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A recently developed signal processing method has been applied to a time evolved Gaussian wave packet
roughly corresponding to the ground vibrational state of protonated methane at time zero. The time evolution
of the wave packet was described by semiclassical initial value representation theory where classical trajectories
are used to evaluate the quantum mechanical propagator, exp[-iĤt/p]. We show that only about 25 000
relatively short time trajectories are necessary to yield a well converged eigenvalue of the ground vibrational
state. The calculations reveal an unusually large red shift of 448 cm-1 from the harmonic zero point level
placing the ground state at 10 973 cm-1, with a statistical error of(30 cm-1. These results agree remarkably
well with full-dimensionality quantum mechanical calculations.

The challenge of the methonium ion (protonated methane),
CH5

+, has captured the interest of spectroscopists and theoreti-
cians for the past few decades.1,2 A series of high level ab initio
calculations have revealed an extremely floppy molecule by
identifying three unique, nearly isoenergetic structures connected
by low barriers.3,4 Furthermore, the inclusion of (harmonic)
vibrational zero point energy seems to completely delocalize
proton motion.3-5 Such nature of a “fluxional proton” system
may introduce strong nonadiabatic effects due to the coupling
of electron and proton motions. Marx and Parrinello6 examined
this possibility by performing path integral calculations treating
the electrons and the nuclei on equal footing. The quantum
calculations suggested that two hydrogen groups consisting of
two and three atoms centered on the carbon define two regions
of vibrational density where the hydrogens freely scramble. The
study also inferred a less dramatic picture of scrambling protons
in the ground state, as thought before, and thus gave support to
the possibility of a structured CH5+, consistent with the
canonical picture of hypercoordinated carbocations.

If the system is indeed highly fluxional, i.e., undergoing large
amplitude motion, can one expect to see an unusually large red
shift in the zero point level from its harmonic value? To answer
this question quantitatively, we need to perform full dimen-
sionality quantum mechanical calculations on a potential energy
surface that encompasses all the dynamically important regions
in the configuration space. Until recently, most quantum
mechanical methods have been limited in performance for
systems of six and more atoms. In particular, basis set and
discrete variable representation methods require diagonalization
of prohibitively large matrices for even as few as five vibrational
degrees of freedom. Other popular non basis set methods, such
as path integrals and Green’s function methods, have the suitable
scaling properties for calculating high dimensional systems, but
one faces either challenges of Monte Carlo convergence due to

the fast oscillating phase, i.e., the path integral sign problem,
or the construction of exact Green’s function. A new study by
McCoy et. al.,7 appearing earlier in this issue, has changed the
situation for CH5

+. A high quality global potential energy
surface is now available8 and has been used for diffusion Monte
Carlo calculations.7 The authors report a value for the zero point
energy that serves as a basis for comparison for the calculations
presented here.

Monte Carlo based semiclassical (SC) methods, specifically
the initial value representation theory (IVR),9 have shown to
be a practical alternative to quantum dynamics. At the cost of
propagating classical trajectories, one has the ability of describ-
ing purely quantum effects, such as probabilities, superposition
of states (interferences), tunneling, etc.10 It has also been shown
that SC-IVR, together with various integrand smoothing tech-
niques, can be very effective in calculating time dependent
correlation functions that yield accurate vibrational eigenvalues
for polyatomic systems.11

A spectral density of molecular Hamiltonian can be written
as

whereψ is a conveniently chosen reference state that has an
optimal overlap with the desired spectral range. If one were
interested in a specific group of eigenstates, then the reference
state would be chosen as close as possible to the corresponding
eigenfunctions so that their “peaks” in the spectrum were
dominant. Casting eq 1 in a Fourier integral form allows us to
re-express the spectral density in the time domain,

where the time dependent quantity is the autocorrelation
function,
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I(E) ≡ 〈ψ|δ(E - Ĥ)|ψ〉 (1)

