to the logalues (errors in dependent variable

only). Points correspond to fitted recovered parameters, while the curves are the ggrtafitience regions for 68.3%, 95.4%, and 99% probability
predicted from a GJ and SVD implementation of the Levenbétgrquardt algorithm (see text). The SVD result edited to zero all combinations

of singular value&/ column vectors giving rise to condition numbers higher thah Blease note the different scale of the last two rows of the

figure.

shows that all of the parameters are pairwise correlated. Theparts was, in all cases, at least five significant digits, thus
GJ results further show that the correlation between parametersvalidating the Monte Carlo procedure.

logio T and Ty is slightly smaller than the mutual correlations
involving parameteB. The discussion of SVD correlations is

postponed for now. The first row of Figure 4 shows the
distribution of the difference of fitted parameters from the
sample mears; — amean for 1000 synthetic data sets with

constantc = 0.05 Gaussian noise in the value of the fitted
dependent variablg/. From the recovered distribution, sample

Consider now the data of Table 3: the singular values and
corresponding orthonormal, vectors of the SVD decomposi-
tion of the curvature matrix in the minimum SVD fit of the
experimental data. The condition number is 8.CP, signaling
precisely the type of numerical situation in which SVD
(curvature matrix very close to singular) is most appropriate.
Table 2 and Figure 4 show the results obtained with the SVD

correlation coefficients were computed in the usual way. The modification of the standard LM algorithm, editing to zero all

agreement between the correlation coefficients predicted from of the 1k values corresponding to condition numbers higher
the GJ covariance matrix of the single fit of actual real data than 16 in eqs 12 and 13: The contribution from the last

and the sample correlation coefficients from synthetic counter- singular value/column of th€ matrix was eliminated. The first
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TABLE 3: Singular Values wy and Corresponding Column association betweesx anday must be computed with the values
ggg’g;gg;ﬂieox é\??ﬁféxé%rr\fgteursé”h%;{ﬁ;Yﬁ'tl;‘% Final Step of of additional variables held fixed in order not to influence the
the Levenberg—Marquardt SVD Minimization Algorithm for observed correlation. T.hls.can be done with the folloyvlng
the Single Fit of Table 1 Data procedure (actual details in ref 22): The vector of fitted

parameters is partitioned into two parta = (aa, ag), where
aa hasp elements (whose association one wants to investigate)
log(zo) —0.940 0.340 0.00577 andag has the remaining = M — p elements (whose influence

Vi 2.02x 10° 1.47x 10¢ 2.61x 10t

To —0.340 —0.940 0.0203 ; ; :
B 00123 00171 ~1.00 on thea, elements is to be corrected). The full correlation matrix
is partitioned as
row of Figure 4 immediately shows that the dispersion of the c.. C
recovered parameters from synthetic data to the mean value is C z(CAA CAB) (15)
BA BB

significantly smaller. As a side effect, the predicted correlation
between parameters increases and, more important, change
signal. These data alone show that the SVD modification of
the Levenberg-Marquardt model minimizes the error in the
fitted NLLS parameters. In the case of not editing to zero any
of the singular values, the SVD and GJ algorithms are equivalent
at a point verified (not shown) with the data of Figure 4.
Figure 4 also shows constapt boundaries as confidence
regions of constant significant level, estimated according to the
procedure described in ref 18. If one does not want the full R..=D..'C,.D,. ! (16)
M-dimensional confidence region, but individual confidence AB AB  TABTAB
regions for some smaller numberof parameters (Figure 4),
then it is necessary to make the projections of the full
M-dimensional space into thedimensional subspace of interest
using av x v matrix [Cpro] from the full covariance matrix®
If the experimental measurement errors are normally distributed,
thenda = ax — ag has a multivariate normal distribution, and
the equation for the elliptical boundary of the desired confidence
region in thev-dimensional subspace of interest is

Fhe matrices in this matrix give the correlationag (Caa), in

ag (Cgg), and the covariances between the elementsaind

ag (Cag = Cga). Then, the conditional distribution af, given
that ag has a fixed value, is multivariate normal with a
covariance matrix estimated &g = Caa — CagCgs Cga,
and the correlation is obtained from this covariance matrix
normalizing in the manner described previously for eq 10

whereDa g is a diagonal matrix containing the square roots of
the diagonal elements d@ag. Rap is the matrix of partial
correlations and has the physical sough information: kit§){’
element is an estimate of what the correlation betweerkthe
andl™ variables ofay would be ifag were held constant at any
value??

