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In this paper, we present a coupled electron-pair (CEPA) type variant of the state-specific multireference
coupled cluster (SS-MRCC) method [Mahapatra, U. S., et al.J. Chem. Phys.1999, 110, 6171]. The method
termed as SS-MRCEPA based on complete active space (CAS) can handle quasi-degeneracy of varying degrees
over a wide range of potential energy curves (PECs), including regions of real or avoided curve-crossing.
The method is size-extensive and avoids the intruder problem in a natural manner. Exploiting a two-dimensional
CAS-based SS-MRCEPA method, we consider, in this paper, several demanding molecular systems that benefit
from multireference description. The reliability of computational results of the method for PECs of the ground
state of P4, H4, H8, perpendicular insertion of Be into H2, Li2, and ground-state energy at the equilibrium
point of CH2 will be discussed with respect to the parent SS-MRCC and full CI/large scale CI results. We
have also reported the excitation energies corresponding to the ground states of H8 and CH2 systems. The
method has also been applied to study the bond breaking in the F2 molecule which is a challenging task for
any ab initio method. In all cases, the comparison is also made with the results obtained from other CC- and
CEPA-type methods wherever available.

I. Introduction

Although nonvariational methods such as single reference
(SR) based coupled cluster (CC)1,2 and perturbation (MBPT)
theories3 are widely used, the most straightforward and con-
ceptually simple method to treat the correlation is the variational
SR-based configuration interaction method (CI).4 In contrast to
the CC method and MBPT, the main objection for the truncated
SRCI method is the lack of size-extensivity of the computed
energies. Many methods have been reported in the literature
regarding removal of the size-extensivity error of the energy
obtained from the truncated SRCI method via physically
appealing and heuristically motivated empirical correction
factors such as Davidson’s correction.5 Davidson’s correction
is very simple and can be justified by perturbation theory. Other
modifications are very close to Davidson’s proposal. Unfortu-
nately, none of these corrections to CI are accurate for large
systems. Hence, the most natural way out is the casting of the
truncated CI equation in a size-extensive manner which leads
to the coupled electron-pair approximation (CEPA) method.6-11

Meyer6 and Kelly7 developed the CEPA methods before the
popularization of the CC method.1,2 The CEPA method is size-
extensive as well as structurally and hence computationally
much simpler than the singles and doubles (SD) SRCC method.
Normally the working equation of the CEPA method comprises
simultaneous algebraic equations similar to that of the SRCC
method rather than the eigenvalue equation of the CI method.
Hence one can consider the CEPA method as a specific
approximation of the SD-based SRCC equation in a size-

extensive manner or a version of size-extensive corrections to
the truncated CI (CISD) method. In this context, we refer to
some reviews for an extensive survey of SRCEPA theories.11-13

The relation between CEPA approaches and the Davidson
correction has also been studied extensively.14

An alternative way of restoring the extensivity of the CISD
method yet continuing to have its eigenvalue equation form is
to dress the CISD matrix suitably by some or all of the exclusion
principle violating (EPV) terms. An advantage of the method
is that one can partly utilize the extensively developed CI
computational procedure. This was pioneered by Malrieu and
co-workers9,10 who showed that all the EPV terms can in
principle be included exactly in a dressed CI formulation. In
this method,9,10 termed as self-consistent-size-consistent (SC)2CI,
they included all the EPV terms although the calculation of EPV
terms is not trivial. The CEPA-like approximation which we
have presented in this paper, developed for multireference
situations, is conceptually related to the method of Malrieu and
co-workers9,10 in the sense that all the EPV terms can also be
included naturally in our formulation as well.

The efficacy of the SR methods goes down in the presence
of quasi-degeneracy of the certain virtual functions with the
reference functions. This warrants the development of multi-
reference (MR) methods.15-19 The MR generalization of CC
and PT is not a trivial aspect due to the various theoretical and
computational complications. There are three main classes of
MRCC methods: (i) valence-universal (VU),18 a Fock space
approach, which is very useful for the computation of spectro-
scopic energies; (ii) state-universal (SU),19 a Hilbert space
approach, which is widely used for the study of the potential
energy curve (PEC); and (iii) the state-specific (SS) method.20-25
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The main difficulty associated with the effective Hamiltonian-
based MR theories using complete active space (CAS) is the
problem of the intruder state.26 This is due to the fact that the
method generates several states simultaneously. It is thus useful
to search for a method which would not generate several states
but instead would focus on a specific target state so that the
intruders are not encountered. The state-specific MR method
addresses the solution of a specific state of interest at a time
and is thus free from the intruder state problem. Although the
SS method using a SR starting point with selective higher rank
operators is also studied,27 a MR-based SS approach is more
natural and more flexible to tackle the intruders. Among the
various state-specific MR methods given by Malrieu and co-
workers,21 Mukherjee and co-workers,22,23 and Hubacˇ and co-
workers,24 Mukherjee and co-workers22,23 and Hubacˇ and co-
workers24 use the Jeziorski-Monkhorst ansatz (JM)19 while
Malrieu and co-workers21 use the low order quasi-linearized
truncation schemes. The method of Hubacˇ and co-workers is
structurally much simpler than that of Mukherjee and co-
workers, but the method is not rigorously size-extensive. In a
latter development, Hubacˇ and co-workers28 have proposed a
way to eliminate the size-inextensive terms from the cluster
finding equations via an additional iteration, where they modify
the BW resolvent and drop the terms that are not size-extensive.
The idea is to make MRBWCC a posterior close to its
Rayleigh-Schrödinger version. An analysis indicating how a
continuous transition from the state-universal theory of Jeziorski
and Monkhorst19 to the state-specific theories of Hubacˇ and co-
workers24 and of Mukherjee and co-workers22,23 can be ac-
complished has recently been done by Pittner.29

The state-specific MRCC method based on CAS proposed
by Mukherjee and co-workers22,23 [termed as SS-MRCC] is
manifestly size-extensive and size-consistent. In all these SSMR
many-body methods,21-24 the diagonalization of the effective
Hamiltonian operators constructed within the model space
generates the energies and hence the method usesrelaxed
coefficients for the model space functions. There is a corre-
sponding formulation of theunrelaxedvariety.20,22 Since the
dimension of a CAS rapidly increases with the number of active
orbitals considered, it is of utmost practical importance to be
able to employ an arbitrary general model space (incomplete
model space, IMS), rather than to be restricted to a CAS, while
at the same time preserving the size-extensivity of the resulting
method.30,31 Although the intruder state problem of the tradi-
tional effective Hamiltonian can be avoided at a given geometry
using judicial choice of the IMS,30 it is not useful over the whole
range of the PEC. There are usually different intruders in the
different regions of the PEC; thus it is impossible to find a
unique IMS that is suitable in the entire range of geometry. Of
course, one can always apply different IMSs for different
geometries, but this does not generate a smooth PEC. The SSMR
method is free from such an objection and the intruder problem.
Recently Krylov and co-workers32 have proposed a promising
approach to tackle the MR situation but in a SR fashion, the
spin-flip method. Significant research on the MRCC methods
is still in progress. However, MRCC methods are challenged
even now when it comes to mapping out the PECs. The
computation of PECs is, of course, much more demanding.

Another class of methods try to generate states of interest
via the action of an excitation operator on a simple base function,
usually of the ground state. The linear response based theories
based on CC reference functions have been proposed sometime
back to achieve this goal, starting from the HF or ROHF ground
reference state.33-37

The MR generalization of CI (MRCI)15 is quite straightfor-
ward from both the theoretical and computational point of view.
Several groups have developed various versions of the MRCI
method.16 While the MRCI is known to be the most common
form of CI that is practical to use, as that of the SR case, the
truncated MRCI (say MRCISD) method is also not size-
extensive in nature. The Davidson type corrections to the
truncated MRCI case have also been reported.38,39When these
corrections are applied to the MR case, the error in size-
extensive corrected MRCISD not only increases linearly or even
faster with the number of subsystems but also with the size of
the model space. As we have already discussed, a more logical
way of handling the problem of the size-inextensivity of the
MRCI method is to correct the working equation rather than
the computed energy. Much effort has been invested into this
type of research recently. The multireference CEPA (MRCEPA)
methods fall in this class.8,11,21,40-46 There are broadly two types
of MRCEPA approaches. One is state-universal MRCEPA,45,46

and the other is state-specific MRCEPA.8,11,21,40-43 All these
MRCEPA methods avoid the redundancy problem using non-
redundant cluster operators to compute the dynamical correlation
on the zeroth-order MR wave function. To get a detailed
discussion in this context, we refer to the recent review of
Szalay.11 As pointed out earlier, the perennial problem associated
with the SU-based MRCEPA method is the intruder states,
where as the SS-based MRCEPA method is free from such
objection and hence is very suitable to compute the energy over
the wide range of geometries.

The MR version of the (SC)2CI method, termed as MR-
(SC)2CI,21 can be viewed as the size-extensive dressing of the
MRCISD method just as the (SC)2CI is considered to be the
size-extensive dressing of the SRCID method. Similar to the
SR case, all EPV terms are included in an exact manner. The
direct discussion of the redundancy terms of this method with
respect to the above-mentioned state-specific MRCEPA methods
is not possible. The source of the generating redundancy terms
in these two situations is completely different. We will discuss
this issue later.

In this paper, we will go on to present a SS version of the
MRCEPA method starting from the full-blown SS-MRCC
method22,23using the same spirit of Malrieu and co-workers as
done in the SR.9 The method is termed by us as SS-MRCEPA-
(D) [D stands for “diagonal dressing”]. The SS-MRCEPA(D)
has close resemblance to the MR-(SC)2CI method of Malrieu
and co-workers.21 The method is structurally very simple
compared to the parent SS-MRCC method, but it captures most
of the essential physics of the parent method despite neglecting
a host of nonlinear terms. Although a brief report has already
been published,47 this article is a detailed theoretical and
numerical account of the SS-MRCEPA(D) method.

