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In this paper, we present a coupled electron-pair (CEPA) type variant of the state-specific multireference
coupled cluster (SS-MRCC) method [Mahapatra, U. S., el.a&Chem. Phys1999 110, 6171]. The method

termed as SS-MRCEPA based on complete active space (CAS) can handle quasi-degeneracy of varying degrees
over a wide range of potential energy curves (PECSs), including regions of real or avoided curve-crossing.
The method is size-extensive and avoids the intruder problem in a natural manner. Exploiting a two-dimensional
CAS-based SS-MRCEPA method, we consider, in this paper, several demanding molecular systems that benefit
from multireference description. The reliability of computational results of the method for PECs of the ground
state of P4, H4, k] perpendicular insertion of Be into,HLi,, and ground-state energy at the equilibrium

point of CH, will be discussed with respect to the parent SS-MRCC and full Cl/large scale ClI results. We

have also reported the excitation energies corresponding to the ground statgearaf BH systems. The
method has also been applied to study the bond breaking in,thelecule which is a challenging task for

any ab initio method. In all cases, the comparison is also made with the results obtained from other CC- and

CEPA-type methods wherever available.

I. Introduction extensive manner or a version of size-extensive corrections to
the truncated CI (CISD) method. In this context, we refer to
some reviews for an extensive survey of SRCEPA thedtes.

The relation between CEPA approaches and the Davidson
correction has also been studied extensivtly.

An alternative way of restoring the extensivity of the CISD

Although nonvariational methods such as single reference
(SR) based coupled cluster (G€)and perturbation (MBPT)
theorie$ are widely used, the most straightforward and con-
ceptually simple method to treat the correlation is the variational
SR-based configuration interaction method (€lh).contrast to L 2 . .
the CC method and MBPT, the main objection for the truncated method yet contlnumg.to hgve its eigenvalue equation fo”‘.‘ IS
SRCI method is the lack of size-extensivity of the computed to.dre"ss thg Cl.SD matrix suitably by some or all of the exclusion
energies. Many methods have been reported in the Iiterature!OrInCIpIe violating (EPV) tgrms. An advan.tage of the method
regarding removal of the size-extensivity error of the energy is that one can partly ““"Z‘? the ex'tenswely developed Cl
obtained from the truncated SRCI method via physically computatloqgll procedure. This was pioneered by Malrieu gnd
appealing and heuristically motivated empirical correction co_-wc_)rker@ _who showed th_at all the EPV terms can in
factors such as Davidson’s correctio®avidson’s correction pr_|nC|pIe be included exactly in a dre_ssed Cl_formulatlon. In
is very simple and can be justified by perturbation theory. Other this method?,vlotermed as self-consistertize-consistent _(S€(;I,
modifications are very close to Davidson’s proposal. Unfortu- they mpluded a_II _the EPV terms a_Ithough the_ caI(_:uIat|on_ of EPV
nately, none of these corrections to Cl are accurate for large [€'M$ IS not trivial. The CEPA-like approximation which we
systems. Hence, the most natural way out is the casting of theh,ave .presgnted in this paper, developed for mult|re.ference
truncated Cl equation in a size-extensive manner which leadsSituations, is qonceptually related to the method of Malrieu and
to the coupled electron-pair approximation (CEPA) methidd. .co-workerééllO in thg sense that al! the EPV terms can also be
Meyes and Kelly developed the CEPA methods before the [ncluded naturally in our formulation as well.
popularization of the CC methde The CEPA method is size- The efficacy of the SR methods goes down in the presence
extensive as well as structurally and hence computationally of quasi-degeneracy of the certain virtual functions with the
much simpler than the singles and doubles (SD) SRCC method.reference functions. This warrants the development of multi-
Normally the working equation of the CEPA method comprises reference (MR) method$:*® The MR generalization of CC
simultaneous algebraic equations similar to that of the SRCC and PT is not a trivial aspect due to the various theoretical and
method rather than the eigenvalue equation of the CI method.computational complications. There are three main classes of
Hence one can consider the CEPA method as a specific MRCC methods: (i) valence-universal (V&)a Fock space
approximation of the SD-based SRCC equation in a size- approach, which is very useful for the computation of spectro-

scopic energies; (ii) state-universal (S9)a Hilbert space

*To whom correspondence should be addressed. E-mail: @PProach, which is widely used for the study of the potential
sudip_chattopadhyay@rediffmail.com. energy curve (PEC); and (iii) the state-specific (SS) mefioi.

10.1021/jp048638a CCC: $27.50 © 2004 American Chemical Society
Published on Web 12/07/2004




Molecular Applications of (SS-MRCEPA)-like Method J. Phys. Chem. A, Vol. 108, No. 52, 20041665

The main difficulty associated with the effective Hamiltonian- The MR generalization of ClI (MRCY is quite straightfor-
based MR theories using complete active space (CAS) is theward from both the theoretical and computational point of view.
problem of the intruder staf8.This is due to the fact that the  Several groups have developed various versions of the MRCI
method generates several states simultaneously. It is thus usefuinethod'® While the MRCI is known to be the most common
to search for a method which would not generate several statesform of CI that is practical to use, as that of the SR case, the
but instead would focus on a specific target state so that thetruncated MRCI (say MRCISD) method is also not size-
intruders are not encountered. The state-specific MR methodextensive in nature. The Davidson type corrections to the
addresses the solution of a specific state of interest at a timetruncated MRCI case have also been repotté8When these
and is thus free from the intruder state problem. Although the corrections are applied to the MR case, the error in size-
SS method using a SR starting point with selective higher rank extensive corrected MRCISD not only increases linearly or even
operators is also studiéda MR-based SS approach is more faster with the number of subsystems but also with the size of
natural and more flexible to tackle the intruders. Among the the model space. As we have already discussed, a more logical
various state-specific MR methods given by Malrieu and co- way of handling the problem of the size-inextensivity of the
workers?! Mukherjee and co-workef$;>3and Hubdaand co- MRCI method is to correct the working equation rather than
workers?* Mukherjee and co-worket$?3 and Hubdcand co-  the computed energy. Much effort has been invested into this
workerg* use the JeziorskiMonkhorst ansatz (JM) while type of research recently. The multireference CEPA (MRCEPA)
Malrieu and co-workefd use the low order quasi-linearized methods fall in this clas&!1.21.46-46 There are broadly two types

truncation schemes. The method of Hulza co-workers is of MRCEPA approaches. One is state-universal MRCEPA,
structurally much simpler than that of Mukherjee and co- and the other is state-specific MRCEPAL2146-43 A|| these
workers, but the method is not rigorously size-extensive. In a MRCEPA methods avoid the redundancy problem using non-
latter development, Hubagnd co-worker® have proposed a  redundant cluster operators to compute the dynamical correlation
way to eliminate the size-inextensive terms from the cluster on the zeroth-order MR wave function. To get a detailed
finding equations via an additional iteration, where they modify - discussion in this context, we refer to the recent review of
the BW resolvent and drop the terms that are not size-extensive.szajay! As pointed out earlier, the perennial problem associated
The idea is to make MRBWCC a posterior close 0 its jth the SU-based MRCEPA method is the intruder states,
Rayleigh-Schrainger version. An analysis indicating how a \yhere as the SS-based MRCEPA method is free from such
continuous transition from the state-universal theory of Jeziorski gpjection and hence is very suitable to compute the energy over
and Monkhors# to the state-specific theories of Hubaud co- the wide range of geometries.

4 H R 3 -
workerg4 and of Mukherjee and co-workéfs3 can be ac The MR version of the (SGEI method, termed as MR-

complished has r.e_cently been done by Pitier. (SCYCl,2! can be viewed as the size-extensive dressing of the
The state-specific MRCC m;:‘?'fhod based on CAS proposed \\rCISD method just as the (S@)I is considered to be the

by MUkhe”?e and cq-worke?i%s_ [termgd as SS-MRCC] is  gjze.extensive dressing of the SRCID method. Similar to the

manifestly size-extensive and size-consistent. In all these SSMRgR ¢ase. all EPV terms are included in an exact manner. The

> : 1S5t .
many-body method®;"2* the diagonalization of the effective  girect giscussion of the redundancy terms of this method with

Hamiltonian operators constructed within the model space rggpect to the above-mentioned state-specific MRCEPA methods
generates the energies and hence the method res@eed 5 1ot possible. The source of the generating redundancy terms

coefﬂqents for th? model space functlo.ns. There_ IS @ COITe- i these two situations is completely different. We will discuss
sponding formulation of theinrelaxedvariety?°2? Since the this issue later

dimension of a CAS rapidly increases with the number of active . . .
PIgy In this paper, we will go on to present a SS version of the

orbitals considered, it is of utmost practical importance to be :
able to employ an arbitrary general model space (incomplete MRCEPZ/'; m(_ethod starting f_rqm the f_ulI-bIown SS-MRCC
method?23using the same spirit of Malrieu and co-workers as

model space, IMS), rather than to be restricted to a CAS, while . :
at the same time preserving the size-extensivity of the resulting done in the SR.The method IS termed by us as SS-MRCEPA-
(D) [D stands for “diagonal dressing”]. The SS-MRCEPA(D)

method3%31 Although the intruder state problem of the tradi- h I bl he MR-(2 hod of Malri
tional effective Hamiltonian can be avoided at a given geometry as close resemblance to the ) -(S)method of Ma reu
and co-workerd! The method is structurally very simple

using judicial choice of the IM&it is not useful over the whole )
range of the PEC. There are usually different intruders in the COMPared to the parent SS-MRCC method, but it captures most

