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In this article, two issues related to the size of the electronic diabatic potential energy matrix are treated. (a)
We frequently mention the fact that the dimension of a diabatic matrix obtained by a unitary transformation
from the adiabatic framework is determined by the way the nonadiabatic coupling matrixτ breaks up into
blocks. In this article, we prove for the first time that the size of the diabatic matrix as obtained in a direct
way is determined in the same way. In other words, if the dimension of the above-mentioned decoupled
block is N, then the dimension of any diabatic potential energy matrix with physical relevance has to beN
as well, regardless of how it was derived. This number,N, is also equal to the number of coupled diabatic-
Schrödinger equations to be solved. (b) The second issue is, consequently, related to the actual required
number of coupled Schro¨dinger equations to be solved to obtain a well-converged solution. Starting with the
earlier introduced numberN, we show that this number can be reduced, and in fact, it is most likely equal to
the number of energetically open adiabatic states (for a given energy). While doing that, we rigorously derived
the relevant diabatic potential matrix for this reduced case. We also worked out in detail an example related
to a three-state case and derived the relevant 2× 2 diabatic potential matrix.

I. Introduction

The quantum mechanical study of electronic nonadiabatic
processes becomes more and more a subject of major
importance.1-64 Most of the quantum-mechanical treatments of
molecular systems during the last four decades took place on
the lowest adiabatic Born-Oppenheimer potential energy
surface (PES). This applies to both the derivation of the PES
and the dynamical studies. The pace of similar treatments for
several PESs was rather slow, and only during the 1990s did
interest in electronic nonadiabatic effects start to become
significant mainly because of the pioneering dynamical studies
of Kuppermann et al.6-11 and the ability to calculate ab initio
nonadiabatic coupling terms (NACT).32

One of the main obstacles in the study of electronic
nonadiabatic transitions is the existence of conical intersections
(ci), 64-67 a phenomenon that is responsible for the existence
of singular NACTs.68,69cAs it turns out, it is not the singularity
per se but the fact that these singularities are poles and therefore
create nonlocal effects that extend to infinity. It is, of course,
well known that poles of this kind (similarly to potentials that
behave asymptotically like (1/r)) cannot be treated by numerical
recipes but have to be approached rigorously.

The existence of the singularities in general and the infinite
long-range effect of the NACTs’ poles in particular slowed the
process of studying electronic nonadiabatic effects. In the 1970s,
it was revealed that one can transform the adiabatic framework
to the diabatic one (namely, the framework where the NACTs
are zero) by an orthogonal matrix called the adiabatic-to-diabatic
transformation (ADT) matrix.69 In this process, the adiabatic

diagonal potential energy matrix becomes a full matrix of
dimensionsN × N (whereN is the number of states included
in the transformation, see section II), which is known as the
diabatic potential matrix (or simply the diabatic matrix).69,70

However, it was soon revealed that this procedure is numerically
time-consuming, and other “more efficient” methods were
proposed.15,17,18,22,24,28One procedure where the diabatic matrix
is formed directly is presented in section II.3. Now, having (at
least) two different ways to form the diabatic matrix, the
question is whether these two procedures lead to identical results
for the diabatic matrix (up to a constant orthogonal transforma-
tion). If the two matrices are the same at each point in the region
of interest, then we may conclude that we found the correct
diabatic matrix. If not, then the natural question to ask is, which
of the two (if either of them) is the correct diabatic matrix?
This question is unresolved for many; however, it is our opinion
that neither of them is the correct potential matrix. In other
words, the only way to ensure that, indeed, we have the correct
diabatic potential matrix is ifN is such that the two procedures
yield the same diabatic matrix.

In this article, we also address another issue that is of similar
importance. The above-mentioned (minimal) numberN required
for diabatization, also, determines the number of coupled nuclear
Schrödinger equations (SE) that have to be solved to treat the
nuclear dynamics. It is known from previous theoretical studies
and numerical calculations that to guarantee the accurate diabatic
potential matrix the required numberN may become relatively
large. In this article, we discuss the possibility of reducingN in
a rigorous way while still obtaining converged scattering
calculations.

The article is arranged as follows. In the next section, we
present the background required for our theoretical study. In
the third section, we discuss the intimate connection between
the diabatic and the adiabatic frameworks for a given number
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of states,N. In sections IV, V and VI, we discuss the second
issue related to the reduction in size of the set of coupled SEs
for a given energyE. In particular, we present (in section VI)
such a reduction for a three-state system and obtain the relevant
2-D diabatic potential matrix. In the last section, we summarize
the conclusions.