In this paper, our main focus is on testing the performance
of the SS-MRCEPA(D) method. We present the results of its
application to various archetypical model systems for which we
can generate the exact full CI (FCI) results and thus illustrate
the potential and flexibility of this method.

The paper is organized as follows: In section II, we shall
first recall the principle of the SRCEPA method. After that, we
discuss the basic issues of the SS-MRCC theory. In the same
section, we then present the development of the SS-MRCEPA-
(D) method. In secction III, we will discuss the aspect of size-
extensivity and consistency of the method. We will cover the
comparison of the SS-MRCEPA(D) with the other allied
methods in section IV from the theoretical point of view.
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Computational details and results are provided in section V.
Finally, we summarize the pros and cons of the SS-MRCEPA-
(D) method.

II. Theory

In this section, we will discuss and develop the SS-MRCEPA-
(D) method. In the first subsection, we will briefly outline the
principal ideas behind the SRCEPA-like methods before em-
barking on a discussion of the parent SS-MRCC method and
the CEPA-like approximants thereof. This will motivate us
toward the types of approximations needed in generating the
MRCEPA equations starting from the SS-MRCC equations.

A. An Overview of the SRCEPA Method. In this section,
we examine the SR case in order to understand the basic concept
of the SR-based CEPA scheme from the SRCC equations. Let
us start with a Hartree-Fock (HF) reference function,φ0, and
a correlated wave function:ψ ) exp(T2)|φ0〉, whereT2 ) ∑aTata
(the indexa denotes the electron pairs). For the sake of easier
understanding of basic relations, we neglect single excitation,
i.e., we consider the CCD model. After simple manipulation,
we obtain the following equations:

Combining the above two equations leads to the following
expression:

After the cancellation of the disconnected terms in the last two
terms of the above equation, an important part, the so-called
EPV terms, remains. Though EPV terms are disconnected in
the form given above, they do not cause the error of extensivity,
since they can equally be written in the connected form. The
above equation can be written as follows:

Several methods have been developed to include EPV terms,
∆. These methods are often referred to as CEPA methods.13

The CEPA(0) corresponds to ignoring entirely the term∆ in
eq 2.4; the CEPA(0) approximation is equivalent to the
linearized CCD. The CEPA(0) method is not exact for the two-
electron problem. The diagonal dressing9,10 of Malrieu and co-
workers (to be called CEPA(D) from now on) involves the most
complete inclusion of the EPV terms, by retaining all the terms
in ∆ in the projection ontoøRâ

pq [it is important to note that in
øa, a denotes electron pairs, but here we are explicitly showing
the labels for electron pairs] which have at least one orbital in
common withR, â, p andq. In the SRCCD context, this amounts
to keeping in the quadratic terms oneT2 amplitude with the
labelsR, â, p, andq and the other having at least one of the
labels of the first T2. This amounts to approximating
1/2〈øRâ

pq|[H, T2], T2]|φ0〉 as[-∆ tRâ
pq], where∆ has the value as

given in refs 9 and 10. When the singles are included, the CEPA-

like approximations are modified by including all the linear and
quadratic powers ofT1. The MRCEPA formulation using the
same concept within the SS framework would be presented in
the next section.

B. An Overview of the SS-MRCC Method.The full account
of the SS-MRCC method and its illustrative applications can
be found in refs 22 and 23; we only briefly describe essential
features below.

In the SS-MRCC approach, the exact wave function is
expressed as

where

The t coefficients are antisymmetric, andR1‚‚‚Rn andr1‚‚‚rn

are labels of occupied and unoccupied orbitals in eachφµ,
respectively. Moreover,R1‚‚‚Rn andr1‚‚‚rn cannot be exclusively
valence labels which means thatTn

µ generates only external
excitations, i.e., excitations outside the model space when acting
on φµ. Such a definition ofTµ follows from the intermediate
normalization condition for the wave operator.

Each model space function,{φµ}, spans a CAS and plays
the role of a vacuum. As a consequence, this method provides
an unambiguous definition of the MR problem within the Hilbert
space framework. This has computational advantages. Due to
the action of the cluster operatorsTµ on the reference space
functions, some virtual functions are generatedmore than once,
which leads to the problem of redundancy. Thus the problem
of redundancy in SS-MRCC and hence the SS-MRCEPA
method is completely different from the other aforesaid state-
specific MRCEPA8,11,40,41methods. This problem in the SS-
MRCC method is removed using suitable physically motivated
sufficiency conditions, which leads to the following coupled
equations.

The cluster amplitudes defining theTµ operators are deter-
mined by solving the following equation:

whereHh µ ) Hexp(Tµ) andH̃µν ) 〈φµ|Hh ν|φν〉.
The equation determining the model space coefficients{cµ}

and the target state energy is given by

For practical purposes, theTµ operators are truncated at the
SD level, leading to the SS-MRCCSD method. The method
based on CAS is rigorously size-extensive and size-consistent
with respect to the dissociation process at hand. The proof of
connectedness of the SS-MRCC theory bears close resemblance
to the SU-MRCC theory of Jeziorski and Monkhorst.19 We now
discuss some important issues regarding the SS-MRCC theory
which are pertinent for further development of the CEPA-like
theory from it. If the cluster operatorTµ is connected, one can
easily show that the dressed HamiltonianHh µ and the matrix

E ) 〈φ0|H|φ0〉 + ∑
b

〈φ0|HTb|φ0〉tb (2.1)

Eta ) 〈øa|H|φ0〉 + ∑
b

〈øa|HTb|φ0〉tb +
1

2
∑
b,b′

b*b′

〈øa|HTbTb′|φ0〉tbtb′

(2.2)

〈øa|H|φ0〉 ) ∑
b

[〈φ0|H|φ0〉δab - 〈øa|HTb|φ0〉]tb +

∑
b

〈φ0|HTb|φ0〉tbta +
1

2
∑
b,b′

b*b′

〈øa|HTbTb′|φ0〉tbtb′ (2.3)

〈øa|H|φ0〉 ) ∑
b

[(〈φ0|H|φ0〉 + ∆b)δab - 〈øa|HTb|φ0〉]tb (2.4)

ψ ) ∑
µ

exp(Tµ)φµcµ (2.5)

Tµ ) T1
µ + T2

µ + ‚‚‚ + Tn
µ (2.6)

Tn
µ ) ( 1

n!)
2

∑
R1‚‚‚Rn,r1‚‚‚rn

tr1‚‚‚rn

R1‚‚‚Rn(µ)ar1‚‚‚arnaRn
‚‚‚aR1

(2.7)

〈øl|Hh µ|φµ〉cµ + ∑
ν

〈øl| exp(-Tµ) exp(Tν)|φµ〉H̃µνcν ) 0 ∀l,µ

(2.8)

∑
ν

H̃µνcν ) Ecµ (2.9)
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elementsH̃µν are also connected via multicommutator expansion.
Hence, the proof of the connectedness of the first term of eq
2.8 is quite straightforward, but this is a nontrivial issue for the
second term. The term〈øl| exp(-Tµ) exp(Tν)|φµ〉 can be written
as 〈øl| exp{(Tν - Tµ) + (1/2)[Tν, Tµ] + ‚‚‚}|φµ〉. Except the
term (Tν - Tµ), all other terms involving multicommutator of
the cluster operatorsTµ’s must have common orbital labels with
H̃µν. Since in the SS-MRCC theory all the model space functions
are treated on the same footing, the cluster operatorsTν andTµ

have the same functional form and consequently the difference
(Tν - Tµ) also has common labels with the matrixH̃µν. As a
result of this, the second term of eq 2.8 is connected as a whole.
This aspect isVery importantwhile formulating any approximate
method, e.g., SS-MRCEPA, from the parent SS-MRCC theory
in a size-extensive manner. We are now in a position to present
the development of the CEPA-like method of the SS-MRCC
theory.

C. The SS-MRCEPA(D) Method.One can consider several
schemes for the development of the CEPA-like approximation
from the parent SS-MRCC theory. One may, e.g., emphasize
that only the single and double excitations{øl

µ} reached by the
action of Tµ on φµ should be included in eq 2.8 for everyøl

µ

used in the projection. Another possibility could be to include
all the virtual functions which are obtained from single and
double excitations from the model space. There are structural
differences in the CEPA-like schemes obtained with the above
two choices. In the former, up to quadratic powers of one-body
operatorsT1

µ can be included, and the quadratic powers ofT2
µ

must include only the EPV terms. In the latter scheme, up to
quartic powers ofTµ leading to the entire singles-doubles
excitation space with respect to the model space can appear. In
our formulation described below, we present the CEPA-like
equations for the latter scheme as the most general theoretical
development. We, however, approximate our equations used in
our numerical implementation by neglecting more than quadratic
powers of everyTµ and retaining only the EPV terms coming
from the powers ofT2

µ. In this case, the two CEPA schemes
become equivalent in our applications.

The most general CEPA-like equations for both the schemes
can generically be written as

The projectorQµ in this scheme refers to the virtual space
reached by the single and double excitations fromφµ. The more
general scheme not further discussed would have involved the
projector of the entire CISD space.

