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The 2 K field-dependent magnetizatiod(H), of S = 3/, [Ru",(OAc),]* was studied. [RU" ,(OAC)s] "
exhibits an unusually low magnetization with respect to that predicted by the classical Brillouin function.
This reduced value is a consequence of the large anisotropy arising from the large zero-field splitting (ZFS),
D (+634 11 cnt?), of the [RU™ »(OAc),]* cation, which alters the energy levels with respect to the isotropic
energy levels used to derive the Brillouin function. Analytical expressions for the parallel and perpendicular
components oM(H) that include zero-field splitting (ZFSR, and interdimer coupling}, are presented for
S=3%,. The expression was derived from second-order perturbation thegiy|fer gugH. The experimental

data fit very well withg = 2.24+ 0.01,D = +69.5 cm* (D/ks = +100 K), and 0> 6 > —0.6 K indicative

of very weak interdimer interactions for both [[l,(OAc),Cl and [RU™M »(OAC)4]3[Ca" (CN)g].

Introduction Experimental Section

Field-dependent magnetizatiaii(H), studies are frequently [Ru(OAc)Cl, 1, and [Ru(OAC)3[Co(CN)], 2, were
relied upon to ascertain the spin state of a paramagnetic sitePrepared as previously describefiield-dependent magnetiza--
via fitting the data to the Brillouin function, as was first reported  ion measurements were carried out on either a Quantum Design
by Henry?® This is best established for isolated paramagnetic MPMS-5XL SQUID magnetometer from 86 T or aQuantum
centers that do not have contributions to the magnetization from P€Sign PPMS Moded T susceptometer from 0 to 7.4 T at 2 K
orbital angular momentum, spirorbit coupling, and/or zero- @S Previously described.
field splitting, as analytical expressions that include these
contributions have not been reported. Nonetheless, numerical
methods have been developed principally to identify isolated At 2 K the M(H) of 1 and2 were observed to be 10 270 and
paramagnetic centers present in some proteldigewise, to 10 262 emeOe Ruy-eqtat 5 T, respectively (Figure 1). These
understand the magnetic couplings (ferro- or antiferromagnetic) values are lower than predicted from the Brillouin function, eq
and the ground state of molecule-based magihtis) studies 1 for S= 3, (i.e., 16 755 emiOe mol) due, as discussed
are important. In particular we sought to identify the nature of above, to the extremely large ZFS of [ROAc), "> 7 that
the coupling present in [R{' ,(OAC)4]3[Cr'"(CN)g] (T = 33 depopulates thens = 3/, energy level at 2 K. Thus, the only
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K). This magnet possess&s= 3/, [Ru"" ,(OAc)] " andS = populated state iss = /,. This is in contrast to a 1:1 state

3/, [Cr"(CN)g]®~ spin sites® however, octahedral ®ris well occupation for thens = ¥, andms = Y/, states when the system

modeled by the Brillouin function, and [l ,(OAc)4] T is not. is isotropic, i.e, D = 0. Hence, data were fit to the Brillouin
The physical properties of the mixed-valeBt, [Ru'M - function forS= %/ that includes a term to account for intradimer

(OAc)]* have been extensively studied. This cation has a interactionss.°
0%1*0%0*1n*2 S = 3, valence electronic configuratithwith _
spins fully delocalized between the two ruthenium centers. M(H.0grinouin =

However, [RUM 5(OAc)s]™ has an unusually large zero-field qugSH

splitting (ZFS),D (+63=+ 11 cnT'%; D/kg = 90.6+ 15.8 K)5-7 NgueS (2S+ 1) Cot,{; 25+1)

[RU 5(OAC)4]a[Cr" (CN)g] hasD = 69.4 cnt! (D/kg = 100 ke(T—0) 25

K); hence, at low temperatures{) only thems = 1/ state is

significantly populated, complicating the analysis of the field- cot gusSH i) 1 (1)
dependent magnetizatioM(H) including an anomalous hys- ks(T — 0) 25/|2S
teresis loop. Due to the presence of zero-field splitting, the

