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The Vogel-Fulcher-Tammann-Hesse (VFTH) equation has been the most widespread tool for describing
the temperature dependence of the characteristic times of the cooperative dynamics of glass-forming liquids,
both in low-molecular-weight and macromolecular systems near and above the glass transition temperature.
Previous arguments have shown that statistical correlation could exist between the three parameters. The
analysis of a representative experimental data set of poly(vinyl acetate) dielectric relaxation (Richert, R.Physica
A 2000, 287, 26) allowed us to conclude that correlation exists mainly between theB andT0 parameters. It
was found that the best fitting procedure should use a singular value decomposition implementation of the
Levenberg-Marquardt nonlinear fitting algorithm. Simple criteria to diagnose (fitting matrix singular values)
and minimize (linear combinations of fitting parameters responsible for instabilities edited to zero)
ill-conditioned problems are given. The constantø2 confidence limit ellipsoids are presented, and it was
concluded that the expected association between fitted parameters should always be made with the partial
correlation instead of the more familiar correlation matrix. Some qualitative arguments are presented, stressing
the need to properly weight experimental data points whenever unequal statistical weights are present in
actual data because of either the merging of data sets obtained from different methods or the transformation
from the measured value into a different fitted variable. It is expected that the same trends will be evident to
a greater or lesser degree for all instances of VFTH data analysis.

Introduction

Glass-forming materials are able to maintain a disordered
liquidlike structure below their melting temperature, if crystal-
lization is prevented. The viscosityη or the relaxation timeτ
of the supercooled liquid increases strongly with decreasing
temperature.1-3 The glass transition is attained at temperatures
whereη ≈ 1013 Poise orτ ≈ 100 s, below which the system is
no longer capable of equilibrating within the time scale of the
experiment. This approach to the glass transition features a
number of common properties for chemically different sub-
stances, such as those involving van der Waals forces or
hydrogen, metallic, or covalent bonds. In all cases, the response
function is clearly nonexponential and the associated relaxation
behavior (usually labeledR-relaxation) is observed through a
wide frequency range and is characterized by a broad spectrum
of relaxation times. Moreover, the temperature dependence of
its mean value,τ, often deviates from a simple thermally
activated or Arrhenius behavior,τ(T) ) τ0 exp(Ea/RT).1-3 In
fact, it seems that the relaxation time increases more rapidly in
the approach to the glass transition, diverging at temperatures
below Tg but well aboveT ) 0 K.

The three-parameter Vogel-Fulcher-Tammann-Hesse
(VFTH) function4-6 serves as a basis for the treatment of

relaxation phenomena in glass-forming and viscous systems,
being able to modelτ(T) over a broad temperature range

whereτ0 is a preexponential factor andB andT0 are specific
adjustable parameters.T0 is a diverging temperature, close to
the so-called Kauzmann temperature, andD ) B/T0 is the
strength parameter, which can be related with fragility, in the
classification proposed by Angell:7 a D value (>30) represents
a strong behavior, and a lowD value (<30) is for a fragile
behavior.8

The VFTH function is equivalent to the so-called Williams-
Landel-Ferry (WLF) equation9

whereC1 and C2 depend on the material and onTref (chosen
reference temperature). This equation can be obtained from the
free volume theory. It is based on the Doolittle equation that
relates the viscosity to the fraction of free volume (f ) Vf/V) as
η ≈ exp(b/f), whereVf is the free volume,V is the specific
volume, andb is a material parameter. Equation 2 may be
derived if the free volume decreases linearly with decreasing
temperature.

A theoretical rationalization of the VFTH (or WLF) equation
can also be derived with the Adam-Gibbs theory.10 This theory
introduced the concept ofcooperatiVely rearranging regions,
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where the temperature dependence of their sizes allows one to
relate the structural relaxation time with both the temperature
and the configurational entropy,Sc

whereτ0 and C are constants.Sc can be calculated from the
excess heat capacity,∆Cp ) Cp(liquid) - Cp(glass),Sc(T) )
∫T0

T [∆Cp(T′)/T′] dT′, where atT0 the entropies of the liquid and
solid states are equal (Sc ) 0). Assuming that in the supercooled
state∆Cp varies with temperature as∆Cp ) R/T, the VFTH
equation is obtained, withB ) CT0/R.

From the models exposed, one may conclude that relevant
information may be obtained from the VFTH parameters (τ0,
B, andT0) associated to a given system; this includes insights
about the fragility, free volume, temperature of diverging
relaxation times, or limit frequency that may be correlated to
the system’s structure. Moreover, the VFTH parameters may
be used to predict the system’s dynamics at temperatures beyond
the experimental ones.