II. Theoretical Background
II.1. Introductory Remarks. In this article, we consider the

general Schro¨dinger equation that describes the motion of both
the electrons and the nuclei69,71

whereE is the total energy,Ψ is the total wave function of the
system, andH is the complete Hamiltonian given in the form

Here, ν and e stand for nuclear and electronic coordinates,
respectively,He is the electronic Hamiltonian to be discussed
later,Tν is the kinetic operator of the nuclei expressed in mass-
scaled coordinates,m is the mass of the system, and∇ is the
gradient operator.

II.2. Adiabatic Framework and Adiabatic-to-Diabatic
Transformation. The starting point is the Born-Oppenheimer-
Huang (BOH)72 close-coupling expansion

whereψj(ν) is the (jth) nuclear-coordinate-dependent coefficient
(recognized as thejth nuclear wave functions) andúj(e|ν), is
the jth electronic wave function, assumed to be thejth
eigenfunction of the electronic HamiltonianHe(e|ν):

Here,uj(ν) (j ) 1,...,N) are the electronic eigenvalues that serve
as the adiabatic potential energy surfaces that govern the motion
of the nuclei in this system. Equation 3 can also be written in
matrix notation as follows:

whereúT is the corresponding row vector. Next, we introduce
the nonadiabatic coupling matrix elements (NACME),τji, the
principal magnitudes considered in this article, which are defined
as

where the gradient operator is expressed with respect to the
(mass-scaled) nuclear coordinates,ν, and theúk(e|ν) functions
(k ) j, i) are the above-mentioned eigenfunctions. The NACTs
become apparent following the derivation of the SE that
describes the motion of the nuclei. Substituting eqs 2 and 3
into eq 1, recalling eq 4 and assuming that the electronic
manifold forms a complete Hilbert space, this nuclear equation
can be shown to take the form69,70b

whereτ is the above-mentioned antisymmetric NACM,u is a
diagonal matrix that contains the adiabatic PESs (introduced

through eq 4), andΨ is a column vector that contains the nuclear
wave functions to be solved (introduced in eq 3). Equation 7 is
known as the adiabatic SE for the nuclei.

Equation 7 can be shown to be approximately valid for a
group of states that do not necessarily form a Hilbert space but
are strongly coupled to themselves and, at most, weakly coupled
to other states belonging to this manifold (see the discussion
below73). In what follows, such a group of states is termed a
Hilbert subspace. We return to this issue later.

As mentioned earlier, the NACTs may possess unpleasant
features that can prevent the solution of eq 7 as such. To
overcome this difficulty, the idea is to eliminate the NACTs,
and this is done by applying the following (unitary) transforma-
tion:69

Inserting eq 8 in eq 7 yields the following diabatic equation:69

whereW, the diabatic potential matrix, is given in the form

andA, the adiabatic-to-diabatic transformation (ADT) matrix,
has to be a solution of the following first-order differential
equation:69

The solution of eq 11, namely, matrixA, has to yield a single-
valued diabatic PES matrixW, a feature not guaranteed by an
arbitraryτ matrix. We will not go into the full details regarding
the required features of theτ matrix for this purpose but will
just summarize them as follows. To guarantee a single-valued
W matrix of (finite) dimensionsN × N in a given regionΛ,
the τ matrix has to be of the following form58,62a,b,74

at every point in that region. Here, the off-diagonal elements at
positions (j, k) wherej e N andk g N (the same applies to the
(k, j) positions) are on the order ofε, namely,O(ε), andε is a
given small number. In other words theτ matrix has to be of
the above “block” structure.75 The N states that produce this
block structure are those mentioned earlier as the ones that form
the Hilbert subspace. From now on,N stands for the dimension
of the lowest block in theτ matrix in eq 12, and the block itself
is designated asτN.