Brillouin function cannot be used to model tiv(H) data. whereN is Avogadro’s numberg is the Landédactor,ug is the

Nonetheless, there are analytical models for anisotropic tem-Bohr magnetonS is the spin quantum number, ahtlis the
perature-dependent magnetizatidvi(T,D),62 and herein we magnetic field, withg = 3.69,0 = —0.35 K for 1, andg =

extend the methodology used to derive analytical expressions3.69,6 = —0.12 K and for2 (Figure 1). The smalb values

for M(T,D) to derive expressions fdvi(H,D), and the derived indicate very weak intradimer antiferromagnetic coupling.
expressions are used to fit the observbi{H) data for Weaker coupling is expected via the three diamagnetic five-
[Rux(OACc)yCl and [Ru(OAC)43s[Co(CN)] with excellent atom—NCCd"CN- bridges for2 with respect to the diamag-
agreement. netic single-atom Cl bridge for1, as observed.
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1904 L i whereD is the axial ZFS tensok is the rhombic ZFS tensor,
st S=12 g=3.69 § S, is the spin at parallel direction with respecthkio while S
Aot | andsS; are the spins perpendicular with respedttdince there
pronc] is no rhombic distortion in the system (i.eE = 0)° the

S=AZ (g2 Hamiltonian reduces to:
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Figure 1. S= % Brillouin function fit, eq 1, with the data of (S= XA 203454, 0 %(QWBHXHWBHY):EZFS
Y,,9=3.69,0 = —0.35 K), and2 (S= /,, g = 3.69,0 = —0.12 K). e . _
The calculated(H) for g = 2, S= ,, andS = 3, from eq 1 are B gusH— O So#aH; Gt~ 10yt
shown for comparison. The observed data are plottexisas igtgH,)
e A é(gWBHX— Qg+ igyugHy f%gzuBHz 4)

The large unphysical 3.69value fit to the Brillouin function
emphasizes the inappropriateness of eq 1, which is attributed
to the different splitting magnitudes of the = %/, states arising The anisotropic magnetization functiod(H,D,0), for S =
from the ZFS. The Zeeman splitting used to derive the Brillouin 3/, is derived from the ZFS Hamiltonian, eq 3, and magnetization
function isE = +gugH/2 for S= 1/, but is not valid due to  equation. We introduce the Weiss constahtto account for
ZFS. Taking into account the anisotropy arising from the ZFS, weak intermolecular couplint?
the splitting forms = 1/, is & = £gusH\/2, andEg = +gusgHn
— 3g-2ug®H?/(8D), 12 Figure 2. Sinceug = 9.274x 10724 J 3

igyugH,)

M(H,D,60), = N| 3 i —gﬂ—BH —2D/ +
T-1is small, the latter term foE; is negligible. Hence, the (H.D.6), = Yt SIN 2ky(T— 6) exp( keT)
perpendicular splitting is twice that of the parallel fd{H,D),

2 cos §Qﬂ—BH X
' 2&ks(T—6) 2ks(T — 0)

for M(H,D) is gu,0) Whereguw,o) = (29wH,0)0 + 9meH,oy)/3
= (59m,0),)/3. g, for the Brillouin andM(H,D) expressions are

thus gwm,o); = 20w,y Given that the Brillouin function is ) gugH
gug Sin
! o - - QugH
the same, i.€Om(H,py, = YBrillouiny = Jarilouin = E£gusHi/2. Thus, exp(2D/kgT) + 2 cosh———

(5a)

isotropic, Usrilouin = OBrillouing = JBrillouin;- 1 Ne averagey value
gvrH,0) = (5/3)Terilouin = 2.2; hence, an alternative model is 2kg(T — 0)
required. Consequently, we sought to fit the data with an
analytical expression favi(H,D,0). oD — [iQZﬂBZHZI
Analytical expressions fdvi(H,D,6) are not readily available, M(H,D,0), =N _—?’gzszH ex 8D +
but numerical methods have been us&dhe M(H,D) calcula- 2D keT
—gugH

tion by numerical methods takes into account the integration

over all space. The integration ensures that all orientations of iQZﬂ °H cos -
. . . . B

