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In this article, two issues related to the size of the electronic diabatic potential energy matrix are treated. (a)
We frequently mention the fact that the dimension of a diabatic matrix obtained by a unitary transformation
from the adiabatic framework is determined by the way the nonadiabatic coupling matréaks up into
blocks. In this article, we prove for the first time that the size of the diabatic matrix as obtained in a direct
way is determined in the same way. In other words, if the dimension of the above-mentioned decoupled
block is N, then the dimension of any diabatic potential energy matrix with physical relevance had\to be

as well, regardless of how it was derived. This numbgiis also equal to the number of coupled diabatic
Schralinger equations to be solved. (b) The second issue is, consequently, related to the actual required
number of coupled Schdinger equations to be solved to obtain a well-converged solution. Starting with the
earlier introduced numbe, we show that this number can be reduced, and in fact, it is most likely equal to
the number of energetically open adiabatic states (for a given energy). While doing that, we rigorously derived
the relevant diabatic potential matrix for this reduced case. We also worked out in detail an example related
to a three-state case and derived the relevart2 diabatic potential matrix.

I. Introduction diagonal potential energy matrix becomes a full matrix of
dimensionsN x N (whereN is the number of states included

in the transformation, see section Il), which is known as the
diabatic potential matrix (or simply the diabatic matréRy°
However, it was soon revealed that this procedure is numerically
time-consuming, and other “more efficient” methods were
proposed>17.18.222429ne procedure where the diabatic matrix
is formed directly is presented in section 11.3. Now, having (at
least) two different ways to form the diabatic matrix, the
question is whether these two procedures lead to identical results
for the diabatic matrix (up to a constant orthogonal transforma-
tion). If the two matrices are the same at each point in the region

The quantum mechanical study of electronic nonadiabatic
processes becomes more and more a subject of major
importancel~84 Most of the quantum-mechanical treatments of
molecular systems during the last four decades took place on
the lowest adiabatic BorOppenheimer potential energy
surface (PES). This applies to both the derivation of the PES
and the dynamical studies. The pace of similar treatments for
several PESs was rather slow, and only during the 1990s did
interest in electronic nonadiabatic effects start to become
significant mainly because of the pioneering dynamical studies

of Kuppermann et ."Jﬁ‘_ll and the ability to calculate ab initio of interest, then we may conclude that we found the correct
nonadiabatic coupling terms (NACT). _diabatic matrix. If not, then the natural question to ask is, which
One. of .the main ot.)stacles. in the study of. e|eth0'_"C of the two (if either of them) is the correct diabatic matrix?
nqnadlabanc transitions is the 6_3X|stence o_f conical |nters_.ect|ons-|—hiS question is unresolved for many; however, it is our opinion
(ci), #~°7 a phenomenon that is responsible for the existence hat neither of them is the correct potential matrix. In other

of singular NACTs2*%As it turns out, it is not the singularity \yords; the only way to ensure that, indeed, we have the correct

per se but the fact that these singularities are poles and thereforgjiapatic potential matrix is i is such that the two procedures
create nonlocal effects that extend to infinity. It is, of course, yield the same diabatic matrix.

well known that poles of this kind (similarly to potentials that
behave asymptotically like (f)) cannot be treated by numerical importance. The above-mentioned (minimal) numieequired

recipes but have to be approached rigorously. _ fordiabatization, also, determines the number of coupled nuclear
The existence of the singularities in general and the infinite gchrgginger equations (SE) that have to be solved to treat the
long-range effect of the NACTSs' poles in particular slowed the -y clear dynamics. It is known from previous theoretical studies

process of studying electronic nonadiabatic effects. In the 1970s,5d numerical calculations that to guarantee the accurate diabatic
it was revealed that one can transform the adiabatic framework potential matrix the required numblrmay become relatively

to the diabatic one (namely, the framework where the NACTS |5rge. In this article, we discuss the possibility of redudinin
are zero) by an orthogonal matrix called the adiabatic-to-diabatic 5 rigorous way while still obtaining converged scattering
transformation (ADT) matri%? In this process, the adiabatic  gjculations.