I(E) ) Re
πp

∫0

∞
dt e(i/p)Etc(t) (2)

c(t) ≡ 〈ψ|ψ(t)〉 ) 〈ψ|e-(i/p)Ĥt|ψ〉 (3)
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Applying the semiclassical Herman-Kluk (HK) approximation12

to the time evolution operator, we obtain the correlation function
in the following form,

for a system withF degrees of freedom (here,F ) 12 vibrational
modes). In the above expressionp0 and q0 are the initial
momenta and coordinates of classical trajectories, andpt(p0,q0)
and qt(p0,q0) are their respective values propagated to timet
along with the classical action integral,St(p0,q0) and the
Herman-Kluk preexponential factor,Ct(p0,q0). The wave
function for the coherent state is,

Hereγ is a diagonal matrix of Gaussian width parameters, which
are determined according to practical considerations, as will be
mentioned below. The essential task is to carry out the
integration over the initial conditions in eq 4 via Monte Carlo
sampling and to solve the classical equations of motion for each
initial (p0,q0) phase point (trajectory). The “effort” scales linearly
with the number of degrees of freedom, and this is perhaps the
main reason the SC-IVR is amenable to large scale calculations.

As was mentioned above, the choice ofψ determines the
spectral shape. Because, at present, we are interested particularly
in the zero point energy, i.e., the lowest energy eigenvalue, it
is desirable to use for the reference state the closest possible
approximation to the exact ground state. One can take the normal
mode wave function at a stationary point so that

whereqj can be a local minimum or a transition state on the
potential energy surface. The choice of the coherent state width
parameter is simplyγj ) ωj for the mass scaled normal
coordinatej. It is well-known that the topology of CH5+ has
several low energy configurations that are essentially dynami-
cally equivalent after the inclusion of zero point motion.
However, it may be advantageous to choose a configuration
with most symmetry, such as a transition state structure
connecting two identical minima. TheC2V saddle point, which
is a low energy transition state between two global minimum
configurationsCs, is the most suitable choice for present
calculations.

Figure 1 shows the correlation functionc(t) computed as
prescribed by eqs 4-6. One can see that the curve is well
behaved at shorter times; i.e., the amplitude is smooth and
remains within the physical bounds for the first twenty or so
periods. The longer time dynamics introduces error that is
inherent to the approximate nature of the semiclassical propaga-
tor and is practically impossible to control without performing
a filtering procedure a priori. (By that we mean smoothing of
the integrand in eq 4 before carrying out the phase space
integration.) Such methods tend to reduce the number of
trajectories required to converge the result, i.e., time signalc(t)
or any other physical property that can be defined using HK-
IVR. However, spectral resolution remains a weak point because
it is based purely on the Fourier transformation of the signal.
Short signals lack resolution and longer ones are inaccurate
(Figure 1). In this work, we use a much more sophisticated error
reduction and noise filtering procedure that not only can achieve
adequate resolution using a short time signal, which in HK-

IVR is closer to convergence than a longer time one, but also
requires a smaller number of initially well placed trajectories
to compute the phase space integral as the short time signal
has less error to average out. It is also possible to combine
integrand smoothing with signal processing.

Here, as in the previous work, the signal is assumed to be
decomposable into a sum of the true signal and the error term
as13,14

Calculation ofx(t), given asc(t), is done by employing Cadzow’s
method of regularization,15,16which in turn uses singular value
decomposition (SVD) of a data matrix in which the true signal
is assumed to have the following analytical form,

whereEk is the eigenvalue corresponding to the eigenfunction
Ψk anddk is the weight factor whose true value is|〈ψ|Ψk〉|2.
The form is valid for any correlation function signal generated
by quantum mechanics. SVD yields a signal much closer to
x(t) than the originalc(t). The “cleaned”, here rankK ) 2, signal
is then input into a harmonic inversion (HI) program to extract
the Ek anddk parameters.