Table 2 has full and partial linear correlations for GJ. The
most distinctive feature is the fact that the partial correlation
. between logy T and Ty is significantly different from the full
proj] 6a (14) value. The intrinsic correlation is masked by a stronger

correlation between any one of these parameters and the
whereA is a function of the number of degrees of freedom of remainingB: There is a considerable variation in the observed
the fit. The confidence levels for 68.3%, 95.4%, and 99% value ofB and strong linear relationships betweRmnd each
probability are shown in Figure 4 for both the GJ and SVD logio 7 and T parameters, and this alone induces a strong linear
algorithms. The agreement with the sample distributions is relationship between lagr andT,. The induced association is
excellent for the GJ procedure and fairly good for the SVD case. so strong that the sign of the intrinsic correlation changes from
Furthermore, the expected GJ confidence regions reproduce the-0.74 to an observed value of 0.89. This interpretation is
correlation of the data in Figures 2 and 3, showing that realistic confirmed by data in Table 3: The eigenvectors of the SVD
x? hypersurfaces can be obtained from single-fit covariance algorithm show that the information about the fit®dalue is
matrices. obtained almost exclusively from the third eigenvector. Because

The signal change of the (linear) correlation coefficients the fitted parameters are given by linear combinations of the
between the GJ and SVD models deserves a more carefuleigenvectors (eq 12), and because the SVD solution effectively
analysis. In a large number of cases, much effort is spent in discards the third singular value/eigenvector combination (previ-
interpreting and explaining the causes of large correlations ous discussion), the SVD solution only uses the first two
between fitted parameters. The correlation can have severaleigenvectors, thus minimizing the correlation between param-
causes, but in general, these can be divided into two (possibleeters logr and Tp on one hand and paramet®ron the other.
connected) classes: (i) The fitting equation and actual experi- The actual sample SVD correlation+9.75, remarkly close to
mental data are not sufficiently sensible to combinations of fitted the —0.74 partial GJ prediction: SVD effectively minimizes
parameters and (i) there is a true correlation between parametershe coupling between parameters (lngB) and (To, B) to the
on the basis of physical arguments. In general, one wants toextent that the intrinsic (log, To) correlation becomes evident
discuss the class ii effects, minimizing as much as possible classwithout the necessity to correct for extraneous variables. The
i artifacts. However, one must always keep in mind that picking dramatic effect that editing to zero eigenvalues/eigenvectors,
up isolated entries from a correlation matrix can be misleading giving rise to high condition numbers in SVD, can have in the
and can promote incorrect inferences, because all values of theerror distribution of the fitted parameters is best illustrated in
correlation matrix are interrelated. Whenever one wants to Figure 5. The constang confidence limit regions are consider-
discuss the significance of a high correlation between two ably smaller, and the expected correlation between parameters
parameter variablesy and a, one must be aware of the can even change signal (middle graphic). The use of the full
possibility that the high correlation has arisen because of the correlation matrix confirms the conclusions drawn from Figures
mutual association of, anda with some other variable, and 2 and 3 (the expected correlations should increase in the order
this is precisely the present case. For #eand a estimated (B, To) > (B, log 7) > (log 7, Tp)) but also illustrates the need
association to be of intrinsic interest, it must remain high when to use partial correlation data, because the full correlation matrix
the effect of additional variables has been removed: ffhe will always pick up theM-1 higher mutual correlations,

A=da'[C
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Figure 5. Comparison of the constapt confidence regions for 68.3%, 95.4%, and 99% probability predicted from a GJ and SVD Levenberg
Marquardt single fit to the reference data of Table 1. The SVD result edited to zero all combinations of singula¥ valesh vectors giving
rise to condition numbers higher than510

unrevealing the smaller one. The results are also in agreementures assume errors in fitted dependent variables along (log
with the findings of Gome Ribelles et alt12mentioned inthe 7, fitting y values)!® It is, however, unrealistic to expect that
Introduction. Their experimental results are probably even more temperature is error-free. Table 2 then show results for SVD
severely ill-conditioned than the data used in this work, to the fits of 1000 synthetic data sets with Gaussiarr 0.2 noise in
point that their minimization procedure is not able to converge the temperature. This was judged as a realistic error. At least
if B is left free to change. for unbiased errors in the temperature, the results obtained were
From this discussion and from Figure 4, one can now give statistically equivalent for the standayebnly error algorithm
definitive advice on the best LM fitting procedure for VFTH and for thex,y-error case. The only difference was in the value
data. The SVD algorithm is advocated instead of the simpler of sample correlations (Table 2). This empirically confirms the
GJ inversion, because (i) it diagnoses ill-conditioned problems standard procedure of neglecting statistical errors in the de-
and (i) minimizes their consequences. From the singular values, pendent variable for the nonlinear LM fitting algorithm.
one can infer possible numerical instabilities: Singular values
much smaller than the bigger ones show that experimental dataHeteroscedastic Data
is not sensitive to combinations of parameters which are