To develop the CEPA-like methods, the quasi-linearized form
of the SS-MRCC equations can be written as follows:

If we suppress the fourth term (the so-called coupling term)
on the left-hand side of the above equation, then from the point
of view of the particular reference functionφµ we obtain the
equation of the corresponding SR case. The only difference is

that certain amplitudes responsible for excitations within the
model space are excluded from the equation of the cluster
operators. The first three terms are connected in nature provided
the cluster operatorTµ is connected. Since we adopt the same
philosophy as that of SRCEPA, theøl’s in eq 2.11 must be
doubly excited for eachφµ. Thus the III term should contain
the product of singles and exclude the product terms of more
than doubly excited with respect to the model space functions.
The EPV terms coming from term III must include the product
of the cluster operators in such a way that the excitation involved
in one Tl

µ has at least one orbital in common with those
involved in the otherTl

µ. As we have already mentioned, the
two parts in the coupling term (term IV) should be treated on
the same footing to maintain the size-extensivity of the full-
blown SS-MRCC theory and any approximate theory starting
from it.

Considering the above discussion, we present the leading
terms of eq 2.11 explicitly in the following form:

The negative sign of the term∆µ is the EPV correction in IIIa
in eq 2.12 to keep conformity with the analogous SR term. The
term IIIb confined to the product of two singles (which is
indicated by the prime in the sum) leads to the doubles. The
two pieces IVa and IVb serve two specific and distinct purposes.
A portion of the term in IVa forν ) µ,

cancels bothHµµδlm and ∆µtl
µ terms of II and IIIa, while the

rest of the expression forν * µ of IVa corrects for the lack of
extensivity coming from the terms appearing inEtl

µcµ. As
Malrieu and co-workers9,10 have done in the (SC)2CI method,
we approximate∆µ by the terms containing allTµ’s with at least
one orbital in common with those appearing intl

µ. ∆µ in each
equation fortl

µ is thusl-dependent, and we indicate this by∆µ
l .

Denoting the energyE as ECEPA(D), eq 2.12 for this scheme,
referred to as SS-MRCEPA(D), takes the form

whereE satisfies the equation

Ignoring DµNEPV
l entirely in eq 2.14 and replacingECEPA(D)

by the CAS energyE0 leads to the SS-MRCEPA(0) scheme:

〈øl
µ|H(P + Qµ) exp(Tµ)|φµ〉cµ + ∑

ν

〈øl
µ| exp(-Tµ)

exp(Tµ)|φµ〉〈φµ|H(P + Qµ) exp(Tν) |φν〉cν ) 0 ∀l,µ (2.10)

[〈øl|H|φµ〉
I

+ 〈øl|[H, Tµ]|φµ〉
II

+
1

2
〈øl|[[H, Tµ], Tµ]|φµ〉]cµ

III

+

∑
ν

〈øl|(Tν - Tµ)|φµ〉

IV

H̃µνcν + other terms) 0 (2.11)

[〈øl|H|φµ〉
I

+ ∑
m

(Hlm - Hµµδlm)tm
µ

II

- ∆µtl
µ

IIIa
+

1

2
∑
m,n

′

gm,n
l tm

µ tn
µ]cµ

IIIb

+ ∑
ν

〈øl|Tν|φµ〉 H̃µνcν

IVa

+

other terms) Etl
µcµ

IVb
(2.12)

H̃µµ ) Hµµ + ∆µ
l + DµNEPV

l (2.13)

[〈øl|H|φµ〉 + ∑
m

[Hlm - (ECEPA(D) + DµNEPV
l )δlm]tm

µ +

1

2
∑
m,n

′

gm,n
l tm

µ tn
µ]cµ + ∑

ν*µ

〈øl|Tν|φµ〉H̃µνcν ) 0 (2.14)

∑
ν

H̃µνcν ) Ecµ
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with E0 satisfying the equation

The intruder-free nature of the SS-MRCEPA equations is
evident from the following form:

H̃µν ) Hµν and Dµ
l ) 0 for SS-MRCEPA(0). The SS-

MRCEPA is free from divergence due to the intruder effect if
E is well-removed from anyHll, even whenHµµ is close to this
Hll. Thus the SS-MRCEPA theory is intruder free in nature
which will be evident from the computation of the PEC of
various systems, discussed in section V.B.

We summarize here the most important key facts of the SS-
MRCEPA formulation:

(i) The method based on CAS is size-extensive in nature.
(ii) The method avoids the problem of intruders (as long as

the target state is well separated from the virtual one) in a natural
manner.

(iii) The formalism employs the relaxed coefficients descrip-
tion of the multideterminantal reference function which can also
be cast in the unrelaxed coefficients description.

The real merit of the SS-MRCEPA(D) method in comparison
to the mother SS-MRCC theory is that we save a lot of computer
time since in CEPA, we neglect a host of complicated nonlinear
terms. The discussion in section V.B will clearly demonstrate
the accuracy of the SS-MRCEPA schemes. We will also show
that the SS-MRCEPA(D) performs very well over a wide range
of potential energy curves of the states of diverse complexity
and arbitrary generality. The SS-MRCEPA(D) method does not
have a manifest orbital invariance property as that of the SS-
MRCEPA(0) theory. This is due to the inclusion of only the
EPV terms in a cluster expansion which makes the formalism
noninvariant with respect to the separate unitary transformations
among core, active, and virtual orbitals defined within the
framework of CAS. This criticism is persistent for all the CEPA-
like approaches for MR (and also SR) situations. But the most
simple CISD satisfies this invariance property in an explicit
manner. To circumvent this difficulty, attempts were made in
the past to include the EPV terms via certain pair-correlation
energies averaged over all the pairs, which preserve the
invariance. These corrections are, however, rather empirical in
nature or, at the most, are based on heuristic considerations.
Moreover, the methods have also been shown not to be
rigorously size-extensive. Although the error does not grow
alarmingly with increase in the number of electrons, this
limitation is aesthetically unpleasant and in a way belies the
very purpose of involving CEPA-like approximations. Recently
Chattopadhyay et al.48 proposed a specific version of a SS-
MRCEPA which displays the orbital invariance with respect to
the restricted rotations among doubly occupied, active orbitals
and virtual orbitals separately while preserving size-extensivity
and size-consistency rigorously. The theory does not bring in

empirical correction factors, nor does it require averaging of
the pair-correlation terms. The theory instead relies on natural
and automatic cancellation of the disconnected terms which are
non-EPV in nature by certain counter terms intrinsically present
in the parent SS-MRCC equations.

We may remark here that one generic criticism associated
with any many-body formalism using the JM ansatz19 (both in
SU-MRCC and SS-MRCC as well as their CEPA counterparts)
is the large number of cluster amplitudes. The SS-MRCC
formalism developed by Mahapatra22,23 using CAS (and also
incomplete model space31) and the CAS-based SS-MRCEPA
also share this feature. While attempts have been made from
time to time to reduce the number of variables in the cluster
amplitudes, a fully satisfactory solution has not yet been found
either for the state-universal or the state-specific formalism.
Considerable simplification can be made using partially con-
tracted descriptions, such as positing the sensible approximation
of equal amplitudes for all the one- or two-body inactive to
virtual excitations or both, as done in the internally contracted
CI.49

III. Extensivity of the Computed Energy of the
SS-MRCEPA Method

From the mode of derivations, it is quite clear that the SS-
MRCEPA(D) theory is manifestly size-extensive, since our
CEPA-like approximation from the parent size-extensive and
size-consistent SS-MRCC theory retains only the connected
terms. In the truncated equations, however, the invariance
property of the parent theory under localized transformations
of the core, valence, and virtual orbitals separately cannot be
retained. This, anyway, is generally the situation for the CEPA-
like approaches, except the CEPA(0) approach. The CAS energy
is invariant under localizing transformations separately among
the core and the active orbitals. It would be quite instructive if
we can verify the size-consistency (strict separability) of the
SS-MRCEPA(D) theory by analyzing the actual expressions in
the limit of noninteracting fragments, using orbitals localized
on fragments. Let us partition the full CI space into three
subspaces:P space composed of reference functions,Qµ space
of all single and double excitations from each reference function
φµ, andR space of all the higher excited functions outside the
MRCISD space. Since the demonstration of separability depends
essentially on the connected nature of certain terms in the SS-
MRCEPA equations, our discussion of separability can be
started with the following expression:

Let us consider a supermolecule composed of mutually nonin-
teracting molecules A and B. The Hamiltonian for the super-
molecule can be expressed as

whereHA andHB are the Hamiltonians for the subsystems A
and B, respectively. To apply the SS-MRCEPA method to
system 3.18, we assume that one can find reference functions
separating properly into fragments in their well-defined states
and therefore the zeroth-order energies can be added. We start
with associating a complete set of orthonormal functions (φµ

A)
and (φµ

B) with the subsystem A and B, respectively. The

〈øl
µ|H(P + Qµ) exp(Tµ)|φµ〉cµ + ∑

ν

〈øl
µ| exp(-Tµ)

exp(Tµ)|φµ〉〈φµ|H(P + Qµ) exp(Tν)|φν〉cν ) 0 ∀l,µ (3.17)

H ) HA + HB (3.18)

[〈øl|H|φµ〉 + ∑
m

(Hlm - E0δlm)tm
µ +

1

2
∑
m,n

′

gm,n
l tm

µ tn
µ]cµ +

∑
ν*µ

〈øl|Tν|φµ〉Hµνcν ) 0 (2.15)

∑
ν

Hµνcν ) E0cµ

tl
µ )

〈øl|H|φµ〉 +
1

2
∑
m,n

′

gm,n
l tm

µ tn
µ + ∑

ν*µ

〈øl|Tν|φµ〉H̃µν(cν/cµ)

(E - Hll - Dµ
l )

(2.16)
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corresponding identity operators for the subsystems are defined
to be

The relevant composite entities satisfy the appropriate
separability conditions:

In the expressions above, the indicesµ are not explicitly shown.
We decompose composite projectorsPAB andQAB into the

following:

Since we intend to show the separability property ofE, we
note that the set of model functions (φµ) goes over to the product
setA[φµAφνB] (whereA is the antisymmetrizer), while the set
of virtual functions (øl

µ) goes over to five different types of
product functions: (a)A[øl1

µAφλB], (b) A[øl2

µ
φλB], (c) A[øl1

λBφµA],
(d) A[øl2

λBφµA], and (e)A[øl1

µA øl1

λB],
We shall now show that our SS-MRCEPA equations do allow

additive energies for those cases which correspond to excitation
on one fragment only, i.e., for functions of the type a-d.