The VFTH model and its modifications are widely used for
the study of the cooperative thermal relaxation process. Most
of the works dealing with the dynamics of liquids above or close
to Tg use it to treat the temperature dependence on viscosity,
relaxation times, or relaxation frequencies (ω ∝ τ-1). In most
cases, a direct nonlinear fitting algorithm is used. An immediate
and fundamental question arises about the reliability of fitted
VFTH parameters. What are the error bounds for a given
confidence level, and what are the statistical correlations
between individual parameters? Are there situations in which a
very different set of parameters fits equally well the experimental
data? And, in these ill-conditioned situations, which are far more
common than the experimentalist would like to admit, does a
high correlation between parameters signal the inability of the
data to discriminate between linear combinations of parameter
values? Or, does it quantify a real, statistically meaningful
association between corresponding physical quantities? Signs
from previous work point out the possiblestatistical fragility
of the VFTH equation. For example, in the structural relaxation
investigation of polymers, Gome´z Ribelles et al.11,12 used a
phenomenological model, based on the configurational entropy,
to describe the glass transition. The experimental data were
adjusted to the model using a conventional minimization
procedure. It was found that convergence during the fitting
would demand one to fix, for example, theB parameter.
However, different fixed values ofB lead to the same finalτ(T)
curves. This suggests that the actual data is not able to
discriminate theB value, and therefore, that a statistical
correlation between the VFTH parameters should exist. These
are precisely the questions that this paper will try to answer.

Thermally stimulated recovery is a mechanical spectroscopy
technique that allows us to investigate relaxation processes in
the low-frequency region, being complementary to the dynamic
mechanical spectroscopy technique.13-15 It is usually assumed
in the data treatment that the dynamics of the studied process
follows Arrhenius behavior within a narrow frequency range.
This allows one to obtain, from the thermal sampling procedure,
the temperature dependence of the apparent activation energy
of the relaxation, which is normally characterized by a distribu-
tion of characteristic times. If the Arrhenius parameters are
calculated from a direct fit of the experimental data to a simple
Voigt-Kelvin model, a clear dependence betweenτ0 andEa is
observed. Mathematically, the Arrhenius equation is a particular
case of the VFTH equation whenT0 ) 0; thus, one should expect

that the study of the VFTH fitting procedure will also reveal
the same trends present in the Arrhenius case.

This study is an attempt to clarify relevant issues related to
the use of the VFTH equation, when it is pretended to extract
the corresponding parameters (plus realistic error bounds and
possible correlations) from the fit. General quantitative criteria
to diagnose (and minimize) numerical instabilities in the fit and
possible artifacts in the expected (linear) correlation coefficients
will be given. As a general rule of thumb, the use of singular
value decomposition techniques within the well-known Leven-
berg-Marquardt nonlinear fitting algorithm is advocated. It will
also be demonstrated that, in order to discuss the physical
intrinsic association between VFTH parameters, the estimation
of the partial correlation matrix is mandatory.

The experimental data explored in this work correspond to
dielectric results obtained in the frequency domain on poly-
(vinyl acetate), compiled by Richert.16 The data cover 16
decades in frequency, and 45 points are numerically available
in that work. We will assume that the main conclusions that
come from the analysis of this set of experimental data may be
extended to the general features of the VFTH equation.

Linearization of the VFTH Equation

It is appealing to use linear fitting procedures, instead of the
more cumbersome nonlinear counterparts, because one can
rearrange experimental data in such a way as to judge the
goodness-of-fit criteria by an easy graphical method based on
how good the data is described by a linear relationship. The
VFTH equation may be linearized by introducing the form17

The VFTH function is now expressed as a linear relationship
between the left-hand side of eq 4 and temperature, whereB
and T0 can be obtained from the corresponding slope and
intercept. The major disadvantage of using eq 4 is the need to
numerically derivate the lnτ(T) experimental data with tem-
perature, a numerically nontrivial point. Lunkenheimer et al.3

numerically differentiate a high-order interpolating polynomial,
but given the possible artifacts, cubic-spline interpolation should
be used instead.18 Apart from this detail, the use of this method
(Stickel’s method) has been tremendously sucessful.3,17,19The
real value of this approach lies, however, in being especially
suited to the following tasks: (i) clarification of a transition
from a VFTH to an Arrhenius behavior (the derivative in the
later case is a constant) and (ii) identification of the range of
validity of a VFTH law.17 Although bothB and T0 can be
obtained from the slope and intercept of the Stickel plot, we do
not advocate this approach, because the alternative full nonlinear
fit is free from possible numerical artifacts from the numerical
differentiation of experimental data and the information on
confidence intervals, and the possible association between fitted
parameters (derived from the correlation matrix) is much more
reliable. Figure 1 shows the results of nonlinear Levenberg-
Marquardt fit of Table 1 data together with the weighted
residuals and the eq 4 linearized form of the VFTH model.
Random residuals and a linear relationship in the inset, according
to eq 4, are easy graphical judgments of how good the
experimental data is following the VFTH empirical law. The
best fits of Figure 1 are log(τ/s) ) -11.845( 0.019,T0/K )
250.81 ( 0.12, andB/K ) 1651.2060( 0.0025, the error
bounds for a 95.4% confidence level.