different regions of the PEC; thus it is impossible to find a of the essentia_ll physics of the parent met_hod despite neglecting
unique IMS that is suitable in the entire range of geometry. Of & host of nonlinear terms. Although a brief report has already
course, one can always apply different IMSs for different been publlshed? this article is a detailed theoretical and
geometries, but this does not generate a smooth PEC. The SsSMpauUmerical account of the SS-MRCEPA(D) method.
method is free from such an objection and the intruder problem.  In this paper, our main focus is on testing the performance
Recently Krylov and co-worke#shave proposed a promising of the SS-MRCEPA(D) method. We present the results of its
approach to tackle the MR situation but in a SR fashion, the application to various archetypical model systems for which we
spin-flip method. Significant research on the MRCC methods can generate the exact full CI (FCI) results and thus illustrate
is still in progress. However, MRCC methods are challenged the potential and flexibility of this method.
even now when it comes to mapping out the PECs. The The paper is organized as follows: In section Il, we shall
computation of PECs is, of course, much more demanding. first recall the principle of the SRCEPA method. After that, we
Another class of methods try to generate states of interestdiscuss the basic issues of the SS-MRCC theory. In the same
via the action of an excitation operator on a simple base function, section, we then present the development of the SS-MRCEPA-
usually of the ground state. The linear response based theoriegD) method. In secction I, we will discuss the aspect of size-
based on CC reference functions have been proposed sometimextensivity and consistency of the method. We will cover the
back to achieve this goal, starting from the HF or ROHF ground comparison of the SS-MRCEPA(D) with the other allied
reference stat& 37 methods in section IV from the theoretical point of view.
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Computational details and results are provided in section V.
Finally, we summarize the pros and cons of the SS-MRCEPA-
(D) method.

Il. Theory

In this section, we will discuss and develop the SS-MRCEPA-
(D) method. In the first subsection, we will briefly outline the
principal ideas behind the SRCEPA-like methods before em-

barking on a discussion of the parent SS-MRCC method and

the CEPA-like approximants thereof. This will motivate us

toward the types of approximations needed in generating the

MRCEPA equations starting from the SS-MRCC equations.
A. An Overview of the SRCEPA Method. In this section,
we examine the SR case in order to understand the basic conce
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like approximations are modified by including all the linear and
guadratic powers of;. The MRCEPA formulation using the
same concept within the SS framework would be presented in
the next section.

B. An Overview of the SS-MRCC Method.The full account
of the SS-MRCC method and its illustrative applications can
be found in refs 22 and 23; we only briefly describe essential
features below.

In the SS-MRCC approach, the exact wave function is
expressed as

p=3 explp,c, (25)
u

FV\/here

of the SR-based CEPA scheme from the SRCC equations. Let

us start with a HartreeFock (HF) reference functiomgo, and
a correlated wave functionp = exp(T2) |polJ whereT, = Y 4 Tata

(the indexa denotes the electron pairs). For the sake of easier
understanding of basic relations, we neglect single excitation,

i.e., we consider the CCD model. After simple manipulation,
we obtain the following equations:

E = [poHIpTH Z%Hwotﬂb (2.1)

1b¢b’
Et, = DralHIdoH Z%J HTpl o, + Eg DalHT, Ty oty
’ 2.2)

Combining the above two equations leads to the following
expression:

QralHI¢oL= Z[®O|H|¢0®ab — DralHTylet, +
1b¢b’

ZEM HT,|poMt, + 5; QL HT Ty oMty (2.3)

After the cancellation of the disconnected terms in the last two

terms of the above equation, an important part, the so-called
EPV terms, remains. Though EPV terms are disconnected in
the form given above, they do not cause the error of extensivity,

since they can equally be written in the connected form. The
above equation can be written as follows:

|—_9L51|H|¢o|:'= Z[(@o“‘”%m Ab)éab - @’a|HTb|¢0@tb (2.4)

Several methods have been developed to include EPV terms

A. These methods are often referred to as CEPA methods.
The CEPA(0) corresponds to ignoring entirely the tenin

eq 2.4; the CEPA(0) approximation is equivalent to the
linearized CCD. The CEPA(0) method is not exact for the two-
electron problem. The diagonal dressittof Malrieu and co-
workers (to be called CEPA(D) from now on) involves the most
complete inclusion of the EPV terms, by retaining all the terms
in A in the projection ontggﬁ‘j; [it is important to note that in
xa» @ denotes electron pairs, but here we are explicitly showing
the labels for electron pairs] which have at least one orbital in
common witha, 3, p andg. In the SRCCD context, this amounts
to keeping in the quadratic terms oile amplitude with the
labelsa, g, p, andq and the other having at least one of the
labels of the first T,. This amounts to approximating
V2F5HH, T2, To]lgolasf-A thi], where A has the value as

T =T A T e + T (2.6)

1\2 o
Ty = (—) z L w)a e dva, e, (2.7)
g o,

n!

Thet coefficients are antisymmetric, and---o, andry=--rp
are labels of occupied and unoccupied orbitals in eagh
respectively. Moreoven;---a,, andri---r, cannot be exclusively
valence labels which means th@it generates only external
excitations, i.e., excitations outside the model space when acting
on ¢,. Such a definition off* follows from the intermediate
normalization condition for the wave operator.

Each model space functiofi¢,}, spans a CAS and plays
the role of a vacuum. As a consequence, this method provides
an unambiguous definition of the MR problem within the Hilbert
space framework. This has computational advantages. Due to
the action of the cluster operatofé on the reference space
functions, some virtual functions are generateate than once
which leads to the problem of redundancy. Thus the problem
of redundancy in SS-MRCC and hence the SS-MRCEPA
method is completely different from the other aforesaid state-
specific MRCEPA&11404methods. This problem in the SS-
MRCC method is removed using suitable physically motivated
sufficiency conditions, which leads to the following coupled
equations.

The cluster amplitudes defining th¢ operators are deter-
mined by solving the following equation:

GulH, |98, + 5 Gil exp—T) exp(™)|¢,H,,c, = 0 Ol u
’ (2.8)

whereH, = Hexp(T) andH,, = [@,|H,|¢,0
The equation determining the model space coeffici¢ots
and the target state energy is given by

Z Hﬂvcv

For practical purposes, the operators are truncated at the
SD level, leading to the SS-MRCCSD method. The method
based on CAS is rigorously size-extensive and size-consistent
with respect to the dissociation process at hand. The proof of
connectedness of the SS-MRCC theory bears close resemblance
to the SU-MRCC theory of Jeziorski and Monkhotste now
discuss some important issues regarding the SS-MRCC theory
which are pertinent for further development of the CEPA-like
theory from it. If the cluster operatd® is connected, one can

= Ec, (2.9)

given in refs 9 and 10. When the singles are included, the CEPA- easily show that the dressed Hamiltonibip and the matrix
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elementd,,, are also connected via multicommutator expansion. that certain amplitudes responsible for excitations within the
Hence, the proof of the connectedness of the first term of eq model space are excluded from the equation of the cluster
2.8 is quite straightforward, but this is a nontrivial issue for the operators. The first three terms are connected in nature provided
second term. The terih| exp(—T*) exp(T”)|¢,can be written  the cluster operatdf* is connected. Since we adopt the same
as [y exp{(T" — T) + (L/2)[T", 4] + -} |¢,[] Except the  philosophy as that of SRCEPA, the's in eq 2.11 must be
term (I — T¥), all other terms involving multicommutator of  doubly excited for eack,. Thus the Il term should contain
the cluster operatofB"'s must have common orbital labels with  the product of singles and exclude the product terms of more
H,,. Since in the SS-MRCC theory all the model space functions than doubly excited with respect to the model space functions.
are treated on the same footing, the cluster operdtoasd T The EPV terms coming from term Il must include the product
have the same functional form and consequently the difference o the cluster operators in such a way that the excitation involved

— Tu ; H ) . . .
(T =T "?“SO has common labels W'th the matk,. As a in one T/ has at least one orbital in common with those
result of this, the second term of eq 2.8 is connected as a whole..

. ) .
This aspect igery importantwhile formulating any approximate involved n thr? otherT||.. As we have Ia\ljrea: y Eek? tioned, éhe
method, e.g., SS-MRCEPA, from the parent SS-MRCC theory two parts in t € coupling term (term )s ould be treated on
in a size-extensive manner. We are now in a position to presentthe same footing to maintain the S|ze—e>§tenS|V|ty of the fu_II-
the development of the CEPA-like method of the SS-MRCC bPlown SS-MRCC theory and any approximate theory starting
theory. from it.

C. The SS-MRCEPA(D) Method.One can consider several Considering the above discussion, we present the leading
schemes for the development of the CEPA-like approximation terms of eq 2.11 explicitly in the following form:
from the parent SS-MRCC theory. One may, e.g., emphasize
tha.t only the single and doubl_e excitati_o[r)@‘,,‘} reached by the [GhIHI¢, CH Z(Hlm — H;mélm)ti; _ Aﬂt{‘ +
action of T* on ¢ should be included in eq 2.8 for evegy/ I m lla
used in the projection. Another possibility could be to include I
all the virtual functions which are obtained from single and 1 | B ~
double excitations from the model space. There are structural Ezgm,n tmn]cﬂ + Z%W'gbﬂmmcv +
differences in the CEPA-like schemes obtained with the above mn !