The breakup of theτ matrix in eq 12 is frequently under
scrutiny; therefore, to show that it happens in realistic cases,

(H - E)Ψ ) 0 (1)

H ) Tν + He Tν ) - p2

2m
∇2 (2)

Ψ(e,ν) ) ∑
j)1

N

ψj(ν) új(e|ν) (3)

(He(e|ν) - uj(ν))új(e|ν) ) 0 j ) 1,...,N (4)

Ψ(e,ν) ) úT(e|ν) ψ(ν) (5)

τji ) 〈új|∇úi〉 i, j ) {1,....} (6)

- p2

2m
(∇ + τ)2Ψ + (u - E)Ψ ) 0 (7)

Ψ ) A†Φ (8)

- p2

2m
∇2Φ + (W - E)Φ ) 0 (9)

W ) AuA† (10)

∇A + τA ) 0 (11)

τ )

(0 τ12 τ13 τ1N

-τ12 0 τ23 τ2N

-τ13 -τ23 0 τ3N O(ε)

0
-τ1N -τ2N -τ3N

0 -τN+1N+2 -τN+1N+3

-τN+1N+2 0 -τN+2N+3

O(ε) -τN+1N+3 -τN+2N+3 0
0

0
0

)
(12)
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we present a few results related to the H+ H2 system. This
system was recently studied by us,58 and it was found that its
three lower states form, in the region surrounding itsD3h ci’s,
a Hilbert subspace; in other words, itsτ matrix breaks up exactly
as shown in eq 12 whereN ) 3. This would imply that allτ
elementsτjk wherej e 3 andk > 3 are much smaller thanτ12

andτ23 (and sometimes evenτ13). In Figure 1, we present the
angular components of nineτ-matrix elements,τ12, τ13, τ14, τ15,
τ23, τ24, τ25, τ35, andτ34 calculated along three different circles
(all centered at theD3h ci point) with radiiq ) 0.2, 0.3, 0.4 Å.
The results in Figure 1 are presented as a function of the angle
æ (defined in the Figure). The details regarding such calculations
are given in ref 58a. Here, we just mention that they were
derived, employing MOLPRO, for a fixed distanceRHH () 0.74
Å) between two hydrogens. The third hydrogen is the test
particle for probing theτ elements so that the variables (q, æ)
are the coordinates of this third hydrogen.

Out of these nine elements, only two are relatively large,
namely,τ12 andτ23; onestheτ13 elementsis of an intermediate
size, and the rest (namely, those that couple the 3× 3 block to
the rest of theτ matrix) are at least one order of magnitude
smaller. In particular, we call attention toτ34. In general, the
main coupling between two (adjacent) states,j and (j + 1), is
due to the corresponding tridiagonal matrix elementτjj+1. The
fact that the value of such a matrix element is small is an

indication that these two states are not coupled via a ci in the
considered region. This is what happens to the third and the
fourth states of the H+ H2 system; they are not coupled via a
ci,58c and it is this missing ci that is the main cause for the
breakup of the H+ H2 τ matrix into a (3× 3 matrix+ rest) as
shown in eq 12.

It is not always possible to determine whether at a given
regionΛ the τ matrix breaks up as in eq 12 by just inspecting
the variousτ-matrix elements at each point. Instead, we devised
the following D matrix defined in terms of the exponentiated
line integral74

whereΓ is a closed contour inΛ, p is an ordering operator, ds
is a differential increment alongΓ, and the dot stands for a scalar
product. It was shown that in the case in which theτ matrix
has the structure in eq 12 at every point in the regionΛ, the
correspondingD matrix is approximately a diagonal matrix for
every closed contourΓ in this region. Moreover, it was also
shown that matrixD is a unitary matrix; therefore, its values
along the diagonal are(1 (for real eigenfunctions). We called
this unique feature the “quantization of theτ-matrix” because
in case the decoupled block in eq 12 is of dimensionN ) 2,

Figure 1. Angular nonadiabatic coupling terms,τæij(æ|q) (i < j) as calculated for the H+ H2 system forRHH ) 0.74 Å: (a-c) circle located at
the (1,2)D3h ci with radiusq ) 0.2 Å; (d-f) circle located at the (1,2)D3h ci with radiusq ) 0.3 Å; (g-i) circle located at the (1,2)D3h ci with
radiusq ) 0.4 Å. Full circles stand for the two fixed hydrogens; full squares stand for (1,2) ci’s; full diamonds stand for (2,3) ci’s, and the circles
describe the contours along which theτæij(æ|q) were calculated. The straight line perpendicular to the HH axis connects the midpoint between the
two hydrogens and theD3h ci point. Notice the small values ofτæ34(æ|q) in a, d, and g as compared to those ofτæ12(æ|q) andτæ23(æ|q). Also note
the change in scale of b, c, e, f, h, and i as compared to the scale in a, d, and g. Note the increased scale in b, c, e, f, h, and i as compared to the
scale in a, d, and g.