τ(T) ) τ0 exp[C/TSc(T)] (3)

[-∂ ln τ(T)
∂T ]-1/2

) B-1/2(T - T0) (4)
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Convergence Surfaces

Nonlinear routines for fitting data to functions are based on
methods for minimizing the sum of squared weighted residuals.
To make it explicit that the actual experimental errors should
be used in the computation of residuals, it is customary to call
the appropriately weighted sum theø2 of the fit . Then, a
goodness-of-fit criterion is the extent to which the reducedø2,
øV

2, the ø2 divided by the number of degrees of freedom, is
close to one.20 If the actual experimental errors are not know a
priori, then it is customary to assume unit errors and represent
the sum of the residuals asS2. The absolute value of this sum
cannot be used to judge the quality of the fit, and the information
that the experimentalist can have is reduced to use its value to
estimate the a posteriori errors and to judge, on the basis of his
knowledge, if the estimated errors are meaningful.20 During the
nonlinear fitting procedure, the space of the possible parameter
values is explored untilS2 reaches a minimum, preferably an
absolute minimum. The minimization problem is usually solved

either by derivative methods, such as the Levenberg-Marquardt
(LM) method, or by nonlinear search algorithms, such as the
Simplex method. The quality of the result depends not only on
the algorithm used but also on the fitting function. In fact, the
adjustable parameters may or may not be intrinsically interde-
pendent. Let’s take, as a simple example, a function with two
adjustable parameters,A1 and A2. Two limit cases may be
addressed: IfA1 andA2 are independent and the convergence
is efficient, the 3D plot ofS2 versus (A1, A2) should display a
deep, well-like surface, whereS2 decreases quickly in all
directions whenA1 andA2 goes throughout the estimate values.
A dependency betweenA1 andA2 would be evident ifS2 would
present a slow convergence, at least throughout one direction
in the (A1, A2) space. Usually, this leads to a valley-shapedS2

surface, where good estimates ofA1 and A2 are found in the
long, shallow bottom. In this case, there is definitely an
association betweenA1 andA2 parameters, but this can reflect
an intrinsic, physically meaningful association of the inability
of experimental data to discriminate linear combinations ofA1

andA2 values (numerical artifact). If the function has more than
two fitting parameters, the same features could also be found,
though in a higher-dimensional space.

For the case of the VFTH equation, we will first analyze the
S2 versus (logτ0, B, T0) surface by fixing independently the
three parameters around the best values obtained from the
nonlinear fitting. The corresponding 3D representation is then
represented in a 2D plot as the projection ofS2 on the planes of
the three parameters. The results ofS2 calculated with the
analyzed experimental data set are shown in Figure 2. In Figure
2a,T0 was fixed at different values around the best estimation.
It can be seen that theS2 surface has a single minimum, but a
certain interdependency is observed betweenB and logτ0. For
a fixedT0, if B increases relative to the best values, one reaches
again a reasonable fitting by decreasing logτ0.

A smaller association is expected from the data obtained if
one changes logτ0 andT0 while keepingB fixed (Figure 2b).
The shape of the surface toward the best values for a fixedB is
much more round and isotropic than that observed in Figure
2a. Finally, a much higher correlation betweenB andT0 for a
fixed log τ0 is found (Figure 2c). It should be noted in Figure
2 that the change of one fixed parameter leads toS2 surfaces
that changes locations in the plane of the other two parameters,
but the shape tends to be maintained. This is a clear indication
that a combined correlation between the three parameters must
exist.

The analysis made in Figure 2 was made by looking at the
VFTH parameters two by two (the third being fixed). We should
extend the analysis of theS2 surface by independently changing
the three VFTH parameters. This analysis was done with the
studied data. TheS2 hypersurface is projected toward the three
possible planes in Figure 3. The three ellipse-like shapes
observed in these graphics suggest that, in a (logτ0, B, T0) 3D
representation,S2 below a certain value should have a cigar-
like shape. The more elongated shapes in Figure 3 correspond
to the projection ofS2 toward the (B, T0) and, to a lesser degree,
the (B, log τ0) planes. The data in Figures 2 and 3 give
essentially the same qualitative information: There is always a
strong association between any pair of VFTH fitted parameters,
and the correlation should decrease in the order (B, T0) > (B,
log τ0) > (log τ0, T0).

Levenberg-Marquardt Nonlinear Least-Squares
Algorithm

The Levenberg-Marquardt (LM) algorithm has become the
standard of the nonlinear least-squares fitting routines. Let us

Figure 1. Singular value decomposition Levenberg-Marquardt non-
linear fit of Table 1 reference data with Vogel-Fulcher-Tammann-
Hesse equation. Best fit parameters for a 95.4% confidence level:
log(τ/s) ) -11.845 ( 0.019, T0/K ) 250.81 ( 0.12, andB/K )
1651.2060( 0.0025 (see text). Also shown are weighted residuals
distribution (below) and Stickel’s plot method showing that the VFTH
equation adequately describes experimental data (inset).

TABLE 1: Experimental Data by Richert 16 on Dielectric
Relaxation in Poly(vinyl acetate) Covering ca. 16 Decades in
Timea

T/K log τ/s T/K log τ/s T/K log τ/s T/K log τ/s

288.15 7.53 308.15 0.68 345.15 -4.19 403.12 -7.16
290.15 6.40 309.15 0.47 348.61 -4.51 409.67 -7.35
292.15 5.41 310.15 0.31 352.44 -4.77 415.94 -7.52
294.15 4.63 313.15 -0.27 355.78 -5.01 422.07 -7.67
296.15 3.88 317.15 -0.94 359.09 -5.24 428.16 -7.81
298.15 3.23 321.15 -1.54 365.49 -5.64 434.11 -7.94
300.15 2.63 325.15 -2.08 372.03 -6.01 440.51 -8.06
301.15 2.35 329.15 -2.58 378.60 -6.33 446.36 -8.17
302.15 2.08 333.15 -3.03 384.91 -6.59 452.63 -8.28
304.15 1.56 337.15 -3.43 390.83 -6.79 458.61 -8.39
305.15 1.30 341.15 -4.19 397.17 -7.00 464.52 -8.51
306.15 1.06

a Bold-faced (derived from time-domain measurements) and other
values (based upon frequency domain data) were obtained with different
methods and probably have different experimental accuracies.