IVa
two choices. In the former, up to quadratic powers of one-body lib ,
operatorsT? can be included, and the quadratic powersrbf other terms= ¢tc, (2.12)
must include only the EPV terms. In the latter scheme, up to Vb

quartic powers ofT* leading to the entire singlesloubles

excitation space with respect to the model space can appear. InThe negative sign of the terdy, is the EPV correction in llla

our formulation described below, we present the CEPA-like ineq 2.12 to keep conformity with the analogous SR term. The

equations for the latter schneme as the most general theoreticaterm lIllb confined to the product of two singles (which is

development. We, however, approximate our equations used inindicated by the prime in the sum) leads to the doubles. The

our numerical implementation by neglecting more than quadratic two pieces IVa and IVb serve two specific and distinct purposes.

powers of everyl“ and retaining only the EPV terms coming A portion of the term in IVa for = ,

from the powers ofT%. In this case, the two CEPA schemes

become equivalent in our applications. H,=H,+ A +D \eoy (2.13)
The most general CEPA-like equations for both the schemes e e e

can generically be written as .
9 Y cancels botH,,0m and At terms of Il and llla, while the

rest of the expression for= u of IVa corrects for the lack of
DHIH(P + Q,) exp(M)|g, ¢, + z@f‘l exp(=T") extensivity coming from the terms appearing dft'c,. As
v Malrieu and co-workefsl% have done in the (S&FI method,
we approximate\, by the terms containing &ll*'s with at least
one orbital in common with those appearingtinA, in each

The projectorQ, in this scheme refers to the virtual space equatlpn fort"is thusl:dep(indent, and we |nd|cat§ this Aif'
reached by the single and double excitations fegniThe more Denoting the energy’’ as dcepapy €q 2.12 for this scheme,
general scheme not further discussed would have involved the'€ferred to as SS-MRCEPA(D), takes the form
projector of the entire CISD space.

To develop the CEPA-like methods, the quasi-linearized form
of the SS-MRCC equations can be written as follows:

exp(M)|¢,08,|H(P + Q,) exp(T) |¢,[¢, = 0 Ol u (2.10)

%|H|¢ym z[Hlm - (‘I?CEPA(D)_'_ DLNEPv)alm]tfn +
m

c,+ ZDh|T”|¢ﬂ[H-IWCV =0 (2.14)

VEU

1 1
(511419, 53 GHlH, 7116, JGTH, T 79,6, + 52 Gt
I i
i
ZEM(TV - T”)|¢,MEF|,WCV + other terms=0 (2.11) where ¢ satisfies the equation

v ZHW’C’/ = (’:C‘u

If we suppress the fourth term (the so-called coupling term) v

on the left-hand side of the above equation, then from the point
of view of the particular reference functiaf), we obtain the Ignoring D‘LNEPV entirely in eq 2.14 and replacingcepra(p)

equation of the corresponding SR case. The only difference isby the CAS energyg, leads to the SS-MRCEPA(0) scheme:
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1 empirical correction factors, nor does it require averaging of
BuIHI¢, 0+ Z(HIm — B0t + —Zg'mn tmth|C, + the pair-correlation terms. The theory instead relies on natural
m 267 and automatic cancellation of the disconnected terms which are
Z 5h|TV|¢,4[H'|WCy =0 (2.15) non-EPV in nature by certain counter terms intrinsically present
b= in the parent SS-MRCC equations.
We may remark here that one generic criticism associated
with any many-body formalism using the JM ans&i{both in
ZH ¢, =EgC SU-MRCC and SS-MRCC as well as their CEPA counterparts)
vy u is the large number of cluster amplitudes. The SS-MRCC
! formalism developed by Mahapaif&? using CAS (and also
The intruder-free nature of the SS-MRCEPA equations is incomplete model spag® and the CAS-based SS-MRCEPA
evident from the following form: also share this feature. While attempts have been made from
time to time to reduce the number of variables in the cluster

with Ep satisfying the equation

1 - amplitudes, a fully satisfactory solution has not yet been found

CoiHIg, 529lmn ot + Z%WVW#[H",W(CV/CM) eith%r for the state-universal or the state-specific formalism.

t = mh e Considerable simplification can be made using partially con-
(&—H, — D' ) tracted descriptions, such as positing the sensible approximation

" (2.16) of equal amplitudes for all the one- or two-body inactive to

_ virtual excitations or both, as done in the internally contracted

H., = H, and D, = 0 for SS-MRCEPA(0). The SS- |4
MRCEPA is free from divergence due to the intruder effect if
&'is well-removed from any;, even wherH,,, is close to this [ll. Extensivity of the Computed Energy of the
Hy. Thus the SS-MRCEPA theory is intruder free in nature SS-MRCEPA Method
which will be evident from the computation of the PEC of
various systems, discussed in section V.B.

We summarize here the most important key facts of the SS-
MRCEPA formulation:

(i) The method based on CAS is size-extensive in nature.
(ii) The method avoids the problem of intruders (as long as
the target state is well separated from the virtual one) in a natural

manner.

(iii) The formalism employs the relaxed coefficients descrip-
tion of the multideterminantal reference function which can also
be cast in the unrelaxed coefficients description.

The real merit of the SS-MRCEPA(D) method in comparison
to the mother SS-MRCC theory is that we save a lot of computer
time since in CEPA, we neglect a host of complicated nonlinear
terms. The discussion in section V.B will clearly demonstrate
the accuracy of the SS-MRCEPA schemes. We will also show
that the SS-MRCEPA(D) performs very well over a wide range
of potential energy curves of the states of diverse complexity
and arbitrary generality. The SS-MRCEPA(D) method does not
have a manifest orbital invariance property as that of the SS-
MRCEPA(O) theory. This is due to the inclusion of only the
EPV terms in a cluster expansion which makes the formalism
noninvariant with respect to the separate unitary transformations
among core, active, and virtual orbitals defined within the
framework of CAS. This criticism is persistent for all the CEPA-  [3{|H(P + Q,) exp(T)|¢,[8, + Z%ﬂ expT")
like approaches for MR (and also SR) situations. But the most v
simple CISD satisfies this invariance property in an explicit
manner. To circumvent this difficulty, attempts were made in ~ exp(™)|#,[3,IH(P + Q,) exp(T)l¢,[¢, = 0 Ol (3.17)
the past to include the EPV terms via certain pair-correlation
energies averaged over all the pairs, which preserve thelet us consider a supermolecule composed of mutually nonin-
invariance. These corrections are, however, rather empirical interacting molecules A and B. The Hamiltonian for the super-
nature or, at the most, are based on heuristic considerationsmolecule can be expressed as
Moreover, the methods have also been shown not to be
rigorously size-extensive. Although the error does not grow H=H,+Hg (3.18)
alarmingly with increase in the number of electrons, this
limitation is aesthetically unpleasant and in a way belies the whereHa andHg are the Hamiltonians for the subsystems A
very purpose of involving CEPA-like approximations. Recently and B, respectively. To apply the SS-MRCEPA method to
Chattopadhyay et &P proposed a specific version of a SS- System 3.18, we assume that one can find reference functions
MRCEPA which displays the orbital invariance with respect to separating properly into fragments in their well-defined states
the restricted rotations among doubly occupied, active orbitals and therefore the zeroth-order energies can be added. We start
and virtual orbitals separately while preserving size-extensivity with associating a complete set of orthonormal functioﬁﬁ) (
and size-consistency rigorously. The theory does not bring in and @5) with the subsystem A and B, respectively. The

From the mode of derivations, it is quite clear that the SS-
MRCEPA(D) theory is manifestly size-extensive, since our
CEPA-like approximation from the parent size-extensive and
size-consistent SS-MRCC theory retains only the connected
terms. In the truncated equations, however, the invariance
property of the parent theory under localized transformations
of the core, valence, and virtual orbitals separately cannot be
retained. This, anyway, is generally the situation for the CEPA-
like approaches, except the CEPA(0) approach. The CAS energy
is invariant under localizing transformations separately among
the core and the active orbitals. It would be quite instructive if
we can verify the size-consistency (strict separability) of the
SS-MRCEPA(D) theory by analyzing the actual expressions in
the limit of noninteracting fragments, using orbitals localized
on fragments. Let us partition the full Cl space into three
subspaced? space composed of reference functiogsspace
of all single and double excitations from each reference function
¢., andR space of all the higher excited functions outside the
MRCISD space. Since the demonstration of separability depends
essentially on the connected nature of certain terms in the SS-
MRCEPA equations, our discussion of separability can be
started with the following expression:
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corresponding identity operators for the subsystems are definedz % ;.| exp—(T" + T')) exp(T™ + T7)(¢, ¢, O

to be
lo= g0l = A, B
u
I(x= P(l+ Q(x+ Ra

The relevant composite entities satisfy the appropriate
separability conditions:

Tae =

®as

T, +Tg

N

lag = lalg

Cag = CaCg
In the expressions above, the indigeare not explicitly shown.
We decompose composite project®g and Qag into the
following:
PAB

= PAQlB + QlAPB + QlAQlB + PAQZB + QZAPB

= PaPg
O

Since we intend to show the separability propertyepfve
note that the set of model functiong,J goes over to the product
set A[pu.dvs] (Where 1 is the antisymmetrizer), while the set
of virtual functions §|) goes over to five different types of
product functions: (aﬂ[x"“%] (0) . xiebisl. (©) AP unl.