D(Γ) ) pexp(IΓ ds‚τN) (13)
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the corresponding (only nonzero) element of theτ matrix;
namely,τ12 fulfills the Bohr-Sommerfeld quantization law.47,74

The quantization of theD matrix in relatively large regions
of configuration space (namely, regions much too large to be
treated by perturbation treatments) is established in a series of
ab initio studies related to{C2,H},55 {H,H2},58a,c {Na,H2},62a

and{C2H,H}58cand recently also to{O,H2}76

Let us summarize our finding so far. The electronic ab inito
calculations usually supply the adiabatic PES matrix,u, and
the NACM, τ. Therefore, to study electronic nonadiabatic
processes one has to solve the SE given in eq 3. However, it is
now known that theτ matrix is frequently singular and in
particular may possess polessfeatures that cause difficulties in
solving this equation. One way to overcome these difficulties
is to diabatize eq 3, namely, rigorously eliminate the troublesome
NACTs. In this process, one forms eq 9, which contains the
diabatic PESW given in eq 10. However, in doing so we may
encounter the situation in whichW is multivalued. It was
revealed that a meaningful diabatization (namely, the one that
produces single-valued diabatic potentials) cannot be achieved
for an arbitrary number of statesN. It can be achieved if and
only if this group of states yields the quasi-decoupled blockτN

of the NACTs matrix (see eq 12). It is important to emphasize
that this demand is not based on any energy considerations but
results from nonlocal effects (or topological effects) formed by
the poles of the various NACTs.

II.3. Diabatic Framework. As was discussed in the Intro-
duction, we consider a different way of forming diabatic statess
an approach that does not involve the NACTs. As was already
mentioned in the Introduction, there are many approaches to
forming diabatic states.15,17,18,22,24,28In the present section, we
refer to one of the simplest procedures that also allows us to
“stay analytic all the way”.

Our starting equation is eq 3 with one difference; namely,
we replaceúi(e|ν) by úi(e|ν0) (i ) 1,...) whereν0 stands for a
fixed set of nuclear coordinates. Thus, instead of expansion in
eq 3 we consider

Here, úi(e|ν0), just like úi(e|ν), is an eigenfunction of the
following Hamiltonian

where ui(ν0) (i ) 1,..., L) are the electronic eigenvalues as
calculated for this (fixed) set of nuclear coordinates. Continuing
in the usual manner,77 we obtain the following diabatic SE:

where

which can be shown to be77

In eq 18, the potentialU(e|ν) (and alsoU(e|ν0)) is the sum of
the Coulomb potentials between the electrons, between the
electrons and the nuclei, and between the nuclei all calculated
at the spatial pointν.

Equation 16 is similar to eq 9 except that the diabatic potential
V is not necessarily identical to the diabatic potential matrix
W. The main difference is that the dimension ofW (i.e., N),
unlike the dimensionL of V, is not arbitrary but is determined
by the structure of theτ matrix. Consequently, it is expected
that if eqs 9 and 16 are solved for matrices of different
dimensions the results will be different. In the next section, we
show that if the dimensions ofV andW are the same (namely,
N) then the two matrices contain identical elements.

III. Unification of the Two Diabatic Frameworks

We start with theW matrix. Considering eq 9, the (i, j) matrix
element ofW is given in the form

or recalling eq 4, this equation can also be written as

where the double sum in the second row is allowed because
the off-diagonal elements of theHe(e|ν) matrix are all identically
zero. To continue, we recall eqs 3 and 8. Just like the electronic
basis set,ú is associated withψ so that the scalar product forms
the total wave functionΨ (eq 3); there exists an electronic basis
setø that is associated withΦ so that their scalar product also
forms Ψ, namely,

Next, equating eqs 3 and 21 and recalling eq 8, it is seen that
ú andø are connected through the same unitary transformation
asψ andΦ, namely,

or

However the two basis setsú and ø differ in one essential
feature; namely, in contrast toú, the ø eigenfunctions do not
depend on the nuclear coordinates. This can be seen from the
substitution of eq 21, together with eqs 2 and 4, in eq 1 and by
repeating the same procedure as in the derivation of eq 16.
BecauseΦ has to fulfill eq 9, this requires the corresponding
τ-matrix elements, namely,τ̃ij, to be all identically zero:

Next, it can be shown that Eq 23 implies that all of theN
relevantø functions are independent of the nuclear the coor-
dinates, thusø ≡ ø(e)

Having made all of the preparations, we are now in the
position to treat the second row in eq 20. Employing eqs 22,
we replace theú(e, ν) functions in this expression by theø
functions so that we get forW ij the following result:

Φ̃(e,ν|ν0) ) ∑
j)1

L

φ̃j(ν) új(e|ν0) (14)

(He(e|ν0) - uj(ν0))új(e|ν0) ) 0 j ) 1,...,L (15)

- 1
2m

∇2Φ̃ + (V - E)˜Φ ) 0 (16)

V ij(ν|ν0) ) 〈úi(e|ν0)|He(e|ν)|új(e|ν0)〉 (17)

V ij(ν|ν0) ) 〈úi(e|ν0)|U(e|ν) - U(e|ν0)|új(e|ν0)〉 + uj(ν0)δji

(18)

W ij ) ∑
k)1

N

A ikukkA* jk (19)

W ij ) ∑
k)1

N

A ik(ν)〈úk(e|ν)|He(e|ν)|úk(e|ν)〉A* jk(ν) )

∑
k)1

N

∑
k′)1

N

A ik(ν)〈úk(e|ν)|He(e|ν)|úk′(e|ν)〉A* jk′(ν) (20)

Ψ(e,ν) ) øT(e|ν) Φ(ν) (21)

úT ) øTA† w øT ) úTA

ú ) Aø w ø ) A†ú (22)

τ̃ji ) 〈øj|∇øi〉 ≡ 0 i, j ) { 1,....,N} (23)

W ij ) 〈øi(e)|He(e|ν)|øj(e)〉
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Because both theø(e) and theú(e|ν0) functions are sets ofN
electronic independent functions, they may not be identical but
are at most related by a constant unitary matrix of dimensionN
(see also eq 22). We replace theø(e) functions by theú(e|ν0)
functions so thatW ij becomes

Equation 24 is identical to eq 17.
In summary, it is important to realize that we are not

proposing here a new way to form diabatic potentials. Our
intention is to show that it is immaterial which way one chooses
to form diabatic potentials because the dimension of the
respective diabatic potential matrix cannot be smaller thanN
(see eq 12). In other words, there exists this belief that one can
find an “efficient” diabatic framework for which, for example,
the number of states is 2 whereas the minimal numberN is 5.
What we are saying is that this belief is not supported by theory
because the minimal numberN is determined by the system
and not by the user. To determine the value ofN, one has to
calculate the NACTs and then form theD matrix (eq 13) to
examine whether it is diagonal for the contour that surrounds
the region of interest. This examination has to be repeated until
the smallest value ofN, that still guarantees the diagonalD
matrix, is found.

IV. Reduced Born-Oppenheimer Diabatic Matrix for
Dynamical Calculations

We realize that diabatization overcomes one difficulty
(namely, eliminates the unpleasant NACTs) but then may create
a new difficulty, eventually, increasing significantly the number
of coupled SEs (in eq 9) to be solved. As mentioned earlier,
this difficulty is inherent and is not connected to the way the
diabatization is achieved. In the present section, we discuss an
approach that reduces the size of this set of equations and still
guarantees well-converged dynamical calculations.

In what follows, we adopt the following notation:ZN
p labels

a rectangular matrixZ with p columns andN rows. In other
words, the superscript index designates the number of columns,
and the subscript index indicates the number of rows.

With this notation, the diabatic SE in eq 9 takes the form

where ΦN
1 is a column vector that contains the diabatic

(nuclear) wave functions andWN
N is the diabatic potential

matrix (eq 10):

Next, we recall that the connection between the diabatic wave
functions in ΦN

1 and the adiabatic ones inΨN
1 is given as

follows (eq 8):

We continue, assuming that for a given energyE only q
adiabatic states are classically allowed (i.e., open). This implies
that out of theN nuclear adiabatic wave functions (ψ1,..., ψN)
only theq lowest ones differ (significantly) from zero for any
practical application. Because of that, the row vectorΨT takes
the form ΨT ≡ (ψ1,..., ψq, 0,..., 0). Consequently, eq 27 can
also be written in the form

On the basis of this observation, we assume that the diabatic
framework is, similarly, presented in terms ofp (q e p e N)
functions so thatΦT ≡ (φ1,..., φp, 0,..., 0) wherep is yet an
undetermined value. As a result, eq 28 becomes