In this article, we also address another issue that is of similar

The article is arranged as follows. In the next section, we
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of statesN. In sections IV, V and VI, we discuss the second through eq 4), an¥’ is a column vector that contains the nuclear
issue related to the reduction in size of the set of coupled SEswave functions to be solved (introduced in eq 3). Equation 7 is
for a given energ\E. In particular, we present (in section VI)  known as the adiabatic SE for the nuclei.

such a reduction for a three-state system and obtain the relevant Equation 7 can be shown to be approximately valid for a
2-D diabatic potential matrix. In the last section, we summarize group of states that do not necessarily form a Hilbert space but

the conclusions.

Il. Theoretical Background

I1.1. Introductory Remarks. In this article, we consider the
general Schidinger equation that describes the motion of both
the electrons and the nudier*

H-EW=0 1)

whereE is the total energy is the total wave function of the
system, andH is the complete Hamiltonian given in the form
L

T, =—1-v

H=T,+H, V=

2)
Here, v and e stand for nuclear and electronic coordinates,
respectivelyHe is the electronic Hamiltonian to be discussed
later, T, is the kinetic operator of the nuclei expressed in mass-
scaled coordinatesn is the mass of the system, aRdis the
gradient operator.

11.2. Adiabatic Framework and Adiabatic-to-Diabatic
Transformation. The starting point is the BormOppenheimer
Huang (BOH)"2 close-coupling expansion

N
Wew) =Y w) Glel) ®
]Z J |

wherey;(v) is the (th) nuclear-coordinate-dependent coefficient
(recognized as thigh nuclear wave functions) angj(e|v), is
the jth electronic wave function, assumed to be tik
eigenfunction of the electronic Hamiltonidte(e|v):

(He(elv) — u()g(elv) =0 (4)

Here,u(v) (j = 1....,N) are the electronic eigenvalues that serve

i=1,..N

as the adiabatic potential energy surfaces that govern the motion]

of the nuclei in this system. Equation 3 can also be written in
matrix notation as follows:

W(e,v) ='(elv) p(v) )

where(T is the corresponding row vector. Next, we introduce
the nonadiabatic coupling matrix elements (NACME), the
principal magnitudes considered in this article, which are defined

are strongly coupled to themselves and, at most, weakly coupled
to other states belonging to this manifold (see the discussion
below®). In what follows, such a group of states is termed a
Hilbert subspace. We return to this issue later.

As mentioned earlier, the NACTs may possess unpleasant
features that can prevent the solution of eq 7 as such. To
overcome this difficulty, the idea is to eliminate the NACTSs,
and this is done by applying the following (unitary) transforma-
tion:%°

w=A'p (8)

Inserting eq 8 in eq 7 yields the following diabatic equafi®n:

— —V?® + (W — E)® =0 (9)

whereW, the diabatic potential matrix, is given in the form

W =AuA' (10)

andA, the adiabatic-to-diabatic transformation (ADT) matrix,
has to be a solution of the following first-order differential
equation®®

VA+1A=0 (11)

The solution of eq 11, namely, matrix, has to yield a single-
valued diabatic PES matriw/, a feature not guaranteed by an
arbitraryr matrix. We will not go into the full details regarding
the required features of thematrix for this purpose but will
just summarize them as follows. To guarantee a single-valued
W matrix of (finite) dimensiondN x N in a given regionA,
the r matrix has to be of the following forpf62a.b.74

0 T12
—T12 0

—Ty3 —

Ty —
0

TINFINA2

“Tntine2 O

O(e)

TINFINGS
TTINt2N+3

O()

TInkne3 T Tnznes O

as 0
5= GIVED i ={1..} (6) 0

where the gradient operator is expressed with respect to the
(mass-scaled) nuclear coordinatesand thegy(e|v) functions
(k=j, i) are the above-mentioned eigenfunctions. The NACTs o ) .
become apparent following the derivation of the SE that at every pomtmthat_ region. Here, the off-diagonal elements at
describes the motion of the nuclei. Substituting egs 2 and 3 Positions |, k) wherej < Nandk > N (the same applies to the
into eq 1, recalling eq 4 and assuming that the electronic (K J) positions) are on the order ef namely,O(¢), ande is a

manifold forms a complete Hilbert space, this nuclear equation 9iven small number. In other words thematrix has to be of
can be shown to take the fofAyob the above “block” structuré The N states that produce this

block structure are those mentioned earlier as the ones that form
the Hilbert subspace. From now d¥i stands for the dimension

of the lowest block in the matrix in eq 12, and the block itself

is designated asy.