(@) - (%0, and (@) 4" 1),
We shall now show that our'SS-MRCEPA equations do allow

additive energies for those cases which correspond to excitation

on one fragment only, i.e., for functions of the typed
Projecting onto the composite virtuals where one fragment
is singly excited while the other is not, we get

“ ¢,/ (Ha + Hg)(P + Q) exp(™ + T4, ¢, [¢, C, +
> ey, exp(T + 1) exp(™ + T7)(¢,,, 6,0

Qaa0B

8,,(Ha + He)(P + Q) exp(T™ + )9, &, 15,

|1A

=0
(3.19)

LlA

We now simplify eq 3.19 term-by-term. We consider the first
term which upon simplification yields

¢, ¢ c, =

Vg~ Up VB

| + Ho)(P + Q) exp(™ + T,
Gt 82, |HA(PAPg + PaQig + Q1aPg + PaQup + QpPg +
Q14Q15) EXP(T)|9, 4.8, ¢, t Gtﬁ/ZQSiBlHB(PAPB +PaQis t

Q1aPg + Q1aQs + PaQsg + Q4Pg) exp(‘l’”B)|¢MA¢VBm:#AC

VB

which, upon taking care of the excitation to proper fragments,
yields

¢/1 |(H + HB)(P + Q) exp(T#A TVB)|¢uA¢VB U 'VB_

4 HAPA + Qua + Q) eXP(T™) (g, (&

|1A

Mp—"Hp VB

Likewise, the second term of eq 3.19, tbeuplingterm, is

B,,6,,|(Ha + He)(P + Q) exp(T™ + T)\,, ¢, [8, C, =
> 4l exp(=T") exp@™)ig,, 0

AaA0B

%/L[A(p IHA(PAPB + PAQlB + QlAPBQlAQlB +

PaQzg T Q24Ps) exP(TaA)WaA%B 0,Cop T

S B0l exp(-T) exp(™)(g,, 1, ,, [He(PaPs +

Aa0B

PaQig + QiaPsQiaQue t+ PaQos + QoaPs) Xp(™) 6y, 65,24, Cp

which upon further simplification gives

S b, | eXp(-(T* + T%) exp(™ + 7)), ,,

ap0B

B, by, |(Ha + He)(P + Q) exp(T™ + T)\ i, by, €, C,, =
> Dl exp=T") exp(™)|¢,, O

(@, [HA(PA + Qua + Q;p) exp(™)l¢,, ¢

A Oa VB

Hence, for the single excitation of fragment A, our SS-MRCEPA
equations take the form

%ZlHA(PA + Qia + Q) €Xp(M)I9, RN
ZB&?“‘I exp(-T") exp(r““)l¢ 0

(@, [HA(PA + Qua + Q;p) exp(T“A)|gb(1A|]taA =

Similar relations hold true for the projections where fragment
A is doubly excited but fragment B is not:

AlHA(P + Qua+ Qza) eXp(TﬂA)WﬂA T
Zﬁh | exp(=T*) exp(T™)i¢h,, 0

(B, IHA(Pa + Qup + Qzp) exp(T“A)|¢aA@aA =

These are just the SS-MRCEPA equations for fragment A. There
are similar expressions for the single and double excitations
for fragment B, with fragment A remaining unexcited.

We can also verify the projections onto the composite virtuals
where both the fragments are excited, i.e., for the function of
the type. /[)Cf B] By similar reasoning, one can show in a
stralghtforward manner that the total contributiomndientically
zero. Thus there are no working equations for such excitations.

We now consider the active space projections.

ECM = ZQS/AH(P + Q) exp(.ra)|¢a|]:(x

For the composite system,
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Ec,c, = SU-based MRCEPA, if the reference functions are selected to

describe the excited state on top of the ground state ap-
Z (3, #,,](Hy + Hg)(P + Q) exp(™ + T) @, 0,80, Cop = propriately, the SU theory provides correlated wave functions
[ of these states at the same time. But the working equations

sometimes suffer from the so-called “intruder state” problem.
In such cases, the state-specific-based theories become a natural
choice.

z (805 HA(PaAPg + Q1P + PAQig +

aa0B

As Szalay! has already reviewed state-specific methods

Q1aQ1p T PaQug + PgQon) Xp(M™) ¢, ¢, [C, C, + extensively and focused on the way of approximating EPV
terms,A, and treatment of reference space by comparing various
z (B, 85, |He(PaPg + Q1aPg + PaQyg + approaches, we will not go into such a detailed comparison,

aA0B

but we will discuss how the various previously developed state-
specific MRCEPA methods are different from the SS-MRCE-
PA(D) method.

Q1aQip T PaQag + PQo0) eXp(T™) (¢, b, B4, Co,

which on some mathematical manipulation yields In the MRCEPA methods of Gdanitz and Ahlriéhand
Szalay and Bartlett? the EPV terms,A, are treated in an
Ec ¢ =E,c 5 ¢ +E.c S c = averaged way. The use of an average valué\foneans that
ave A ‘MAUZB v TP VB; HoTon is independent of electron-pair excitation in the equation to
(Ey + Eg)c, C determine the correlation coefficients. These MRCEPA methods
HUp V)

are orbital invariant in nature since electron pairs do not appear
explicitly in the final equations. The methods are not strictly
size-extensive, although it has been observed that the error due
E=E,+E; to the size-extensivity does not increase much with the
simultaneous increase in the number of the electrons.

Thus the SS-MRCEPA(D) method is size-consistent in nature  Ruttink et al*? proposed a way of approximating the
only for localized orbitals on each subsystem, since the methodredundancy terms using the determinantal basis in their MR-
is not invariant under orbital rotations. CEPA method by neglecting the EPV terms completely; thereby

The various numerical examples which will be discussed in the resulting equations remain at the CEPA(0) level. In this
this paper use the symmetry-adapted delocalized orbitals inmethod, the treatment of the redundancy terms is not straight-
practice. Then one can easily say that the theory is not really f5\vard and uniform but depends on the excitation class. The
extensive in this case. This issue can be checked as one mighMRCEPA method by Fink and Staemnfféranalogous to
rotate the orbitals from delocalized to localized and check the SRCEPA of Kelly neglects the redundancy terms completely
invariance of the results in the limit of large separation. but the EPV terms are considered in detail. Their method is
Unfortunately, it is not possible in this paper to test the change . S ) s .
of the results due to the orbital rotations. not size-extensive in pgture and does not show orbital invariance

also. The state-specific MRCEPA methods discussed till now

) ) ) ) belong to the category of SS-based theories without relaxation

IV. Comparison with Other Allied Theories of the reference space due to the inclusion of electron correla-
tions.

Therefore,

In the following part, we will discuss the relationship of the
present method with other state-universal and state-specific In contrast to these above schemes, our SS-MRCEPA
MRCEPA methods from the theoretical point of view. In the equations can simultaneously handle both the inclusion of all
theoretical analysis of various MRCEPA methods, we mainly the Q,-space functions and the EPV terms beyond CEPA(0).
focused on two terms: EPV and redundancy. The former is Of course, our method uses each model funciiprather than
already present in the SR case, while the latter is clearly due tothe entire functionyo, and this aspect, coupled with the use of
the MR extension. The term “redundancy” has been used in redundancy, distinguishes our approach from the rest of the
the SS-MRCEPA method and in the MRCEPA methods methods mentioned above. Also, since the combining coef-
discussed by Szaldyand Tanakd? but in totally different  ficients{c,} are iteratively updated, we use relaxed coefficients
contexts. The redundancy of the MRCEPA methods discussedin our SS-MRCEPA schemes.
by Szalay and Tanaka is altogether unrelated to the redundancy
discussed by us and appears only when one rewrites the CEPANI
equations in terms of Cl-like coefficients rather than cluster : S
amplitudes. This type of redundancy thus is an artifact due to redundancy terms exactly and hence the m_ethod is _e>_<ten3|v_e in
the transcription of the CEPA equations involving cluster nature. _But calculating these two terms is not trivial. This
amplitudes to one containing Cl-like coefficients for the “direct” Method is conceptually very close to our SS-MRCEPA method.
terms. The aspect of redundancy discussed by us, on the otheBince Malrieu et al. generate the functions in the virtual space
hand, arises in an entirely different context. It is a physical by acting on the individual functions of the reference space,
requirement where we deliberately use for projections the virtual Some of the virtual space functions are generated more than
functions l-_A,}'ﬁ: which m|ght appear more than once as excita- once as that in our SSMR appl’oach. We overcome the problem
tions from differentg,’s. This is required to preserve the size- 0f redundancy using suitable sufficiency conditions, while
extensivity of SS-MRCC and SS-MRCEPA equations. Malrieu et al. resolved this problem via the use of a suitable

Tanak&>“¢has reviewed the various state-universal MRCEPA “genealogical weight” factor of the corresponding terms. The
approaches, and their reliability is assessed by comparing themethod also useselaxed coefficients for the model space
working equations and the numerical results in detail. In the functions.

In the multireference size-consistent self-consistent Cl method,
R(SC¥CI, Malrieu et al! considered both the EPV and
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V. Numerical Tests
A. Computational Details. We discuss here both the details

of the working equations and the computational strategy leading

to the numerical implementation of the SS-MRCEPA(D)
method.
In the SS-MRCEPA(D) strategy (eq 2.14), in addition to the
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reached. In the iteration loop for obtaining the cluster ampli-
tudes, when the conditiod(u) < n(u) is reached for the cluster
amplitudet!, the t,'l amplitude is frozen, while the iteration
process is started for the other cluster amplittigde = » till

the conditiond(v) < n(v) is attained. The working equations

for SS-MRCEPA are much simpler than the full-blown SS-

terms in the SS-MRCEPA(0), some EPV terms are also taken MRCC theory. A host of complicated nonlinear terms are simply

into account:

[5&||H|¢#[H' Z[Hlm — (Scepapy T D,IuNEPV)élm]t/r; +

+ > HT¢,tH,.c, =

1 1
| |
Ezgm,n tqm tqn + Ezgm,n tgm tgn Cﬂ
mn mn =
0 (5.20)

u

There is at least one orbital in common betwégpandt;, in
the term Zm,nglm,n ty, th, The diagonal matrix element dfl
which is used in the energy finding equation is of the following

form:
¢/4D

H.uu - @ﬂ

and the off-diagonal matrix element Bfcorresponding to this
scheme looks like

P

- - l |
H+ HV{ + HT‘g + Ezgm,n tqm tgn
mn

H

v

H+HT: +

— 1
HT/; + _zglm,n t‘{m t‘{n +
265

al

Two sets of variables, the cluster operator$s, and the
combining coefficientsg,’s, constitute the SS-MRCEPA(D)
equations in a coupled form. We trace the following scheme to
obtain a stable and a rapidly converging solution.

