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The kinetics of “nucleation-and-branching” rate-limited solid-state reactions and phase transformations (which
include processes that are governed by nucleation and nuclei multiplication but not nuclei growth or crystal
growth) are described using coupled rate equations. We treat such processes as occurring in two steps. The
first step, nucleation, is assumed to be first order in the reagent. The second step, involving the multiplication
of product nuclei (or “nuclei branching”), is considered to be autocatalytic; i.e., the rate of this step depends
on the relative amounts of both the reagent and the product. The general rate equation developed on the basis
of this two-step model allows greater flexibility in the fitting of sigmoidal kinetic curves than does the widely
used Prout-Tompkins equation. Similarities between our model and the recently described general Prout-
Tompkins (GPT) equation are discussed.

Introduction

It is known that many solid-state reactions or phase trans-
formations begin at specific sites on the reagent crystals. The
initial product at these sites exists in the form of nuclei. Further
reaction between the nuclei and reagent results in the growth
of the (germ) nuclei. Coincident with nuclei growth may be
the process of nuclei multiplication or “branching”. The latter
behavior was described by Prout and Tompkins as being
analogous to a chain-reaction mechanism.1 On the basis of this
model, Prout and Tompkins developed an equation for the fitting
of sigmoidally shaped kinetic plots that are commonly observed
in nucleation-rate-limited solid-state transformations.

The famous Prout-Tompkins (P-T) equation originated from
a work describing the kinetics of the thermal decomposition of
potassium permanganate crystals.1 Now almost 60 years old,
the P-T equation continues to be used in numerous publications
in areas that include the modeling of solid-state kinetics (see,
for example, ref 2) and solid-state phase transformations (see,
for example, ref 3). Both organic and inorganic systems have
been modeled with this equation.4 Direct application of the P-T
equation to the pharmaceutical sciences is also noted (see, for
example, ref 5).

The P-T equation may be written in derivative form as

wherex denotes the mole fraction of the product measurable at
time t and k is the rate constant for the transformation. The
amount of reagent remaining in the system at timet is given
by the term 1- x. Since the rate of conversion depends on the
relative amounts of both the product and reagent species, a
process that is described by eq 1 may be referred to as
“autocatalytic”.

Integration of eq 1 yields the result

wherec is a constant. This form of the P-T equation is most

often used in the modeling of solid-state kinetics, as a plot of
ln[x/(1 - x)] vs t can be expected to be linear. However, a more
general form of the P-T equation, referred to as the Sˇesták-
Berggren (S-B) equation, has also been proposed:6-8

The S-B equation allows reaction rate orders other than first
order to be modeled for both the product and reagent (via the
empirical parametersm and n, respectively). In addition, due
to the [-ln(1 - x)]p term, the equation may find broader
application in heterogeneous systems.9,10 Note that withm ) n
) 1 andp ) 0, the S-B equation reduces to the simple P-T
equation.

Another classical equation that is commonly employed in
solid-state kinetics is the Avrami-Erofe’ev (A-E) equation,11-13

which may be written in the form14

Note that eq 4 is simply eq 3 withp ) 0. In the A-E equation
(as for the S-B equation), bothm and n must be determined
empirically using a best fit of the experimental data (i.e. a plot
of x versust). The different values ofm andn obtained may fit
a variety of nucleation-and-growth models.15,16 In this work,
we limit ourselves to discussing systems in which only
nucleation and branching (and not nuclei growth or crystal
growth) are rate-determining andm ) n ) 1.

In a recent review of pharmaceutical applications of the P-T
equation, Brown and Glass concluded (in the context of
modeling the solid-state degradation of some drugs): “Where
sigmoid x-time curves have been obtained, there has been a
surprising lack of examination of alternative kinetic descriptions,
with the P-T equation being accepted as an empirical method...”.17