wherer is the above-mentioned antisymmetric NACM|s a The breakup of tha matrix in eq 12 is frequently under
diagonal matrix that contains the adiabatic PESs (introduced scrutiny; therefore, to show that it happens in realistic cases,

(12)

- %(v + )W+ (U—-E¥=0 @)
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Figure 1. Angular nonadiabatic coupling terms,i(¢|q) (i < j) as calculated for the H H, system forRay = 0.74 A: (a—c) circle located at

the (1,2)Da, ci with radiusq = 0.2 A; (d—) circle located at the (1,2Da, ci with radiusq = 0.3 A; (g—i) circle located at the (1,2Da ci with

radiusq = 0.4 A. Full circles stand for the two fixed hydrogens; full squares stand for (1,2) ci’s; full diamonds stand for (2,3) ci's, and the circles
describe the contours along which thg(¢|q) were calculated. The straight line perpendicular to the HH axis connects the midpoint between the

two hydrogens and thBs;, ci point. Notice the small values af34(¢|q) in a, d, and g as compared to thoserpfx@|q) andz,»3(¢|q). Also note

the change in scale of b, c, e, f, h, and i as compared to the scale in a, d, and g. Note the increased scale in b, c, e, f, h, and i as compared to the
scale in a, d, and g.

we present a few results related to thetHH, system. This
system was recently studied by ¥sand it was found that its
three lower states form, in the region surroundingdis ci’s,

a Hilbert subspace; in other words, #tmatrix breaks up exactly
as shown in eq 12 whefd = 3. This would imply that all
elementsrj wherej < 3 andk > 3 are much smaller than,
andrs (and sometimes everg). In Figure 1, we present the
angular components of nirematrix elementsgiy, 713, 714, T1s,

indication that these two states are not coupled via a ci in the
considered region. This is what happens to the third and the
fourth states of the H- H, system; they are not coupled via a
ci,%8¢ and it is this missing ci that is the main cause for the
breakup of the Ht+ H, 7 matrix into a (3x 3 matrix+ rest) as
shown in eq 12.

It is not always possible to determine whether at a given
. : region A ther matrix breaks up as in eq 12 by just inspecting
T23, T24, To5, T35, andrsg calculated along three different circles 0\ ariougr-matrix elements at each point. Instead, we devised

(all centereo_l at .th@e‘h ¢i point) with radiiq = 0.2, .0'3' 0.4 A the following D matrix defined in terms of the exponentiated
The results in Figure 1 are presented as a function of the angleIine integral®

@ (defined in the Figure). The details regarding such calculations
are given in ref 58a. Here, we just mention that they were
derived, employing MOLPRO, for a fixed distanRgy (= 0.74

A) between two hydrogens. The third hydrogen is the test
particle for probing ther elements so that the variables ()

are the coordinates of this third hydrogen.

Out of these nine elements, only two are relatively large,
namely,r1> andz,s, one—ther;s element-is of an intermediate
size, and the rest (namely, those that couple the3block to
the rest of ther matrix) are at least one order of magnitude
smaller. In particular, we call attention #4. In general, the
main coupling between two (adjacent) stafjeand { + 1), is
due to the corresponding tridiagonal matrix elemgnt. The
fact that the value of such a matrix element is small is an