1 |
_z gm,n tgm tgn
2m,n

not present. The most time-consuming step in the CCSD method
is the computation of the nonlinear terms. The real advantage
of the SS-MRCEPA method over the SS-MRCCSD method is
that we save a lot of computer time, since in CEPA we neglect
a host of complicated nonlinear terms in a size-extensive and
intruder-free manner. This holds the key to a faster performance.

B. Results.In this section, we shall apply the SS-MRCEPA-
(D) formulation to compute the ground (and also excited) state
energies of some interesting prototypical systems which are
frequently used to test the performance of various SR- and MR-
based methods.

All the model space functions are considered on an equal
footing in our SS-MRCEPA methods, and hence these methods
are very useful to study the PEC. We have studied the PEC of
the ground state of H(P4 and H4), H, Li,, and the
perpendicular insertion of Be into,Ho test the performance
of the SS-MRCEPA(D) method. The PEC of the ground state
of such systems possesses quasi-degeneracy at some point and
there are potential intruders at some other points, and hence
these systems are appropriate to test the efficacy of the SS-
MRCEPA methods. Since the lowést; state of CH possesses
quasi-degeneracy to a strong degree, this has also been
considered. The model space (also called active space) of such
systems can be adequately described by two closed-shell
reference functionsy; = [corga? and¢, = [corgb?. The active
orbitals @ andb) are of two different symmetries, and hence
the active space is complete in nature. The most natural example
of this type employs the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO)
as active orbitals. In all calculations, we use CASSCF MOs

To achieve converged quantities, such as the energy, thegenerated by the use of GAMESS. In this paper, we have
combining coefficients, and the cluster amplitudes, three levels Presented only the results of thelaxeddescription of the SS-
of iterations are needed through a nested loop structure. TheMRCEPA(D) method. The results obtained via SS-MRCEPA-
outermost loop (macroiteration cycle) provides the converged (D) have been compared with those of the parent SS-MRCC
coefficients and consequently the corresponding energy by along with the FCI or high order CI calculations.

solving the eigenvalue problem. In the next level of the iterative

1. Hs Model. The H; model is rather well-studié#?23.24.50,51

process, the coupling between the various cluster amplitudes,since it serves as a benchmark to test the applicability of

t,s andt,’s, is taken care of, while the innermost step of iteration

different SR- and MR-based many-body methods. Among the

leads to the converged cluster amplitudes. The cluster amplitudesvarious types of Bisystems possible, we will consider here two

are then used to construct the matrixféf It is important to

often employed models: the rectangular (P4) and the trapezoidal

highlight the fact that the couplings between the various cluster (H4) models to assess the performance of our SS-MRCEPA
amplitudes that are present in the SS-MRCEPA(D) equations methods.

are not too many. Only those componentst, 8§ can couple
with u = v, which can result in excitations $g by their action

(a) P4 Model. In the P4 mod&?;50-51the four H atoms are
placed at the four corners of a rectangle, constituting the

on ¢,. The converged cluster amplitudes for each updated rectangular geometry of thesiystem. Starting with the pure

coefficient are then used to construdt,. The H,, matrix
obtained therefrom and the set of updatgd are used in the
virtual projection in the next macroiteration. Upon convergence
at all levels, a diagonalization of the,, matrix leads to the
required energy. Thus, in SS-MRCEPA(D) we update the

square configuration, in which the internuclear separations are
fixed at 1.40158 au, two parallel hydrogen molecules, located
on the opposite sides of the square geometry (designated by a
single geometrical paramet®), are symmetrically pulled apart,
giving rise to different rectangular geometries. The system in

combining coefficients, the cluster amplitudes, and the energy the square geometry possesses maximum configurational quasi-

through the operation of three levels of iteration. Since the

degeneracy which is systematically lifted by increasing the

reference determinants are closed-shell singlet in our applicationsparameteR. We use a model space consisting of two molecular

in this paper, the spin-adaptation of the methods is trivial. In
our implementation, we use tisame tolerance;(u) (say 10°®),
for different cluster amplitude®’. When theo(u) [=|t‘:,t(new)

orbitals (one HOMO and the other LUMO) and two electrons.
¢1= 1a’1b3 and¢, = 1a’2a; are the two corresponding model
space functions for the ground state. Although the system

- tit(old)|] becomes smaller than the tolerance, convergence is possesse®s, symmetry whenR = 1.40158, in this model
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neighbor internuclear separations are fixed (2 au). The range
of degeneracy is completely described by a single pararoeter
[0.0—0.5]. a = 0.0 ando. = 0.5 correspond to the completely
degenerate and nondegenerate situations, respectivel{z;The
symmetry has been used at each stage of the calculation of this
. . model system. The orbitals are used for the lowest root of the
2 . It (2 x 2) CAS.

‘; ¥ — - S3MmCEPAL) Table 1 displays the deviations of the theoretically computed
v —-A—- $S.MRCEPA(D) ground-state energies by the SS-MRCEPA(D) method as well

A E (mH)

4 \ __:__(::,z':':: as other results with respect to the FCI values available in the

!
¢
' " -4 TDI literature. When we have considered the SUCCSD method, the
—-0—- TDIEPV . .
i results are not so good in comparison to the other full-blown
| CC methods. Li and Paldgkshave very recently shown that
j the inclusion of the higher-than-pair cluster in the SU-MRCC
4 method [referred to as GlerrectedSUCCSD] can improve the
12 14 16 18 20 22 24 26 28 results of the SUCCSD method and intruder state problem. The
results of the Cleorrected SUCCSD represent a definite
R (a.u.) improvement over the SUCCSD results in the nondegenerate
Figure 1. PEC (relative energies with respect to FCI) of the P4 model. region of geometries, but not so in the degenerate region. The
. . . performance of the SS-MRCEPA(0) method is quite good
system, all the molecular calculations are carried Ut USG  5mong the various (quasi)linearized forms of the various CC
symmetry. The geometry and basis considered here are the SaMfhethods. A comparison with the results of the FCI and other
as in ref 10. methods indicates that SS-MRCEPA(D) is numerically stable

hWSeSplot '2 Figu:)e 1 tgesgroung-state energiefs ob;aine(fj bY and bypasses the difficulties of the intruder states in a stable
the SS-MRCEPA(0) and SS-MRCEPA(D) as a functiorRof 1\ nnar \yhile at the same time generating very encouraging

ilong W'tg the (f:orlr_espfondrl]ng F|C| resultfs using thefs;;llme b.as's'ground- and corresponding excited-state energies over a wide
o get a better feeling for the relative performance of the various range of the geometries.

meth we plot in Figure 1 th viations of energy val . .
ethods, we plo gure € deviations of energy values 2. Hg Model. The eight-electron model system®iconsists

obtained via different methods from the FCI values as well. £ four H lecul ith int | tion fixed at 2.0
For comparison, the results of the parent SS-MRCC and?(SC) ol four Hp molecules with Internuciear separalion fixed at 2.
au, arranged in the octagoriad, configuration, and its geometry

of Malrieu and co-worket8 have also been presented in the . . .
is uniquely determined by a single parameter oo = 0

figure. It is clear from the figure that the performance of the ds to th I ¢ trv. The broad
SS-MRCEPA methods is promising while describing the ground corresponas 1o the regular octago [aéh(}_geome ry. The broa
spectrum of configurations, [0,1], provides an opportunity to

state of the P4 model system over the entire region of the PEC.
The deviations of SS-MRCEPA results from the FCI energies s'gudy the performapce Qf the SS'M.RCEPA(D) method from
highly degenerate situations to practically nondegenerate ones

are uniform and quite encouraging. The SR-based {&C) . h
scheme dresses each excited determinant by the unlinked effectd! & continuous way.
of the triples and quadruples from the outer space only. To _Our model space consists of two functiogs,= a; b3, b3,
improve the accuracy of the SRCISD method, Malrieu and co- &; and¢, = a; b, b3, bi,. A strong interaction betweapy and
workerd® proposed a perturbative and iterative full dressing ¢2 can be seen by examining the FCI coefficients of the ground
method involving both the linked and unlinked contributions state. Coefficients associated with the two reference functions
from the outer space [known as TD1)]. The most sophisticated in the two lowest-lying FCI indicate that this two-dimensional
version takes into account the higher-order EPV terms in a self- reference space is also appropriate in the degenerate, quasi-
consistent manner in addition to the linked and unlinked degenerate, and nondegenerate situations for both the ground
contributions. This has been called the TD1EPV method by and excited states. In our calculations, we used the minimal
Malrieu and co-worker& From Figure 1, it is clear that the  basis set (MBS). The CASSCF orbitals corresponding to the
values of (SCXCI are diverging in nature at the region of near lowest root of the (2« 2) CAS are used for our ground and the
degeneracy. However, the corresponding TD1 and TD1EPYV corresponding first excited state.
values show considerable improvement. This includes linked The ground (3A;) state and the excited®;) state computed
triples and quadruples with respect to the determipaat well via the SS-MRCEPA(D) method are shown in Table 2 and Table
as full EPV terms. In contrast, our two-determinants model space3, respectively. To get a better conclusion regarding the
approach captures most of the nondynamical correlations andperformance of the SS-MRCEPA(D) method, we have also
a substantial amount of dynamical correlations at all points of quoted the results of other methods and indicated the relative
the PEC. At larger distances, the ground state is essentially SRenergies of the various methods with respect to the correspond-
in nature and our SS-MRCEPA(D), which has full EPV and ing FCI values within the bracket. From both the tables, it is
linked SD excitations out of the model space, should behave clear that the deviation of the SS-MRCEPA(D) from the FCI
very similarly to (SCJCI, which also includes SD excitations  values is very close to the full-blown parent SS-MRCC theory.
in a SR setting and keeps only the EPV terms. We can concludeFor the ground state, the results of the SS-MRCEPA(D) method
that our SS-MRCEPA methods are quite efficient approxima- are better than the corresponding CEPA(O) version, while for
tions of the parent SS-MRCC method to compute the ground- the excited state the quality of results of SS-MRCEPA(0) is
state PEC of the P4 model. strikingly very good. For the excited state, the performance of
(b) H4 Model. The ground state of the H4 mo@éf can be the SS-MRCC, the SSCCSD(Pand the SS-MRCEPA(D) is
described completely by, = 1ai1b’ and ¢, = 1a22a’. We very close and they perform slightly better than the SU-MRCC
apply a DZP? basis for this model. The H4 system consists of and the CASCCSI[¥ The better quality of the results for the
two stretched Hlin a trapezoidal geometry where all the nearest ground state in comparison to the corresponding lowest singlet
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TABLE 1: Relative Correlation Energies (mH) with Respect to the FCI Values, Erci — Emethod, Of the Ground State of the H4
Model for Different Values of a