However, following a survey of the literature, we discovered
that Jacobs did, in fact, reexamine this model and he subse-
quently developed a new form of the equation, referred to as
the generalized Prout-Tompkins (GPT) equation:18
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dx/dt ) k′(1 - x)(x) (1)

ln[x/(1 - x)] ) k′t + c (2)

dx/dt ) k(1 - x)n(x)m[-ln(1 - x)]p (3)

dx/dt ) k′(1 - x)n(x)m (4)

ln{x/[1 - (x/2xi)]} - ln{x0/[1 - (x0/2xi)]} ) k′(t - t0) (5)
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where the termt0 represents the time at which nuclei branching
begins to dominate the transformation and the corresponding
x0 term describes the initial part of the transformation that occurs
before timet0. The equation describes both nuclei branching
(in which the rate is autocatalytic) and the termination of
branching (where the rate is a linearly decreasing function of
x). A key assumption made by Jacobs in the development of
the GPT equation is that the ratio of the rate constants for
branching (k) and for termination (k′′; note that this term falls
out of eq 5 in the derivation) does not depend onx. The
inflection point of a curve defined by eq 5 occurs at (ti, xi);
thus, it is not constrained to the point (t ) 0, x ) 0.5) as per
the P-T equation. Jacobs was able to demonstrate that the GPT
model may fit experimental data better than the P-T model in
cases where the curve is not symmetrical in the vicinity ofx )
0.5 (note that ifxi ) 0.5, the GPT equation takes on a form
similar to the P-T equation).18

The goal of the present work is to try to improve the modeling
of solid-state processes in which nucleation and branching are
rate determining. To do so, it is of interest to us to ascertain
whether reaction rate theory, as it applies to common solution-
phase chemical reactions, can be used to describe such processes.
We hypothesize that by using two rate expressions one may be
better able to model the “long induction periods and the slower
growth of nuclei at first”18 observed in some experimental data
than is currently possible using models that contain only one
such expression. In this work, we propose using the combination
of a first-order rate expression and an autocatalytic rate
expression to describe nucleation-and-branching rate-limited
processes. Support for this approach may be found in work by
Tamhankar et al., who obtained data from the synthesis of
Cu3Si from Si and CuCl which they were only able to fit using
a simultaneous autocatalytic and noncatalytic rate equation.19

Additionally, one may notice that the GPT equation, mentioned
earlier, describes both an autocatalytic rate for nuclei branching
and a linear dependence on the product concentration for the
probability of termination. Interestingly, the mathematical
interpretation of the latter mechanism is essentially identical
with the treatment of a linear dependence on the reagent
concentration for product formation (discussed more later).

Results and Discussion

Assuming that a solid-state transformation,A f P, is
autocatalytic with an overall rate constant ofk, the rate law for
the process may be written using a solution-phase description
of the kinetics, as described by Atkins.20 The resulting equation
is identical with the classical P-T equation (see eq 1 in the
Introduction). As discussed earlier, a plot of eq 1 is symmetrical
about the inflection point, which occurs at (t ) 0, x ) 0.5).
Because of the location of this inflection point, the time axis is
negative whenx < 0.5 (see, for example, ref 21). To avoid
modeling “negative reaction time”, Prout and Tompkins incor-
porated a term into their equation,ti, to relate the location of
the inflection point time in the experimental curve (i.e. the time
where the maximum rate of reaction occurs). With the addition
of the ti term, eq 2 becomes

Identification of theti time allows the sigmoidal curve to be
translated along the time axis (toward positive values). In a like
manner, the integration constant,c, serves as a vertical offset
for the curve (i.e. along thex axis). Note that the GPT curve is
shifted by a similar (essentially arbitrary) time quantity,t0, as

described in the Introduction. However, the constant,c, is given
a more explicit definition in the GPT equation.18 Due to issues
surrounding the identification of the start time for a given
transformation, Brown et al. have found it more useful to plot
the relative conversion,x, against the reduced time instead of
absolute time.22

If we consider that a crystallization obeying eq 1 is “seeded”
with a known amount of product nuclei,x0 (keep in mind the
significance ofx0 in the GPT equation), at timet0, the resulting
rate equation may be written as

Equation 7 states that the rate of conversion, dx/dt, is directly
proportional to the product of the mole fractions of the reagent,
1 - x, and product,x + x0 (after seeding), contained in the
reactor at any time,t, during the transformation. The constant
of proportionality is the rate constant for the process:k′. (Note
that determining the value of the rate constant as a function of
temperature can allow the apparent activation energy for the
conversion to be estimated, via the Arrhenius equation.)