In what follows, we treat only the firstp equation of eq 25:

where ΦN
1, in the second term, is still unchanged but is

replaced by employing eq 28 so that eq 29 becomes

Recalling eq 28′, Ψq
1 is replaced by the expression

so that the equation forΦp
1 takes the form

where

It is important to emphasize thatCq
p is the right-hand-side

inverse matrix of the rectangular matrixAq
p; namely, it fulfills

the condition

whereIp
p is the unit matrix of dimensionsp × p. Consequently,

eq 32 can be further simplified to become

where the elements ofW̃p
p are

Here, both k and n are limited by p. Thus, although we treat
only p equations (instead of N) we still employ all the N2

elements ofW (recall thatW is a symmetric matrix).
The main numerical difficulty to be encountered is in deriving

the inverse of the rectangular matrixAp
q. It is obvious that ifp

can be chosen to be equal toq then this difficulty disappears.
However,p is a parameter to be varied until convergence is
attained. However,q, which is assumed to be a fixed number,
can be made equal top as long as its value is larger than (or
equal to) the number of open adiabatic states for the assumed
energyE. In numerical treatments,q is assumed to be equal to
p; therefore, bothAp

q (≡ Ap
p) and Cq

p (≡Cp
p) become square

matrices. It is important to emphasize that makingq equal top
does not affect the number of SE to be solved.

W ij(ν|ν0) ) 〈úi(e|ν0)|He(e|ν)|új(e|ν0)〉 (24)

- p2

2m
∇2ΦN

1 + (WN
N - E)ΦN

1 ) 0 (25)

WN
N ) AN

NuN
NAN

†N (26)

ΦN
1 ) AN

NΨN
1 (27)

ΦN
1 ) AN

qΨq
1 (28)

Φp
1 ) Ap

qΨq
1 (28′)

- p2

2m
∇2Φp

1 + (Wp
N - E)ΦN

1 ) 0 (29)

- p2

2m
∇2Φp

1 + (Wp
N - E)AN

qΨq
1 ) 0 (30)

Ψq
1 ) (Ap

q)-1Φp
1 ) Cq

pΦp
1 (31)

- p2

2m
∇2Φp

1 + (Wp
N - E)BN

pΦp
1 ) 0 (32)

BN
p ) AN

qCq
p (33)

Ap
qCq

p ) Ip
p (34)

- p2

2m
∇2Φp

1 + (W̃p
p - E)Φp

1 ) 0 (35)

(W̃p
p)kn ) (Wp

p)kn + ∑
j)p+1

N

(Wp
N)kj(BN

p)jn (36)
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To continue the derivation, we examine in more detail the
potential matrix elements (W̃p

p)nk given in eq 36, which from
now on are designated asW̃nk (recalling thatW̃ ≡ W̃p

p). For
this purpose, we consider first the ordinary potential matrix
elementWnk that is given in the form (eq 26)

where the star, as before, labels the complex conjugate. Along
the same lines, we remember that because of unitarity

Returning to eq 36, we consider the second term on the right-
hand side

We continue by analyzing the second term (following the last
equal sign). Because of eq 34, the last summation term (overt)
yields the Kroneckerδ function (i.e.,δjn) so that the final form
of the above expression is

Substituting eq 39 in eq 36, we obtain forW̃kn the result

where all four matrices are of dimensionsp × p. Equation 40
can also be written as a matrix equation

which is our final result.
Equation 41 is, in fact, somewhat of a surprise because we

managed to show that the modified diabatic potential matrix
W̃ (≡ W̃p

p) is similar to the ordinary diabatic potentialW as
given in eq 10 except thatA (≡ Ap

p) is not the fullN × N ADT
matrix but the reduced one of dimensionsp × p (wherep <
N). Consequently, we do not encounter in eq 41 the complex
conjugate matrix (Ap

p)† but A-1, the inverse matrix ofAp
p.

We are aware of the fact that becauseW̃ (≡ W̃p
p) is not a

symmetrical matrix the Hamiltonian is not Hermitian (and
therefore, for instance, in a scattering calculation theS matrix
is not guaranteed to be a unitary matrix), but it is our belief
that this fact does not necessarily affect the results significantly,
at least not those related to the lower states. Non-Hermitian
Hamiltonians are frequently applied in molecular dynamics (see,
for instance, those that contain imaginary potentials to form
absorbing boundary conditions78-89); nevertheless, the results
are practically correct. In any case, the final results are subject
to convergence tests; therefore, to achieve convergence, we may
need to varyp, as in any other scattering or spectroscopic cross-
section calculation.

V. Example: Formation of a 2 × 2 Diabatic Potential
Matrix for a Three Coupled-State System

To show the relevance and the efficiency of the present
approach, we work out, to some extent, the three-state case. In
other words, we show how, according to the above procedure,
a two-state ADT matrix is formed from an original three-state
ADT matrix and, consequently, the two-state diabatic potential
matrix.