Projecting onto the composite virtuals where one fragment
is singly excited while the other is not, we get

We now simplify eq 3.19 term-by-term. We consider the first
term which upon simplification yields

which, upon taking care of the excitation to proper fragments,
yields

Likewise, the second term of eq 3.19, thecoupling term, is

which upon further simplification gives

Hence, for the single excitation of fragment A, our SS-MRCEPA
equations take the form

Similar relations hold true for the projections where fragment
A is doubly excited but fragment B is not:

These are just the SS-MRCEPA equations for fragment A. There
are similar expressions for the single and double excitations
for fragment B, with fragment A remaining unexcited.

We can also verify the projections onto the composite virtuals
where both the fragments are excited, i.e., for the function of
the typeA[øl1

µA øl1

λB]. By similar reasoning, one can show in a
straightforward manner that the total contribution isidentically
zero. Thus there are no working equations for such excitations.

We now consider the active space projections.

For the composite system,

IR ) ∑
µ

|φµ
R〉〈φµ

R|; R ) A, B

IR ) PR + QR + RR

IAB ) IAIB TAB ) TA + TB

cAB ) cAcB φAB ) φAφB

PAB ) PAPB

QAB ) PAQ1B + Q1APB + Q1AQ1B + PAQ2B + Q2APB

〈øl1A

µAφλB
|(HA + HB)(P + Q) exp(TµA + TνB)|φµA

φνB
〉cµA

cνB
+

∑
RAσB

〈øl1A

µAφλB
| exp(-(TµA + TνB)) exp(TRA + TσB)|φµA

φνB
〉

〈φµA
φνB

|(HA + HB)(P + Q) exp(TRA + TσB)|φRA
φσB

〉cRA
cσB

) 0

(3.19)

〈øl1A

µAφλB
|(HA + HB)(P + Q) exp(TµA + TνB)|φµA

φνB
〉cµA

cνB
)

〈øl1A

µAφλB
|HA(PAPB + PAQ1B + Q1APB + PAQ2B + Q2APB +

Q1AQ1B) exp(TµA)|φµA
φνB

〉cµA
cνB

+ 〈øl1A

µAφλB
|HB(PAPB + PAQ1B +

Q1APB + Q1AQ1B + PAQ2B + Q2APB) exp(TνB)|φµA
φνB

〉cµA
cνB

〈øl1A

µAφλB
|(HA + HB)(P + Q) exp(TµA + TνB)|φµA

φνB
〉cµA

cνB
)

〈øl1A

µA |HA(PA + Q1A + Q2A) exp(TµA)|φµA
〉cµA

cνB

∑
RAσB

〈øl1A

µAφλB
| exp(-(TµA + TνB)) exp(TRA + TσB)|φµA

φνB
〉

〈φµA
φνB

|(HA + HB)(P + Q) exp(TRA + TσB)|φRA
φσB

〉cRA
cσB

)

∑
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φνB
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φσB

〉cRA
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+

∑
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〈øl1A

µA | exp(-TµA) exp(TRA)|φµA
〉〈φµA

φνB
|HB(PAPB +

PAQ1B + Q1APBQ1AQ1B + PAQ2B + Q2APB) exp(TσB)|φRA
φσB

〉cRA
cσB

∑
RAσB

〈øl1A

µAφλB
| exp(-(TµA + TνB)) exp(TRA + TσB)|φµA

φνB
〉

〈φµA
φνB

|(HA + HB)(P + Q) exp(TRA + TσB)|φRA
φσB

〉cRA
cσB

)

∑
RA

〈øl1A

µA | exp(-TµA) exp(TRA)|φµA
〉

〈φµA
|HA(PA + Q1A + Q2A) exp(TµA)|φµA

〉cRA
cνB

〈øl1A

µA |HA(PA + Q1A + Q2A) exp(TµA)|φµA
〉cµA

+

∑
RA

〈øl1A

µA | exp(-TµA) exp(TRA)|φµA
〉

〈φµA
|HA(PA + Q1A + Q2A) exp(TRA)|φRA

〉cRA
) 0

〈øl2A
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〉cµA

+

∑
RA

〈øl2A

µA | exp(-TµA) exp(TRA)|φµA
〉
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|HA(PA + Q1A + Q2A) exp(TRA)|φRA
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Ecµ ) ∑
R

〈φµ|H(P + Q) exp(TR)|φR〉cR
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which on some mathematical manipulation yields

Therefore,

Thus the SS-MRCEPA(D) method is size-consistent in nature
only for localized orbitals on each subsystem, since the method
is not invariant under orbital rotations.

The various numerical examples which will be discussed in
this paper use the symmetry-adapted delocalized orbitals in
practice. Then one can easily say that the theory is not really
extensive in this case. This issue can be checked as one might
rotate the orbitals from delocalized to localized and check the
invariance of the results in the limit of large separation.
Unfortunately, it is not possible in this paper to test the change
of the results due to the orbital rotations.

IV. Comparison with Other Allied Theories

In the following part, we will discuss the relationship of the
present method with other state-universal and state-specific
MRCEPA methods from the theoretical point of view. In the
theoretical analysis of various MRCEPA methods, we mainly
focused on two terms: EPV and redundancy. The former is
already present in the SR case, while the latter is clearly due to
the MR extension. The term “redundancy” has been used in
the SS-MRCEPA method and in the MRCEPA methods
discussed by Szalay11 and Tanaka,45 but in totally different
contexts. The redundancy of the MRCEPA methods discussed
by Szalay and Tanaka is altogether unrelated to the redundancy
discussed by us and appears only when one rewrites the CEPA
equations in terms of CI-like coefficients rather than cluster
amplitudes. This type of redundancy thus is an artifact due to
the transcription of the CEPA equations involving cluster
amplitudes to one containing CI-like coefficients for the “direct”
terms. The aspect of redundancy discussed by us, on the other
hand, arises in an entirely different context. It is a physical
requirement where we deliberately use for projections the virtual
functions〈øl

µ|, which might appear more than once as excita-
tions from differentφµ’s. This is required to preserve the size-
extensivity of SS-MRCC and SS-MRCEPA equations.

Tanaka45,46has reviewed the various state-universal MRCEPA
approaches, and their reliability is assessed by comparing the
working equations and the numerical results in detail. In the

SU-based MRCEPA, if the reference functions are selected to
describe the excited state on top of the ground state ap-
propriately, the SU theory provides correlated wave functions
of these states at the same time. But the working equations
sometimes suffer from the so-called “intruder state” problem.
In such cases, the state-specific-based theories become a natural
choice.

As Szalay11 has already reviewed state-specific methods
extensively and focused on the way of approximating EPV
terms,∆, and treatment of reference space by comparing various
approaches, we will not go into such a detailed comparison,
but we will discuss how the various previously developed state-
specific MRCEPA methods are different from the SS-MRCE-
PA(D) method.

In the MRCEPA methods of Gdanitz and Ahlrichs8 and
Szalay and Bartlett,40 the EPV terms,∆, are treated in an
averaged way. The use of an average value for∆ means that∆
is independent of electron-pair excitation in the equation to
determine the correlation coefficients. These MRCEPA methods
are orbital invariant in nature since electron pairs do not appear
explicitly in the final equations. The methods are not strictly
size-extensive, although it has been observed that the error due
to the size-extensivity does not increase much with the
simultaneous increase in the number of the electrons.

Ruttink et al.42 proposed a way of approximating the
redundancy terms using the determinantal basis in their MR-
CEPA method by neglecting the EPV terms completely; thereby
the resulting equations remain at the CEPA(0) level. In this
method, the treatment of the redundancy terms is not straight-
forward and uniform but depends on the excitation class. The
MRCEPA method by Fink and Staemmler43 analogous to
SRCEPA of Kelly neglects the redundancy terms completely
but the EPV terms are considered in detail. Their method is
not size-extensive in nature and does not show orbital invariance
also. The state-specific MRCEPA methods discussed till now
belong to the category of SS-based theories without relaxation
of the reference space due to the inclusion of electron correla-
tions.

In contrast to these above schemes, our SS-MRCEPA
equations can simultaneously handle both the inclusion of all
the Qµ-space functions and the EPV terms beyond CEPA(0).
Of course, our method uses each model functionφµ rather than
the entire functionψ0, and this aspect, coupled with the use of
redundancy, distinguishes our approach from the rest of the
methods mentioned above. Also, since the combining coef-
ficients{cµ} are iteratively updated, we use relaxed coefficients
in our SS-MRCEPA schemes.

In the multireference size-consistent self-consistent CI method,
MR(SC)2CI, Malrieu et al.21 considered both the EPV and
redundancy terms exactly and hence the method is extensive in
nature. But calculating these two terms is not trivial. This
method is conceptually very close to our SS-MRCEPA method.
Since Malrieu et al. generate the functions in the virtual space
by acting on the individual functions of the reference space,
some of the virtual space functions are generated more than
once as that in our SSMR approach. We overcome the problem
of redundancy using suitable sufficiency conditions, while
Malrieu et al. resolved this problem via the use of a suitable
“genealogical weight” factor of the corresponding terms. The
method also usesrelaxed coefficients for the model space
functions.