It follows that the integrated form of eq 7, with thet0 term
added, is

Equation 8 may also be rewritten to givex as a function of
t:

whereb ) k′(1 + x0) andc′ ) exp[c(1 + x0)]. From eq 9, att
) t0, x ) (c′ - x0)/(c′ + 1). However, we also know thatx )
x0 at this time point. Thus,c′ ) 2x0/(1 - x0). Inserting this
value forc′ into eq 9, one obtains

By plotting eq 10 (not shown), one may observe sigmoidally
shaped curves ofx versust, as might be expected. When the
second derivative of eq 7 is set equal to zero, the inflection
point can be found to occur atx ) (1 - 2x0)/2, which is close
to 0.5 for small values ofx0. Using a solution-phase interpreta-
tion of this autocatalytic rate expression, the shape of a typical
curve may be described as being the result of an initially slow
conversion due to the limited availability ofP, which is fastest
when bothA andP are present at significant levels (i.e. during
the intermediate stages of the reaction or transformation) and
finally slow again asA is eventually consumed.20 While the
shape of these plots provides evidence to suggest that the product
nuclei may indeed catalyze the transformation (perhaps by
promoting the formation of crystal defects at the interface
between product and reagent, which, in turn, facilitates the
generation of additional product nuclei), eq 10, like the P-T
equation, suffers from inflexibility in the modeling of the lengthy
induction periods and asymmetric curvatures that are often
observed in solid-state kinetics.1,18 (Note to reader: theoretical
plots for the P-T, A-E, and other related equations may be found
in refs 17 and 21.)

When it comes to the modeling of solid-state transformations,
a particularly challenging feature of experimentalx-t plots is
the induction period. We know that, for general crystallizations,
the induction period may be considered to be inversely
proportional to the nucleation rate.23 Also, we have observed
that the duration of the induction period in the polymorphic

ln[x/(1 - x)] ) k′(t - ti) + c (6)

dx/dt ) k(1 - x)(x + x0) (7)

ln[(x + x0)/(1 - x)]/[1 + x0] ) k(t - t0) + c (8)

x ) (c′eb(t-t0) - x0)/(c′eb(t-t0) + 1) (9)

x ) {[2x0/(1 - x0)]e
b(t-t0) - x0}/{[2x0/(1 - x0)]e

b(t-t0) + 1}
(10)
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transformation of a pharmaceutical intermediate is dependent
on the temperature of the system, as expected from the Arrhenius
equation.24 These findings suggest that an autocatalytic (i.e.
branching) mechanism, alone, may not be suitable to describe
the kinetics of certain reactions or phase transformations.
However, the addition of a separate rate expression for
nucleation may prove useful in this goal. We consider that
nucleation and branching may be considered as two interrelated
yet distinct steps (often rate determining) in a series of steps
required to achieve a conversion. To better define the rate-
determining process(es) for nucleation-and-branching-dominated
reactions, it may be advantageous to consider both steps
independently, as shown below (where each step has its own
rate constant):

In the above transformation, assuming that the two steps occur
simultaneously (i.e. in parallel), it follows that the rate equation
can be written analogously to eq 1:

Equation 11 relates the idea that, for a given nucleation-and-
branching rate-limited conversion, one step of the process
involves the initial formation of nuclei of the product form (i.e.
nucleation). This step is treated as being first order in the reagent
form. The second step, the multiplication or branching of product
nuclei, is autocatalytic, as described by the P-T equation. (Note
that for the process of (primary) nucleation, as described in many
textbooks, the rate constant can be shown to depend on physical
parameters such as the number of molecules in the “critical
nucleus”, the concentration of nucleation sites, and the frequency
of attachment to the nucleus. Unfortunately, these parameters
are difficult to measure and, thus, they are not of much practical
use. Furthermore, the concept of a “critical nucleus” inherently
implies that the shape of the nucleus does not fluctuate from a
spherical ball, which may be a poor model for small nuclei. In
this work, we choose not to dissect the rate constants into
physical parameters; we feel that this falls out of the scope of
the present work and that little additional mechanistic insight
into the processes we describe would be gained by doing so.)
Integration of eq 11 yields the solution (with thet0 term
incorporated)