multiples of the corresponding eigenvectors. These singular are well-known: If the data is distributed independently and

values/eigenvectors combinations should be edited to zero, thusnormally the estimators of the parameters are unbiased
minimizing errors in the fitted parameters. The results are better, inimum’ variance. and maximum likelihood. and this holds '

put at thg expense of.a reduced curvature matrix. T.he discardeq, o even if the data is heteroscedastic (i.e., of unequal
information can be important, however. The edited-to-zero ;.o ainty G,)), but this is true only to the extent that the
eigenvectors should be inspected in each case to infer possiblg.qiq,als are weighted properly
additional artifacts introduced by the fact that now the solution
is obtained from a reduced set of eigenvectors bases. This is 1
illustrated by data in Table 3. The SVD solution is obtained W=
from the first two eigenvectors alone, and these have a very Oii
small contribution from the parametBr The fitting procedure
will have a reduced ability to minimizg? by changing theB In general, the experimenter should have an a priori knowl-
value, and this stresses the need to have a good initial estimateedge of experimental uncertainties and weight each squared
for B. If care is not exercised to test this point, the fitted residual according to the previous equation. Otherwise, nonlinear
parameters can become initial-approximation-dependent, a pointmodels generally yield nonnormal, biased, or inconsistent
confirmed but not illustrated in this paper. Although strictly parameter estimates, and extreme care must be exercised when
correct from a mathematical point of view, the 95.4% confidence interpreting error bounds and correlation information extracted
level B/K = 1651.2060+ 0.0025 interval should not be taken  from fits.2° Even if the knowledge of experimental uncertainties
too seriously from a statistical point of view, because its value is only approximate, it is better to use O %z instead of
was estimated from a reduced basis set with a very small unweighted fits. And, this is mandatory for heteroscedastic data.
contribution from theB parameter. To maximize the useful In this case, although the closeness between the regficedlie
physical information, as a rule of thumb, one should obtain fitted and 1 cannot be used to access the quality of the fit, each residual
parameters from the SVD algorithm and extract meaningful will be minimized in the fit according to its intrinsic relative
correlation coefficients from an auxiliary GJ correlation matrix importance. This is standard undergraduate knowledge. Even
at the best-fit parameter values. The intrinsic correlation betweenso, this is completely overlooked in the majority of the VFTH
pairs of parameters must always be estimated from partial manipulations involving relaxation times. By ignoring statistical
correlations. This will ensure that the estimated correlation is weights one can bring even more uncertainty into computation
as close as possible to the intrinsic value and free from results than operating with full, instead of partial, correlation
extraneous induced associations. matrices. This point is especially important for the analysis of
Finally, Table 2 tests empirically the sensitivity of the fitting data sets accumulated in relaxation measurements. Usually,
procedure to probable errors also found in independent (tem-several complementary techniques must be used to have access
perature) variables. The standard LM nonlinear fitting proce- to a maximally broad range of relaxation time®lerging the

The statistical properties of nonlinear least-squares estimators

17)



10832 J. Phys. Chem. A, Vol. 108, No. 49, 2004 Mano and Pereira

data obtained by different methods, each with its own accuracy, log(1/27f) andoiog, = o/(f In 10) = 27zor/(In 10) showing that,
causes one to inevitably face the problem of unequal statisticalin principle, one can have large differences in statistical weights.
weights in combined data sets. This is precisely the case of theln the event of the uncertainties in frequencies being a fraction
Richert reference data used in this paffeBold-faced row of the measured frequency maximumi,g . is constant, and
entries in Table 1 were derived from time-domain dielectric one is allowed to use constant weights in fitting data with eq
modulus data, which allow access to extremely long relaxation 19, but this must be checked in each case.

times, while light-faced entries were obtained from dielectric

relaxation data as the peak frequency of the dielectric loss curve.cqnclusions

Although this author does not provide information about

experimental uncertainties, we have used a constant error of The well-known Voget-Fulcher-Tammannr-Hess (VFTH)
0.05 based on our own experience. On the basis of this value,equation has been extensively used in the description of
we have obtained as the best fitted parameterlggE —11.845 cooperative molecular motion in glass-forming liquids. Experi-
+ 0.019 andTy/K = 250.81+ 0.12 with a 95.4% confidence  mental evidence has been pointed out for the statistical
level. To test the sensitivity of the data on unequal weights, we correlation between its three adjustable paramdietog 7o,
have made an alternative fit with bold entries in Table 1, given and T, which may bring questions on the reliability of fitted

a constant error estimate of 0.10. We have thus obtained as the/FTH parameters. However, to the best of our knowledge this
best fit logg/s) = —11.908+ 0.015 andly/K = 250.32+ 0.14, issue has not been adequately described in the literature.