EcµA
cνB

)

∑
RAσB

〈φµA
φνB

|(HA + HB)(P + Q) exp(TRA + TσB)|φRA
φσB

〉cRA
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∑
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cσB

+

∑
RAσB

〈φµA
φσB
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cνB

) EAcµA∑
σB

δνσcσB
+ EBcνB∑
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V. Numerical Tests

A. Computational Details. We discuss here both the details
of the working equations and the computational strategy leading
to the numerical implementation of the SS-MRCEPA(D)
method.

In the SS-MRCEPA(D) strategy (eq 2.14), in addition to the
terms in the SS-MRCEPA(0), some EPV terms are also taken
into account:

There is at least one orbital in common betweent2m
µ and t2n

µ in
the term ∑m,ngm,n

l t2m
µ t2n

µ . The diagonal matrix element ofH̃
which is used in the energy finding equation is of the following
form:

and the off-diagonal matrix element ofH̃ corresponding to this
scheme looks like

Two sets of variables, the cluster operators,Tµ’s, and the
combining coefficients,cµ’s, constitute the SS-MRCEPA(D)
equations in a coupled form. We trace the following scheme to
obtain a stable and a rapidly converging solution.

To achieve converged quantities, such as the energy, the
combining coefficients, and the cluster amplitudes, three levels
of iterations are needed through a nested loop structure. The
outermost loop (macroiteration cycle) provides the converged
coefficients and consequently the corresponding energy by
solving the eigenvalue problem. In the next level of the iterative
process, the coupling between the various cluster amplitudes,
tµ’s andtν’s, is taken care of, while the innermost step of iteration
leads to the converged cluster amplitudes. The cluster amplitudes
are then used to construct the matrix ofH̃. It is important to
highlight the fact that the couplings between the various cluster
amplitudes that are present in the SS-MRCEPA(D) equations
are not too many. Only those components oftν’s can couple
with µ * ν, which can result in excitations toøl by their action
on φµ. The converged cluster amplitudes for each updated
coefficient are then used to constructH̃µν. The H̃µν matrix
obtained therefrom and the set of updatedcµ’s are used in the
virtual projection in the next macroiteration. Upon convergence
at all levels, a diagonalization of theH̃µν matrix leads to the
required energy. Thus, in SS-MRCEPA(D) we update the
combining coefficients, the cluster amplitudes, and the energy
through the operation of three levels of iteration. Since the
reference determinants are closed-shell singlet in our applications
in this paper, the spin-adaptation of the methods is trivial. In
our implementation, we use thesame tolerance, η(µ) (say 10-8),
for different cluster amplitudesti

µ. When theδ(µ) [)|tµ
i (new)

- tµ
i (old)|] becomes smaller than the tolerance, convergence is

reached. In the iteration loop for obtaining the cluster ampli-
tudes, when the conditionδ(µ) e η(µ) is reached for the cluster
amplitude tµ

i , the tµ
i amplitude is frozen, while the iteration

process is started for the other cluster amplitudetν
i , µ * ν till

the conditionδ(ν) e η(ν) is attained. The working equations
for SS-MRCEPA are much simpler than the full-blown SS-
MRCC theory. A host of complicated nonlinear terms are simply
not present. The most time-consuming step in the CCSD method
is the computation of the nonlinear terms. The real advantage
of the SS-MRCEPA method over the SS-MRCCSD method is
that we save a lot of computer time, since in CEPA we neglect
a host of complicated nonlinear terms in a size-extensive and
intruder-free manner. This holds the key to a faster performance.

B. Results.In this section, we shall apply the SS-MRCEPA-
(D) formulation to compute the ground (and also excited) state
energies of some interesting prototypical systems which are
frequently used to test the performance of various SR- and MR-
based methods.

All the model space functions are considered on an equal
footing in our SS-MRCEPA methods, and hence these methods
are very useful to study the PEC. We have studied the PEC of
the ground state of H4 (P4 and H4), H8, Li2, and the
perpendicular insertion of Be into H2 to test the performance
of the SS-MRCEPA(D) method. The PEC of the ground state
of such systems possesses quasi-degeneracy at some point and
there are potential intruders at some other points, and hence
these systems are appropriate to test the efficacy of the SS-
MRCEPA methods. Since the lowest1A1 state of CH2 possesses
quasi-degeneracy to a strong degree, this has also been
considered. The model space (also called active space) of such
systems can be adequately described by two closed-shell
reference functions:φ1 ) [core]a2 andφ2 ) [core]b2. The active
orbitals (a andb) are of two different symmetries, and hence
the active space is complete in nature. The most natural example
of this type employs the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO)
as active orbitals. In all calculations, we use CASSCF MOs
generated by the use of GAMESS. In this paper, we have
presented only the results of therelaxeddescription of the SS-
MRCEPA(D) method. The results obtained via SS-MRCEPA-
(D) have been compared with those of the parent SS-MRCC
along with the FCI or high order CI calculations.

1. H4 Model.The H4 model is rather well-studied10,23,24,50,51

since it serves as a benchmark to test the applicability of
different SR- and MR-based many-body methods. Among the
various types of H4 systems possible, we will consider here two
often employed models: the rectangular (P4) and the trapezoidal
(H4) models to assess the performance of our SS-MRCEPA
methods.

(a) P4 Model. In the P4 model,10,50,51the four H atoms are
placed at the four corners of a rectangle, constituting the
rectangular geometry of the H4 system. Starting with the pure
square configuration, in which the internuclear separations are
fixed at 1.40158 au, two parallel hydrogen molecules, located
on the opposite sides of the square geometry (designated by a
single geometrical parameterR), are symmetrically pulled apart,
giving rise to different rectangular geometries. The system in
the square geometry possesses maximum configurational quasi-
degeneracy which is systematically lifted by increasing the
parameterR. We use a model space consisting of two molecular
orbitals (one HOMO and the other LUMO) and two electrons.
φ1 ) 1a1

21b2
2 andφ2 ) 1a1

22a1
2 are the two corresponding model

space functions for the ground state. Although the system
possessesD4h symmetry whenR ) 1.40158, in this model

[〈øl|H|φµ〉 + ∑
m

[Hlm - (ECEPA(D) + DµNEPV
l )δlm]tm

µ +

1

2
∑
m,n

gm,n
l t1m

µ t1n
µ +

1

2
∑
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gm,n
l t2m

µ t2n
µ ]cµ + ∑

ν*µ

〈øl|Tν|φµ〉 H̃µνcν )

0 (5.20)

H̃µµ ) 〈φµ|H + HT1
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∑
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∑
m,n

gm,n
l t1m

µ t1n
µ +

1

2
∑
m,n

gm,n
l t2m

µ t2n
µ |φµ〉
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system, all the molecular calculations are carried out usingC2V
symmetry. The geometry and basis considered here are the same
as in ref 10.

We plot in Figure 1 the ground-state energies obtained by
the SS-MRCEPA(0) and SS-MRCEPA(D) as a function ofR,
along with the corresponding FCI results using the same basis.
To get a better feeling for the relative performance of the various
methods, we plot in Figure 1 the deviations of energy values
obtained via different methods from the FCI values as well.
For comparison, the results of the parent SS-MRCC and (SC)2CI
of Malrieu and co-workers10 have also been presented in the
figure. It is clear from the figure that the performance of the
SS-MRCEPA methods is promising while describing the ground
state of the P4 model system over the entire region of the PEC.
The deviations of SS-MRCEPA results from the FCI energies
are uniform and quite encouraging. The SR-based (SC)2CI
scheme dresses each excited determinant by the unlinked effects
of the triples and quadruples from the outer space only. To
improve the accuracy of the SRCISD method, Malrieu and co-
workers10 proposed a perturbative and iterative full dressing
method involving both the linked and unlinked contributions
from the outer space [known as TD1)]. The most sophisticated
version takes into account the higher-order EPV terms in a self-
consistent manner in addition to the linked and unlinked
contributions. This has been called the TD1EPV method by
Malrieu and co-workers.10 From Figure 1, it is clear that the
values of (SC)2CI are diverging in nature at the region of near
degeneracy. However, the corresponding TD1 and TD1EPV
values show considerable improvement. This includes linked
triples and quadruples with respect to the determinantφ1 as well
as full EPV terms. In contrast, our two-determinants model space
approach captures most of the nondynamical correlations and
a substantial amount of dynamical correlations at all points of
the PEC. At larger distances, the ground state is essentially SR
in nature and our SS-MRCEPA(D), which has full EPV and
linked SD excitations out of the model space, should behave
very similarly to (SC)2CI, which also includes SD excitations
in a SR setting and keeps only the EPV terms. We can conclude
that our SS-MRCEPA methods are quite efficient approxima-
tions of the parent SS-MRCC method to compute the ground-
state PEC of the P4 model.

(b) H4 Model. The ground state of the H4 model50,51can be
described completely byφ1 ) 1a1

21b2
2 and φ2 ) 1a1

22a1
2. We

apply a DZP51 basis for this model. The H4 system consists of
two stretched H2 in a trapezoidal geometry where all the nearest

neighbor internuclear separations are fixed (2 au). The range
of degeneracy is completely described by a single parameterR
[0.0-0.5]. R ) 0.0 andR ) 0.5 correspond to the completely
degenerate and nondegenerate situations, respectively. TheC2V
symmetry has been used at each stage of the calculation of this
model system. The orbitals are used for the lowest root of the
(2 × 2) CAS.

Table 1 displays the deviations of the theoretically computed
ground-state energies by the SS-MRCEPA(D) method as well
as other results with respect to the FCI values available in the
literature. When we have considered the SUCCSD method, the
results are not so good in comparison to the other full-blown
CC methods. Li and Paldus25 have very recently shown that
the inclusion of the higher-than-pair cluster in the SU-MRCC
method [referred to as CI-correctedSUCCSD] can improve the
results of the SUCCSD method and intruder state problem. The
results of the CI-corrected SUCCSD represent a definite
improvement over the SUCCSD results in the nondegenerate
region of geometries, but not so in the degenerate region. The
performance of the SS-MRCEPA(0) method is quite good
among the various (quasi)linearized forms of the various CC
methods. A comparison with the results of the FCI and other
methods indicates that SS-MRCEPA(D) is numerically stable
and bypasses the difficulties of the intruder states in a stable
manner, while at the same time generating very encouraging
ground- and corresponding excited-state energies over a wide
range of the geometries.