10826 J. Phys. Chem. A, Vol. 108, No. 49, 2004 Mano and Pereira



define the notation by saying that one has a table ofN
experimental data points (indexi) and wants to fit to these data
to a nonlinear function ofM parameters (indexk). Although

the dependence of theø2 value on the fitting parameters is
nonlinear, the algorithm makes the method an iterative procedure
of solving a set of linear equations in increments of the fitted

Figure 2. S2 surface obtained by fixing two by two the three VFTH parameters and letting the third parameter vary around the best estimate (three
possibilities). (part a) mapping throughout the (logτ0, B) space. (part b) mapping throughout the (logτ0, T0) space. (part c) mapping throughout the
(B, T0) space.S2 decreases with increasing darkness.

Figure 3. Projection of theS2 surface along three possible planes, resulting from the analysis of the data set analyzed in this work letting the three
VFTH parameters vary freely.S2 decreases with increasing darkness.

Data Analysis with VFTH Equation J. Phys. Chem. A, Vol. 108, No. 49, 200410827



parametersδa that, added to the current approximation, give
rise to a better estimate of the sought (true) parameters

wherer′ is obtained from ther curvature matrix18,21

the summation extending over all experimental data points.
The â vector is given by

The solution to the linear set (6) can be obtained by a matrix
inversion procedure

and this is the most usual implementation. Reference 18 has a
popular implementation of the algorithm that uses Gauss-Jordan
(GJ) elimination with full pivoting.

In the minimum of theø2 hypersurface, one computes the
matrix C ) [R]-1, which is the estimated formal covariance
matrix of the standard errors in the fitteda parameters.18 The
discussion of possible correlations between parameters is best
made after normalization of the individual parameter variances,
because the covariance matrix entries are scale-dependent. This
is made by transforming the covarianceC ) [σkl

2 ] into the
correlation matrix by

whereD is a diagonal matrix given byD ) D-1 ) [1/σkk].22

The entries of the correlation matrix are the familiar (linear)
correlation coefficients.

It is well-known that GJ elimination is rather susceptible to
roundoff error. Moreover, whenever the fitting matrix is very
close to singular (one or more very small pivot elements), one
gets fitted parameters with large magnitudes but delicately and
unstably balanced to cancel out almost precisely when the fitting
function is evaluated.18 This can occur if the experimental data
is not very sensible to individual (or combinations of) fitting
parameters. Because the LM is, in fact, an iterative algorithm
for a linear set of equations, one can take advantage of the
extensive knowledge of computational linear algebra avail-
able18,23-25 and suggest an alternative to the solution of eq 9
based on the well-known singular value decomposition (SVD)
of a matrix

whereU and V are column orthonormal matrices andW )
[wk] is a diagonal matrix with positive or zero elements (the
singular values). Among the most desirable properties of the
SVD solution of the LM method is minimization of roundoff
error and numerical instabilities.18,24Moreover, the magnitudes
of the singular values allow a clear diagnosis of possible ill-
conditioned problems (reciprocal of the condition number, ratio
of the largest to the smallest of thewk’s, comparable to machine
precision). The inverses of the matrices in eq 11 are trivial to

compute: A-1 ) V[diag(1/wk)]UT. This should substitute the
inverse in eq 9 and the SVD solution to the set (eq 6) is, finally

where the last summation is the error term. The last form shows
that the columns of the matrixV are orthogonal unit vectors
defining the principal axes of the constantø2 boundaries,18 and
therefore, these constantø2 ellipsoids have semi-axes with
lengths equal to the reciprocal of the singular valueswk, smaller
wk’s contributing more to the overall error than higher ones.

Whenever the curvature matrix is numerically close to
singular, the solution obtained by editing to zero the values of
1/wk for all the singular values smaller than a given threshold
is often better than both the direct GJ elimination and the SVD
solution where the smallwk’s are left nonzero: When some
combination of fitted parameters is irrelevant to the fit, that
combination is driven down to a small value, rather than pushed
up to numerically instable canceling infinities.18,24,25

The covariance matrix is obtained from theV columns as

where again the 1/wk should be edited to zero for sufficiently
small wk’s. Equation 12 also shows that the increments in the
fitted parameters are linear combinations of theV columns with
the weightedâ vector, a point to be addressed later.

To test the ability to recover meaningful parameters from
the fitting procedure, a Monte Carlo scheme of obtaining
constantø2 confidence limit ellipsoids from synthetic data sets
was adopted. The reference data of Table 1 was Levenberg-
Marquardt (SVD)-fitted, and a set of fitted parametersa0 thus
obtained. This was adopted as our best estimate of the sought
(true) parametersatrue. The a0 set was then used to generate
1000 synthetic data sets adding Gaussian noise, and each data
set was fitted as if it was experimental data to obtain the
recovered parameter setai. To the extend that theai - a0

distribution resembles the shape of theai - atrue distribution
(reasonable), the distribution of theai - a0 parameter sets will
quantify the distribution of the probable errors in thea0 set.
For a more sound justification of the procedure, see ref 18.