the sample are includéd® but analytical expressions for this 2D ks(T — 60)

have not been reported. Nonetheless, the structure of diruthe-

nium complex is 3-D body centered, interpenetrating cubic —auH oD — [igz#Bsz

lattice, and the orientation of the crystal at all directions are 20ug Sin s 2 ex 8D +

equivalent, and consequently an analytical expression for B ks(T — 60) ksT

M(H,D,0) was derived. .
Analytical Expression for M(H,D,0). [Rux(OAc)s]" pos-

sesses afBy, ground state andAyy, 2Azy, 2Bay, 2By excited 2 cosr( —GugH ) (5b)

states; however, the excited states do not contribute to the ks(T — 6)

paramagnetisi?f Thus, the excited states are neglected. In the '

case of isotropi&S = 3/, both thems = £3/, and+Y/, energy M(H), + 2M(H),

levels are essentially equally populated. These states, however, MHD.O)averace = —— 3 (5¢)

are not evenly populated due to the ZFE§,arising from the

tetragonal distortion, and the larger th@|, the greater the Indeed, using eq 9I(H,D,0) gave the best fit fod with g

difference in the population of the states, especially Tox = 2.253,D = 69.4 cnt! (D/kg = 100 K), andd = —0.56 K,

ID|. The ZFS HamiltonianHzes, in an octahedral crystal field ~ with a xy? agreement factdt = Z(Mobserved— Mcaid?Mobserved
with Zeeman effect is used to describe this phenomenon. = 1.0046. The best fit foR with g = 2.235,D = 69.4 cn1?!



7462 J. Phys. Chem. A, Vol. 108, No. 36, 2004

250
E = 2D+3gugH/2
w | | +3g2ug?H2/80
v E=2D-3gugH/2
m 50 Isotropic Anisotropic
Sy  Dke=0 Dikg =100 K
- 100
| = =
B E i G
Q L E,
[
w E = gugH - 3g2jig2H2/8D
_____ E=gushR
: LT E=-gugh/2
j | E=-gugH-3g%us2H2/8D
.50 L

] 2 4 6 8
Magnetic Field , H, T

Figure 2. Energy spectra o= %, energy levels with Zeeman effect,
and isotropic and anisotropic f@ = 69.4 cnt* (D/kg = 100 K).
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Figure 3. ObservedM(H,D,0) (x) for 1 (g = 2.253,D = 69.4 cnT?
(D/kg = 100 K), andf = —0.56 K) and2 (g = 2.235,D = 69.4 cnm*
(D/ks = 100 K), # = —0.24 K), and their fits to eq 5.

0 11 2104

(D/kg = 100 K), 6 = —0.24 K (> = 0.93) (Figure 3). Again,
the small@ values indicate very weak intradimer antiferromag-
netic coupling.

The observed magnetizations 10,270 and 10,262-©&u
Ru-eq?!at 5 T forl and?2, respectively, are consistent with
only thems = 1/, energy level being populated. The observed
magnetization is the first plateau, and it should eventually rise
to about 18,900 em®@e Ry-eq ! when saturation occurs. This
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to predict this energy-crossing phenomena, which results in the
magnetization steps, an exact solution of the Hamiltonian, or
higher-order perturbations, is required. This is a focus of ongoing
studies, which will predict both energy-crossing and noncrossing
effects. The noncrossing energy is due to the noncrossing rule,
in which energy from spins that possess the same symmetry
does not cross, and as a consequence, the energy-level mixing
should occur.

Conclusion

Extension of the classical Brillouin functiom(H), to include
zero-field splitting (ZFS)D, [|D| > gugH] [and an intermo-
lecular interaction )], to a general analytical expression for
the anisotropic magnetization functioM(H,D,0), has been
derived. This equation describes the unusually low values of
the observed magnetization for [[li,(OAc),]". Deviations
from the classical Brillouin function are a consequence of
differing energy levels with respect to the isotropic energy levels
used to derive the Brillouin function. However, further theoreti-
cal studies and high-field experiments will enable the under-
standing of the spin behavior upon saturation and energy-level
crossover for materials with zero-field splitting.
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