D) = sexp(f - ds'ty) (13)
wherel is a closed contour i\, 4 is an ordering operatorsd
is a differential increment along, and the dot stands for a scalar
product. It was shown that in the case in which thenatrix
has the structure in eq 12 at every point in the regigrthe
correspondind® matrix is approximately a diagonal matrix for
every closed contouF in this region. Moreover, it was also
shown that matriXD is a unitary matrix; therefore, its values
along the diagonal arg1 (for real eigenfunctions). We called
this unique feature the “quantization of tiematrix” because
in case the decoupled block in eq 12 is of dimendibr 2,
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the corresponding (only nonzero) element of thenatrix; Equation 16 is similar to eq 9 except that the diabatic potential

namely,r1, fulfills the Bohr—Sommerfeld quantization laf.”4 V is not necessarily identical to the diabatic potential matrix
The quantization of th® matrix in relatively large regions ~ W. The main difference is that the dimensionWf (i.e., N),

of configuration space (namely, regions much too large to be unlike the dimensioi. of V, is not arbitrary but is determined

treated by perturbation treatments) is established in a series ofby the structure of the matrix. Consequently, it is expected

ab initio studies related tCp,H},%> {H,H,},582.¢{Na,H;} 622 that if eqs 9 and 16 are solved for matrices of different

and{ C,H,H}58%and recently also t§O,H,} 76 dimensions the results will be different. In the next section, we
Let us summarize our finding so far. The electronic ab inito show that if the dimensions &f andW are the same (namely,
calculations usually supply the adiabatic PES matuixand N) then the two matrices contain identical elements.

the NACM, 7. Therefore, to study electronic nonadiabatic
processes one has to solve the SE given in eq 3. However, it islll. Unification of the Two Diabatic Frameworks
now known that ther matrix is frequently singu_la_r ar_ld i_n We start with thaV/ matrix. Considering eq 9, thé () matrix
partl_cular may possess potefeatures that cause d|ff|cu_lt|_es N element ofW is given in the form
solving this equation. One way to overcome these difficulties
is to diabatize eq 3, namely, rigorously eliminate the troublesome N
NACTSs. In this process, one forms eq 9, which contains the W, = ZAikukkA*jk (19)
diabatic PESN given in eq 10. However, in doing so we may =
encounter the situation in whiclV is multivalued. It was
revealed that a meaningful diabatization (namely, the one that©r recalling eq 4, this equation can also be written as
produces single-valued diabatic potentials) cannot be achieved
for an arbitrary number of statéé It can be achieved if and _ _
only if this group of states yields the quasi-decoupled blagk Wy = ;Aik(v)[@k(ewlHe(e"’)'Ck(e'V)m\*ik(V) -
of the NACTs matrix (see eq 12). It is important to emphasize -
that this demand is not based on any energy considerations but NN
results from nonlocal effects (or topological effects) formed by Z l<Z\Aik(v) [ (e[v)[H(elv)IEc(elv)[A* . (v) (20)
the poles of the various NACTSs. k=1k=

11.3. Diabatic Framework. As was discussed in the Intro-
duction, we consider a different way of forming diabatic states
an approach that does not involve the NACTs. As was already
mentioned in the Introduction, there are many approaches to
forming diabatic state¥:17.18.2224.24n the present section, we
refer to one of the simplest procedures that also allows us to
“stay analytic all the way”.

Our starting equation is eq 3 with one difference; namely,

N

where the double sum in the second row is allowed because
the off-diagonal elements of théy(e]v) matrix are all identically
zero. To continue, we recall egs 3 and 8. Just like the electronic
basis set{ is associated witky so that the scalar product forms
the total wave functioW! (eq 3); there exists an electronic basis
sety that is associated witth so that their scalar product also
forms W, namely,

we replacegi(e|v) by &i(elvo) (i = 1,...) wherevy stands for a T
fixed set of nuclear coordinates. Thus, instead of expansion in W(e) =y (ev) ®() (21)
eq 3 we consider Next, equating eqs 3 and 21 and recalling eq 8, it is seen that
L ¢ andy are connected through the same unitary transformation
leviv) = 3 §v) §elvo (14)  asy and®, namely,
=

gT :ZTAT=>ZT — gTA
Here, Ci(e|vo), just like gi(elv), is an eigenfunction of the
following Hamiltonian or
(Hoelvg) — u()gielv) =0 j=1...L (15) E=Ay—x=A¢ (22)

where ui(vg) (i = 1,...,,L) are the electronic eigenvalues as However the two basis sets and y differ in one essential
calculated for this (fixed) set of nuclear coordinates. Continuing feature; namely, in contrast &y the y eigenfunctions do not