2. H8 Model.The eight-electron model system H8
52 consists

of four H2 molecules with internuclear separation fixed at 2.0
au, arranged in the octagonalD2h configuration, and its geometry
is uniquely determined by a single parameterR. R ) 0
corresponds to the regular octagonal (D8h) geometry. The broad
spectrum of configurations,R [0,1], provides an opportunity to
study the performance of the SS-MRCEPA(D) method from
highly degenerate situations to practically nondegenerate ones
in a continuous way.

Our model space consists of two functions,φ1 ) ag
2 b3u

2 b2u
2

ag
2 andφ2 ) ag

2 b3u
2 b2u

2 b1g
2 . A strong interaction betweenφ1 and

φ2 can be seen by examining the FCI coefficients of the ground
state. Coefficients associated with the two reference functions
in the two lowest-lying FCI indicate that this two-dimensional
reference space is also appropriate in the degenerate, quasi-
degenerate, and nondegenerate situations for both the ground
and excited states. In our calculations, we used the minimal
basis set (MBS). The CASSCF orbitals corresponding to the
lowest root of the (2× 2) CAS are used for our ground and the
corresponding first excited state.

The ground (11A1) state and the excited (21A1) state computed
via the SS-MRCEPA(D) method are shown in Table 2 and Table
3, respectively. To get a better conclusion regarding the
performance of the SS-MRCEPA(D) method, we have also
quoted the results of other methods and indicated the relative
energies of the various methods with respect to the correspond-
ing FCI values within the bracket. From both the tables, it is
clear that the deviation of the SS-MRCEPA(D) from the FCI
values is very close to the full-blown parent SS-MRCC theory.
For the ground state, the results of the SS-MRCEPA(D) method
are better than the corresponding CEPA(0) version, while for
the excited state the quality of results of SS-MRCEPA(0) is
strikingly very good. For the excited state, the performance of
the SS-MRCC, the SSCCSD(T),53 and the SS-MRCEPA(D) is
very close and they perform slightly better than the SU-MRCC
and the CASCCSD.54 The better quality of the results for the
ground state in comparison to the corresponding lowest singlet

Figure 1. PEC (relative energies with respect to FCI) of the P4 model.
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excited state, 21A1, obtained via SS-MRCC and SS-MRCEPA-
(D) methods is due to the intervention of higher-lying states
that act as intruders for the 21A1 state. The results given in the
tables show that the CEPA(D)-like approximations in the parent
SS-MRCC theory are potentially very convenient to compute
the energies for the degenerate, nondegenerate, and also intruder-

prone regions for the ground as well as the corresponding lowest
singlet excited state.

3. Li2 System.The ground-state PEC of the Li2 molecule is
a rather good test case23,55,56for assessing the performance of
any SR or MR theory. The ground state of the Li2 molecule
requires a two-determinantal description in the zeroth order:φ1

TABLE 1: Relative Correlation Energies (mH) with Respect to the FCI Values, [EFCI - Emethod], of the Ground State of the H4
Model for Different Values of r

R

0.0 0.01 0.02 0.1 0.2 0.3 0.4 0.5

MRMBPT3b -2.172 -2.295 -2.386 -2.155 -2.079 -2.136 -2.161 -2.166
MRCISDb -1.771 -1.706 -1.277 -1.039 -0.895
MRL-CCSDb 3.685 3.610 3.436 5.027 * * * *
MRL-BWCCSDb -3.942 -3.961 -3.863 -3.212 -3.071 -3.092 -3.136 -3.151
SS-MRCEPA(0) 0.011 0.076 0.227 0.227 -0.110 -0.270 -0.347 -0.371
SS-MRCEPA(D) -2.195 -2.468 -2.360 -1.91 -1.637 -1.554 -1.596 -0.283
SS-MRCC 0.156 0.102 -0.030 -0.398 -0.353 -0.309 -0.289 -0.283
sr-MRBWCCSDb 0.100 0.012 -0.146 -0.582 -0.579 -0.559 -0.551 -0.548
SUCCSDc 0.686 0.594 0.173 1.187 1.998 2.308 2.379
CI-correctedSUCCSDc -1.528 -1.499 -1.077 -0.848 -0.784 -0.797 -0.808

a MRCISD and SUCCSD: missing values were not present. * denotes that no convergence is achieved.b Reference 24.c Reference 25.

TABLE 2: Total Energies (au) of the Ground State (11A1) of the H8 Modela

R

0.0001 0.001 0.01 0.06 0.1 0.5 1.0

SRCCSD -4.199769 -4.199885 -4.198280 -4.209147 -4.216649 -4.292535 -4.352445
(-5.034) (-5.03) (-7.49) (-3.02) (-2.11) (-6.86) (-4.45)

SSCCSD(T)b -4.211119 -4.211128 -4.211304 -4.214785 4.220106 -4.292907 -4.352691
(6.32) (6.24) (5.54) (2.62) (1.34) (-0.31) (-0.30)

SSCCSD(TQ)b -4.203722 -4.203809 -4.204728 -4.211350 -4.218096 -4.292914 -4.352730
(-1.08) (-1.08) (-1.04) (-0.82) (-0.67) (-0.31) (-0.26)

SU-MRCCb -4.207640 -4.207725 -4.205069 -4.214866 -4.221149 -4.293765 -4.353555
(2.84) (2.84) (-0.70) (2.70) (2.39) (0.54) (0.66)

SS-MRCEPA(0) -4.210300 -4.210388 -4.211283 -4.217405 -4.223742 -4.294248 -4.354840
(5.49) (5.50) (5.51) (5.24) (4.98) (1.03) (1.85)

SS-MRCEPA(D) -4.200584 -4.200946 -4.201347 -4.207690 -4.214155 -4.288770 -4.348842
(-4.22) (-3.94) (-4.22) (-4.47) (-4.61) (-4.45) (4.15)

SS-MRCC -4.206429 -4.206513 -4.207397 -4.213R668 -4.220020 -4.293847 -4.351823
(1.63) (1.63) (1.63) (1.49) (1.25) (0.626) (-1.67)

FCI -4.204803 -4.204886 -4.205769 -4.212169 -4.218767 -4.293221 -4.352990

a Values (mH) within the parentheses indicate the deviation from the FCI values, [EFCI - Emethod]. b Reference 53.

TABLE 3: Total Energies (au) of the Lowest Singlet Excited State (21A1) of the H8 Modela

R

0.0001 0.001 0.01 0.06 0.1

SRCCSDb -4.118353 -4.118594 -4.120809 -4.128224 -4.129853
(-25.647) (-25.51) (-23.98) (-18.11) (-15.32)

SU-MRCCb -4.135637 -4.135707 -4.136340 -4.137793 -4.136717
(-8.39) (-8.40) (-8.45) (-8.54) (-8.45)

CASCCSDb -4.135711 -4.135802 -4.136401 -4.137813 -4.136832
(-8.32) (-8.30) (-8.39) (-8.52) (-8.34)

F-CASCCSDb -4.140076 -4.140083 -4.140230 -4.140281 -4.139390
(-3.95) (-4.02) (-4.56) (-6.05) (-5.78)

SSCCSD(T)b -4.137306 -4.137502 -4.138924 -4.143823 -4.143428
(-6.72) (-6.60) (-5.88) (-2.51) (-1.74)

SSCCSD(TQ)b -4.142368 -4.142449 -4.143192 -4.144964 -4.143895
(-1.66) (-1.65) (-1.60) (-1.37) (-1.28)

SS-MRCEPA(0) -4.145839 -4.145918 -4.146698 -4.149320 4.148999
(1.81) (1.82) (1.91) (2.98) (3.27)

SS-MRCEPA(D) -4.136805 -4.136601 -4.137756 -4.139481 -4.138333
(-7.22) (-7.50) (-7.04) (-6.85) (-6.84)

SS-MRCC -4.137071 -4.137144 -4.137797 -4.139257 -4.136138
(-6.96) (-6.96) (-6.99) (-7.08) (-9.03)

FCI -4.144027 -4.144103 -4.144791 -4.146335 -4.145172

a Values (mH) within the parentheses indicate the deviation from the FCI values, [EFCI - Emethod]. b Reference 54.
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) 1σg
21σu

22σg
2 andφ2 ) 1σg

21σu
22σu

2. We have used both a small
DZ basis57 and a somewhat larger (6-311G**) basis, taken from
the GAMESS basis library, for the study of the ground-state
PEC using the SS-MRCEPA(D) theory. In all our calculations,
we have used theD2h point group.

The results obtained with the DZ and 6-311G** basis sets
are plotted in Figure 2 and Figure 3, respectively (as a deviation
from the FCI and CISDTQ values). The figures display the fact
that the performance of the SS-MRCEPA(D) is very close in
agreement to the parent SS-MRCC method. The good numerical
agreement of our SS-MRCEPA values with the corresponding
standard results (FCI/CISDTQ), coupled with the fact that the
SS-MRCEPA(D) is able to reproduce the full PEC of the system
with small deviation from the FCI values, again indicates the
efficacy of the approximations. The deviation of the SS-
MRCEPA(0) from the FCI/CISTDQ values is slightly higher
than the corresponding SS-MRCEPA(D) and SS-MRCC meth-
ods at smaller values of Li-Li distances. From the figure, it is
evident that our methods show encouraging results in computing
the PECs.