An equivalent form of this equation may be written as

whereb ) (k + k′) andc′ ) exp(c). However, att ) t0, x ) x0

) (c′ - k′)/(c′ + k′). Thus, c′ ) (k′x0 + k)/(1 - x0).
Incorporating the constantc′ into eq 13 yields the final result:

Returning to eq 11, if we also take into account the idea of
“seeding” att ) t0, one obtains a rate expression analogous to
eq 7:

Integration of eq 15 yields

This equation may also be written as

whereb ) k + k′ + k′x0 andc′ ) exp(c). Since att ) t0, x )
x0 ) (c′ - k - k′x0)/(c′ + k′), thusc′ ) (k + 2k′x0)/(1 - x0).

While modeling of eq 17 (plots not shown) may allow for
more flexibility in the fitting of sigmoidal kinetic curves than
the P-T equation (through appropriate selection of the param-
etersk, k′, andx0), it is desirable to try to obtain a more general
definition of the termx0. To do this, instead of treating the
nucleation and branching steps as parallel events, it may be more
prudent to consider that the two steps are coupled. In this case,
nucleation, typically the somewhat slower of the two steps (from
experimental observations of the induction period), can occur
independently of branching, but not vice versa. This approach
allows the initially formedP nuclei to be considered as a type
of “reaction intermediate”, as per a solution-phase chemical
reaction. Thus, employing the steady-state approximation20 to
describe the amount of the initial product nuclei, one finds that
x0 ) k/k′. Incorporating this term into eq 15, one obtains

Integration of eq 18 yields the equivalent equations

and

In the second of these two equations,b ) 2k + k andc′ )
exp(c). Using the point at whicht ) t0, it can be shown thatc′
) 3k/(1 - k/k′) (thus, in eq 19,c ) ln[3k/(1 - k/k′)]). The
inflection point of the curve defined by these equations occurs
at x ) (k′ - 2k)/2k′. Note that for cases in whichk′ = k, x )
0.5 atti, as in the P-T equation.

Figure 1 shows some theoretical reaction curves obtained
from modeling eq 20. Although the exact start time of the
transformation cannot be pinpointed with this or any other model
described in the literature, it can be seen that even small relative
changes in the magnitudes ofk andk′ can dramatically affect
the location of the inflection point and the degree of curvature
in its vicinity. In this sense, the present work achieves a similar
goal to that of Jacobs.18 This finding may be due to the fact
that eq 20 and the GPT equation are mathematically quite
similar: upon expanding, one finds that each contains a linear
and a quadratic term inx (the constant terms are arbitrary, as
mentioned earlier). However, each of these equations was
developed using very different approaches.

Exemplifying the similarities between the GPT equation and
eq 20, Figures 2 and 3 show the curve fitting of a particularly
challenging data set taken from ref 25, using the latter equation.
These data, representing the thermal degradation of ground
AgMnO4 crystals at 100°C, are very asymmetrical (as compared
to the corresponding data for the decomposition of KMnO4, for
example). While Jacobs found that the P-T equation was able
to fit these data only up tox ≈ 0.22, the GPT equation was
able to do better; showing a good fit in the range 0.007< x <
0.362.18 From Figure 3, one can see that data in this same range

A f P k, nucleation

A + Pf 2P k′, branching of nuclei

dx/dt ) k(1 - x) + k′(1 - x)(x) (11)

ln[(k′x + k)/(1 - x)] ) (k + k′)(t - t0) + c (12)

x ) (c′eb(t-t0) - k)/(c′eb(t-t0) + k′) (13)

x ) {[(k′x0 + k)/(1 - x0)]e
b(t-t0) - k}/{[(k′x0 + k)/

(1 - x0)]e
b(t-t0) + k′} (14)

dx/dt ) k(1 - x) + k′(1 - x)(x + x0) (15)

ln[(k + k′x0 + k′x)/(1 - x)] ) (k + k′ + k′x0)(t - t0) + c
(16)

x ) (c′eb(t-t0) - k - k′x0)/(c′eb(t-t0) + k′) (17)

dx/dt ) k(1 - x) + k′{1 - x}{(k/k′) + x} (18)

ln[(2k + k′x)/(1 - x)] ) (2k + k′)(t - t0) + c (19)

x ) (c′eb(t-t0) - 2k)/(c′eb(t-t0) + k′) (20)
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may be fit withR2 ) 0.993 using a regression fit of eq 20. The
reasonably good fit of these data serves simultaneously to
validate our earlier assumptions in the development of this
equation.