in the usual manner, we obtain the following diabatic SE: depend on the nuclear coordinates. This can be seen from the
substitution of eq 21, together with egs 2 and 4, in eq 1 and by
— iVZ(i, +(V—-Ey®=0 (16) repeating the same procedure as in the derivation of eq 16.
2m Because® has to fulfill eq 9, this requires the corresponding
where T-matrix elements, namely;, to be all identically zero:
Vi(vive = EIHLemIGErdT (A7) = V=0 =N (29)
which can be shown to B& Next, it can be shown that Eq 23 implies that all of tNe
relevanty functions are independent of the nuclear the coor-
Vii(vlvg) = LEi(elvg)|U(elv) — U(elvg)Ig(elvo) Ut uj(vo)o; dinates, thug = x(e) _ _
(18) Having made all of the preparations, we are now in the

position to treat the second row in eq 20. Employing egs 22,
In eq 18, the potentiall(e|v) (and alsoU(e|vo)) is the sum of ~ we replace the(e, v) functions in this expression by the
the Coulomb potentials between the electrons, between thefunctions so that we get faw;; the following result:

electrons and the nuclei, and between the nuclei all calculated
at the spatial point. W = Di(e)H(elv)ly;(e)d
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Because both thg(e) and thef(e|vg) functions are sets dfl (I)l%l — Aﬂ,‘l’é (28)
electronic independent functions, they may not be identical but

are at most related by a constant unitary matrix of dimension  on the basis of this observation, we assume that the diabatic
(see also eq 22). We replace tpe) functions by thef(e|vo) framework is, similarly, presented in termspig < p < N)
functions so thawj; becomes functions so tha®™ = (¢,..., ¢p, O,..., 0) wherep is yet an

undetermined value. As a result, eq 28 becomes
Wj(v[vo) = [Zi(elvo) IH(Elv)IE;(Elvo) ] (24)

Equation 24 is identical to eq 17.
In summary, it is important to realize that we are not |, what follows, we treat only the firgh equation of eq 25:

proposing here a new way to form diabatic potentials. Our

intention is to show that it is immaterial which way one chooses A2, N N

to form diabatic potentials because the dimension of the “omY Po T Wy —B)®y=0 (29)

respective diabatic potential matrix cannot be smaller tHan

(see eq 12). In other words, there exists this belief that one canyhere @, in the second term, is still unchanged but is

find an “efficient” diabatic framework for which, for example,  replaced by employing eq 28 so that eq 29 becomes

the number of states is 2 whereas the minimal nunhbes 5.

What we are saying is that this belief is not supported by theory R, N -

because the minimal numbét is determined by the system “omY Pt (W, — B)A\W,=0 (30)

and not by the user. To determine the valud\pfone has to

calculate the NACTs and then form thi® matrix (eq 13) to Reca”ing eq 28 lllgi is rep|aced by the expression

examine whether it is diagonal for the contour that surrounds

1__ 1
@} = AW (28)

the region of interest. This examination has to be repeated until yl=(AY"'®! = P! (31)
the smallest value oN, that still guarantees the diagonal a P P P
matrix, is found. so that the equation fob takes the form
IV. Reduced Born—Oppenheimer Diabatic Matrix for K2, 4 N L
Dynamical Calculations —omV @yt (W, - E)BR®,=0 (32)

We realize that diabatization overcomes one difficulty
(namely, eliminates the unpleasant NACTSs) but then may createWhere
a new difficulty, eventually, increasing significantly the number
of coupled SEs (in eq 9) to be solved. As mentioned earlier, BR = ARCq (33)
this difficulty is inherent and is not connected to the way the
diabatization is achieved. In the present section, we discuss anlt is important to emphasize tha} is the right-hand-side
approach that reduces the size of this set of equations and stillinverse matrix of the rectangular matmg; namely, it fulfills

guarantees well-converged dynamical calculations. the condition
In what follows, we adopt the following notatiorZy, labels
a rectangular matriZ with p columns andN rows. In other ACE=1p (34)
words, the superscript index designates the number of columns,
and the subscript index indicates the number of rows. Wherelgis the unit matrix of dimensiong x p. Consequently,
With this notation, the diabatic SE in eq 9 takes the form eq 32 can be further simplified to become
il + (Wi~ Byl = I Gt (B — Byt =0 35
— oV Py + (WY — )@y =0 (25) oY Ppt (W — E)®, = (35)

where @}, is a column vector that contains the diabatic Where the elements o/} are
(nuclear) wave functions anwm is the diabatic potential