For this purpose the three-state ADT matrix,A(3), is assumed
to be obtained from the following product:48,90

where, for instance,Q12
(3) is defined as

and the two other matrices are defined accordingly.
Substituting eq 43 as well as the two other matrices into eq

42 yields the quasi-Euler matrix

where (ckj, skj) ) {cos(γkj), sin(γkj)} andγ12, γ23, andγ13 are
the three Euler angles. Substituting eq 44 in eq 11 yields the
three first-order differential equations for the these angles:

whereτ12, τ23, andτ13 are the corresponding elements of the
3 × 3 NACT matrix. To apply theA matrix in eq 44 to the
reduced 2× 2 case, we have to cut out the 2× 2 submatrix
located in the upper left corner ofA, namely,A(2):

Next, according to the theory we have to form its inverse:

Wnk ) ∑
j)1

N

Anjujj(A
†)jk ) ∑

j)1

N

AnjujA* kj (37)

∑
j)1

N

A* jkA jn ) δkn (38)

∑
j)p+1

N

(Wp
N)kj(BN

p)jn ) ∑
j)p+1

N

[∑
s)1

N

(AksussA* js)∑
t)1

p

(A jtCtn)]

) ∑
s)1

N

{Aksuss∑
t)1

p

[ ∑
j)p+1

N

(A* jsA jt)Ctn]}

) ∑
s)1

N

{Aksuss∑
t)1

p

{[δst - ∑
j)1

p

(A* jsA jt)]Ctn}}

) ∑
s)1

p

(AksussCsn) -

∑
s)1

N

{Aksuss∑
j)1

p

[A* js∑
t)1

p

(A jtCtn)]}

∑
j)p+1

N

(Wp
N)kj(BN

p)jn )

∑
s)1

p

AksussCsn - ∑
s)1

N

AksussAns
/ ) ∑

s)1

p

AksussCsn - (Wp
p)kn (39)

W̃kn ) ∑
s)1

p

AksussCsn (40)

W̃ ) AuC ) AuA-1 (41)

A(3) ) Q13
(3)Q23

(3)Q12
(3) (42)

Q12
(3)(γ12) ) (cosγ12 sin γ12 0

-sin γ12 cosγ12 0
0 0 1

) (43)

A ) (c12c13 + s12s13s23 c13s12 - c12s13s23 c23s13

-c23s12 c12c23 -s23

-c12s13 + c13s12s23 -s12s13 - c12c13s23 c13c23
) (44)

∇γ12 ) -τ12 - tanγ23(τ13cosγ12 + τ23sin γ12)

∇γ23 ) -τ23 cosγ12 + τ13sin γ12

∇γ13 ) -(cosγ23)
-1(τ13 cosγ12 + τ23 sin γ12) (45)

A(2) ) (c12c13 + s12s13s23 c13s12 - c12s13s23

-c23s12 c12c23
) (46)

(A(2))-1 ) 1
c13c23

(c12c23 - c13s12 + c12s13s23

c23s12 c12c13 + s12s13s23
) (47)
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Consequently, the corresponding 2× 2 diabatic matrixW̃ is
given in the form

which can be written as

whereW(2), the principal part, is given in the form

and∆W, the correction term, is given in the form

The missing elements are

The main outcome of this derivation is that in situations in which
the elements of∆W are small the diabatic potential matrixW(2)

is of the usual form but is expressed in terms of an ADT angle
(i.e.,γ12) that results from a three-state calculation and therefore
is guaranteed to be a multiple ofπ. This, as is well known,
ensures the single valuedness of the diabatic potentials.

Equation 50 implies that∆W can be ignored as long as the
two other angles, namely,γ23 and γ13, are small enough.
However, this approximation breaks down when one of these
two angles (in this case,γ13) becomesπ/2, namely, when the
contour gets close enough to any of the (2,3) ci’s.

VI. Analysis of the Final Results

Equation 41 yields the (diabatic) potential matrix for the
modified (reduced) diabatic framework. At the beginning of our
analytical derivation, we assumed that the Hilbert subspace is
made up ofN states; therefore, one expects a diabatic potential
matrix to be of dimensionsN × N and the number of equations
to be solved asN. Following the analytical study presented in
the previous section, we reduced this number top, which can
be increased until convergence is attained (p e N). We recall
thatp is limited not only from above (byN) but also from below
by q, whereq is the number of open (adiabatic) states for a
given energy (and a given region).