4. Insertion of Be into H2: BeH2 Model. The C2V insertion
reaction of Be into H2 to form the BeH2 complex58 is a very
often used model to test the performance of various MR
methods.23,59-62 The Be atom approaches the H2 molecule from

the direction perpendicular to the bond, and the bond is stretched
to enhance the nondynamical correlation effect as the distance
of approach becomes shorter. This system poses a serious
challenge to any theory where both nondynamical and dynamical
correlations are important in varying degrees along the PEC,
the active orbitals cross along the distance of approach, thus
necessitating theories which treat all model functions on the
same footing, and the two active orbitals face intruder orbitals
at the two extreme geometries, viz., the large distance of
approach and short distance of approach. State-specific formal-
ism should handle this situation for the ground-state PEC.

It is observed from the coefficients of the FCI results that in
the regions of the points A-C and G-I the dominant configu-
rations areφ1 )1a1

22a1
21b2

2 andφ2 )1a1
22a1

23a1
2, respectively. At

the transition points D-F, both configurations are equally
important: a quasi-degenerate reaction region. Hence these two
configurations constituting the CAS are sufficient for an accurate
description of the reference function of the ground-state PEC
of the BeH2 system. From a close study of the CI coefficients,
one can infer that the system shows strong configurational
degeneracy at geometries D, E, and F and faces intruders at
geometries B, C, H, and I. Therefore this model tests how well
the method performs with a strongly changing reference function
and in the presence of the intruders.

In Figure 4, we have presented the lowest1A1 state energies
obtained via the SS-MRCEPA(D) method along with FCI and
SS-MRCEPA(0) values as a function of the R(Be-H2) distance.
The comparison with the FCI results shows that the performance
of the SS-MRCEPA(D) method is good. In addition, we reported
some numbers for particular geometries (D, E, and F) along
with other available results in Table 4. Around the region D-F,
the unperturbed energy of the “excited” orthogonal complement
of the function with the same two model functions comes close
to that for the ground state, and the exact extent of splitting of
the two states as well as the barrier height generated due to the
weakly avoided crossing becomes very sensitive to the accuracy
of the formalism used. The full-blown SS-MRCC theory
performs very well in handling both the intruders and in
predicting good barrier height.23 Inspection of the table also leads
to the conclusion that the SS-MRCEPA(D) performs pretty well
with respect to the FCI values even at these three important
reaction points. Very recently Pittner et al.62 have applied the
MRBWCCSD method of Hubacˇ and co-workers24 which is not

Figure 2. PEC (relative energies with respect to FCI) of the Li2

molecule (DZ basis).

Figure 3. PEC (relative energies with respect to CISDTQ) of the Li2

molecule (6-311G** basis).

Figure 4. PEC (relative energies with respect to FCI) of insertion of
Be into H2.
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rigorously size-extensive to study the perpendicular insertion
reaction of Be into H2 to form the BeH2 complex. They observed
that the performance of the MRBWCCSD method is promising,
although the size-extensive correction of the method does not
necessarily improve the results relative to the FCI values.62

5. F2 System.The study of the potential energy curve for F2

is a quite challenging test for anymultireferencemethod due
to the high contribution of dynamical and nondynamical
correlation effects. We investigate here the performance of the
SS-MRCEPA methods in describing the ground-state PEC of
the F2 molecule. It is now a well-known fact that RHF- or UHF-
based SR methods are not able to describe the PEC of the F2

molecule. F2 has a ground electronic configuration ofφ1 )
1σg

21σu
22σg

22σu
21πg

41πu
43σg

2 and a large nondynamical correlation
arising from theφ2 ) 1σg

21σu
22σg

22σu
21πg

41πu
43σu

2 configuration.
Since the 3σg and 3σu belong to different symmetries, the
functionsiφ1 andphi2 constitute the CAS. The 3σg orbital plays
the role of HOMO in the dissociation region, while near the
equilibrium domain this role is played by the 1πg orbital. Then
the 1πg f 3σu excitations obviously act as intruders. However,
if one wishes to increase the dimension of the active space by
the inclusion of 1πg orbitals, even more intruders will be
encountered. Thus our choice of a two-dimensional reference
space with two active orbitals, 3σg and 3σu, is optimal.
Straightforward application of the conventional two-dimensional
Hilbert space MR method is not applicable in this case because
of several crossings between model and outer zero-order levels
near the equilibrium geometry. There have been many studies
on this PEC, both in the realm of perturbative and nonpertur-
bative approaches in recent times.64-69 The pronounced non-
dynamical character coupled with the intruder states warrants a
SSMR description of the system to study the complete PEC. In
this paper, we present the calculations performed on the F2

molecule employing the same scheme and basis (DZP) as used
by Laidig et al.64 for comparing with the literature data of
various previous calculations. Since the SS-MR formalisms treat
both these configurations (φ1 andφ2) on an equal footing, we
could have chosen either of the two determinants to generate
the HF orbitals. For the applications in this paper, molecular

orbitals are taken from the RHF solutions corresponding to the
configurationφ1.

In Figure 5, we plot the entire PEC calculated by our SS-
MRCEPA methods and compare them with the parent SS-
MRCC and other available results, viz., (i) MRCISD10 and
MRLCCM10,64 (ii) sr-MRBWCCSD and MRMBPT(2),66,67(iii)
CASPT2, and (iv) VOO-CCD(2) and SF-OD.68 We also present
the results of various SR-based MBPT methods reported by
Laidig et al.64 The suffix associated with the MRCISD and
MRLCCM denotes the reference space consisting of 10
configurations considered in these calculations. The sr-MRB-
WCCSD66 of Hubač’s group used the same active space as we
have considered here, and they start from the RHF wave function
for their calculations of the PEC of the F2 molecule. The sr-
MRBWCCSD method is not fully size-extensive. To compute
the PEC of the F2 molecule via the MRMBPT(2) method using
full-valence space, Hubacˇ and co-workers67 have used various
types of shifting techniques to avoid the problem of intruders,
since it is an effective Hamiltonian based method. The results
reported against CASPT220 have been carried out using active
space of full valence. The valence optimized orbitals coupled
cluster doubles (VOO-CCD) is an alternative computationally
cost effective way for a full valence complete active space SCF
(CASSFC) model for single bond dissociation and diradicals.
Dynamical correlation is incorporated into the VOO-CCD
function via usual second-order perturbation theory which leads
to the VOO-CCD(2) model. The method is size-consistent in
nature. In the SF-OD method optimized orbitals (OO) coupled
cluster double (CCD) model, the constituting reference state
and the target state are then generated via single double spin-
flip (SF) excitations. The VOO-CCD(2) and SF-based methods
are quite promising while describing single bond breaking within
the SR framework. The energies computed via either MR-
CISD10 or MRLCCM10 of Laidig et al.64 are not size-extensive
in nature. Here it is important to mention the fact that MRLCCM
is quite different from the linear SU-MRCC method,19 which
gives size-extensive energies. The SS-MRCEPA method is
rigorously size-extensive and also intruder free as long as the
target state is well separated from the virtual functions. Here
we present only the relaxed values of the SS-MR methods, since
the relaxed description of the SS-MR is essential for a proper
description of the F-F bonding. Figure 5 shows that the energies
computed via the SR-MBPT method go down in the region of
dissociation which explains the singular behavior of the method
in the case of the HOMO-LUMO degeneracy. Energetically
MRMBPT(2) and SF-OD are close to each other. The potential

TABLE 4: Relative Energies (mH) with Respect to the FCI
Values, [EFCI - Emethod], of the 11A1 State of BeH2

a

geometry

D E F

FCIa -15.622883-15.602919-15.624981
MCSCFb -53.31 -64.35 -66.68
MRCIb -0.84 -2.01 -3.08
MRLCCMb 2.62 2.40 5.50
MRCEPA(0)c 3.28 4.30 5.50
MRACPFc 0.90 0.90 0.53
MRAQCCd -0.29 -1.11 -1.98
MRAQCC-mcd 0.19 -0.57 -0.36
MRAQCC-vd -0.45 -1.37 -2.29
MRAQCC-vmcd -0.02 -0.87 -1.11
MRCEPAe 1.65 2.55 5.88
MCCEPAf -0.20 -0.15 -0.54
QDVPTg 2.9 4.7 5.5
MRCEPA(2)h 1.2 3.5 4.5
QDVPT+APCi 0.91 1.03 0.53
MRBWCCSD (uncorrected)j -0.68 0.26 0.48
MRBWCCSD (corrected)j -0.44 0.60 1.96
SS-MRCEPA(0) 0.503 1.487 4.77
SS-MRCEPA(D) -1.994 -2.735 0.381
SS-MRCC 0.08 -0.85 -0.37

a Values in a.u. b Reference 59.c Reference 8.d Reference 41.
e Reference 42.f Reference 43.g Reference 44.h Reference 46.i Ref-
erence 63.j Reference 62.

Figure 5. PEC of the F2 molecule.
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energy curves of the MRMBPT(2) and CASPT2 are not smooth
over the wide range of nuclear distances. These two methods
show a very narrow unphysical barrier around the nuclear
distance of 6.0 au.67 From the figure, it is clear that the SS-
MRCEPA methods reproduce the pattern of the ground-state
PEC of the F2 molecule in a well-behaved and balanced manner
over the wide range of internuclear distances as that of other
MR methods as well as the parent full-blown SS-MRCC method
and the SF-based method.