N
matrix (eq 10): 7
(eq 10) W= (Wpa t 5 (Wp(BRY,  (39)
Wi = ANuRATY (26) -
Here, both k and n are limited by p. Thus, although we treat

Next, we recall that the connection between the diabatic wave only p equations (instead of N) we still employ all theé N
functions in <I>h and the adiabatic ones iﬂfﬁ, is given as elements oW (recall thatW is a symmetric matrix).

follows (eq 8): The main numerical difficulty to be encountered is in deriving
the inverse of the rectangular matmg. It is obvious that ifp
@y = ANy, (27) can be chosen to be equalddhen this difficulty disappears.
However,p is a parameter to be varied until convergence is
We continue, assuming that for a given eneigyonly g attained. However, which is assumed to be a fixed number,
adiabatic states are classically allowed (i.e., open). This implies can be made equal fpas long as its value is larger than (or
that out of theN nuclear adiabatic wave functiong,..., ¥n) equal to) the number of open adiabatic states for the assumed

only theq lowest ones differ (significantly) from zero for any  energyE. In numerical treatmentsj is assumed to be equal to
practical application. Because of that, the row vedrtakes p; therefore, bothAg (= AE) and Cg (ECE) become square
the formW¥T = (y1,..., ¥q O,..., 0). Consequently, eq 27 can matrices. It is important to emphasize that makinpggual top
also be written in the form does not affect the number of SE to be solved.
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To continue the derivation, we examine in more detail the ~ We are aware of the fact that becaidle(= Wg) is not a
potential matrix elementswg)nk given in eq 36, which from symmetrical matrix the Hamiltonian is not Hermitian (and

now on are designated &%, (recalling thatW = Wg). For therefore, for instance, in a scattering calculation $heatrix
this purpose, we consider first the ordinary potential matrix is not guaranteed to be a unitary matrix), but it is our belief
elementW, that is given in the form (eq 26) that this fact does not necessarily affect the results significantly,

at least not those related to the lower states. Non-Hermitian

N + N Hamiltonians are frequently applied in molecular dynamics (see,

W = ZAnjujj(A )jk = ZAnjujA*kj (37) for instance, those that contain imaginary potentials to form
= = absorbing boundary conditioffs®?); nevertheless, the results

are practically correct. In any case, the final results are subject
to convergence tests; therefore, to achieve convergence, we may
need to vanp, as in any other scattering or spectroscopic cross-
section calculation.

where the star, as before, labels the complex conjugate. Along
the same lines, we remember that because of unitarity

N
ZA* 'kAjn = 6kn (38) . . . .
&G ! V. Example: Formation of a 2 x 2 Diabatic Potential

Matrix for a Three Coupled-State System
Returning to eq 36, we consider the second term on the right-

hand side To show the relevance and the efficiency of the present

approach, we work out, to some extent, the three-state case. In
N N N p other words, we show how, according to the above procedure,
(ng)kj(Bﬁl)jn = Z [Z(Aksusﬁ*js) Z(Ajtcm)] a two-stat_e ADT matrix is formed from an orig?nal t_hree-stat_e
j=pT1 =pT1 & = ADT matrix and, consequently, the two-state diabatic potential
b N matrix.