o

0.0 0.01 0.02 0.1 0.2 0.3 0.4 0.5
MRMBPT2 —2.172 —2.295 —2.386 —2.155 —2.079 —2.136 —2.161 —2.166
MRCISD? —-1.771 —1.706 —1.277 —1.039 —0.895
MRL-CCSD 3.685 3.610 3.436 5.027 * * * *
MRL-BWCCSD’ —3.942 —3.961 —3.863 —3.212 —3.071 —3.092 —3.136 —3.151
SS-MRCEPA(0) 0.011 0.076 0.227 0.227 —0.110 —0.270 —0.347 —0.371
SS-MRCEPA(D) —2.195 —2.468 —2.360 —-1.91 —1.637 —1.554 —1.596 —0.283
SS-MRCC 0.156 0.102 —0.030 —0.398 —0.353 —0.309 —0.289 —0.283
sr-MRBWCCSD 0.100 0.012 —0.146 —0.582 —0.579 —0.559 —0.551 —0.548
SUCCSD 0.686 0.594 0.173 1.187 1.998 2.308 2.379
Cl-correctedSUCCSD —1.528 —1.499 —-1.077 —0.848 —0.784 —0.797 —0.808

aMRCISD and SUCCSD: missing values were not present. * denotes that no convergence is aéliRefexnce 24 Reference 25.

TABLE 2: Total Energies (au) of the Ground State (A;) of the Hg Model?

o
0.0001 0.001 0.01 0.06 0.1 0.5 1.0
SRCCSD —4.199769  —4.199885  —4.198280  —4.209147 —4.216649  —4.292535  —4.352445
(—5.034) 5.03) (7.49) (3.02) 2.11) (6.86) (4.45)
SSCCSD(M —4.211119  —4.211128  —4.211304  —4.214785 4.220106 —4.292907  —4.352601
(6.32) (6.24) (5.54) (2.62) (1.34) —0.31) (0.30)
SSCCSD(TQY) —4.203722  —4.203809  —4.204728  —4.211350 —4.218096  —4.292914  —4.352730
(—1.08) (1.08) (1.04) (0.82) (0.67) 0.31) 0.26)
SU-MRCC —4.207640  —4.207725  —4.205069  —4.214866 —4.221149  —4.293765  —4.353555
(2.84) (2.84) ¢0.70) (2.70) (2.39) (0.54) (0.66)
SS-MRCEPA(0)  —4.210300  —4.210388  —4.211283  —4.217405 —4.223742  —4.294248  —4.354840
(5.49) (5.50) (5.51) (5.24) (4.98) (1.03) (1.85)
SS-MRCEPA(D)  —4.200584  —4.200946  —4.201347  —4.207690 —4.214155  —4.288770  —4.348842
(—4.22) (3.94) 4.22) 4.47) 4.61) (4.45) (4.15)
SS-MRCC —4.206429  —4.206513  —4.207397  —4.213R668  —4.220020  —4.293847  —4.351823
(1.63) (1.63) (1.63) (1.49) (1.25) (0.626) ~1.67)
FCl —4.204803  —4.204886  —4.205769  —4.212169 —4.218767  —4.293221  —4.352990

aValues (mH) within the parentheses indicate the deviation from the FCI valGgs,§ Emetod. ® Reference 53.

TABLE 3: Total Energies (au) of the Lowest Singlet Excited State (PA;) of the Hg Model?

o
0.0001 0.001 0.01 0.06 0.1
SRCCSD —4.118353 —4.118594 —4.120809 —4.128224 —4.129853
(—25.647) (25.51) 23.98) ¢18.11) 15.32)
SU-MRCC —4.135637 —4.135707 —4.136340 —4.137793 —4.136717
(—8.39) (-8.40) (-8.45) (-8.54) (-8.45)
CASCCSD ~4.135711 ~4.135802 ~4.136401 ~4.137813 ~4.136832
(—8.32) (-8.30) 8.39) 8.52) (-8.34)
F-CASCCSD —4.140076 ~4.140083 ~4.140230 ~4.140281 ~4.139390
(—3.95) 4.02) (4.56) (-6.05) (5.78)
SSCCSD(T ~4.137306 ~4.137502 ~4.138924 ~4.143823 ~4.143428
(—6.72) (6.60) (-5.88) 2.51) 1.74)
SSCCSD(TQY) —4.142368 —4.142449 ~4.143192 —4.144964 —4.143895
(—1.66) (1.65) (1.60) 1.37) 1.28)
SS-MRCEPA(0) —4.145839 ~4.145918 ~4.146698 ~4.149320 4.148999
(1.81) (1.82) (1.91) (2.98) (3.27)
SS-MRCEPA(D) —4.136805 —4.136601 —4.137756 —4.139481 —4.138333
(~7.22) (7.50) 7.04) (-6.85) (6.84)
SS-MRCC ~4.137071 —4.137144 —4.137797 ~4.139257 ~4.136138
(—6.96) (6.96) 6.99) (7.08) (9.03)
FCl —4.144027 —4.144103 —4.144791 ~4.146335 —4.145172

2Values (mH) within the parentheses indicate the deviation from the FCI valggs, T Emenod- ® Reference 54.

excited state, A1, obtained via SS-MRCC and SS-MRCEPA- prone regions for the ground as well as the corresponding lowest
(D) methods is due to the intervention of higher-lying states singlet excited state.

that act as intruders for thé&, state. The results given in the 3. Li; SystemThe ground-state PEC of thelinolecule is
tables show that the CEPA(D)-like approximations in the parent a rather good test ca®&556for assessing the performance of
SS-MRCC theory are potentially very convenient to compute any SR or MR theory. The ground state of the holecule

the energies for the degenerate, nondegenerate, and also intruderequires a two-determinantal description in the zeroth order:
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Figure 2. PEC (relative energies with respect to FCI) of the Li Re.. H,
molecule (DZ basis). Figure 4. PEC (relative energies with respect to FCI) of insertion of
Be into H.
3.0 1 . . . .
] " the direction perpendicular to the bond, and the bond is stretched
25- —m— SS-MRCEPA(0) to enhance the nondynamical correlation effect as the distance
—A— SS-MRCEPA(D) of approach becomes shorter. This system poses a serious
2.0- l\. —e— SS-MRCC challenge to any theory where both nondynamical and dynamical
T l \ correlations are important in varying degrees along the PEC,
£ 154 " the active orbitals cross along the distance of approach, thus
u ] \_ necessitating theories which treat all model functions on the
1.0 \ same footing, and the two active orbitals face intruder orbitals
] at the two extreme geometries, viz., the large distance of
0.5 - approach and short distance of approach. State-specific formal-
ism should handle this situation for the ground-state PEC.
0.0 aamaady /”'\‘\-§ It is observed from the coefficients of the FCI results that in
e Sl Sy S— the regions of the points-AC and G-I the dominant configu-
0.5 2 : 3 10 2 1'4 rations arep; =1a;2a71bj and¢, =1a;2a73aj, respectively. At
the transition points BF, both configurations are equally
R, . (a.u) important: a quasi-degenerate reaction regiddence these two
Figure 3. PEC (relative energies with respect to CISDTQ) of the Li  configurations constituting the CAS are sufficient for an accurate
molecule (6-311G** basis). description of the reference function of the ground-state PEC

of the BeH system. From a close study of the CI coefficients,

= 10210220 and¢, = 102102202 We have used both a small one can infer that the system shows strong configurational
DZ basi§” and a somewhat Iarger (6-311G**) basis, taken from degeneracy at geometries D, E, and F and faces intruders at
the GAMESS basis library, for the study of the ground-state geometries B, C, H, and I. Therefore this model tests how well
PEC using the SS-MRCEPA(D) theory. In all our calculations, the method performs with a strongly changing reference function
we have used thBy, point group. and in the presence of the intruders.