Table 2 shows the pairwise correlation coefficients for both
the inverse GJ matrix method as well as the SVD solution
(editing to zero singular values smaller than 10-5 times the
higher value) for a single fit to the Table 1 reference data. It

r′ δa ) â (6)

[r]kl ) Rkl ≡
1

2

∂
2ø2

∂ak ∂al

≈ ∑
i)1

N 1

σi
2[(∂y(xi;a)

∂ak
) (∂y(xi;a)

∂al
)] (7)

[â]k ) âk ≡ -1
2

∂ø2

∂ak
(8)

δa ) [r′]-1â (9)

R ) D-1CD-1 (10)

A ) UWVT (11)

TABLE 2: Linear Correlation Coefficients for
Levenberg-Marquardt Fit of Table 1 Data Obtained by the
Inverse Matrix Gauss-Jordan Elimination (GJ) and by the
Singular Value Decomposition (SVD, Maximum Condition
Number 105) Methodsa

B - log(τ0) log(τ0) - T0 B - T0

GJ full correlation -0.955 0.894 -0.981
partial correlation -0.894 -0.737 -0.956

SVD full correlation -0.993 -0.993 1.00
sampley -0.725 -0.748 0.987
samplex, y -0.65 -0.733 0.994

a Full and partial correlation are for single fits of the Table 1 data
with errors in the dependent variable (y, log τ) only, and sample is the
sample correlation obtained from fits of 1000 synthetic data sets (text
and Figure 4) with errors in the dependent variable (y, log τ) only or
in both dependent and independent variables (y, log τ; x, T).

δa ) V[diag(1/wk)](U
Tâ) ) [∑

k)1

M (U(k)‚â

wk
)V(k)] ( ∑

k)1

M V(k)

wk

(12)

C ) ∑
k)1

M 1

wk
2
Vk X Vk (13)
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shows that all of the parameters are pairwise correlated. The
GJ results further show that the correlation between parameters
log10 τ andT0 is slightly smaller than the mutual correlations
involving parameterB. The discussion of SVD correlations is
postponed for now. The first row of Figure 4 shows the
distribution of the difference of fitted parameters from the
sample meanai - amean for 1000 synthetic data sets with
constantσ ) 0.05 Gaussian noise in the value of the fitted
dependent variable (y). From the recovered distribution, sample
correlation coefficients were computed in the usual way. The
agreement between the correlation coefficients predicted from
the GJ covariance matrix of the single fit of actual real data
and the sample correlation coefficients from synthetic counter-

parts was, in all cases, at least five significant digits, thus
validating the Monte Carlo procedure.

Consider now the data of Table 3: the singular values and
corresponding orthonormalV(k) vectors of the SVD decomposi-
tion of the curvature matrix in the minimum SVD fit of the
experimental data. The condition number is 8× 105, signaling
precisely the type of numerical situation in which SVD
(curvature matrix very close to singular) is most appropriate.
Table 2 and Figure 4 show the results obtained with the SVD
modification of the standard LM algorithm, editing to zero all
of the 1/wk values corresponding to condition numbers higher
than 105 in eqs 12 and 13: The contribution from the last
singular value/column of theV matrix was eliminated. The first

Figure 4. Distribution of the differences of the actual fitted parameters from the sample mean corresponding to the same 1000 sets of synthetic
data obtained from a single fit of the reference data of Table 1 and addingσ ) 0.05 Gaussian noise to the logτ values (errors in dependent variable
only). Points correspond to fitted recovered parameters, while the curves are the constantø2 confidence regions for 68.3%, 95.4%, and 99% probability
predicted from a GJ and SVD implementation of the Levenberg-Marquardt algorithm (see text). The SVD result edited to zero all combinations
of singular values/V column vectors giving rise to condition numbers higher than 105. Please note the different scale of the last two rows of the
figure.

Data Analysis with VFTH Equation J. Phys. Chem. A, Vol. 108, No. 49, 200410829



row of Figure 4 immediately shows that the dispersion of the
recovered parameters from synthetic data to the mean value is
significantly smaller. As a side effect, the predicted correlation
between parameters increases and, more important, changes
signal. These data alone show that the SVD modification of
the Levenberg-Marquardt model minimizes the error in the
fitted NLLS parameters. In the case of not editing to zero any
of the singular values, the SVD and GJ algorithms are equivalent
at a point verified (not shown) with the data of Figure 4.

Figure 4 also shows constantø2 boundaries as confidence
regions of constant significant level, estimated according to the
procedure described in ref 18. If one does not want the full
M-dimensional confidence region, but individual confidence
regions for some smaller numberν of parameters (Figure 4),
then it is necessary to make the projections of the full
M-dimensional space into theν-dimensional subspace of interest
using aν × ν matrix [Cproj] from the full covariance matrix.18

If the experimental measurement errors are normally distributed,
thenδa ≡ ak - a0 has a multivariate normal distribution, and
the equation for the elliptical boundary of the desired confidence
region in theν-dimensional subspace of interest is

where∆ is a function of the number of degrees of freedom of
the fit. The confidence levels for 68.3%, 95.4%, and 99%
probability are shown in Figure 4 for both the GJ and SVD
algorithms. The agreement with the sample distributions is
excellent for the GJ procedure and fairly good for the SVD case.
Furthermore, the expected GJ confidence regions reproduce the
correlation of the data in Figures 2 and 3, showing that realistic
ø2 hypersurfaces can be obtained from single-fit covariance
matrices.