N
_ For this purpose the three-state ADT matA%), is assumed
= A A* A
;{ kSuSS: [j=p 1( A Cul} to be obtained from the following produt&°
N p p A® = Q(S)Q(3)Q(3) (42)
= Z{Aksuss {[0s— Z(A* iAICit} 132312
&= = =
. where, for instanceQ'? is defined as
= FZ('A‘ksusscsro - COS_VIZ sin V12 0
N p p Qy1p) =|—sinys, cosys, 0 (43)
Z{Aksuss [A*sz(AitCIH)]} 0 0 1
= = =

and the two other matrices are defined accordingly.
Substituting eq 43 as well as the two other matrices into eq
42 yields the quasi-Euler matrix

We continue by analyzing the second term (following the last
equal sign). Because of eq 34, the last summation term (pver
yields the Kronecked function (i.e.,djn) so that the final form

of the above expression is CiCis T S1SsSs  CusSip— CisSisSs  CrsSia
N A =17CxSpp C12Co3 —S3 | (44)
(Wg‘)kj(Bﬁ)jn = ~C1813 1 C1381553 ~815813 ~ C1CisSr3 C1aCos
j=pt1

where €y, Sq) = {C0sfk), Sin(y)} andyiz, y23 andyss are

p N p
A ucC.—SA * =S AUC. — (W 39 the three Euler angles. Substituting eq 44 in eq 11 yields the
FZ eHlss=en g Hsdns FZ Hsan = Wl (39) three first-order differential equations for the these angles:

Substituting eq 39 in eq 36, we obtain ffy, the result V15 = —T1p — taNy,4(113C0Sy 1, + 7,38y 4,)
_ P VY23 = —Tp3COSY 1, t Ty5SiNYy,
Van = ZAksussCsn (40) -1 .
&= Vy13= —(COSy,3) (715€08y 1, + 7p3SiNy ;) (45)

where all four matrices are of dimensiops< p. Equation 40

. . : wherertiy, 723, andriz are the corresponding elements of the
can also be written as a matrix equation

3 x 3 NACT matrix. To apply theA matrix in eq 44 to the
o . 1 reduced 2x 2 case, we have to cut out thex22 submatrix
W =AuC = AuA (41) located in the upper left corner &f, namely,A@:
which is our final result. n B

Equation 41 is, in fact, somewhat of a surprise because we AQ@ = (C12C13 S12913%3 C13°12 C12313323) (46)
managed to show that the modified diabatic potential matrix G512 C12C23

W (= W}) is similar to the ordinary diabatic potentis¥ as

given in eq 10 except thak (= AP) is not the fullN x N ADT Next, according to the theory we have to form its inverse:
matrix but the reduced one of dimensigns< p (wherep <

N). Consequently, we do not encounter in eq 41 the complex (A?) 1= 1 (C12023 ~CigSpp T C12513323) (47)
conjugate matrixAp)" but A~%, the inverse matrix oA, C15Coa\CoS12 C1Cia T S1S155s
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Consequently, the correspondingx22 diabatic matrix\W is
given in the form

- u
W =a@(" 0 )a@) (48)
0 U
which can be written as
W =w® — Aw (49)
whereW®@), the principal part, is given in the form
W@ = Uy + S5ty CuoSip(Up — Uy (50)
CSiUp — Uy s,°U; + ¢ U,
and AW, the correction term, is given in the form
1 (i 012)
AW = —— u,—u 51
Clacza(”zl V22 (L2~ 1) G
The missing elements are
V11T TV T 7515535301003
Vo1 = (C13 — Cp3)C1 G381 (52)

V15 = (C13 — Cp9)CyCigSpp T
2 2
S1553(—C1S12 T Ci3S12” — CiaCyy)

The main outcome of this derivation is that in situations in which
the elements aAW are small the diabatic potential mathix®
is of the usual form but is expressed in terms of an ADT angle
(i.e.,y12) that results from a three-state calculation and therefore
is guaranteed to be a multiple af This, as is well known,
ensures the single valuedness of the diabatic potentials.
Equation 50 implies thaAW can be ignored as long as the
two other angles, namelyy»3 and yis, are small enough.
However, this approximation breaks down when one of these
two angles (in this caseys) becomest/2, namely, when the
contour gets close enough to any of the (2,3) ci’s.

VI. Analysis of the Final Results
Equation 41 yields the (diabatic) potential matrix for the

Baer et al.

The derivation is characterized by two important features.

(1) Forp = N, eq 41 yields the ordinary result given in
eq 26. The reason is that fpr= N the matrix (Ag)*l becomes

AD = (AN =AY (53)

as one would expect. This implies that in this cAs8Es have
to be solved.