The results obtained with the DZ and 6-311G** basis sets  In Figure 4, we have presented the lowk’t state energies
are plotted in Figure 2 and Figure 3, respectively (as a deviation obtained via the SS-MRCEPA(D) method along with FCI and
from the FCI and CISDTQ values). The figures display the fact SS-MRCEPA(0) values as a function of the R{B¢,) distance.
that the performance of the SS-MRCEPA(D) is very close in The comparison with the FCI results shows that the performance
agreement to the parent SS-MRCC method. The good numericalof the SS-MRCEPA(D) method is good. In addition, we reported
agreement of our SS-MRCEPA values with the corresponding some numbers for particular geometries (D, E, and F) along
standard results (FCI/CISDTQ), coupled with the fact that the with other available results in Table 4. Around the region/
SS-MRCEPA(D) is able to reproduce the full PEC of the system the unperturbed energy of the “excited” orthogonal complement
with small deviation from the FCI values, again indicates the of the function with the same two model functions comes close
efficacy of the approximations. The deviation of the SS- to that for the ground state, and the exact extent of splitting of
MRCEPA(0) from the FCI/CISTDQ values is slightly higher the two states as well as the barrier height generated due to the
than the corresponding SS-MRCEPA(D) and SS-MRCC meth- weakly avoided crossing becomes very sensitive to the accuracy
ods at smaller values of LiLi distances. From the figure, itis  of the formalism used. The full-blown SS-MRCC theory
evident that our methods show encouraging results in computingperforms very well in handling both the intruders and in
the PECs. predicting good barrier height.Inspection of the table also leads

4. Insertion of Be into i BeH, Model. The C,, insertion to the conclusion that the SS-MRCEPA(D) performs pretty well
reaction of Be into K to form the BeH complex® is a very with respect to the FCI values even at these three important
often used model to test the performance of various MR reaction points. Very recently Pittner et®8lhave applied the
methods35%-62 The Be atom approaches the iHolecule from MRBWCCSD method of Hubaand co-worker¥ which is not
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TABLE 4: Relative Energies (mH) with Respect to the FCI

Values, [Erci — Emetnod, Of the 1'A; State of BeH?
geometry

D E F
FCI2 —15.622883—-15.602919—-15.624981
MCSCP —53.31 —64.35 —66.68
MRCIP —0.84 —2.01 —3.08
MRLCCM®P 2.62 2.40 5.50
MRCEPA(Oy 3.28 4.30 5.50
MRACPP 0.90 0.90 0.53
MRAQCC? —0.29 —-1.11 —1.98
MRAQCC-m¢ 0.19 —0.57 —0.36
MRAQCC-W# —0.45 —1.37 —2.29
MRAQCC-vmd —0.02 —0.87 —-1.11
MRCEPA? 1.65 2.55 5.88
MCCEPA —0.20 —0.15 —0.54
QDVPTY 2.9 4.7 55
MRCEPA(2)! 1.2 35 45
QDVPT+APC 0.91 1.03 0.53
MRBWCCSD (uncorrected) —0.68 0.26 0.48
MRBWCCSD (corrected) —0.44 0.60 1.96
SS-MRCEPA(0) 0.503 1.487 477
SS-MRCEPA(D) —1.994 —2.735 0.381
SS-MRCC 0.08 —0.85 —-0.37

aValues in a.u. " Reference 5% Reference 8¢Reference 41.
¢ Reference 42/ Reference 43¢ Reference 44" Reference 46.Ref-
erence 63! Reference 62.
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Figure 5. PEC of the i molecule.

orbitals are taken from the RHF solutions corresponding to the
configurationgs.

In Figure 5, we plot the entire PEC calculated by our SS-
MRCEPA methods and compare them with the parent SS-
MRCC and other available results, viz., (i) MRCISD10 and
MRLCCM108 (ii) sr-MRBWCCSD and MRMBPT (2586 (iii)
CASPT2, and (iv) VOO-CCD(2) and SF-O®We also present

rigorously size-extensive to study the perpendicular insertion the results of various SR-based MBPT methods reported by

reaction of Be into Hto form the BeH complex. They observed
that the performance of the MRBWCCSD method is promising,

Laidig et al® The suffix associated with the MRCISD and
MRLCCM denotes the reference space consisting of 10

although the size-extensive correction of the method does notconfigurations considered in these calculations. The sr-MRB-

necessarily improve the results relative to the FCI vafdes.

5. F, SystemThe study of the potential energy curve for F
is a quite challenging test for ampultireferencemethod due
to the high contribution of dynamical and nondynamical

WCCSD¢ of Hubats group used the same active space as we
have considered here, and they start from the RHF wave function
for their calculations of the PEC of the, fnolecule. The sr-
MRBWCCSD method is not fully size-extensive. To compute

correlation effects. We investigate here the performance of the the PEC of the Fmolecule via the MRMBPT(2) method using
SS-MRCEPA methods in describing the ground-state PEC of fyll-valence space, Huband co-worke® have used various

the L molecule. It is now a well-known fact that RHF- or UHF-

types of shifting techniques to avoid the problem of intruders,

based SR methods are not able to describe the PEC of;the Fsince it is an effective Hamiltonian based method. The results

molecule. |z has a ground electronic configuration ¢f =
101072022071 1,307 and a large nondynamical correlation
ansmg from the¢2 = 1021022022021n41n4302 configuration.
Since the 33 and 3, belong to dlfferent symmetrles the
functionsig: andphi, constitute the CAS. Thed3 orbital plays
the role of HOMO in the dissociation region, while near the
equilibrium domain this role is played by thergdorbital. Then
the Ity — 3oy excitations obviously act as intruders. However,

reported against CASPT2have been carried out using active

space of full valence. The valence optimized orbitals coupled
cluster doubles (VOO-CCD) is an alternative computationally
cost effective way for a full valence complete active space SCF
(CASSFC) model for single bond dissociation and diradicals.
Dynamical correlation is incorporated into the VOO-CCD

function via usual second-order perturbation theory which leads
to the VOO-CCD(2) model. The method is size-consistent in

if one wishes to increase the dimension of the active space bynature. In the SF-OD method optimized orbitals (OO) coupled

the inclusion of 4y orbitals, even more intruders will be

cluster double (CCD) model, the constituting reference state

encountered. Thus our choice of a two-dimensional referenceand the target state are then generated via single double spin-

space with two active orbitals,og and 3, is optimal.

flip (SF) excitations. The VOO-CCD(2) and SF-based methods

Straightforward application of the conventional two-dimensional are quite promising while describing single bond breaking within
Hilbert space MR method is not applicable in this case becausethe SR framework. The energies computed via either MR-
of several crossings between model and outer zero-order levelsCISD10 or MRLCCM10 of Laidig et &4 are not size-extensive
near the equilibrium geometry. There have been many studiesin nature. Here it is important to mention the fact that MRLCCM
on this PEC, both in the realm of perturbative and nonpertur- is quite different from the linear SU-MRCC meth&tiwhich

bative approaches in recent tinfés® The pronounced non-

gives size-extensive energies. The SS-MRCEPA method is

dynamical character coupled with the intruder states warrants arigorously size-extensive and also intruder free as long as the
SSMR description of the system to study the complete PEC. In target state is well separated from the virtual functions. Here
this paper, we present the calculations performed on the F we present only the relaxed values of the SS-MR methods, since
molecule employing the same scheme and basis (DZP) as usedhe relaxed description of the SS-MR is essential for a proper

by Laidig et al® for comparing with the literature data of

description of the FF bonding. Figure 5 shows that the energies

various previous calculations. Since the SS-MR formalisms treat computed via the SR-MBPT method go down in the region of

both these configurationg{ and¢,) on an equal footing, we

dissociation which explains the singular behavior of the method

could have chosen either of the two determinants to generatein the case of the HOMOGLUMO degeneracy. Energetically
the HF orbitals. For the applications in this paper, molecular MRMBPT(2) and SF-OD are close to each other. The potential
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TABLE 5: Spectroscopic Constants of i TABLE 6: Relative Energies (mlH) with Respect to the XCI
- - Values, Exci — Emethod), Of the 1!A; State of CH, Using the

method re(A)  we(em™) woxe(em™) De(eV) DZP and TZ2P Basis Sets, Where XCI| Stands for FCI and
(SCY-SDCR 1.407 947 10.87 2.306 CISDTQ for DZP and TZ2P, Respectively
MRCISD1G® 1.435 821 15.2 1.222
MRLCCM10: 1439 842 153 1291 method DzP TZ2P method DzP TZzZ2P
MRCISD32 1.436 1.275 MRCI2 —5.03 MRAQCC-¢# —-2.91
MRLCCM32 1.439 1.257 MRLCCM? 1.27 MRAQCC-vmé —2.73
CASPT22 1.442 819 13.9 1.275 MRCEPA(O} 1.27 SS-MRCEPA(0) —1.58 1.01
sr-MRBWCCSD  1.421 888 13.8 1.703 MRCEPA? 1.19 SS-MRCEPA(D) —3.48 2.85
MRMBPT(2) MRACPP —1.01 SS-MRCC —2.54 1.69
simple averaging 1.374 1054 10.8 2.348 MRACPF-m¢ —0.61 SS-MRCEPA(®) —0.56 —1.17
double averaging ~ 1.377 1040 10.8 2196  MRAQCC? —2.69 SS-MRCEPA(D) —2.43 —2.06
VOO—-CCD(2¥f 1.417 1.51 MRAQCC-m¢ —-2.51 SS-MRCC =192 -1.11
gFF:ngSC(D)C ig? 1%2 aReference 112 Calculations using CASSCF orbitals.
SS-MRCEPA(0) 1.417 909 11.09 1.547 ) ) o
SS-MRCEPA(D)  1.417 862 16.76 1.466 PEC with a correct shape over the wide range of geometries in
SS-MRCC 1.420 876 14.27 1.430 an intruder-free manner although the two configurations con-
experimertt 1411 917.000 1.2 1.659 sidered here are not sufficient for an accurate zeroth-order

aReference 66° Reference 67¢ Reference 68, 116, 3194Experi- description of the ground PEC of the Folecule.

ment: Huber, K. P.; Herzberg, @onstants of Diatomic Molecules 6. Lowest Singlet of the CGHSystem.Historically, the
VNR: New York, 1979. determination of the ground states of Ciépresented one of

the first significant successes of quantum chemistry. Even today,
energy curves of the MRMBPT(2) and CASPT2 are not smooth this molecule is often used as a benchmark for testing new

over the wide range of nuclear distances. These two methodstheoretical developmentd32.79-72 To gain further insight into

show a very narrow unphysical barrier around the nuclear the performance of the SS-MRCEPA(D) method, we decided