The signal change of the (linear) correlation coefficients
between the GJ and SVD models deserves a more careful
analysis. In a large number of cases, much effort is spent in
interpreting and explaining the causes of large correlations
between fitted parameters. The correlation can have several
causes, but in general, these can be divided into two (possible
connected) classes: (i) The fitting equation and actual experi-
mental data are not sufficiently sensible to combinations of fitted
parameters and (ii) there is a true correlation between parameters
on the basis of physical arguments. In general, one wants to
discuss the class ii effects, minimizing as much as possible class
i artifacts. However, one must always keep in mind that picking
up isolated entries from a correlation matrix can be misleading
and can promote incorrect inferences, because all values of the
correlation matrix are interrelated. Whenever one wants to
discuss the significance of a high correlation between two
parameter variablesak and al, one must be aware of the
possibility that the high correlation has arisen because of the
mutual association ofak andal with some other variable, and
this is precisely the present case. For theak and al estimated
association to be of intrinsic interest, it must remain high when
the effect of additional variables has been removed: Thetrue

association betweenak andal must be computed with the values
of additional variables held fixed in order not to influence the
observed correlation. This can be done with the following
procedure (actual details in ref 22): The vector of fitted
parametersa is partitioned into two partsa ) (aA, aB), where
aA hasp elements (whose association one wants to investigate)
andaB has the remainingq ) M - p elements (whose influence
on theaA elements is to be corrected). The full correlation matrix
is partitioned as

The matrices in this matrix give the correlation inaA (CAA), in
aB (CBB), and the covariances between the elements ofaA and
aB (CAB ) CBA). Then, the conditional distribution ofaA, given
that aB has a fixed value, is multivariate normal with a
covariance matrix estimated asCA,B ) CAA - CABCBB

-1CBA,
and the correlation is obtained from this covariance matrix
normalizing in the manner described previously for eq 10

whereDA,B is a diagonal matrix containing the square roots of
the diagonal elements ofCA,B. RA,B is the matrix of partial
correlations and has the physical sough information: its (k, l)th

element is an estimate of what the correlation between thekth

andlth variables ofaA would be ifaB were held constant at any
value.22

Table 2 has full and partial linear correlations for GJ. The
most distinctive feature is the fact that the partial correlation
between log10 τ andT0 is significantly different from the full
value. The intrinsic correlation is masked by a stronger
correlation between any one of these parameters and the
remainingB: There is a considerable variation in the observed
value ofB and strong linear relationships betweenB and each
log10 τ andT0 parameters, and this alone induces a strong linear
relationship between log10 τ andT0. The induced association is
so strong that the sign of the intrinsic correlation changes from
-0.74 to an observed value of 0.89. This interpretation is
confirmed by data in Table 3: The eigenvectors of the SVD
algorithm show that the information about the fittedB value is
obtained almost exclusively from the third eigenvector. Because
the fitted parameters are given by linear combinations of the
eigenvectors (eq 12), and because the SVD solution effectively
discards the third singular value/eigenvector combination (previ-
ous discussion), the SVD solution only uses the first two
eigenvectors, thus minimizing the correlation between param-
eters logτ andT0 on one hand and parameterB on the other.
The actual sample SVD correlation is-0.75, remarkly close to
the -0.74 partial GJ prediction: SVD effectively minimizes
the coupling between parameters (logτ, B) and (T0, B) to the
extent that the intrinsic (logτ, T0) correlation becomes evident
without the necessity to correct for extraneous variables. The
dramatic effect that editing to zero eigenvalues/eigenvectors,
giving rise to high condition numbers in SVD, can have in the
error distribution of the fitted parameters is best illustrated in
Figure 5. The constantø2 confidence limit regions are consider-
ably smaller, and the expected correlation between parameters
can even change signal (middle graphic). The use of the full
correlation matrix confirms the conclusions drawn from Figures
2 and 3 (the expected correlations should increase in the order
(B, T0) > (B, log τ) > (log τ, T0)) but also illustrates the need
to use partial correlation data, because the full correlation matrix
will always pick up the M-1 higher mutual correlations,

TABLE 3: Singular Values wk and Corresponding Column
Vector of the V Matrix for the Singular Value
Decomposition of the Curvature Matrix in the Final Step of
the Levenberg-Marquardt SVD Minimization Algorithm for
the Single Fit of Table 1 Data

V\wk 2.02× 105 1.47× 104 2.61× 10-1

log(τ0) -0.940 0.340 0.00577
T0 -0.340 -0.940 0.0203
B -0.0123 -0.0171 -1.00

∆ ) δaT[Cproj]
-1 δa (14)

C )(CAA CAB

CBA CBB
) (15)

RA,B ) DA,B
-1CA,BDA,B

-1 (16)
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unrevealing the smaller one. The results are also in agreement
with the findings of Gome´z Ribelles et al.11,12mentioned in the
Introduction. Their experimental results are probably even more
severely ill-conditioned than the data used in this work, to the
point that their minimization procedure is not able to converge
if B is left free to change.