Conclusions

Equation 20 may allow for better modeling of kinetic data
for solid-state reactions and transformations that are rate-limited
by processes involving nucleation and branching than use of
the classical P-T equation. Fundamentally, this may be attributed
to a more detailed mathematical interpretation of the conversion
than the simple autocatalytic mechanism offered by the P-T
equation. In this work, nucleation and branching were treated
as distinct yet coupled processes. The former event was

considered to be first order in reagent; the second process was
treated as being autocatalytic. Varying the relative values of
the rate constants for these steps (k and k′, respectively) was
found to provide good control over the sigmoidal shape of the
resultingx - t plot. Like the GPT equation, eq 20 is expected
to be of wider utility than the P-T equation for the fitting of
sigmoidal reaction curves that are not symmetrical aboutx )
0.5.
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(9) Šesták, J. J. Therm. Anal.1990, 36, 1997.

(10) Koga, N.Thermochim. Acta1995, 258, 145.
(11) Johnson, W. A.; Mehl, R. F.Trans. AIME1939, 135, 416.
(12) (a) Avrami, M.J. Chem. Phys.1939, 7, 1103. (b) Avrami, M.J.

Chem. Phys.1940, 8, 212. (c) Avrami, M.J. Chem. Phys.1941, 9, 177.
(13) Erofe’ev, B. V.Dokl. Akad. Nauk SSSR1946, 52, 511.
(14) Burnham, A. K.; Braun, R. L.; Coburn, T. T.; Sandvik, E. I.; Curry,

D. J.; Schmidt, B. J.; Noble, R. A.Energy Fuels1996, 10, 49.
(15) Zhou, D. L.; Schmitt, E. A.; Zhang, G. G. Z.; Law, D.; Wight, C.

A.; Vyazovkin, S.; Grant, D. J. W.J. Pharm. Sci.2003, 92, 1367.
(16) Hancock, J. D.; Sharp, J. H.J. Am. Ceram. Soc.1972, 55, 74.
(17) Brown, M. E.; Glass, B. D.Int. J. Pharm.1999, 190, 129.
(18) Jacobs, P. W. M.J. Phys. Chem. B1997, 101, 10086.
(19) Tamhankar, S. S.; Gokarn, A. N.; Doraiswamy, L. K.Chem. Eng.

Sci.1981, 36, 1365.
(20) Atkins, P. W. Physical Chemistry, 4th ed.; Oxford University

Press: New York, 1990; p 830.
(21) Brown, M. E.Thermochim. Acta1997, 300, 93.
(22) Brown, M. E.; Glass, B. D.Int. J. Pharm.2003, 254, 255.
(23) Golubev, S. V.; Pokrovsky, O. S.; Savenko, V. S.J. Cryst. Growth

1999, 205, 354.
(24) Skrdla, P. J.; Antonucci, V.; Crocker, L. S.; Wenslow, R. M.;

Wright, L.; Zhou, G.J. Pharm. Biomed. Anal.2001, 25, 731.
(25) Prout, E. G.; Tompkins, F. C.Trans. Faraday Soc.1946, 44, 468.

Figure 1. Theoretical plots (0e t e 400) obtained using eq 20 in the
text using different rate constants for nucleation (k) and nuclei branching
(k′). The value oft0 was arbitrarily set to 150 in all cases.

Figure 2. Data from ref 25 for the thermal decomposition of ground
silver permanganate crystals at 100°C. The line represents a regression
fit of the data using eq 20:R2 ) 0.996 withk ) 0.0014,k′ ) 0.021,
and t0 ) 46 (the fit may not be optimized). Note that the induction
period is not modeled very well by this equation when the entire data
set is fit.

Figure 3. Data from ref 25 in the region 0.01< x < 0.38, fit using eq
20. The regression fit hasR2 ) 0.993, withk ) 0.0011,k′ ) 0.035,
and t0 ) 42.
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