; S X o i
ﬁ/'lsl‘?tg?s AOf 6'3] ac?. Fromdthe flghure, I'E'[IS clefatrhthat the dSSt i to compute the energy of the two lowégt; states of the CH
methods reproduce the pattern of the ground-sta esystem at equilibrium geometry, because earlier calculations

PEC ?t: the.g molecule :cn. atwell-bleha\:je.dtand balanfhedt m?n?r?r showed that at least tHé\; requires a MR description. To be
(,\)Avsr tth\:JII € rang”e 0 th ernuc te?r” t;IS ancgz ?/ISRCEClI 0 ?h grable to compare with FCI results, we use the same geometry,
methods as wellas the parent Iuli-biown 55- MENOd hasis (DzP), and scheme of Bauschlicher and Tailatsing

and the SF-based method. the same scheme and geometry, we have also used another basis

S|nc|e thf energ|estﬁom_$gted tv|a Idtlffetrre?’;hmetgpds aritﬂmset: TZ2P2 The TZ2P basis is the standard triggf€ plus two
Very close 1o one another, 1 1S natural to test the etlicacy ot the ¢4 ¢ polarization functions: d functions on carbon and p

various methods_ to generate_the PECina very accurate manneg, , ons on hydrogen. Although the present basis sets are not
via the computation of the various spectroscopic constants. Thus’large enough, they are nevertheless adequate to enable us to

to proceed toward testing the quality of the PEC generated Viadraw useful conclusions regarding the applicability of the SS-

different methods, we have presented the ground-state spectro; : : :
scopic constants in Table 5. Since the corresponding FCI value MRCEPA(D) method while computing the energies. For the

ing th basi i ilabl th | STZ2P basis, we were unable to get the FCI values with our
using the same basis are not avariablé, we compare tese valu€g,;;o 4 computer facilities. Thus for comparison we choose the

with exper!mental ones. The various Spectroscopic Cor?StantSCISDTQ results for this basis set. Here we constitute the
presented in the table are equilibrium distancg), harmonic required CAS using the configurations = 1a22a21b23a and
vibrational frequencyve (cm ), anharmonicity constanbex, ¢ q— 1a22a%1b%1b zgIn this calcg:ulation we halveluséd %WO sets
cm1), and dissociation ener eV). Table 5 shows that e T ' . ;

( ) e (eV) of orbitals for both the states: (a) HF orbitals of the function

each of the SS-MRCEPA methods shows good numerical d (b) CASSCE orbital di he |
agreement with the corresponding SS-MRCC, other available ‘gfl ?hne e(lb)ove 2 2) %Atséscorrespon Ing to the lowest energy

results, and the experimental values. The equilibrium distances /
calculated via different methods except the MRMBPT(2) method D€ results relative to the FCI/CISDTQ values for tHail

are comparable and agree with experimental results closely.State of our SS-MRCEPA(D) methods and other available
From the table, it is evident that the dissociation energy given Methods are presented in Table 6 for DZP and TZ2P basis sets.
by the VOO-CCD(2) and CEPA(0) methods is quite close to ~ We conclude the following for the DZP basis:

the experimental value. Among the other methodsPthealue (i) The MRCI method does not give satisfactory results.

of the SS-MRCEPA(D) and SS-MRCC methods is in good (i) The performance of the SS-MRCEPA(D) method toward
agreement with the experimental results. The table also depictscomputing the energy of th¢’A, state is quite encouraging as
that the spectroscopic constants of the MRCISD and MRLCCM compared to the other methods reported.

methods do not improve much on going from the reference space (i) The performance of the SS-MRCEPA(0) and MRACPF-
consisting of 10 configurations to the reference space consistingmc results is rather close to the FCI in comparison to other
of 32 configurations, although the calculations involved in methods reported.

MRCISD32 and MRLCCM32 are much more computationally (iv) The performance of the SS-MRCEPA(D) method is
demanding than those of MRCISD10 and MRLCCM10. Un- comparable to that of the various MRAQCC methods.
fortunately the basis set saturation limiting values of spectro- We will now discuss the performance of our SS-MRCEPA
scopic constants of this system are still not known; it is thus method using the TZ2P basis. We have already pointed out that
not fair to conclude which method gives us more accurate FCI values are not available for this basis. Hence we compare
spectroscopic constants and PECs of high quality in this basisthe results generated via SS-MRCEPA and SS-MRCC methods
set. However, from the foregoing comparative study of the shape with the CISDTQ values. The deviation of SS-MRCEPA and
of PECs (Figure 5) and the spectroscopic constants (Table 5)SS-MRCC values using HF orbitals from CISDTQ is slightly
we may conclude that the SS-MRCEPA method gives us the smaller than the corresponding values obtained using CASSCF
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TABLE 7: [2'A;—1'A,] Excitation Energies (eV) for CH; the rather drastic but physically motivated approximations. Thus,
Using the DZP and TZ2P Basi8 the SS-MRCEPA(D) method may represent a desirable alterna-
method DZP TZ2P method DzP Tz2p tive for calculating the PEC over a wide range of geometries.
(SCYCISD® 579 SS-MRCEPA(0) 433 4.15 The SS-MRCEPA(D)_ method _is size_—exte_nsive. The SS-MR-
(SCYCISDT®  4.44 SS-MRCEPA(D) 4.39 4.28 CEPA(D) method using CAS is not invariant under separate
(SCYCISDTQ 4.64 SS-MRCC 461 4.65 unitary transformations of the core, active, and virtual orbitals.
MRCIP 4.65 CISDTQ 459 454 Hence we have also discussed the aspect of size-consistency
l\Eﬂgl\CA:IJ(Eg)SDT j-gg FCI 4.60 which is a nontrivial issue for the SS-MRCEPA(D) method.
) : More extensive work is needed to fully access the accuracy
aOrbitals: HF of 1a22a21b23a% function.? Reference 74¢ Refer- and utility of this method on a larger scale of ground-state
ence 75. calculations involving closed as well as open-shell reference

space functions. The number of cluster amplitudes of the method
orbitals. The deviation of SS-MRCEPA(D) with respect to the considered can be reduced using a contracted description of the
CISDTQ values is very close in proximity to the deviation of ansatz of the starting wave function as that of the contracted
the parent full-blown SS-MRCC method. MRCI method.
To test the performance of the formalism for excitation
energies, we have chosen deliberately the excited root while Acknowledgment. The authors gratefully acknowledge
we diagonalize the matrix of the dressed Hamiltoritan stimulating discussions with Professor Debashis Mukherjee.

In Table 7, we summarize the excitation energies between
the two lowestA; states obtained by the SS-MRCEPA(D) and References and Notes
other methods using the DZP and TZ2P basis sets. From the (1) Cizek, J.J. Chem. Physl966 45, 4256;Ady. Chem. Phys1969
table, it is clear that the excitation energies obtained from our 14, 35. Paldus, J.; Cizek, J.; Shavitt,Ahys. Re. A 1972 5, 50.
SS-MRCEPA(D) method are quite credible, in comparison to __ (2) Bartlett, R. J.J. Phys. Chem1989 93, 1697. Bartlett, R. J. In
the FCI/CISDTQ results. The SS-MRCEPA(0) and MRTJ g/l’itr)]girgolrié?cltggrg.c Structure ThearYarkony, D. R., Ed.; World Scientific:
values are the same and are seen to compare quite well with  (3) Bartlett, R. J.; Silver, W. Dint. J. Quantum Cheni975 S9 183,
the FCI results. Although the results of the (83TISDT or < h(4)f ShaVig, ||-”"|1E('\j/|9tg|0d5 OfPelewO’{I“C S\t(fUthU;%?t?eofVOL 3
chaerer, H. ., I, . enum Press: ew YOorkK, .
(SC)ZOS.DTQ approac_h are comparable, (_)ur SS_.MRCE.PA (5) Langhoff, S. R.; Davidson, E. Rat. J. Quantum Chenl974 8,
method is less demanding from the computational point of view. g1. pople, J. A.: Seeger, R.; Krishnan,IRt. J. Quantum Cheri977 11,
On the other hand, the dimension of the diagonalization space149. Francois, J. P.; Gybels, Rhem. Phys. Letfl99Q 172 346.
used in our SS-MRCEPA method is much smaller than that in __ (6) Meyer, W.J. Chem. Physl973 58, 1017;Theor. Chim. Actd 989
the MRCH-Q calculations. These issues may make the SS- "7y kel H. p.; Sessler, A. MPhys. Re. 1963 132, 2091. Kelly, H.
MRCEPA method computationally more attractive. The inclu- p.Phys. Re. 1964 134, 1450.
sion of triples involves including a plethora of diagrams, which Egg gdagitz, ?- 'g-; ﬁhlrinch,JRCLhe&T IF_’hyS-JL;m(?ES 14§h4§é93
_ ; _ audey, J. P.; Heully, J. L.; Malrieu, J. . Chem. Phy
.aISO makes the EOM-CCSDT me_thoq CompUtatlon_a”y demand 99, 1240. Nebot-Gil, I.; Sanchez-Marin, J.; Malrieu, J. P.; Heully, J.-L.;
mg._Tht_e computed values of excitation energy using the TZ2P Maynau, D. J.J. Chem. Phys1995 103 2576.
basis via our SS-MRCEPA method are very close to those of (10) Malrieu, J. P.; Nebot-Gil, I.; Sanchez-MarinJJChem. Physl994

the parent SS-MRCC method. 100, 1440. _
. . (11) Szalay, P. G. IrRecent Adances in Coupled-Cluster Methqds
Finally we make a comment that the most stringent test for gariett, R. J., Ed.; World Scientific: Singapore, 1997; see also references

the generality of the CEPA method would be in situations where therein.

the orbitals change very rapidly as a function of the minor (12) Hurl((jey, A. C. InElectron Correlation in Small Moleculgécademic
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