From this discussion and from Figure 4, one can now give
definitive advice on the best LM fitting procedure for VFTH
data. The SVD algorithm is advocated instead of the simpler
GJ inversion, because (i) it diagnoses ill-conditioned problems
and (ii) minimizes their consequences. From the singular values,
one can infer possible numerical instabilities: Singular values
much smaller than the bigger ones show that experimental data
is not sensitive to combinations of parameters which are
multiples of the corresponding eigenvectors. These singular
values/eigenvectors combinations should be edited to zero, thus
minimizing errors in the fitted parameters. The results are better,
but at the expense of a reduced curvature matrix. The discarded
information can be important, however. The edited-to-zero
eigenvectors should be inspected in each case to infer possible
additional artifacts introduced by the fact that now the solution
is obtained from a reduced set of eigenvectors bases. This is
illustrated by data in Table 3. The SVD solution is obtained
from the first two eigenvectors alone, and these have a very
small contribution from the parameterB. The fitting procedure
will have a reduced ability to minimizeø2 by changing theB
value, and this stresses the need to have a good initial estimate
for B. If care is not exercised to test this point, the fitted
parameters can become initial-approximation-dependent, a point
confirmed but not illustrated in this paper. Although strictly
correct from a mathematical point of view, the 95.4% confidence
level B/K ) 1651.2060( 0.0025 interval should not be taken
too seriously from a statistical point of view, because its value
was estimated from a reduced basis set with a very small
contribution from theB parameter. To maximize the useful
physical information, as a rule of thumb, one should obtain fitted
parameters from the SVD algorithm and extract meaningful
correlation coefficients from an auxiliary GJ correlation matrix
at the best-fit parameter values. The intrinsic correlation between
pairs of parameters must always be estimated from partial
correlations. This will ensure that the estimated correlation is
as close as possible to the intrinsic value and free from
extraneous induced associations.

Finally, Table 2 tests empirically the sensitivity of the fitting
procedure to probable errors also found in independent (tem-
perature) variables. The standard LM nonlinear fitting proce-

dures assume errors in fitted dependent variables alone (log10

τ, fitting y values).18 It is, however, unrealistic to expect that
temperature is error-free. Table 2 then show results for SVD
fits of 1000 synthetic data sets with Gaussianσ ) 0.2 noise in
the temperature. This was judged as a realistic error. At least
for unbiased errors in the temperature, the results obtained were
statistically equivalent for the standardy-only error algorithm
and for thex,y-error case. The only difference was in the value
of sample correlations (Table 2). This empirically confirms the
standard procedure of neglecting statistical errors in the de-
pendent variable for the nonlinear LM fitting algorithm.

Heteroscedastic Data

The statistical properties of nonlinear least-squares estimators
are well-known: If the data is distributed independently and
normally, the estimators of the parameters are unbiased,
minimum variance, and maximum likelihood, and this holds
true even if the data is heteroscedastic (i.e., of unequal
uncertainty (σyi)), but this is true only to the extent that the
residuals are weighted properly

In general, the experimenter should have an a priori knowl-
edge of experimental uncertainties and weight each squared
residual according to the previous equation. Otherwise, nonlinear
models generally yield nonnormal, biased, or inconsistent
parameter estimates, and extreme care must be exercised when
interpreting error bounds and correlation information extracted
from fits.20 Even if the knowledge of experimental uncertainties
is only approximate, it is better to usewi ∝ 1/σyi

2 instead of
unweighted fits. And, this is mandatory for heteroscedastic data.
In this case, although the closeness between the reducedø2 value
and 1 cannot be used to access the quality of the fit, each residual
will be minimized in the fit according to its intrinsic relative
importance. This is standard undergraduate knowledge. Even
so, this is completely overlooked in the majority of the VFTH
manipulations involving relaxation times. By ignoring statistical
weights one can bring even more uncertainty into computation
results than operating with full, instead of partial, correlation
matrices. This point is especially important for the analysis of
data sets accumulated in relaxation measurements. Usually,
several complementary techniques must be used to have access
to a maximally broad range of relaxation times.3 Merging the

Figure 5. Comparison of the constantø2 confidence regions for 68.3%, 95.4%, and 99% probability predicted from a GJ and SVD Levenberg-
Marquardt single fit to the reference data of Table 1. The SVD result edited to zero all combinations of singular values/V column vectors giving
rise to condition numbers higher than 105.

wi ) 1

σyi
2

(17)
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data obtained by different methods, each with its own accuracy,
causes one to inevitably face the problem of unequal statistical
weights in combined data sets. This is precisely the case of the
Richert reference data used in this paper.16 Bold-faced row
entries in Table 1 were derived from time-domain dielectric
modulus data, which allow access to extremely long relaxation
times, while light-faced entries were obtained from dielectric
relaxation data as the peak frequency of the dielectric loss curve.
Although this author does not provide information about
experimental uncertainties, we have used a constant error of
0.05 based on our own experience. On the basis of this value,
we have obtained as the best fitted parameter log(τ/s) ) -11.845
( 0.019 andT0/K ) 250.81( 0.12 with a 95.4% confidence
level. To test the sensitivity of the data on unequal weights, we
have made an alternative fit with bold entries in Table 1, given
a constant error estimate of 0.10. We have thus obtained as the
best fit log(τ/s) ) -11.908( 0.015 andT0/K ) 250.32( 0.14,
values with differences from the previous fitted parameters
(∆log(τ/s) ) 0.063 and∆T0/K ) 0.49), largely exceeding the
statistical uncertainties. Even though this is a rather uninteresting
test, it clearly stresses the care that must be exercised in properly
weighting experimental data. This is especially important in the
context of relaxation data for which data points differing by
several orders of magnitude must enter the fit with different
statistical weights (perhaps also differing by orders of magnitude
and not just the two factors tested here).