In Figure 2 one can see the singular values. The two separated
points on the graph indicate that these singular values and their
eigenvectors alone can be used to approximatex(t). The other
singular values are due to error. The gap between the two sets
can be thought of as an indication that the space implied by the
Hankel data matrix made fromc(t) can be partitioned into a
(true) signal subspace with a noise subspace as its orthogonal
compliment. Perturbation theory tells us that the larger the gap
the less the noise space perturbs the signal space. This allows
us to constructx(t) from the projection of the signal state vectors
taken as columns of the data matrix onto the signal subspace.
The HI scheme using the rankK ) 2 clean signal yields two
complexEk and two complexdk parameters (Ek, dk; k ) 1, 2)
specifying two complex Lorentzians. The weight factor of one
of those Lorentzians is orders of magnitude smaller than the
other’s (|d2| , |d1|), and its width is very large, indicating that
it is fitting the background seen in Figure 3. The other

c(t) ) 1

(2πp)F∫dp0 ∫dq0 Cte
( i/p)St〈ψ|ptqt〉〈p0q0|ψ〉 (4)

〈q|ptqt〉 ) (γπ)F/4
exp[- γ

2
(q - qt)

2 + i
p
pt(q - qt)] (5)

〈q|ψ〉 ) (ωπ)F/4
exp[- ω

2
(q - qj)2] (6)

Figure 1. Real (solid) and imaginary (dash) parts of the correlation
functionc(t) defined by eqs 4-6. The calculation was done with 25 600
trajectories sampled from a normal distribution: exp[-ω∆q2/2]
exp[-∆p2/2ω]. The signal acquires a large error shortly aftert )
2500 au.

c(t) ) x(t) + ε(t). (7)

x(t) ) ∑
k)1

K

dk exp(-iEkt) (8)
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Lorentzian (k ) 1) has a narrow width, and its position yields
our result.

Our best estimate of the zero point energy of CH5
+ is 10 973

cm-1, with a statistical error of(30 cm-1 based on the average
of several independent signals. (Compare this value with the
one from the Fourier transform: 11 032( 552 cm-1.) This is
a fairly large anharmonic correction (∼3.9%) given that the
harmonic zero point level at theCs minimum is 11 421 cm-1.
For comparison, the zero point energy stabilization in methane,
based on a calculation using a realistic potential energy surface,17

is 127 cm-1, which is merely∼1.3%. Clearly, adding a proton
to methane causes strong delocalization effects in the ground
vibrational state. It is thus fair to assume that anharmonicity
will be even more pronounced in the excited states suggesting
that quantum calculations will be extremely difficult to converge
in those cases.

Besides the work of Marx and Parrinello,6 who considered
excited vibrational states implicitly by taking into account the
temperature effects,18 the ongoing work of McCoy et al.7 has
calculated the ground-state energy and properties using diffusion
Monte Carlo methods. Their independent estimate of the zero
point energy, for example, is∼2 cm-1 above the one reported
here. This is an encouraging result showing that two completely
different approaches lead to essentially the same conclusion for
an inherently difficult system. However, to better understand
the fluxional character of CH5+ and especially to explain the
experimentally observed infrared spectrum,19 further work needs
to be done. The combination of SC-IVR and signal processing
can be effectively used to extract the excited states, simply by
taking different reference states in eq 6. Similarly, the infrared
spectrum can be calculated given the corresponding dipole
moment function. Another possibility is to examine the tem-
perature effect on quantum mechanical expectation values of
interatomic distances, bond angles, rotation constants, etc., using
the global potential energy surface.
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Figure 2. First five singular values of the data matrix constructed from
the windowed signal. (The rest of the 120 total singular values are on
the order of 10-3-10-7 and are not shown.) The easily noticeable gap
is an indicator that the space of only two singular values is contained
in signalc(t).

Figure 3. Fourier transform of the correlation function shown in Figure
1 on the time interval [0, 2500] au. The zero point peak is identified at
11 032( 552 cm-1. The low resolution of the discrete Fourier transform
poses severe limitations on accurate spectral analysis.

Letters J. Phys. Chem. A, Vol. 108, No. 23, 20044997