Equation 41 clearly exhibits the two aspects that affect most
electronic nonadiabatic processes, namely, energy and topology.
The energy aspect enters through theu matrix, which contains
the adiabatic PESs, because the energy controls the number,p,
of adiabatic PESs to be included in the calculation. The
topological aspect enters through the reducedA matrix (and its
inverse) because its derivation, although it is of dimensions
p × p, involves all of theN eigenstates of the Hilbert subspace.
This is also well demonstrated in the example that was worked
out in section V.

The derivation is characterized by two important features.
(1) For p ) N, eq 41 yields the ordinary result given in

eq 26. The reason is that forp ) N the matrix (Ap
p)-1 becomes

as one would expect. This implies that in this caseN SEs have
to be solved.

(2) For q ) p ) 1, the (single) potential term isu1

(namely, the lowest adiabatic potential), and the corresponding
Schrödinger equation becomes

In other words, eq 53 is the ordinary adiabatic BO-Schrödinger
equation. It is important to emphasize that to apply eq 53 to
systems with conical intersections (systems that possess singular
NACTs) eq 53 has to be solved for the relevant boundary
conditions.

VII. Conclusions

In this article, we treat two issues related to the electronic
diabatic potential energy matrix.

(a) From scanning through the published literature, we notice
that the dimension of the diabatic matrices is arbitrary and not
subject to any limitations. We proved on various occasions74

(see also refs 58(a), 58(c), 62(a), and 62(b)) that the dimension
of a diabatic matrix that follows from the adiabatic framework
by employing the ADT is determined to the extent that the
nonadiabatic coupling matrix,τ, breaks up into blocks. This
implies that if the size of the decoupled block belonging to the
τ matrix (i.e., τN) is N then the dimension of this diabatic
potential energy matrix has to beN as well. In this article, we
prove for the first time that the size of a diabatic matrix obtained
in any other way (direct or indirect) has to beN as well.

(b) One of the main obstacles in treating electronic nonadia-
batic processes is the fact that the just-mentioned numberN,
which also stands for the number of diabatic SEs to be solved,
can be rather large. This fact causes many dynamical treatments
to be carried out with an arbitrarily reduced number of equations
(usually two), essentially without any justification. In the present
article, we consider this issue in detail and show how the number
of SEs to be solved can be reduced rigorously from its original
value N (which is energy-independent) to a smaller number,
labeled asp, which is expected be energy-dependent and most
likely equals the number of energetically open adiabatic states.

As a final issue, we refer to a different method, due to
Kuppermann,6,11 that is also devised to overcome the problem
of an enlarged system of diabatic states. According to this
method, one considers only the two lowest adiabatic states and
derives the corresponding ADT angle by solving a Poisson
equation based on the removable part of the (1,2) NACT. In
this way, the newly formed diabatic potential matrix (eq 50) is
guaranteed to be single valued as it should be.

The two approaches differ significantly from each other. The
Kuppermann approach considers only two states; in other words,
all magnitudes are related to the single (1,2) NACT. This is its
advantage but mainly its limitation because it is not clear how
to incorporate topological features of higher states. Our approach
demands a knowledge of theN × N τ matrix whereN is usually
larger than 2, but then, at the stage of treating the system ofN
diabatic (nuclear) Schro¨dinger equations, this number is reduced
to p, where p (eN) is now energy-dependent. The main

W̃ ) A(2)(u1 0
0 u2

)(A(2))-1 (48)

W̃ ) W(2) - ∆W (49)

W(2) ) (c12
2u1 + s12

2u2 c12s12(u2 - u1)

c12s12(u2 - u1) s12
2u1 + c12

2u2
) (50)

∆W ) 1
c13c23

(V11 V12

V21 V22
)(u2 - u1) (51)

V11 ) -V22 ) -s12s13s23c12c23

V21 ) (c13 - c23)c12c23s12 (52)

V12 ) (c13 - c23)c12c13s12 +

s13s23(-c12s12 + c13s12
2 - c13c12

2)

(Ap
p)-1 ) (AN

N)-1 ) (AN
N)† (53)

- p2

2m
∇2æ + (u1 - E)æ ) 0 (54)
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advantage of our approach is that it enables a series of iterations
to obtain the converged results. Because this part seems to be
missing in the Kuppermann approach, our method can be
considered to be complimentary to his when it turns out that
keeping only two equations may lead to inadequate results.
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