Apart from the influence of merging data collected with
different methods, there is an additional point concerning
statistical weights that should be adequately addressed. This is
the change of eq 17 to take into account the change in statistical
weights whenever the fit is made in a transformed instead of
the directly measured variable. This is again standard knowledge
but usually not discussed. Whenever there is a change between
measuredy and actually fittedu variable, eq 17 should be
substituted by

the additional derivative term reflecting the change of variable.
Only the use of eq 18 ensures that the fitting procedure
minimizes actual experimental errors, and this is especially
important for two types of transformation made in the math-
ematical handling of relaxation dynamics data: inversion and
logarithmic transformations.20 The light-faced entries of Table
1 were measured as peak frequency maxima of the broad
distribution of dielectric loss curves: The Havriliak-Negami
(HN) empirical curve is fitted to actual experimental data, and
the peak frequency maximafmax is extracted analytically from
the null derivative condition for the maximum.16,17 From the
HN fit, it is then possible to extract the uncertainty infmax, and
this is theσyi value that should be used in the VFTH fit. From
the frequency maximum raw data sets, one can do the VFTH
data analysis, either in the form of eq 1 or in the more common
form of

In the first case, the transformation isu ) 1/2πf and the
statistical weightστ ) σf/2πf2. Special care must be taken in
this case, because the lifetime data has, in principle, infinite
variance.20 In the more important case of eq 19, the form used
for all data analysis in this paper, we haveu ) log(τ) )

log(1/2πf) andσlogτ ) σf/(f ln 10)) 2πτσf/(ln 10) showing that,
in principle, one can have large differences in statistical weights.
In the event of the uncertainties in frequencies being a fraction
of the measured frequency maximum,σlog τ is constant, and
one is allowed to use constant weights in fitting data with eq
19, but this must be checked in each case.

Conclusions

The well-known Vogel-Fulcher-Tammann-Hess (VFTH)
equation has been extensively used in the description of
cooperative molecular motion in glass-forming liquids. Experi-
mental evidence has been pointed out for the statistical
correlation between its three adjustable parameter,B, log τ0,
andT0, which may bring questions on the reliability of fitted
VFTH parameters. However, to the best of our knowledge this
issue has not been adequately described in the literature.

It was shown in this work that the (relaxation time, frequency,
or viscosity versus temperature) data may be treated in order to
obtain the VFTH parameters from either linear or nonlinear fits.
The well-known Stickel’s linearization method can be used to
obtainB andT0. However, its main merit is to allow an easy
graphical criterion to discuss the applicability of the VFTH
model and we advocate the use of nonlinear algorithms due to
their superior ability to minimize numerical artifacts and ability
to extract reliable error bounds and correlation information.

We advocate the use of the Levenberg-Marquardt (LM)
nonlinear fitting algorithm instead of several simpler but more
error-prone possibilities of linearization of experimental data.
The LM algorithm should use singular value decomposition
(SVD) methods to solve the linear part of computation task,
because these will do the following: (i) diagnose numerical
instabilities (high condition numbers of fitting matrix) giving
rise to ill-conditioned problems and, at the same time, (ii)
minimize numerical artifacts (singular values/eigenvectors
responsible for instabilities edited to zero). The distribution of
singular values/eigenvectors should be checked in each case to
prevent additional surprises (e.g., in the present case, the SVD
fit will be unable to do an efficient minimization in theB
parameter, thus making the fitted parameters slightly dependent
in the initial approximation forB). The LM algorithm will
accurately give error bounds and constantø2 confidence limit
ellipsoids, but additional care must be exercised to unravel
statistical association between fitted parameters, because the
intrinsic correlation between any two parameters can be masked
by additional stronger associations between any member of these
two parameters and additional parameters. The partial correlation
matrix should always by used instead of the familiar full
correlation matrix. Although restricted to a single set of
experimental data, it is expected that the same trends will be
evident to a greater or lesser degree for all instances of Vogel-
Fulcher-Tammann-Hess (VFTH) data analysis.

A brief comment is introduced to stress the need to use
adequate statistical weights in the fitting procedure, which is
very important for heteroscedastic (i.e., of unequal uncertainty)
experimental data points. These unequal weights can be derived
from either the merging in the same fit of experimental data
originally obtained with different methods or the statistical
weight correction necessary whenever the actual fitted data is
transformed from the measured one.

Acknowledgment. Financial support for this work was
provided by FCT, through the POCTI (POCTI/FIS/32901/1999)
and FEDER programs. E.P. would like to acknowledge fruitful

wi ) 1

(σyi
∂u
∂y)2

(18)

log τ ) log τ0 + 1
ln 10

B
T - T0

(19)
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