(2) For q = p = 1, the (single) potential term isy
(namely, the lowest adiabatic potential), and the corresponding
Schrainger equation becomes

e +(u,—Eg=0
2m @ 1 @

(54)

In other words, eq 53 is the ordinary adiabatic-B&chrainger
equation. It is important to emphasize that to apply eq 53 to
systems with conical intersections (systems that possess singular
NACTS) eq 53 has to be solved for the relevant boundary
conditions.

VII. Conclusions

In this article, we treat two issues related to the electronic
diabatic potential energy matrix.

(a) From scanning through the published literature, we notice
that the dimension of the diabatic matrices is arbitrary and not
subject to any limitations. We proved on various occasins
(see also refs 58(a), 58(c), 62(a), and 62(b)) that the dimension
of a diabatic matrix that follows from the adiabatic framework
by employing the ADT is determined to the extent that the
nonadiabatic coupling matrix;, breaks up into blocks. This
implies that if the size of the decoupled block belonging to the
T matrix (i.e., zy) is N then the dimension of this diabatic
potential energy matrix has to éas well. In this article, we
prove for the first time that the size of a diabatic matrix obtained
in any other way (direct or indirect) has to beas well.

(b) One of the main obstacles in treating electronic nonadia-
batic processes is the fact that the just-mentioned nuriNber
which also stands for the number of diabatic SEs to be solved,
can be rather large. This fact causes many dynamical treatments
to be carried out with an arbitrarily reduced number of equations
(usually two), essentially without any justification. In the present
article, we consider this issue in detail and show how the number
of SEs to be solved can be reduced rigorously from its original

modified (reduced) diabatic framework. At the beginning of our value N (which is energy-independent) to a smaller number,
analytical derivation, we assumed that the Hilbert subspace islabeled a9, which is expected be energy-dependent and most
made up oN states; therefore, one expects a diabatic potential likely equals the number of energetically open adiabatic states.
matrix to be of dimensionll x N and the number of equations As a final issue, we refer to a different method, due to
to be solved a§\. Following the analytical study presented in Kuppermanrf;!1that is also devised to overcome the problem
the previous section, we reduced this numbep,tavhich can of an enlarged system of diabatic states. According to this
be increased until convergence is attainpds(N). We recall method, one considers only the two lowest adiabatic states and
thatp is limited not only from above (biX) but also from below derives the corresponding ADT angle by solving a Poisson
by g, whereq is the number of open (adiabatic) states for a equation based on the removable part of the (1,2) NACT. In
given energy (and a given region). this way, the newly formed diabatic potential matrix (eq 50) is
Equation 41 clearly exhibits the two aspects that affect most guaranteed to be single valued as it should be.
electronic nonadiabatic processes, namely, energy and topology. The two approaches differ significantly from each other. The
The energy aspect enters through theaatrix, which contains Kuppermann approach considers only two states; in other words,
the adiabatic PESs, because the energy controls the nuppber, all magnitudes are related to the single (1,2) NACT. This is its
of adiabatic PESs to be included in the calculation. The advantage but mainly its limitation because it is not clear how
topological aspect enters through the redugedatrix (and its to incorporate topological features of higher states. Our approach
inverse) because its derivation, although it is of dimensions demands a knowledge of tihex N z matrix whereN is usually
p x p, involves all of theN eigenstates of the Hilbert subspace. larger than 2, but then, at the stage of treating the systeih of
This is also well demonstrated in the example that was worked diabatic (nuclear) Schdinger equations, this number is reduced
out in section V. to p, where p (=N) is now energy-dependent. The main
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advantage of our approach is that it enables a series of iterations (33) Krems, R.; Dalgarno, Al. Chem. Phys2002 117, 118. Zhu, C.;

to obtain the converged results. Because this part seems to b

&rems, R; Dalgarno, A.; Balakrishnan, Wstrophys. J2002 577, 795.

(34) Kryachko, E. S.; Yarkony, D. Rnt. J. Quantum Chen200Q 76,

missing in the Kuppermann approach, our method can be 535 yarkony, D. RJ. Phys. Chem. 2001 105 6277.

considered to be complimentary to his when it turns out that

keeping only two equations may lead to inadequate results.
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