Since the energies computed via different methods are not
very close to one another, it is natural to test the efficacy of the
various methods to generate the PEC in a very accurate manner
via the computation of the various spectroscopic constants. Thus,
to proceed toward testing the quality of the PEC generated via
different methods, we have presented the ground-state spectro-
scopic constants in Table 5. Since the corresponding FCI values
using the same basis are not available, we compare these values
with experimental ones. The various spectroscopic constants
presented in the table are equilibrium distancere (Å), harmonic
vibrational frequencyωe (cm-1), anharmonicity constantωexe

(cm-1), and dissociation energyDe (eV). Table 5 shows that
each of the SS-MRCEPA methods shows good numerical
agreement with the corresponding SS-MRCC, other available
results, and the experimental values. The equilibrium distances
calculated via different methods except the MRMBPT(2) method
are comparable and agree with experimental results closely.
From the table, it is evident that the dissociation energy given
by the VOO-CCD(2) and CEPA(0) methods is quite close to
the experimental value. Among the other methods, theDe value
of the SS-MRCEPA(D) and SS-MRCC methods is in good
agreement with the experimental results. The table also depicts
that the spectroscopic constants of the MRCISD and MRLCCM
methods do not improve much on going from the reference space
consisting of 10 configurations to the reference space consisting
of 32 configurations, although the calculations involved in
MRCISD32 and MRLCCM32 are much more computationally
demanding than those of MRCISD10 and MRLCCM10. Un-
fortunately the basis set saturation limiting values of spectro-
scopic constants of this system are still not known; it is thus
not fair to conclude which method gives us more accurate
spectroscopic constants and PECs of high quality in this basis
set. However, from the foregoing comparative study of the shape
of PECs (Figure 5) and the spectroscopic constants (Table 5)
we may conclude that the SS-MRCEPA method gives us the

PEC with a correct shape over the wide range of geometries in
an intruder-free manner although the two configurations con-
sidered here are not sufficient for an accurate zeroth-order
description of the ground PEC of the F2 molecule.

6. Lowest Singlet of the CH2 System.Historically, the
determination of the ground states of CH2 represented one of
the first significant successes of quantum chemistry. Even today,
this molecule is often used as a benchmark for testing new
theoretical developments.23,32,70-72 To gain further insight into
the performance of the SS-MRCEPA(D) method, we decided
to compute the energy of the two lowest1A1 states of the CH2
system at equilibrium geometry, because earlier calculations
showed that at least the1A1 requires a MR description. To be
able to compare with FCI results, we use the same geometry,
basis (DZP), and scheme of Bauschlicher and Taylor.70 Using
the same scheme and geometry, we have also used another basis
set: TZ2P.72 The TZ2P basis is the standard tripleú73 plus two
sets of polarization functions: d functions on carbon and p
functions on hydrogen. Although the present basis sets are not
large enough, they are nevertheless adequate to enable us to
draw useful conclusions regarding the applicability of the SS-
MRCEPA(D) method while computing the energies. For the
TZ2P basis, we were unable to get the FCI values with our
limited computer facilities. Thus for comparison we choose the
CISDTQ results for this basis set. Here we constitute the
required CAS using the configurationsφ1 ) 1a1

22a1
21b2

23a1
2 and

φ2 ) 1a1
22a1

21b2
21b1

2. In this calculation, we have used two sets
of orbitals for both the states: (a) HF orbitals of the function
φ1 and (b) CASSCF orbitals corresponding to the lowest energy
of the above (2× 2) CAS.

The results relative to the FCI/CISDTQ values for the 11A1

state of our SS-MRCEPA(D) methods and other available
methods are presented in Table 6 for DZP and TZ2P basis sets.

We conclude the following for the DZP basis:
(i) The MRCI method does not give satisfactory results.
(ii) The performance of the SS-MRCEPA(D) method toward

computing the energy of the 11A1 state is quite encouraging as
compared to the other methods reported.

(iii) The performance of the SS-MRCEPA(0) and MRACPF-
mc results is rather close to the FCI in comparison to other
methods reported.

(iv) The performance of the SS-MRCEPA(D) method is
comparable to that of the various MRAQCC methods.

We will now discuss the performance of our SS-MRCEPA
method using the TZ2P basis. We have already pointed out that
FCI values are not available for this basis. Hence we compare
the results generated via SS-MRCEPA and SS-MRCC methods
with the CISDTQ values. The deviation of SS-MRCEPA and
SS-MRCC values using HF orbitals from CISDTQ is slightly
smaller than the corresponding values obtained using CASSCF

TABLE 5: Spectroscopic Constants of F2
method re (Å) ωe (cm-1) ωexe (cm-1) De (eV)

(SC)2-SDCIa 1.407 947 10.87 2.306
MRCISD10a 1.435 821 15.2 1.222
MRLCCM10a 1.439 842 15.3 1.221
MRCISD32a 1.436 1.275
MRLCCM32a 1.439 1.257
CASPT2a 1.442 819 13.9 1.275
sr-MRBWCCSDa 1.421 888 13.8 1.703
MRMBPT(2)b

simple averaging 1.374 1054 10.8 2.348
double averaging 1.377 1040 10.8 2.196
VOO-CCD(2)c 1.417 1.51
SF-CIS(D)c 1.429 1.14
SF-ODc 1.437 1.24
SS-MRCEPA(0) 1.417 909 11.09 1.547
SS-MRCEPA(D) 1.417 862 16.76 1.466
SS-MRCC 1.420 876 14.27 1.430
experimentd 1.411 917.000 11.2 1.659

a Reference 66.b Reference 67.c Reference 68, 116, 3194.d Experi-
ment: Huber, K. P.; Herzberg, G.Constants of Diatomic Molecules;
VNR: New York, 1979.

TABLE 6: Relative Energies (mH) with Respect to the XCI
Values, [EXCI - Emethod], of the 11A1 State of CH2 Using the
DZP and TZ2P Basis Sets, Where XCI Stands for FCI and
CISDTQ for DZP and TZ2P, Respectively

method DZP TZ2P method DZP TZ2P

MRCIa -5.03 MRAQCC-va -2.91
MRLCCMa 1.27 MRAQCC-vmca -2.73
MRCEPA(0)a 1.27 SS-MRCEPA(0) -1.58 1.01
MRCEPAa 1.19 SS-MRCEPA(D) -3.48 2.85
MRACPFa -1.01 SS-MRCC -2.54 1.69
MRACPF-mca -0.61 SS-MRCEPA(0)b -0.56 -1.17
MRAQCCa -2.69 SS-MRCEPA(D)b -2.43 -2.06
MRAQCC-mca -2.51 SS-MRCCb -1.92 -1.11

a Reference 11.b Calculations using CASSCF orbitals.
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orbitals. The deviation of SS-MRCEPA(D) with respect to the
CISDTQ values is very close in proximity to the deviation of
the parent full-blown SS-MRCC method.

To test the performance of the formalism for excitation
energies, we have chosen deliberately the excited root while
we diagonalize the matrix of the dressed HamiltonianH̃.

In Table 7, we summarize the excitation energies between
the two lowest1A1 states obtained by the SS-MRCEPA(D) and
other methods using the DZP and TZ2P basis sets. From the
table, it is clear that the excitation energies obtained from our
SS-MRCEPA(D) method are quite credible, in comparison to
the FCI/CISDTQ results. The SS-MRCEPA(0) and MRCI+Q
values are the same and are seen to compare quite well with
the FCI results. Although the results of the (SC)2CISDT or
(SC)2CISDTQ approach are comparable, our SS-MRCEPA
method is less demanding from the computational point of view.
On the other hand, the dimension of the diagonalization space
used in our SS-MRCEPA method is much smaller than that in
the MRCI+Q calculations. These issues may make the SS-
MRCEPA method computationally more attractive. The inclu-
sion of triples involves including a plethora of diagrams, which
also makes the EOM-CCSDT method computationally demand-
ing. The computed values of excitation energy using the TZ2P
basis via our SS-MRCEPA method are very close to those of
the parent SS-MRCC method.

Finally we make a comment that the most stringent test for
the generality of the CEPA method would be in situations where
the orbitals change very rapidly as a function of the minor
geometrical distortions. Unfortunately we are unable to test the
SS-MRCEPA(D) method immediately for such cases. If we
consider explicitly the behavior of the SS-MRCEPA method
as a function of rotation of the orbitals, in general open-shell
model functions will be generated. Our current programs for
the SS-MRCEPA method cannot at present handle such open-
shell model functions. Actually the invariant methods show
lesser dependence on the nature of the orbitals than the
noninvariant ones.

VI. Conclusions

The recently developed SS-MRCEPA(D) is a quite promising
method for treating the correlations of both dynamical and
nondynamical types, in the presence of quasi-degeneracy in an
intruder-free manner over the whole range of the potential
energy curve as that of its full-blown mother SS-MRCC theory.
The above-presented results for simple but interesting systems,
which enable a comparison with the energies of the FCI (or
large scale CI) and other CC- as well as CEPA-type methods,
clearly demonstrate the potentiality of the SS-MRCEPA(D)
method in describing the ground PEC of various molecular
systems. We emphasize that the SS-MRCEPA calculations
require smaller CPU time than the corresponding SS-MRCC
methods although there is no significant loss of accuracy despite

the rather drastic but physically motivated approximations. Thus,
the SS-MRCEPA(D) method may represent a desirable alterna-
tive for calculating the PEC over a wide range of geometries.
The SS-MRCEPA(D) method is size-extensive. The SS-MR-
CEPA(D) method using CAS is not invariant under separate
unitary transformations of the core, active, and virtual orbitals.
Hence we have also discussed the aspect of size-consistency
which is a nontrivial issue for the SS-MRCEPA(D) method.

More extensive work is needed to fully access the accuracy
and utility of this method on a larger scale of ground-state
calculations involving closed as well as open-shell reference
space functions. The number of cluster amplitudes of the method
considered can be reduced using a contracted description of the
ansatz of the starting wave function as that of the contracted
MRCI method.
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