values with differences from the previous fitted parameters |t was shown in this work that the (relaxation time, frequency,
(Alog(z/s) = 0.063 andATo/K = 0.49), largely exceeding the  or viscosity versus temperature) data may be treated in order to
statistical uncertainties. Even though this is a rather uninterestinggptain the VETH parameters from either linear or nonlinear fits.
test, it clearly stresses the care that must be exercised in properlyrne well-known Stickel’s linearization method can be used to
weighting experimental data. This is especially important in the ohtainB and T,. However, its main merit is to allow an easy
context of relaxation data for which data points differing by graphical criterion to discuss the applicability of the VFTH
several orders of magnitude must enter the fit with different model and we advocate the use of nonlinear algorithms due to
statistical weights (perhaps also differing by orders of magnitude their superior ability to minimize numerical artifacts and ability
and not just the two factors tested here). to extract reliable error bounds and correlation information.

Apart from the influence of merging data collected with We advocate the use of the LevenbeMarquardt (LM)

different methods, there is an additional point concerning : - : : :
S . ! . 2. nonlinear fitting algorithm instead of several simpler but more
statistical weights that should be adequately addressed. This is gag b

the chanae of eq 17 to take into account the chande in StatistiCalerror-prone possibilities of linearization of experimental data.

iaht gh a the fit | de inat ¢ gd instead fThe LM algorithm should use singular value decomposition
weights whenever the it 1Is made in a transtormed instead o (SVD) methods to solve the linear part of computation task,
the directly measured variable. This is again standard knowledge

but usually not discussed. Whenever there is a change betweent;ecause these will do the following: (i) diagnose numerical
measuredy and actually fittedu variable, eq 17 should be instabilities (high condition numbers of fitting matrix) giving

substituted b rise to ill-conditioned problems and, at the same time, (ii)
ubstitu y minimize numerical artifacts (singular values/eigenvectors

1 responsible for instabilities edited to zero). The distribution of
w; = Ty (18) singular values/eigenvectors should be checked in each case to
(oyi a—) prevent additional surprises (e.g., in the present case, the SVD
Y. fit will be unable to do an efficient minimization in thB

parameter, thus making the fitted parameters slightly dependent
in the initial approximation forB). The LM algorithm will
accurately give error bounds and constghtonfidence limit
ellipsoids, but additional care must be exercised to unravel
statistical association between fitted parameters, because the
intrinsic correlation between any two parameters can be masked
CIby additional stronger associations between any member of these
two parameters and additional parameters. The partial correlation
matrix should always by used instead of the familiar full
correlation matrix. Although restricted to a single set of
the null derivative condition for the maximutf!” From the experimental data, it is expected that the same trends will be
HN fit, it is then possible to extract the uncertaintyfin, and evident to a greater or lesser degree for all instances of Yogel

this is theoy; value that should be used in the VFTH fit. From FulchefTammanPrl—!es_s (VFTH) data analysis.
the frequency maximum raw data sets, one can do the VFTH A brief comment is introduced to stress the need to use

data analysis, either in the form of eq 1 or in the more common adequate statistical weights in the fitting procedure, which is
form of very important for heteroscedastic (i.e., of unequal uncertainty)

experimental data points. These unequal weights can be derived
B 19 from either the merging in the same fit of experimental data
In10T — T, (19) originally obtained with different methods or the statistical
weight correction necessary whenever the actual fitted data is
In the first case, the transformation is= 1/2zf and the transformed from the measured one.
statistical weighio, = oi/27f2. Special care must be taken in
this case, because the lifetime data has, in principle, infinite  Acknowledgment. Financial support for this work was
variance?’ In the more important case of eq 19, the form used provided by FCT, through the POCTI (POCTI/FIS/32901/1999)
for all data analysis in this paper, we haue= log(r) = and FEDER programs. E.P. would like to acknowledge fruitful

the additional derivative term reflecting the change of variable.
Only the use of eq 18 ensures that the fitting procedure
minimizes actual experimental errors, and this is especially
important for two types of transformation made in the math-
ematical handling of relaxation dynamics data: inversion and
logarithmic transformation®. The light-faced entries of Table

1 were measured as peak frequency maxima of the broa
distribution of dielectric loss curves: The Havriliaklegami
(HN) empirical curve is fitted to actual experimental data, and
the peak frequency maxinfaax is extracted analytically from

logr =logr,+
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discussions with M.N. Berberan-Santos, J.M.G. Martinho
(CQFM, IST), and S. Lanceros-Mendez (UM).
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